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ABSTRACT. - We develop a regression model specification test that 
directs maximal power toward smooth transition functional forms, and is 
consistent against any deviation from the null specification. We provide 
new details regarding whether consistent parametric tests of functional 
form are asymptotically degenerate: a test of linear autoregression against 
STAR alternatives is never degenerate. Moreover, a test of Exponential 
STAR has power attributes entirely associated with the choice of threshold. 
In a simulation experiment in which all parameters are randomly selected 
the proposed test has power nearly identical to a most-powerful test for 
true STAR, neural network and SETAR processes, and dominates popular 
tests. We apply the test to U.S. output, money, prices and interest rates. 

Tests de sp?cification de mod?le convergents et non 
d?g?n?r?s contre des alternatives avec transition douce 
et r?seaux de neurones 

R?SUM?. - Nous d?veloppons 
un test de sp?cification pour un mod?le de 

r?gression qui dirige une puissance maximale vers des formes fonctionnelles 
? transition douce et qui est convergent contre toute d?viation par rapport ? 

l'hypoth?se nulle. Nous pr?cisions ?galement la d?g?n?ration asymptotique 
des tests param?triques convergents de formes fonctionnelles : un test d'un 
processus autor?gressif lin?aire contre une alternative STAR n'est jamais 
d?g?n?r?. De plus, un test d'une fonction exponentielle STAR poss?de une 

puissance enti?rement associ?e au choix du seuil. Dans une simulation o? 
tous les param?tres sont choisis al?atoirement, le test propos? poss?de 
une puissance presque identique ? celle d'un test le plus puissant pour de 
vrais processus de type STAR, r?seaux de neurones et SETAR, et domine 
tous les tests usuels. Nous appliquons ce test ? des donn?es am?ricaines 
de niveaude production, de monnaie, de prix et de taux d'int?r?ts. 
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1 INTRODUCTION 

1.1 STAR Methodologies 

Smooth Transition Autoregression (STAR) models have gained significant pop 
ularity as a means to transcend well known explanatory and forecasting limita 
tions of linear and binary regime switching models. See Chan and Tong [1986a,b], 
Terasvirta [1994], Luukkonen et al. [1988], Lin and Terasvirta [1994], van Duk 
et al [2002], Lundberg et al. [2003] and Lundberg and Terasvirta [2005]. 

The standard setup models a time series {yt} as a two-regime autoregression 

p p 

(i) yt - a + 2 ?fritt-i + 
2 ?itt-ix Fu-rf.Y,c)+ zt 

/-i /-i 

where F is a smooth function taking values on [0, 1], typically 

exponential: F(yt_d, y, c) 
= 

exp {- y(yt_d 
- 

c)2} 

logistic: F(yt_d, y, c) 
=-?- . 

l + exp{-y(yt_d-c)} 
The transition function F(yt_d ,y,c)e [0,1] moves the data generating process 

ZP 
yr^ P 

?ivt-i and a + 21j (?i+ ?/Xv*-/ based on 

past information yt_d. The exponential F() captures "inner" and "outer" regimes: if 

^?yt-i + ?p 

and ifyt_d is close to c then F(yt_d, y, c) 
~ 1 and yt ? a + 

^ (c^. + ?/)^., + er 

The logistic F() captures "upper" and "lower" regimes: if c<yt_d ?>oo then 

F(yt_d,y,c)->\, and F(yt_d, y, c) -> 0 as c > v^.^ -> -oo . The scale y>0 

gauges the speed of transition: y = 0 implies no transition in which case yt is a 

linear AR; and small (large) y > 0 implies slow (fast) transition. 

Tests of linearity against STAR alternatives, however, have received almost no 
attention in the theory literature, although a standard practice dominates the applied 
literature. Since a test of ? 

= 0 is not nuisance parameter-free the standard practice 
is to exploit y 

= 0. The hypothesis is indirectly tested by performing a truncated 

Taylor approximation of F(yt_d, y, c) around 7 
= 0. This leads to a simple sec 

ond or third order polynomial auxiliary regression in the spirit of Ramsey [1970] 
and standard F-tests of parametric zero-restrictions are used to determine whether 

the process is linear AR, or exponential or logistic STAR. See Luukkonen et al. 

[1988], Saikkonen and Luukkonen [1988], Lin and Terasvirta [1994], Terasvirta 

[1994], Gonzalez-Rivera [1998], Escribano and Jorda [2000], Rothman et al. 

[2001], Lundberg and Terasvirta [2002, 2005], and Lundberg et al. [2003], to 
name a few. 
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In order for the polynomial regression to have meaning in a STAR framework, 
however, the true data generating process is simply assumed to be a STAR. If no 

assumptions are made the test merely directs power toward low order polynomials. 
The test is therefore not a true test against smooth transition alternatives, per se. 

The nuisance "delay" parameter d remains in the polynomial regression. If d is 
not simply assumed it is selected by minimizing the F-statistic /7-value. The statis 
tic has a non-standard limiting null distribution in the latter case (Davies [1977], 
Stinchcombe and White [1992]), yet chi-squared or F- distributions are universally 
used. Similarly, in many instances the threshold c is simply fixed (e.g. Gonzalez 
Rivera [1998]). 

Finally, most smooth transition models in the applied literature incorporate only 
one threshold variable yt_d, and in some cases only time t (Lin and Terasvirta 

[1994], van Dijk et al. [2000], Lundberg et al. [2003]). Test consistency will require 
each stochastic variable that enters into the null specification (e.g. yt_v ..., y ) to 
enter into the weight function F(), cf. Bierens [1982, 1990] and Stinchcombe and 

White [1998]. 

1.2 New STAR Test 

In this paper we develop a consistent1 parametric test of STAR functional form. 
Consistent parametric tests have been proposed by Bierens [1990], Bierens and 
Ploberger [1997], Stinchcombe and White [1998], Dette [1999] and Hill [2007]. 
See Yatchew [1992], Hardle and Hall [1993], Hong and White [1996], Stute 

[1997] and Li, Hsiao and Zinn [2003] for (semi) nonparametric methods. 

Inconsistency arises because only a finite number of moment conditions are 

actually tested. A failure to reject the null may simply be due to the fact that some 
alternative not covered by the test statistic is true. In a STAR framework, even if we 

agree that finite-order polynomials adequately represents exponential and logistic 
functional forms, a failure to reject the test may be due to some other smooth tran 
sition mechanism (e.g. the Normal STAR: see Chan and Tong [1986b]). 
Our main contribution is a score test that directs power toward a general Smooth 

Transition Non-Linear Autoregression with Auxiliary variables (STARX). Single 
equation ARX models have a myriad applications in macroeconomics and finance 

(e.g. Baillie [1980]; Bierens [1987, 1991]; Pena and Sanchez [2005]). The test is 
consistent against any deviation from the null, and nests specifications popularly 
employed in the STAR and Artificial Neural Network [ANN] literatures. Consult 

Hornik, Stinchcombe and White [1989], Bierens [1990], Hornik [1991] and Lee, 
White and Granger [1996] for details on ANN models and their usage in econo 
mics. Whereas smooth transition models have simple behavioral interpretations2, 
neural nets are typically employed to absorb evident and otherwise unexplained 
nonlinearity (e.g. Donaldson and Kamstra [1996]). A score test provides an intui 
tive sample check that smooth transition or neural net terms have not been omitted 
from a nonlinear ARX null specification. 

1. The power of the test statistic converges to one, as the sample size grows, under any deviation from 

the null. 
2. For example, as an exchange rate deviates from a target band, currency traders may expect open 

market transactions by a central bank to stabilize the rate. The planned transaction and its expectation 

by traders suggest traders may behave differently as the exchange rate increasingly deviates from the 

band. 
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Our test is consistent because we enforce 7 > 0, permitting uncountably infinitely 
many moment conditions based on flexible test weights. We simply test whether 
the second regime term belongs 

H0 :$i 
= 

0,i=l...p vs. 
H1 

: at least one ?. + 0, 

and deliver a supremum test over 7 in order to elevate small sample power. 
In a second contribution we prove consistency of a test against an Exponential 

STAR alternative is based on the threshold c. This suggests the practice of fixing c 

may curtail small sample test power. 
Of separate interest, as a third contribution we prove a score test of linear autore 

gression against standard ANN or STAR alternatives is never degenerate except 
in a trivial case. This provides far more information concerning test degeneracy 
than previously characterized in Bierens [1990] and de Jong [1996], and provides 
a natural setting for the optimal tests of Andrews and Ploberger [1994,1995] who 

simply assume non-degeneracy. 

There are, however, some notable limitations. Although we permit non-stationary 
time series our test evidently cannot distinguish between non-stationarity (e.g. a unit 
root or stochastic break) and nonlinearity. See Kapetanios, Shin and Snell [2000] 
and Kapetanios and Shin [2003] for tests in this genre. It also cannot handle some 
unbounded forms of global non-stationarity including linear trend in variance. 

A simulation study demonstrates our test dominates standard tests, and vastly 
dominates the STAR polynomial regression test. In fact, the power of the proposed 
test against STAR, ANN and SETAR alternatives nearly matches that of uniformly 

most-powerful tests. Finally, we apply the test to a basket of U.S. macroeconomic 
variables. 

In Section 2 we detail the STARX framework. Sections 3 and 4 contain the score 
statistic and construct smooth transition moment conditions. Asymptotic theory is 

developed in Section 5, and Section 6 characterizes test degeneracy. Sections 7 and 
8 contain the simulation and empirical studies. Assumptions and proofs are in the 

appendices, and all tables are placed at the end. 

Write 
\x\p:=(Zjx,j\P)yp 

and 
\\x\\p :=(?.y E\x,j\p)u" 

. For arbitrary 
A:-vectors a and x, vector powers Xa represent (xf,..., xakk )'. Ik 

denotes a ^-dimen 

sional identity matrix. ??-> denotes convergence in probability, -> conver 

gence in finite dimensional distributions; and => weak convergence on a metric 

space; [x] is the integer part of x. C[A] denotes the space of continuous functions 

endowed with the uniform metric on some compact space A. 

2 STARX FRAMEWORK 

Let {Wt) := {yt, xt) be a k-vector stochastic process, where xt <e Rk~l, k > 1 are 

regressors that do not contain lags of vr Assume {Wt} lies in L2 (T, 3, P) with 

probability measure P and G-field 3, 
= 

<j({Wt} :t < t), 3, 
= 

o~(U,e?3,) ^n tne 
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case of a purely autoregressive framework k = 1 and 3, 
= 

a(yx :x<t). We assume 

xt does not contain a constant, and the complete regressor set zM contains lags of 

yt and xt: 

zt_x ^[(yt.x,x?_xy,...,(yt_p,x?_p)']f 
and zt ^(\,z't)'eRpk+]. 

2.1 STARX Model 

Let B, D, T and O be compact parameter spaces: 

B R1 (l>\),DaRq (q>0),? Rpk+l,rczRpk+], 

and consider known Borel-measurable response functions/and w: 

f: OxE^+Ul andw: DxRpk+l -?Rl, l>\. 

We are interested in whether the model 

(2) yt =/( , Vi) + ?? 

is correct for some (() e O in the martingale difference sense E[st 13^! ] 
= 0, or 

whether a 2-regime smooth transition nonlinear ARX form 

(3) yt 
= 
M, z,_, ) + ?fw(8, zt_x ) x F(x'zM ) + e, 

improves the model fit, where 

F:R-?R, i>(infSeZ)|w(?,zM)|>0) 
= l, $eB, beD, xeT. 

Traditionally F is the exponential or logistic restricted to [0, 1], but we only 
require F to be non-polynomial and infinitely differentiable: see Section 4. The 
error term s/ may be heteroscedastic. All regularity conditions are listed under 

Assumption A in Appendix B. 

We use w(8, zM ) with the imbedded parameter 6* to capture the ESTAR case, and 

bound | w(8, zt_x )| 
> 0 to escape trivial or redundant cases (e.g. w(d, zt_x ) 

= 
?'zt_x ). 

See Section 2.3, below, for examples. Model (3) nests (1) since f(?, zt_x) 
= 

<|>'zM 
and w(8, zt_x) 

= 
zt_x are special cases with zt_x 

= 
(1, yt_x,...,yt_p). 

It would be straightforward to permit different lagspj and/?2 in the two regimes, 
and to allow yt andx, to have different lags. Similarly, we could easily generalize e, 
to a finite-order moving average process producing a smooth transition ARMAX 

model (cf. de Jong [1996]). Either generalization would only further complicate 
notation3. 

3. Since none of the following theory requires px= p2= p, we investigate p\ 
? 

p2 in the simulation 

study of Section 7. 
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2.2 Persistence: v-Stability 

In order to have an accessible asymptotic theory applicable to heterogeneous 
nonlinear ARX data {zf}, we utilize Bierens' [1983, 1987, 1991, 1994] concept of 

v-stability on a strong mixing base. Consult Appendix A for a formal definition and 

properties, and see especially Bierens [1991 : Annales d'Economie et de Statistique 
20/21]. 

Briefly, v-stability is essentially a version of Near-Epoch-Dependence and 

mixingale properties, and is equivalent to Potscher and Prucha's [1991] 
L -approximability4. Under v-stability Wt can be an infinite order distributed lag in 
mean and/or variance with long or short memory, including ARFIMA(p, d, q) and/ 
or FIGARCH(p, d, q), d g [0,1), nonlinear difference equations Wt 

= 
ht (zt, Wt_x ) 

with iid shocks s/, and bilinear, to name a few. Moreover, it covers mixing pro 

cesses, in particular any strictly stationary geometrically ergodic process, including 
therefore Threshold Autoregressions, neural nets, Vector ARCH, STAR, nonlinear 

AR-GARCH processes, etc. (see, e.g. An and Huang [1996], Najar?an [2003], and 
Meitz and Saikkonen [2008] inter alia). 

The property does not characterize processes with a non-negligible infinite past 
(e.g. a unit root process), it encompasses seasonality, bounded trend in mean and 

variance, and stochastic breaks. In practice the analyst will need to pre-test for 
unbounded trend and unit roots and filter the series appropriately. 

2.3 Examples 

LSTARX: The Logistic-STARX model is 

yt 
= 

<|>'zM+?% 

/* 
l + 

expj-]T 7/(Vi,/-C/) 
/=! 

+ 8, 

= 
/Ok *m ) + ?'^(o\ zt-\ ) x F(xf, zt_x ) + e, 

where /(<|>, zt_x) 
= 

<|>'zM , w(b, zM) 
= 

zM , y,. 
= 

-x? 
> 0 for / = 1... pk , c? e M , 

pk 

andTo=Z y?ci' 
/=! 

ESTARX: The Exponential-STARX model is 

yt = Vzt_} +?'zM exp 
\ -? yi(zt_u -erf Uc,. 

/=! 

This model is complicated by the quadratic transition mechanism. Since we ulti 

mately require the test weight argument to be a one-to-one function of the transition 
variables zt_x for test consistency, write 

4. See Gallant and White [1988] and Davidson [1994]. Like NED, Bierens' o-stability was originally 
inspired by the mixingale property (McLeish [1975]). See Bierens [1991], 
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? Pk } ? \Pk } zM exp 
j -? 

y.(zM>I. -cf [ = zM exp 
j ? 

btf^ 

= 
w(d,zt_x)xF(x%_x) 

xexp{xzM} 

pk 
say, where ?, 

= -yi < 0 for i = \...pk, ci e R , {x? 
= 

2ciyi}fkx and x0 
= 

-^T ytcf 
. 

i=i 

As long as ? and x are treated as unrelated parameters (i.e. as long as the threshold 
c is not simply fixed) a consistent test is available based entirely on c, for any scale 

y > 0. If c is fixed our proposed test cannot be proven to be consistent. 

ANN: Since w(8, zt_x ) 
= 1 is allowed under (3), a special case is a standard single 

layer feed forward Artificial Neural Network. In the logistic case, for example, 

^/=*^-i+? 

Pk 
i + 

exPi-Z y^z^j-cM 
i=\ 

Neural nets were popularized in the psychology and engineering literatures as 

purely non-theoretical means to efficiently approximate connections between data 

points. The most popular forms, the exponential and logistic, are universal approxi 
mators due to their infinite differentiability (Hornik [1991]) making them highly 
useful objects for consistent test formation (Bierens [1990], Lee et al. [1996], 
Stinchcombe and White [1998]). 

3 SCORE TEST OF STARX 

Represent all nuisance parameters as 

e = [?',T']'ee 
= Dxr. 

If the second regime w(6,zt_x) does not depend on ? then 0 = xer (e.g. 
w(d, zt_x ) 

= 
zt_x or w(8, zt_x ) 

= 1 ). 

Let sn(?, ?, 9) be the sample score associated with (3). If (j) denotes the nonlin 

ear least squares5 estimator under H0: ? 
= 

0, then 

sn(i 0, 6) = 
- 
? ?tw(b,zt_x)F(x%_x) g Rl, where ?, ^ yt -/($, zM) . 

5. It is straightforward to extend all results to Generalized Method of Moments estimation. 
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By standard mean-value-theorem arguments an estimator of the asymptotic vari 
ance of sn(?, 0,0) is 

V(Q) = -fjefgt(Q)gt(d)'eRM 

where 

ft(0) = w(?, z,_, )F(x%_x ) 
- 

b(l 6)^(1)-' ? /($, f,_, ) 

?( , 0) = 
- 
? w(5, z,_, )F(x%_x ) A /($, z,_, ) 

^) = 
i? ?/( .Vi)?7/(*'. Vi) 

The score statistic under //0 is simply 

r? (9) = ?*?(*, o, e)T (er1 ?? (<U e). 

We will show Tn(Q)->%2(0 when model (2) is correct, for each point 0, and 

Tn(Q) -> oo with probability one when (2) is not correct for uncountably infinitely 
many 0. This is accomplished by considering (/) the ability of sn(?, 0,0) to detect 

any deviation from the null (Section 4); (//) whether Tn(Q) converges on a space 
of continuous real functions (Section 5); and (Hi) whether V(Q) converges to a 

singular matrix for certain points 0 e 0, in which case Tn(Q) is asymptotically 

degenerate (Section 6). 

4 STARX CONDITIONAL MOMENTS 

We need to show if {s/?3r} in (2) is not a martingale difference sequence 

E[et | 3M ] * 0, then for any ? e D 

E[zt w(b, zt_x )F(x%_x )] * 0 for "nearly every" x e Rpk+l 

We will make "nearly every" clear below. Lemma 1 is an easy, but required 
extension of Lemma 1 of Bierens [1991], Theorem 1 of Bierens and Ploberger 

[1997] and Theorem 2.3 of Stinchcombe and White [1998]. 
Assumption B The weight F is analytic and non-polynomial on some open inter 

val R? of R. 
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Examples of analytic functions that are non-polynomial are exp {?}, [1 + exp {u} ]_1 
and trigonometric functions6. 

LEMMA 1 Let Assumption A apply, and P(E[zt | 3,_, ] 
= 

0) < 1 where 

3, 
= 

o(zx :x<t). For each 8 e D independent of z, any F under Assumption B, 
and any compact subset F czRp +l, the set 

i 
S = 

f|{x 
E T : E[ztwi(b,zt_x)F(x%_x)} 

= 
0} and P(x%_x eR0) 

= l 
7 = 1 

has Lebesgue measure zero and is nowhere dense in Rpk+l. 

Remark: S contains those x that render an asymptotically faulty score test TJ?) 
since ?[8,^(8, zt_x)F(x', zM)] 

= 0 even when E\zt 13M] 
* 0 with positive 

probability. Although there may be infinitely many such "bad" nuisance parameters 
x, Lebesgue measure zero means there can be at most countably7 many of them. 
This means a consistent STARX test Tn(Q) can be constructed simply by randomly 

selecting all nuisance parameters 0 = [5', x'] from any subset 0, or by computing 
the supremum of Tn(d) over compact 0. 

Recall the ESTARX model from Section 2.3. If f(?, zt_x) is mis-specified then 

Pk 

?^-iexP1-X Yili^-c,.) /=! 

pk 

z/-iexpj]T 8,2,1,,,. 
J=i 

xexp {x'zM} *0 

for any scale y, 
= 

-8; > 0 and uncountably infinitely many x e Rpk+l, hence 

uncountably infinitely many [ct 
= 

x7 /2y,,}P 
e Rpk . Since 8/ 

= 
-7. andx{ 

= 
2c/y/, and 

8/. and x. must be treated as separate, the ability of the ESTARX moment condition to 

reveal model mis-specification is therefore solely associated with the threshold c. 

COROLLARY 2 (ESTARX) Under the conditions of Lemma 1, if 
P(E[zt\%t_x ] 

= 0) < 1 then for each y>0the set 

:E 
pk 

e,z,_,expj-? y,(zt.u-c,) Y? 
;=i 

= 
0,JP(T'z;_,e^) 

= l 

6. Lemma 1 is grounded on Theorem 2.3 of Stinchcombe and White [1998]. However, they show (see 
their Corollary 3.9) that the analytic property can be relaxed, allowing F to be a normal cumulative 
distributrion ruction. This supports the Normal STAR model of Chan and Tong [1986b]. 

7. Any two {x1? x2} e S are not "neighbors": inf{| x{ 
- 

x2 \\. xb x2 g S} > 0 . Cf. Bierens [1990: Lemma 1]. 
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has Lebesgue measure zero and is nowhere dense in 

andx0=~Yfi=x y?cf 
. 

pk , where \xi =2yici}p= 

5 STARX TEST THEORY 

In this section we derive the weak limit distribution of the STARX score test sta 
tistic TJ?). A weak limit is required since 0 is unknown (see Billingsley [1999]). 
Define 

(4) 1^ 
*?(<!>,0,0) 

= ~ Y. s,g,(0), where e, = y, 
- 
f(tf, z,_x) 

t = \ 

and 

(5) g, (0) = w(5, z,_, )F(x%_x ) 
- 

b(d, VA($Tl 
~ 

/(*, ~zt_x ) 

A($) = E 

' 
? 

F(x%_x )w(5, z,_x ) 
? 

M, zt_x ) 

(<M,-i) ̂77 /( . Vi) and F(0) = ?[8^,(0)5,(0)']. 

In Lemma A. 1 of Appendix D it is shown 

sup | v(eyl/2 >/???($, o, e)-^)-172^^, o, e>|?^?>o. 

We therefore need only consider K(9)~1/2\[nsn(?, 0,9). 
In order to optimize small sample power we propose a supremum or average 

score statistics over 0. This requires treating V(Q)~l 4nsn(?, 0,9) as a random 

function of 0. We will show the vector V(Q)~ jnsn(?, 0,9) converges weakly to 

a Gaussian element of the space of continuous functions C[@]. Gaussian elements 

of C[0] are completely characterized by their mean and covariance functions V(,), 
the latter defined for our purposes as 

F(e1,e2)S?[6f2&(e1)a(e2y]. 

Notice V(Q) 
= 

V(Q, 9) where V(Q) is in (5). See Royden [1968] and Billingsley 

[1999]. 
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We invoke for now the following assumption to ensure K(0)_1/2 exists. For arbi 

trary ? > 0 define the compact subspace 

0^={0 
= 

[5',T']e?:|T|>y. 

By convention 0O 
= 0 . Bounding | x |> \ > 0 is required in order to demonstrate 

tightness of the distributions governing {V(Q)~l/2jnsn(?, 0,6)}weN by ensuring 

V(Q)~m is not "nearly" singular. If the reader wants to randomize 9 then tightness 

arguments can be safely ignored. Denote by ^mjn(P(0)) the minimum eigenvalue 
of V(Q). 

Assumption C inf9e0 Xm?n (F(0)) > 0 . 

5.1 Weak Convergence 

The null hypothesis in its most general form is simply f(?, zt_x ) is a version of 

E[yt 13M]. In the framework of (3) this translates to ? 
= 0. In general, 

H0: P(E[v/-/((|),zM)|3M] 
= 

0) 
= 

l,forsome(^eO 

H{ : sup P(E[yt -/?>, zt_x) | 3M] 
= 

0) < 1. 
(|>e<I> 

The general alternative Hx embraces any deviation from the null, and not just (3) 
with ? ̂  0. Those interested only in STARX models will not distinguish the two: the 

hypotheses are H0 : ? 
= 0 and H{ : ? * 0. The point here is that irrespective of whether 

the analyst is interested only in smooth transition models (3), the alternative is any 
deviation from E[yt \ 3,_, ] 

= 
f(?, zt_x ), where f(?, zt_x ) + ? w(8, zM )F(x%_x ) 

is guaranteed to provide a better fit. 

THEOREM 3 
i. Under H0 and Assumptions A and C there exists an l-vector Gaussian element z(0) 

of C[0c] with covariancefunction ̂ (O^z^)'] 
= 

V(QxymV(Qx, 02)F(02)"1/2 
satisfying 

V(Q)-l/2Jn~s?($,0,d)^z(Q) 

ii. Under Assumptions A-C and 
Hv 

there exists a non-stochastic vector func 

tion n : 
04 

-> Rpk+l with the property F(0)"1/2ri(e) * 0 for all 0 = [8', x']' e 0^ 
except possibly for x in a set S with Lebesgue measure zero, such that 

sup \v(erV2Sn^,o,d)-v(Q)-U2^Q) I -^0. 
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5.2 Test Statistic 

Theorem 3./ and the continuous mapping theorem suffice to show the STARX 
score statistic Tn(Q) satisfies under H0 

Tn(Q)^z(Q)'z(Q) = T(Q) 

a chi-squared process on 
C[0^]. For any fixed or randomized 0 the distribution 

r(9) is x2(/) 

Under//j Theorem 3.ii implies 

r?(e)/?^T1(e)r(er,T1(e)>o 

for every 0 e 0^ except possibly for countably many xeS . But this means 

Tn(0) 
?> oo with probability one 

for uncountably infinitely many 0. The STARX score test Tn(Q) is therefore consis 
tent since Hx captures any deviation from HQ. 

Popular methods for handling 0 include randomization (Lee et al. 

[1996]), or continuous functionals h(Tn(Q)) including supGe0 Tn(Q) and 

ave0 Tn(Q)= [ I' (0)c/jli(8) for some probability measure ju(d) absolutely 

continuous with respect to Lebesgue measure (Davies [1977]; Bierens [1990]; 

Andrews and Ploberger [1994, 1995]). Theorem 3 and the mapping theorem guar 
antee under H0 

h(T?(?))=>KT(?)) 

and under Hx 

h{T? (0) / n) -?-> A0l(e)T(er' r,(0)) 

In the average and supremum cases h(Tn(Q)) 
?> oo with probability one under Hv 

Test statistic functionals like supee0 Tn(Q) and ave0 Tn(Q) have non-standard 

limit distributions. See Hill [2008] for details on a monte-carlo technique for 

approximating the asymptotic p-value, and a proof of asymptotic validity. Cf. Gine 
and Hall [1990] and Hansen [1996]. 
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6 NON-DEGENERATE STAR TESTS 

There exist trivial cases in which F(0) is singular. If w(8, zt_x ) 
= 

zt_x w(h, zt-\ ) 
and 0 = x = 0, for example, then f(0'zt_x ) = F(0) is a constant, so 

i? (1,0,9) = 
- 
? ?,?MF(0'fM) = K - 

? s,fM = 0 

by the least squares first order condition, and V(0) 
= 0 a zero-matrix. 

In this section we analyze the set of all x for which V(Q) is singular. Define the set 
of parameters x that render K(0) singular: 

S*={T r:k|>?, Xmin(K(0)) 
= O and P(x%_x g ̂) 

= 
1}. 

A proof that Sj has Lebesgue measure zero, similar in spirit to Lemma 2 of Bierens 

[1990] and Lemma 2 of de Jong [1996], is easy to deliver in the present environ 

ment and is therefore omitted for the sake of brevity. Our aim is to provide fresh 

insight into the contents of S?. 

6.1 Neural Network Tests 

Consider the case w(8, zt_x ) 
= 1 (hence 0 

= 
x). Model (3) reduces to a single layer 

feedforward neural network form 

yt = /( > h-\ )+? x F(*%-\ )+s/ 

In this case the set S from Lemma 1 and Sq are identically those considered in 

Bierens [1991]. Assume the conditional variance is positive (a mild assumption). 

Assumption D P(E[z2t \ 3M ] > Q 
= 1 for some constant ? > 0. 

The following is a somewhat trivial argument, but important to note. If V(x) 
= 0 

then (5) implies 

gl(x)2Etf\Z,_x] 
= 0,a.s. 

Under Assumption D use (5) to deduce 

F(x%_x ) = b(x, $)A(VTX I- /(<|>, i,_, ), a.s. 
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Since we assume E[zt(d/d$)f(?, z/_1)] 
= 0 under Assumption A as a standard 

regulatory condition8, under either hypothesis V(x) 
= 0 implies 

E[stF(x%_x)] = b(x,<b)A($ylE /(<M,-i) 
= 0. 

This is trivial under the null because E[et \ 3t_x ] 
= 0 , but it importantly implies 

S0 ?zS under the alternative: any x in a neural network setting that renders an 

asymptotically degenerate score test, V(x) 
= 

0, also renders a score that is insensi 

tive to model mis-specification, E[ztF(x'zt_x)] 
= 0 . 

THEOREM 4 If w(8, zM) 
= 1 then Sq ?zS under Hj and Assumption D. 

Remark: Bierens [1990] and de Jong [1996] show the set Sq has Lebesgue mea 

sure zero, but it is not known whether x eS0 corresponds to x e S. Under H{ and 

Assumption D we now know Sq c S. In other words, degeneracy is actually a 

secondary problem: the test Tn(Q) fails to work in every sense possible. 

6.2 Smooth Transition Tests 

We can go further for linear specifications under the null when the chosen weight 

F(x'zt_x ) has a non-zero derivative with positive probability. This covers standard 

ESTARX and LSTARX smooth transition functions F(xzt_x ). 
Denote by 

0^ 
: any compact subset of {0 = [8', x'] e 0^ | P(x'zt_x e Rq) 

= 
1} 

where R0 is the interval in Assumption B on which F is analytic and non-polyno 
mial. Write F'(u) = (dldu)F(u). 

THEOREM 5 Let /(<|>, zt_x) 
= 

<|>'zM, w(8, zM) 
= zt_x, and 

P(F'(x%_x)*0nx%_x eR0)>0. 

Under Assumptions A, B, andD the score statistic Tn(6) is not degenerate on 0! : 

inf * Xm[n (V(Q)) > 0 for any ?, > 0 . Hence S* is empty. 

Remark 1 : The result relies on a generalization of (5) when V(Q) is singular. Any 
xeSt implies r'V(Q)r = 0 for some r e Rpk+l, r'r = 1, which implies 

F'(x%_x)r'zt_x=?(r,e)'zt_x,a.s. 

8. This implies /((j),zt_x) is best in some weak sense, even if E[zt\zt_x)\*0 
. For example, when 

f($,zt_{) 
= 

<|>'z,_i it is standard to assume ?[e/z/_1] 
= 0 
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where 

?(r, 0) = (E[z,_xz,_x])"' 
x E[x%_xF(x%_x )r'x%_x ] 

Notice ?(r,0) is simply the slope of the best linear Z2-metric projection 
of F(x'zt_x)r'zt_x on zt_x. For any xeS^ such that Tn(d) is degenerate, the 

weight F(x'zt_x)rzt_x can be almost surely approximated by a linear func 

tion ?(r, 9)'zM which itself cannot reveal model mis-specification by assump 

tion since E[zt zt-\ )] 
= 0 under Assumption A. But this contradicts the revealing 

nature of the test weight F'(x'zt_x) a la Lemma 1. Bierens [1990] and de Jong 

[1996] exploit Lemma 1 to deduce that the set of such x has Lebesgue measure 

zero. We prove that no such xeS^ exists for exponential F(u) = exp {u}, logistic 

F(w) 
= [l + exp{w}]-1,etc. 

Remark 2: The result can be extended to other specifications for w(d, zt_x) and 

f(?, zt_x) under appropriate modifications to the line of proof. 
Remark 3: In a test of linear ARX against a general nonlinear alternative, the 

non-singularity Assumption C is superfluous, and may simply be replaced with the 
mild heteroscedasticity Assumption D. 

Remark 4: In maximum likelihood settings the functional ave * Tn(Q) can 

be interpreted as the limit of a (Gaussian) weighted average power optimal test, 

where power is directed toward alternatives near the null (Andrews and Ploberger 

[1994]). Similarly, sup9e0* Tn(Q) directs power toward distant alternatives but is 

only known to be asymptotically admissible (Andrews and Ploberger [1995]). In 

both cases the covariance matrix is required to be uniformly positive definite in the 

nuisance parameter space: inf6e0* ̂mjn(^(6)) > 0. Consistent CM tests of linear 

autoregression against a smooth transition alternative therefore provide a natural 

setting for Andrews and Ploberger's [1994, 1995] optimal tests. 

The last result covers the ESTARX model as a special case. For any finite ?0 e R 

define Ss[60, ?']'eir*+1. 

COROLLARY 6 Let /(<|>, zt_x) 
= 

<|>'zM, and for ? e Rpk and xeT 

w(d, zt_x )F(x%_x ) 
= zt_x exp \ 

^ S,.*,2^,- > exp (x%_x ). 

Assume 2b'zt_x +x'zt_x ^0 a.s. where 0^0 and/or x^O. Under Assumptions 

A, B, and D the statistic Tn(B) is never degenerate on 0* : 
infe60* ̂min (^(9)) > 0 . 

Remark: Notice inf0e0* ̂min (^(9)) > 0 is based on the complete space 0* and 

not the truncated subspace 0^ 
. A test directed toward an ESTARX alternative is 

never degenerate for any 9 = [x', 8']' g 0*, hence for any scale y 
= -? > 0 and any 

threshold c e Rpk as long as 26' z?-i +x'zt_x * 0 a.s. The latter condition is trivial 

for purely autoregressive processes (zt_x 
= 

[1, yt_x,..., yt_ ]') under standard regu 

latory conditions (e.g. 3t_x a 3, and 3^ 3t_x ). 
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Together, Theorem 5 and Corollary 6 imply tests of linear ARX against popular 
smooth transition alternatives are never asymptotically degenerate. 

7 SIMULATION STUDY 

We now investigate the empirical size and power properties of sup9e0 Tn(Q) 

under a null of linear autoregression, and nonlinear alternatives. The statistic 

ave0 Tn(&) is non-negligibly dominated by sup6G0 Tn(Q), in simulation evi 

dence not presented here because the following alternatives are "distant" from the 

null. See Andrews and Ploberger [1994, 1995]. 

Write zit_x 
= 

(1, yt_x, ..., 
yt_pi)' 

for some orders/?., i = 1,2. The iid innovations 

{e,}"=1 
are drawn from a standard normal distribution for sample sizes 

n e {100,500}. The simulated models are 

HXL \yt=$'zXt_x +PViP + exPHVi}r1 + e, 

HXE :yt 
=*Vi+?Viexp{-Z,i Yi'(fiM,/-c|.)2} 

+ e/ 

HXAN :yt =*Vi +?x[l + exp{-yVi}r1 + e, 

//f : v, =VzXt_x +fVi%i >q) + ?/ 

HXBL : yt 
= 

f 51M + ? x yt_xst_x + e? i?l < 1 

Notice z1M and z2i_x may have a different number of lags. Under H0 the true 

data generating process is a linear autoregression; under Hxl and Hx a 2-regime 
LSTAR and ESTAR, respectively; under H^ a logistic AR-ANN; under HXSE 
a Self Exciting Threshold Autoregression (SETAR), equivalent to the LSTAR 

yt 
= 

^'zXt_x +?'z2i_1[l 
+ 

exp{-y(vi_1 -c}]-1 +8, with y -> oo ; under HXBL the pro 

cess is bilinear. 

A total of 3? observations are simulated and the last n are retained. For 

each simulated series pi e {1,...,10} , ?e[-45, A5]Pl , y e[.5, 5]Pl = F, and 

y g [.5,5]Pl 
= F are randomly drawn from uniform distributions. For FffN 

and HXBL , ? is drawn uniformly from [-.45, .45]. For all other cases denote by 

(pG?max{/,1,P2} the sum of ? and ? over elements l,...9min{pl,p2} with zeros in 

the remaining elements min {px, p2},..., max {px, p2}. If px 
= 

p2 then (p = ? + ? ; if 
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p2 < px then if (p = <() + [?', 0'], where 0 denotes a px 
- 

p2 vector of zeros; and so 

on. We use only those {<)), ?} such that (p has all polynomial roots outside the unit 

circle. 

Since s/ has a strictly positive, continuous density function on R, given the 

parameter restrictions each {vf} is strictly stationary and strong mixing. This fol 

lows since each is geometrically ergodic (Doukhan [1994], An and Huang [1996], 
Najar?an [2003], Leibscher [2005]), hence strong mixing with geometrically 
decaying coefficients {aj (Doukhan [1994], Davidson [1994]). Therefore, {yt} 
is properly heterogeneous in the sense of Bierens [1987, 1994] and u -stable on 

a strong mixing process with coefficients 
]T a7 < oo . Since the errors are iid 

normal random variables, the root condition ensures each yt has infinitely many 

bounded moments and is properly heterogeneous (Bierens [1987]). Together this 

implies Assumption A holds. 
For each series an AR(p*) model is estimated where p* e {1,..., 10} minimizes 

the AIC. The consistent STAR test, the standard STAR polynomial test, and a selec 

tion of extant tests of nonlinearity are applied to each time series. 

7.1 Star Tests 

Define the lag set z*_x 
= 

[yt_x,..., y _ * ]. The sup-STAR test is computed with 

exponential and logistic test weights co(8, z*_1)F(xz*_1) 
= 

z*_1[l + exp{x'z*_1}]~1 
and ca(5, z*_x )F(xrz*_x ) 

= 
z*_x exp {x'z*_x}. The weights F(x'z*_x ) are con 

structed from standardized regressors z*_x in order to stabilize the test statistic: 

F(x'z*_x) 
= 

F(^P]_ xi(zt_Xi-zj)/si),whQTQ zi and si denote the sample mean 

and standard deviation of zt_Xi. As a default rule-of-thumb we simply use the 

same regressor set z*_x in all components of the test weight. The supremum is com 

puted over an increasing set of uniformly randomly selected nuisance parameters 

{x7}["(2] e T . These are the LSTA R and ESTAR tests. Asymptotic ^-values are 

computed according to the monte carlo method detailed in Hill [2008]. Covariance 

matrix estimators robust to unknown forms of conditional heteroscedasticity are 
used in all applicable cases here and below. 

For the STAR polynomial test the following model is estimated: 

L 

yt = ?'zU + 
X S'? *t-\y\-d + ut for ? = 1... p 

7=1 

Under a null of linearity against a logistic STAR (or exponential STAR) alterna 

tive, L 
= 3 (or 4) and &,. 

= 0, i = 1... 3 (or 4). LM tests for each d is performed, 
and the test statistic with the smallest /7-value based on the chi-squared distribu 

tion is selected. See Luukkonen et al. [1988] and Terasvirta [1994]. These are the 

LPOLY and EPOLY tests, respectively. 
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7.2 Tests of Nonlinearity 

We perform the neural test of neglected nonlinearity (Lee et al, 1996), the 
Bierens [1990] test, and the McLeod-Li and RESET tests. 

The Bierens test is simply a sup-STAR test with co(8, z]_x ) 
= 1 (denoted LBIER 

and EBIER). 

The neural test of neglected nonlinearity is equivalent to a randomized STAR 

test with co(8, z*_x ) 
= 1, where x is uniformly randomly selected from F (denoted 

LNEUR and ENEUR). 
The McLeod and Li [1983] test is a standard portmanteau test on the squared null 

residuals z2 et for lags L = 1... 3 . The statistic is 

ML ^+1^-g2)(V/,-^2) 

Recall the test's construction is based on the property that independent Gaussian 

innovations s, have white noise squares z2 
- 

a2 , and the minimum-mean-squared 

error predictor of a Gaussian time series yt is linear. 

For the Regression Specification Error Test (RESET) test we follow Thursby and 

Schmidt [1977] by estimating an auxiliary regression based on the null residuals zt, 
L k 

s> = $oxt + Z Z hjxlj + ut >where L = 3 
i=2 j=2 

A standard LM test of H0: ?i ,- =0 is performed. 

7.3 Most Powerful Tests 

By appealing to the Neyman-Pearson lemma most-powerful tests against STAR 
and ANN alternatives are easy to generate, and will help gauge the strength of 
the proposed STAR test. Because ? and a = 1 are known, for any ? and 0 

each STAR and ANN model can be represented as yt (?) 
= 

$'zt_x (0) + zt, where 

yt (())) = yt- ? z*_i and zt-\ (Q) 
= o>(?\ ?*-i )F(x'z*_x ). For an arbitrary point 

((|), 0) the least squares estimator of ? is ?(0, (|>) 
= 

(z(0)fz(0)_1z(0)'v((())), where 

y(?) = 
{yt W: P* +1 -t - n) ?etc- The best test is simply the likelihood ratio which 

in the present known standard normal setting reduces to 

exp {.5 x y(^'z(Q)[z(Qy2(e)]-1 z(d)'y^) = exp {.5 x T?Q, 9)} 

say. We compute supeg@B T?(<\>, 9), the MP-LSTAR and MP-ESTAR tests9. 

9. The SETAR process is simply an LSTAR with x = co . Thus, the logistic sup-MP-STAR test (which 
directs power toward distant alternatives, cf. Andrews and Ploberger, [1994]) should come close to 
a most powerful test against a SETAR alternative. 
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7.4 Results 

Test results are reported in Table 1. For each test statistic empirical size is com 

parable to the nominal size, although the polynomial test tends to under-reject the 
null. 

In the present environment in which all parameters are randomly selected the 

popular STAR polynomial regression test is dominated by every test against each 
alternative (except the McLeod-Li test in some cases). Indeed, the consistent sup 
STAR tests massively out-perform the conventional STAR tests. The conventional 
test is useless against a neural network alternative: recall ANN forms are nested 

within the smooth transition alternative. 

Impressively, with just n = 500 the sup-STAR tests obtain empirical power nearly 
identical to the most-powerful sup-MP-STAR tests against an LSTAR alternative 

(within .006), with a rejection rate above 90%. Similarly, the sup-STAR tests are 

comparable to sup-MP-STAR tests against AR-ANN and SE-TAR alternatives (in 
particular, the sup-ESTAR test). 

The sup-STAR tests dominate each test performed against every alternative, 
except the McLeod-Li test against the bilinear alternative10. Finally, because 
smooth transition vector weights nest neural network alternatives it is not surpris 
ing that the sup-STAR test out-performs the Bierens test. 

Table 1 

Simulation Results 

? = 100 

Hn H[ H H, 
AN H SE 

H, 
BL 

LSTARb 
ESTAR 

MP-LSTAR 
MP-ESTAR 

LBIER 
EBIER 

LNEUR 
ENEUR 

LPOLY 
EPOLY 

RESET 

ML1 
ML2 
ML3 

.057a 

.061 

.042 

.024 

.011 

.040 

.039 

.039 

.001 

.001 

.045 

.052 

.057 

.064 

.478 

.426 

.635 

.536 

.325 

.297 

.357 

.342 

.043 

.043 

.261 

.113 

.124 

.151 

.303 

.336 

.801 

.698 

.325 

.376 

.356 

.392 

.004 

.004 

.021 

.031 

.050 

.078 

.281 

.302 

.466 

.359 

.450 

.406 

.365 

.376 

.023 

.023 

.027 

.182 

.177 

.163 

.387 

.325 

.570 

.421 

.213 

.211 

.228 

.261 

.002 

.002 

.112 

.078 

.094 

.113 

.301 

.296 

.165 

.129 

.208 

.226 

.211 

.206 

.018 

.018 

.092 

.516 

.517 

.524 

10. This is not surprising since the test is particularly sensitive to multiplicative forms of omitted non 

linearity. 
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? = 500 

#o HXL HXE HXAN HSXE HXBL 
LSTAR .029 .912 .822 .803 .825 .766 
ESTAR .029 .915 .824 .872 .831 .729 

MP-LSTAR .016 .918 .901 .822 .980 .565 
MP-ESTAR .043 .921 .926 .881 .899 .572 

LBIER .024 .722 .617 .784 .588 .624 
EBIER .058 .786 .653 .759 .792 .624 

LNEUR .046 .635 .606 .736 .589 .469 
ENEUR .059 .622 .622 .777 .593 .479 

LPOLY .003 .433 .180 .019 .316 .029 
EPOLY .003 .433 .180 .019 .316 .029 

RESET .038 .411 .109 .039 .571 .006 

ML1 .070 .306 .065 .058 .254 .975 
ML2 .088 .366 .127 .058 .355 .987 
ML3 .105 .409 .151 .058 .371 .996 

Notes: a. Values denote rejection frequencies at the 5% level, b. LSTAR, etc., are the consistent sup 
STAR tests; MP-LSTAR, etc., are the Most Powerful sup-STAR tests; LBIER, etc., are the Bierens tests 

(a sup-STAR test with scalar weight); LNEUR, etc., are the neural tests of neglected nonlinearity (a 
randomized STAR test with scalar weight); LPOLY, etc., are the popular STAR-polynomial tests; ML1, 

ML2 and ML3 are the McLeod-Li portmanteau tests of squared residuals over 1, 2 and 3 lags. 

8 EMPIRICAL APPLICATION 

We apply all tests in the simulation study (except the MP tests) to macroeco 
nomic processes modeled in Rothman et al. [2001] as a Logistic Smooth Transition 
VECM process. The variables studied are the logarithm of nominal, seasonally 
adjusted Ml (m), the logarithm of unadjusted output measured by the industrial 

production index (y), the logarithm of the producer price index (p), the commercial 

paper rate (r), the 90-day Treasury bill rate (rb), and the rate spread rb 
- r All data 

were taken from the Saint Louis Federal Reserve data base, are monthly for the 

period 1959:01 - 2003:08, and seasonally adjusted at the source when applicable. 
Based on augmented Dickey-Fuller tests all variables, except for the rate spread, 
are differenced {Am, Ay, Ap, Ar }. Evidence suggests the Treasury bill and com 
mercial paper rates are cointegrated of order one such that the spread is 1(0). The 

sample size is 536 months, before lag and differencing adjustments. 
Test results are reported in Table 2. The sup-STAR tests produce highly significant 

evidence in favor of smooth transition nonlinearity in money growth, inflation, and 
fluctuations in the commercial paper rate and the rate spread. The strongest evidence 

points to Logistic-STAR nonlinearity in each univariate series {Am, A, Ar rb 
- r }. 

By comparison, the polynomial regression tests provide weaker evidence of STAR 
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nonlinearity, and do not detect a smooth transition structure in the rate spread series. 
At the 5% level the neural test of neglected nonlinearity only finds logistic nonlin 

earity in the commercial paper rate and exponential nonlinearity in the rate spread. 
The RESET test fails to detect nonlinearity in any series. 

Table 2 

Macroeconomic Fluctuations 

K Ay Ap &b ArP rb~rp 

LSTAR .0000 1.000 .0000 .6700 .0200 .0000 
ESTAR .0000 1.000 .0000 .9500 .0100 .0000 

LNEUR .0921 .5621 .4432 .3444 .0076 .0327 
ENEUR .2154 .2715 .1108 .5181 .0695 .5619 

LBIER .3800 .2800 .4400 .1400 .0500 .1700 
EBIER .4800 .1900 .3900 .1100 .6600 .1000 

LPOLY .0793 .4401 .0525 .1143 .0144 .5239 
EPOLY .0019 .3310 .1059 .2018 .0090 .1277 

RESET .3933 .3103 .2875 .2953 .9339 .2066 

Notes: Numbers axep-values of the respective tests. 

9 CONCLUSION 

We present a new test of regression model specification against a general class 
of Smooth Transition Autoregressions. The test obtains an asymptotic power of 
one against any form of model mis-specification, and delivers a nonlinear STARX 
alternative that is guaranteed to improve the model fit. The test solves major short 

comings of the seemingly universal practice of linearizing the transition function 
and performing F-tests on polynomial regression coefficients. The conventional 
test is not consistent against a general alternative, it is ineffective against non 

exponential or non-logistic smooth transition forms, and uses the wrong limit dis 
tribution in cases when the p-value is optimized in order to select a delay param 
eter. Our test performs impressively well against conventional tests of functional 

form, non-negligibly dominates the conventional STAR test, and nearly matches 
the empirical power of a Most Powerful test. 
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Appendix A: Nu-Stability 

We exploit in various proofs a uniform law of large numbers and central limit 
theorem for u-stable random variables {Wt} 

= 
{yt, xt} that are properly heteroge 

neous in the sense of Bierens [1987: p. 151]. Let Ftm denote the joint distribution 

of {Wt, ..., Wt_m}. Proper heterogeneity implies 1/w^ 
F -> Hm where Hm 

is a proper distribution function. Strict stationarity trivially implies proper hetero 

geneity. 
The u-stable property, due to Bierens [1983, 1987, 1991, 1994], is defined as 

follows. 

Definition A stochastic process {Wt}eRk is Zr-u -stable on a base process {st} 

if there exists a bounded non-stochastic mapping u : N ?? R+ satisfying 

sup Ik, -E[Wt ks^,-}^]! 
= 

0(v(m)) where u(m) -? 0 as m -? oo . 
tel !l ' "r 

Remark 1 : Any L2 
- o -stable process is Zq 

- u -stable by Liaponov's inequality 

(Davidson 1994: Theorem 9.23). 

Remark 2: Uniform boundedness in t rules out forms of global non-stationarity 
where the ̂-moment of Wt is not uniformly bounded. 

The ?-stability condition has since been categorized under Near Epoch 
Dependence (Davidson [1994]). The only differences between NED and ?-stability 
are (/) ?-stability imposes uniform boundedness in r; and (ii) NED uses a two 

sided future-past lag of the shock, and divides the right-hand-side into time-depen 
dent constants dt (not necessarily bounded) and lag-dependent coefficients v(m) 

(Davidson [1994]): 

z,-?[z, {e^-J <dtx?(m) 

Neither property characterizes processes with a non-negligible infinite past (e.g. 
a random walk). For all practical purposes the two concepts are identical for glob 
ally stationary, one-sided processes. Indeed, although there are few results estab 

lishing which processes are ?-stable, all results establishing NED for one-sided 

time series with sup,eZ dt < oo apply to ?-stability, including ARFIMA(p, d, q) 
and FIGARCH(p, d, q) with d e [0,1], bilinear process, and a host of nonlinear 

iid 

distributed lags all with innovations e, 
~ 

(0, a ) , a < oo . Further, since any pro 
cess is u -stable on itself, geometrically ergodic and therefore geometrically strong 

mixing data are u -stable. Under appropriate smoothness conditions on the prob 

ability density of {y,}, u -stable therefore covers linear and nonlinear GARCH, 
AR-GARCH, neural nets, contraction mappings, Threshold Autoregressions, Vector 
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ARCH, and more. See Gallant and White [1988], Doukhan [1994], Davidson 

[1994,2004], An and Huang [1996], Najar?an [2003], Leibscher [2005] and Meitz 
and Saikkonen [2008]. 

Appendix B: Assumptions 

Assumption A.l 

Wt={yt,xt}eRxRk~l exists in L2(Y,3,F), Zt =o(Wt :x<t), 3M c 3,, 
3 = 

G(vt3?) {Wt} is properly heterogeneous, governed by a non-degenerate joint 
distribution function with non-degenerate marginal distributions, and for some k > 0, 

SUP/en1^||4+k<00 

{Wt} is L2-o-stable on a strong-mixing base with mixing coefficients {a,}, 

^T._ ai< 
oo n. The error zt has an almost everywhere positive, continuous density, 

and is weakly orthogonal in the sense E[ztzt_x] 
= 0 and E[zt(dId$)f(?, zt_x)] 

= 0 

where zt_x 
= 

[1, (yt_x, x't_x ),..., (yt_p, x\_p )]'. 
Moreover 

||s, |4+k 
< oo for some k > 0. 

Assumption A.2 

The function f(?,zt_x):?xRpk+] ->R is for each zt_x eRpk+] a continu 

ous real function and twice continuously differentiable on compact O g Rpk+]. 

Moreover, /(<)>, zt_x ) is for each ? e O a Borel-measurable function on Rpk+l. 

Define df?, z |M) ee (?Ia?/?, zt_x) and dd'/?, 2t-i) = @2 /dW^M, *,-i) 
For each t: 

?sup^ |/(<|), zt_x \ ̂ 
< oo, ||sup^e0 |3/(<|>, z,_, )|] |4+k 

< oo, 

|sup^eo |d/((|>, z,_, )5/(<|), zM )|, ?4+k 
< oo , and 

?sup^ \dd'f(?, zt_x \ \\^ 
for some 

K>0. 

The second regime cd(?, zt_x ) denotes a Borel-measurable mapping 
from DxRpk+] to Rl, />1, where D is a compact subset of Rq, q>0. 

P(a0 < 
|co(?, zt_x )| 

< aj ) = 1 uniformly in ? for constants 0 < a0 < ax < oo. 

Assumption A.3 There exists a unique element ? 
= 

arginfxe0 ?( v, 
- 
f(?, ^_i))2 

in the interior ofO. Under either hypothesis ?[s^(<|), zM )] = 0 and E[ztzt_x] 
= 0, 

where z,_, =(1, z,'.,,..., z't_p)'. 

11. For example if a* =0(pl), \p\ < 1, such that memory is "short" and decay is geometric, then 
oo 

2^ a, < Kp /(l 
- 

p) < oo is trivial. Geometric strong mixing is implied by geometric ergodicity, 

which holds for a host of nonlinear time series. Long memory cases include mixing with size X > 1 

since a, -0{i~ ) implies ̂  la^oo 
. 
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Assumption A.4 The non-stochastic matrix ^4(<|>) 
= 

E[df(?, zt_x)d'f(?, zM)] is 

uniformly positive definite on O. Let 0 = [?', t']' e 0 
= DxT , a compact subset 

of Rq+(pk+V with positive Lebesgue measure. Let T denote an arbitrary compact 
subset of Rpk+l. For some k > 0 and K < oo 

sup|F(T'zMMo\ zm)g>(8, zt_x)U < K 
0e0 II4+K 

sup sup \F(x%_x WQ, z,_, )dm, 2,-i )|J ?K 
||0 0 xeT II4+K 

sup sup \F(x%_x )<d(8, zt_x )d'f(?, zt_x )[ 
< K 

<|>e0 6e0 II4+K 

sup|F(x'zM)x(D(8, zM)U < K 

?sup 
9e0 

Ge0 

d 

II4+K 

56 
{F(x%_x)x(?(d,zt_x)} <K 

Hk+K 

Appendix C: Proofs of Main Results 

Proof of Theorem 3. By Lemma A.2 in Appendix D the finite dimensional dis 
tributions of V(Q)~xl24nsn (<|>, 0,9) converge to normal distributions under the null 

hypothesis. Lemma Approves the sequence {Pn} of probability measures Pn asso 

ciated with V(Q)~l/2^sn(<b,0,d) is tight in 
C[0^]. The result under Hx follows 

from Lemma A.4. 

Proof of Theorem 5. Write A,min (9) 
= 

A,min (K(9)). By assump 
tion (d/d$)f(?, zM) 

= zt_x = a>(8, zt_x) such that 9 = x. Step 1 proves 

inf0E0* ?min(9) 
= 
min0 0. A,min(0) and Step 2 proves min0e0, ?min(9)>0. 

Step 1 : By construction Xmin (9) 
= 

infrV=1 E[z2 (r'gt (9))2 ] > 0, hence 

^min : 0^ 
-? R+ is a proper function. Under Assumption A the function A,minQ 

is uniformly continuous on the compact subset12 St. The image of a compact 

12. For any ?>0, sup6G0, supe2e0..|ei_e2|i<8|X,^(eO-A.^(e2)|<supee0.J(?/66)^(9)^x5, 

where sup9e0. |(a/ae)A.min(9)|1 
= 

sup0e0. \{dl ?e)infr>=1?[8?(r'gi(0))2]|i 
. By Chebychev's and 

Liaponov's inequalities, for some finite B > 0 , 

-B?tfA supMe)li sup sup 
9e0* 

? inf ?[e,2(r'g,(e))2 Oxj rr=\ d? &(8) 

Each component on the right hand side is bounded from above by Assumption A and Lemma A.6. 
Hence Xmin ( ) is uniformly continuous. 
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set under a continuous mapping is compact, hence Xm{n ( ) is compact on 
0^. 

Therefore the image of Xm[n ( ) is closed and bounded, and ^min() admits a unique 
minimum on 

?\ 
. This implies inf0G0* A,min(0) 

= 
min?G0* A,min(0). 

Step 2: It suffices to prove S? is empty for any ?, > 0 since S? = 0 

implies Xmin (0) > 0 for all 0 in the closed and bounded 
?^, 

and therefore 

inf0 0* ^min(0) 
= 

minee0* ^min(0) 

Any xeS^ implies Xmln (V(Q)) 
= 0. This means r'V(Q)r 

= 0 for some 

r g Rpk+l, r'r = 1. By the construction of V(Q) in (5), this in turn implies 

r'gt(Q)gt(Q)'rE[z2\^_x] 
= 0,a.s. 

From Assumption D we deduce r'gt(Q) 
= 0 a.s., hence 

(6) r%_xF(x%_l) 
= 

?(r, 0)'zM , a.s., where ?(r, 0) = A'lb(?)'r 

For fixed r and x e 
S?, (6) defines a functional identity with respect to zt_x with 

probability one. Differentiating both sides of (6) with respect to zt_x, multiplying 

by zM, and using identity (6) we find 

r%.xF^zt_x ) + r'zMF'(x'zM )x'zM 
= 

?(>%?)'Vi 
= 

r'zM exp (x'z,_i), a.s. 

Notice r'zt_x ? 0 and x'zM * 0 each with probability one due to r * 0 , x ̂  0, 

and the non-singularity of E[zt_xzt_x] under Assumption A. By canceling like 

terms in (7), any x e S? implies 

F'(x%_x) 
= 

0,a.s. 

But any x e 
S| 

satisfies xzM g /^ a.s. ThereforeP(F'(x'zt_x ) * 0 n x'zM g ??q ) 
= 0, 

a contradiction of the assumption P(F'(x'zt_x) * 0nx'zM g i^) > 0. Therefore 
S? 

is empty. 

Proof of Corollary 6. Without loss of generality we may substitute 

f pk \ 
f pk \ 

Yj^?U exp(x'z,_i) with zMexp{80}exp ? dfz2_x zt_x exp 

\i=\ J 

-i 
/=i J 

exp(x'zM) 

for any finite ?0 g R . Using an argument identical to the line of proof of Theorem 

5, any xe^* 
satisfies 

(8) rzt_x exp (d~lz2_x + x%_x ) 
= ?(r, 0)' z,_,, a.s. where 9 = (S0, ?')' 
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where 9 = 0 is possible. Differentiate both sides of (8) with respect to zt_x and 

multiply by zt_x : 

r'zt_x exp (5'zt_x 
+ 

x'zt_x ) + r'zt_x exp (5' ?_, + 
x'zt_x )(25'z?, + x z,_, ) 

,a.s. 
= 

?(r,e)'z,_i 

Canceling like terms by using (8), and noting r'zt_x * 0 a.s. and 

exp (ozt_x +x'zt_x)* 0 a.s. under Assumption A and the boundedness of D and 

T, it must be the case that 

26 z/-i +x'zt-\ = 0 ,a.s., 

a contradiction of the assumption 2b'zf_x 
+ 

x'zt_x 
= 

0, a.s. given x * 0 . But for any 

? * 0 an identical argument implies x*0&Sq, hence Sq is empty. 

Appendix D: Supporting Lemmata 

Lemma A.l Under Assumptions A and C and Hg, 

sup |k(0)-1/2 V^?r?, 0,9)-K(9)-1/2 Jn~s?(i 0,9)1 
= 

op(\) 

Lemma A.2 Under Assumptions A and C and H0 the finite dimensional distri 

butions of V(Q)~ vnsn (()), 0,9) converge to multivariate normal distributions, 
where 9 e 0^. 

?i/? i? 
Lemma A.3 Under Assumptions A and C and HQ, V(Q) vnsn ((|), 0,9) is tight 

on 
0?. 

Lemma A.4 Under Assumptions A-C and H\ there exists a non-stochastic func 
tion r\: 0? ?? Rp 

+ 
and a subset S <z Rp 

+ 
with Lebesgue measure zero such 

that 

sup \v(QTms?(i 0, e)-^)-''2^)! 
= 

op(\) 
8e0? 

' ll 

where ^(9) rj(9) * 0 for every 9 e 0^ except for x e S . 
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LEMMA A.5 (Hill 2008) Under Assumptions A and B and either H0 or Hx ow xx\> 

i. L4($)-?(4? =op(i),ii sup *(*,e)-i(*,e) =op(\) 
Gg0 

' 

iii. sup sup ?(<|>,9)-?(<|>,9) 
= 

op(l),iv. sup K(e)-F(9) 
= 

0,(1) 
9g0 (J>g<D 

' Gg? 

LEMMA A.6 (Hill 2008) Under Assumption C for some positive constant 
K<oo 

i.\A($)-]\ <K,ii. sup \b(^e)[ <K, 
Gg?, 

in. sup 
6g?? 50 

?( ,9) < K , iv. sup |g,(9)| 
Gg?? 

<K. 

4+k 

sup 
!Gg0? J^<(0) <K, 

4+k 

vi. sup\V(dTi,z\ <K(pk + l)[MXmin(V(e))]-l<K 
Ge?*' Gg0? 

vu. sup 
Gg0? 

A6F(6) <?,for / = !...pJt + 1. 

Proof of Lemma A.l. 

Step 1: Properties of the lx -norm and Minkowski's inequality imply 

sup 
Gg0, 

V(Q)-]/2^sn(i 0,0)-K(0)"1/2 4n~sn ?>, 0,9) 

< sup |f(0)"1/2| 
x sup \yf?s?(h 0, G)-yfcs?(b, 0,9)1 Q_/=v I 'I ?^/=\ ' '1 Gg0, 6g0: 

+ sup |f(0)~1/2 -F(9)-1/2| 
x sup \yf?s?(^9 0,9)1 

Gg0? 6g0? 

sup |f(9)~1/2 -F(9)-1/2| 
x sup \yT?sn(to9 0,Q)-y/?s?(^9 0,9)1 

Gg0, Gg0, 
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By Lemma A.6.VZ supera v(eyl/2\ <oo, and 

sup0 0 |F(9) 1/2-F(9) 
1/2 

=0^(1) 
follows from Lemmas A.5iv and A.6.vi, and 

AssumptionCThussupe 0^ |f(9)"1/2-F(9)"1/2| xsup0G0jV^w(<|),O,9)| =op(l) 
by Lemmas A.2 and A3, Cramer's Theorem and the mapping theorem. 

Step 2: We need only show 

sup Jn~\sn(i 0, e)-^^, 0,9)1 = o (1). 

By the mean-value-theorem there exists ?* (9) Rp 
+1 

such that 

|(()#(9)-(|)|1 <|<j>--<t>| 
a.s. and 

4n~sn ($, 0,9) 
= 
4n~sn (<|>, 0,9) + ? sn (^ (9), 0,9) V^ 

- 
<|>). 

?f 

where for any ? e O 

? s? ((j), 0,9) = 
- 
? 

A Cv, 
- 
/(+, z,_, ))co(?, *,_, )F(t'z,_, ) 

= -- 
? (0(0, zM)?/(i zM)F(x'zM) = -% 9). w /=i 

Standard nonlinear least squares algebra and Lemma A.5 show under HQ 

,-i 1 ̂ d 
:^(1) 

hence <j> 
= <|> + 

Op(\l4n) by the martingale central limit theorem of Bierens 

[1987: Theorem 29]. Lemma A.5.m and |<|>?(?) 
? 

<t>|, <|^-<t>| =Op(l/y/n) imply 

sup9e?4 |*(4>. (6), 9) 
- 

?#, 9)^ 
= 

op (1), and 

sup Jn \s? (i 0,9) 
- 

s? (<|>, 0,9) + ?(<j>, 9)(4> 
- d 

< sup ^\s?d o, e)-*?( , o, e)+b(h(?), 0)(*-4>)l 

sup }m, (9), 0) 
- 

?(fc 9)1 ^ U - J = o (1). ?^/Jk I 11 I 11 

8e?, 

9e0P' 

Finally, use the identity 

V^? ( , 0,9) 
- 

ft?,, 0)? (((.)"' -)= ? ? /(*. Vi K = 
>K ( , 0,9) 

1 A ? 
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and Cramer's Theorem to conclude 

sup ??(<M,e)-s?(<|>, 0,9)1 ?-/c\ I 11 
Gg0, 

< sup V^k((|),O,9)-^((t),O,9)-Kc|),0)(*-(t))l +0,(1) ?-/2V I II Gg0, 

= 
sup 
Gg0, 

yjn W,eM(4?)~ 
1 n 

"t? dty /(M,-i)e,-*(4?,eX4>-40 + 0/1) 

sup \b(?, Q)\} 
x sup 

Gg?? 6g0? 

+ o p(l) 
= o _(1) 

Proof of Lemma A.2. Define for any A e N, any sequence {#,,..., 0h}, 9, e 0 , 
r e Rpk+l ,r'r = \ and j e K*, s's = 1, 

k=\ 

<ol(r,s,e) 
= 

r'YasiV(?irU2gl(Qi)st 
i=] 

Thus 
vV? Vi?iT^s^ 0,9,) = l/>/w ? w,(r, 5,0). Clearly 

/=i t=\ 

{<x>, (r, s, 0), 3M} forms a martingale difference sequence for any r'r-l and 

s's = 1 under the null by Assumption A and the 3t_x -measurability of gt(9). Under 
n 

HQ, 1 / yfn J] wt (0) -? N(0,1) in distribution pointwise in ?^ follows from 
?=i 

Bierens' [1991: Theorem 29] expanded version of McLeish's [1974] martingale 
difference central limit theorem, cf. Lemma A.2.1. A Cramer-Wold device delivers 
the desired result. 

LEMMA A.2.1 (Hill 2008) Under the conditions of Lemma A.2, for 
n n 

each 0 g 0, p lim 1 /4n~Y wt(0)2 
= lim 1 /nS\ E[wt(0)2] 

= 1, and 
" 

I /-|2+K 
/=1 

/? lim > ?w,(0)/V? =0 for some k>0. 
t=\ 

t=\ 

Proof of Lemma A.3. For any r eRp , r'r - 1, write 

r'F(9)-I/2 V??.??, 0,9) = 4= ? 6ror(r, 9) 
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x-1/2 . 
say, where co/ (r, 9) 

= 
r'V(Q) gt (9). Using Lemma A. 1 of Bierens and Ploberger 

[1997] we need to show 

(10) 
1 n 

lim sup 
? 

^T E[z2K2] <co 
?-?00 ft 

t=X 

(H) 
1 ̂ 

lim sup-Y ?[s,2co((90)2]<co 
n-?oo '* 

t=x 

for at least one point 90 e 0, where Kt 
= sup9e0 |(9 / 36)?^ (G)| 

. 

Inequality (10) easily follows from Assumption A, the Cauchy-Schwartz and 

envelope inequalities, and Lemma A.6: for any 9 e 0^ 

2Jj2 Jwm-1/2| 

E[s2cot(r,Q)2]^Xxnx\V^ sup \g,(?)[ 
6e0? 

<M <oo 

Now consider (9). By the Cauchy-Schwartz inequality 

?[b2/:,2]<||s,?xH2 sup 
0E0P 

? 
V/(6) de 

' 

We need only show supOe0 |(^/^0)vi/i(0)|1 
<K<cc. The (/,j)th-component 

(d I d9)i|/, j (9) of the s x pk +1 -matrix (d 139)i|/, (9), where s = q(pk +1) + pk +1, 

is exactly 

pk+\ pk+\ 

Use Minkowski's inequality repeatedly and Lemma A.6 to get 

sup 
9e0? ?Q 

V,(B) 

s pk+l 

ZZ sup 
/=1 J=x Ge0C 

/>? + l 

uu 
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s pk+\ 

ZZsup 

<(pk+l) Zsup Z 
''.7=1 

?vm)12 
59, 

;'' 
pi+1 

Zk/(0)|, 7=1 

+s(pk +1) ZSUP 
/=1 Og0? 

/?&+l 5 M+l 

ENTIEZ 
/,y=I ! /=l (=1 de, 

g, ,m 

<(/j? + l)?sup 
/=1 6e?, >>-"2 sup|g/(9)|1 

Gg0? 

+$(pit + l)sup F(9> 
-1/2 

Gg?? 
sup 
|Gg0, J^(e) 

<^ 

Proof of Lemma A.4. Define r\(Q) = E[zt(?(89zt_x)F(x'zt_x)]. Minkowski's 

inequality and properties of the lx -norm imply 

(12) sup F(9)-,/2??(<j>,0,9)-K(9)-,/2n(9) 
Gg0? 

' n 

-1/2 < sup V(Q)-^\ x sup \sn?, 0, 0)-n(O)| 
Gg0, Gg?c' 

+ supF(9)-1/2-K(9)-1/2 x sup ItiCG)^ Gg0s Gg?, 

+ sup K(0)_1/2 -K(0r1/2 x sup U (cj>, 0, 0)-n(0) 
Gg@J 

!l 
Gg@?J 

!l 

Each K(0)~1/2, F(0)"1/2-F(0)"1/2 and r|(0) is uniformly lx-bounded under 

Assumption A and Lemmas A.5-A.6. 
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Consider i?(<|), 0,9) 
- 

r|(9). By the mean-value-theorem 

sup 
0e0P 

1 ̂ 
i(|,0,9)? ? e,?(8,z,_0Wz,_0| 

sup|S((|),9)-?(<t),9) 
x $-(() +sup|?((|),9)|1x$-(|) =op(?) 

8g?, Il I 11 6g?, 

and under Assumption A Theorem 17 of Bierens [1991] applies: 

sup 
8 0P 

1 ̂ 
ZsM^ViF?Vi)-?1(0) 

t=\ 

= 
op(X). 

Now use the triangular inequality to conclude each term on right-hand-side of (11) 
is op(l). 

Finally, Lemma 1 guarantees for any S the set 

S = {x g RPk+] ; r|(9) * 0 and P(xfzt_x e R0) 
= 

1} has Lebesgue measure zero. 

Because V(Q) is uniformly positive definite in 
0^ 

so are V(Q)~l and F(9)~1/2, 
hence F(9)~1/2r|(9) * 0 for every 9 e 0^ except xeS. 
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