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Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of
Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance,
state variable constraints (which may be based on physical considerations) are often neglected because they do
not fit easily into the structure of the Kalman filter. This article develops an analytic method of incorporating
state variable inequality constraints in the Kalman filter. The resultant filter truncates the probability density
function (PDF) of the Kalman filter estimate at the known constraints and then computes the constrained filter
estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the
computational effort of the filter but also improves its estimation accuracy. The improvement is demonstrated via
simulation results obtained from a turbofan engine model. It is also shown that the truncated Kalman filter may
provide a more accurate way of incorporating inequality constraints than other constrained filters (e.g. the
projection approach to constrained filtering).

Keywords: Kalman filter; state constraints; estimation; probability density function; gas turbine engines; health
monitoring; optimal filtering; constrained filtering

1. Introduction

For linear dynamic systems with white process and
measurement noise, the Kalman filter is an optimal
estimator. However, in the application of Kalman
filters there is often known model or signal information
that is either ignored or dealt with heuristically
(Massicotte, Morawski and Barwicz 1995). This has
resulted in recent efforts to incorporate constraints in
the Kalman filter. For example, a projection method
can be used to find the optimal way to incorporate
hard inequality constraints on the states (Simon and
Simon 2005). Another way of incorporating con-
straints is to use a regularisation method to enforce a
soft limit on the changes of the state variables with
respect to time (Simon and Simon 2006). Yet another
approach is the use of ridge regression to bias estimates
with low certainty towards their constraints (Dewallef,
Leonard and Mathioudakis 2004). Other approaches
to incorporating constraints in filtering algorithms
include constraints on the mean squared values of the
estimates (Vathsal and Sarma 1974) and constraints on
the variance of the estimation error (Wang and Shu
2000). Non-linear ways of incorporating state con-
straints include moving horizon estimation (Rao,
Rawlings and Mayne 2003; Goodwin, De Dona,
Seron and Zhuo 2005) and particle filtering

(Simon 2006). These methods are more rigorous than
Kalman filter modifications, but the trade-off is that
they can require a lot of computational effort.
Therefore they may not be feasible, depending on the
application.

This article presents a way to generalise the Kalman
filter such that known inequality constraints among the

state variables are satisfied by the state variable esti-

mates. The constraints that are imposed are hard

constraints in that they are strictly enforced. However,

in contrast to the projection method of constraint

enforcement (Simon and Simon 2005), the state esti-

mates are not projected onto the constraint surface.

Rather, the probability density function (PDF) that is

computed by the Kalman filter is truncated at the con-

straint edges, and the constrained state estimate

becomes equal to the mean of the truncated PDF.

This idea is based on a previously published method

(Shimada, Shirai, Kuno and Miura 1998) but has been

modified to handle two-sided inequality constraints.
The application considered in this article is aircraft

turbofan engine health parameter estimation (Doel
1994a). Health parameters represent engine component
efficiencies and flow capacities. The performance of
gas turbine engines deteriorates over time. This dete-
rioration reduces the fuel economy of the engine.
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Airlines periodically collect engine data in order to
evaluate the health of the engine and its components.
The health evaluation can then be used to determine
maintenance schedules. This offers the benefits of
improved safety and reduced operating costs. The
money-saving potential of such health evaluations is
substantial, but only if the evaluations are reliable.
The data used to perform health evaluations are
typically collected during flight and later transferred
to ground-based computers for post-flight analysis.
Data are collected each flight at the same engine
operating point and corrected to account for variabil-
ity in ambient conditions. Various algorithms have
been proposed to monitor engine health, such as
weighted least squares (Doel 1994b), expert systems
(DePold and Gass 1999), Kalman filters (Volponi,
DePold, Ganguli and Daguang 2003), neural networks
(Volponi et al. 2003), fuzzy logic (Ganguli 2003) and
genetic algorithms (Kobayashi and Simon 2001).

It could be argued that static estimation methods
(e.g. least squares) can be used to effectively estimate
engine health, and that dynamic methods such as
Kalman filtering are not needed. However, if we
consider on-board real-time estimation, a dynamic
estimator such as a Kalman filter gives better results
than a static estimator. More accurate health param-
eter estimation gives more accurate on-board engine
models, which are then used to process transient,
dynamic input data.

This article develops the truncation method of
constrained Kalman filtering, and then applies it to the
estimation of engine health parameters. We use
heuristic knowledge of the health parameter dynamics
to constrain their estimate. For example, we know that
health parameters generally do not improve with time.
Engine health generally degrades over time, and we can
incorporate this information into state constraints to
improve our health parameter estimation. (This is
assuming that no maintenance or engine overhaul is
performed.) It should be emphasised that in this article
we are confining the problem to the estimation
of engine health parameters in the presence of degra-
dation only. There are specific engine faults that
can result in abrupt shifts in filter estimates, possibly
even indicating an apparent improvement in some
engine components. An actual engine performance
monitoring system would need to include additional
logic to detect and isolate such faults (Ganguli and
Dan 2004).

Section 2 derives the constrained Kalman filter.
Section 3 discusses the problem of turbofan health
parameter estimation, along with the dynamic model
that we use in our simulation experiments. Although
the health parameters are not state variables of the
model, the dynamic model is augmented in such a

way that a Kalman filter can estimate the health
parameters following the approach described in previ-
ous publications (Friedland 1969; Lambert 1991). We
show how this problem can be expressed in a way that
is compatible with the constraints discussed in
Section 2. Section 4 presents some simulation results
based on a turbofan model linearized around a known
operating point. We show (for our problem) that the
truncated Kalman filter can estimate health parameters
better than the unconstrained filter, and it can also
estimate health parameters better than other con-
strained filters. Section 5 presents some concluding
remarks and suggestions for further work.

2. Constrained Kalman filtering

Consider the discrete linear time-invariant system
given by

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ wðkÞ
yðkÞ ¼ CxðkÞ þ eðkÞ, ð1Þ

where k is the time index, x is the state vector, u is the
known control input and y is the measurement. The
signals fwðkÞg and feðkÞg are uncorrelated zero mean
Gaussian noise input sequences with covariances

E ½wðkÞwTðmÞ� ¼ Q�km

E ½eðkÞeTðmÞ� ¼ R�km

E ½wðkÞeTðmÞ� ¼ 0,

ð2Þ

where E [�] is the expectation operator and �km is the
Kronecker delta function (�km¼ 1 if k¼m, �km¼ 0
otherwise). The Kalman filter equations are given as
follows (Simon 2006a):

KðkÞ ¼ A�ðkÞCTðC�ðkÞCT þ RÞ�1

x̂ðkþ 1Þ ¼ Ax̂ðkÞ þ BuðkÞ þ KðkÞðyðkÞ � Cx̂ðkÞÞ
�ðkþ 1Þ ¼ ðA�ðkÞ � KðkÞC�ðkÞÞAT þQ,

ð3Þ

where the filter is initialised with x̂ð0Þ ¼ E ½xð0Þ� and
�ð0Þ ¼ E ½ðxð0Þ � x̂ð0ÞÞðxð0Þ � x̂ð0ÞÞT�. The Kalman
filter estimate x̂ðkÞ is a Gaussian random variable
with a mean of x(k) and a covariance matrix of �(k).

Now suppose that we are given the s scalar
constraints

amðkÞ � �T
mðkÞxðkÞ � bmðkÞ m ¼ 1, . . . , s, ð4Þ

where am(k)5 bm(k). This is a two-sided constraint on
the linear function of the state �T

mðkÞxðkÞ. If we have
only a one-sided constraint, then we set am(k)¼�1 or
bm(k)¼1. Now suppose at time k that we have some
estimate x̂ðkÞ with covariance �(k). The problem is to
truncate the Gaussian PDF N(x(k),�(k)) at the s
constraints given in (4), and then find the mean ~xðkÞ
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and covariance ~�ðkÞ of the truncated PDF. These new

quantities, ~xðkÞ and ~�ðkÞ, become the constrained state

estimate and its covariance.
In order to make the problem tractable, we will

define ~xiðkÞ as the state estimate after the first

i constraints of (4) have been enforced, and ~�iðkÞ as

the covariance of ~xiðkÞ. We therefore initialise

i ¼ 0

~xiðkÞ ¼ x̂ðkÞ
~�iðkÞ ¼ �ðkÞ:

ð5Þ

The sequence of steps that follows is intended to

transform the state vector so that the constraints are

decoupled. That is, we will obtain s transformed

constraints, with each constraint involving only one

transformed state. With this decoupling we will be able

to easily enforce the constraints one transformed state

at a time. We perform the transformation

ziðkÞ ¼ SiW
�1=2
i TT

i ðxðkÞ � ~xiðkÞÞ: ð6Þ
The reason for this transformation is that only one

element of zi(k) is constrained, which makes the

required PDF truncation tractable. Ti and Wi are

obtained from the Jordan canonical decomposition

of ~�iðkÞ,
TiWiT

T
i ¼ ~�iðkÞ: ð7Þ

We see that Ti is orthogonal and Wi is diagonal

(therefore its square root is very easy to compute). Si

is obtained by using Gram–Schmidt orthogonalisation

(Moon and Stirling 2000) to find the orthogonal Si that

satisifes

SiW
1=2
i TT

i �iðkÞ ¼ ð�T
i ðkÞ ~�iðkÞ�iðkÞÞ1=2 0 � � � 0

� �T
:

ð8Þ
With these definitions we see that the upper bound (4)

is transformed as

�T
i ðkÞxðkÞ � biðkÞ

�T
i ðkÞTiW

1=2
i ST

i ziðkÞþ�T
i ðkÞ ~xiðkÞ � biðkÞ

ð�T
i ðkÞTiW

1=2
i ST

i ÞziðkÞ
ð�T

i ðkÞ ~�iðkÞ�iðkÞÞ1=2
� biðkÞ��T

i ðkÞ ~xiðkÞ
ð�T

i ðkÞ ~�iðkÞ�iðkÞÞ1=2
1 0 � � � 0½ �ziðkÞ � diðkÞ

;

ð9Þ
where di(k) is defined by the above equation. Similarly

we see that

1 0 � � � 0½ �ziðkÞ � aiðkÞ � �T
i ðkÞ ~xiðkÞ

ð�T
i ðkÞ ~�iðkÞ�iðkÞÞ1=2

,

� ciðkÞ
ð10Þ

where ci(k) is defined by the above equation. We

therefore have the normalised scalar constraint

ciðkÞ � 1 0 � � � 0
� �

ziðkÞ � diðkÞ: ð11Þ
Lemma 1: zi(k) has an identity covariance matrix, and

only its first element can have a non-zero mean.

Proof: See Appendix 1. œ

Since zi(k) has an identity covariance matrix,

its elements are statistically independent of each

other. Only the first element of zi(k) is constrained,

so the PDF truncation reduces to a one-dimensional

truncation.
The constraint says that the first element of zi(k)

must lie between ci(k) and di(k). We therefore remove

that part of the Gaussian PDF that is outside of the

constraints and compute the area of the remaining

portion of the PDF as

Z diðkÞ

ciðkÞ

1ffiffiffiffiffiffi
2�

p expð��2=2Þ d�

¼ 1

2
erf ðdiðkÞ=

ffiffiffi
2

p
Þ � erf ðciðkÞ=

ffiffiffi
2

p
Þ

h i
, ð12Þ

where erf(�) is the error function, defined as

erfðtÞ ¼ 2ffiffiffi
�

p
Z t

0

expð��2Þd�: ð13Þ

We normalise the truncated PDF so it has an area of

one, and we find that the truncated PDF (i.e. the con-

strained PDF of the first element of zi(k)) is given as

PDFð�Þ ¼ �i expð��2=2Þ

�i ¼
ffiffiffi
2

p
ffiffiffi
�

p
erf ðdiðkÞ=

ffiffiffi
2

p Þ � erf ðciðkÞ=
ffiffiffi
2

p Þ� � : ð14Þ

We can compute the mean and variance of the first

element of zi(k) after constraint enforcement as

�i ¼ �i

Z diðkÞ

ciðkÞ
� expð��2=2Þ d�

¼ �i expð�c2i ðkÞ=2Þ � expð�d 2
i ðkÞ=2Þ

� �

	 2
i ¼ �i

Z diðkÞ

ciðkÞ
ð� � �iÞ2 expð��2=2Þ d�

¼ �i

h
expð�c2i ðkÞ=2ÞðciðkÞ � 2�iÞ

� expð�d 2
i ðkÞ=2ÞðdiðkÞ � 2�iÞ

i
þ �2

i þ 1

ð15Þ

The mean and covariance of the transformed state

estimate, after enforcement of the first constraint,

are therefore given as

~ziþ1ðkÞ ¼ �i 0 � � � 0
� �T

~Ciþ1ðkÞ ¼ diagð	2
i , 1, . . . , 1Þ:

ð16Þ
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We then take the inverse of the transformation (6) to

find the mean and variance of the state estimate after

enforcement of the first constraint.

~xiþ1ðkÞ ¼ TiW
1=2
i ST

i ~ziþ1ðkÞ þ ~xiðkÞ
~�iþ1ðkÞ ¼ TiW

1=2
i ST

i
~Ciþ1ðkÞSiW

1=2
i T T

i :
ð17Þ

We then increment i by one and repeat the process

of (6)–(17) to obtain the state estimate after enforce-

ment of the next constraint. Note that ~x0ðkÞ is the

unconstrained state estimate at time k, ~x1ðkÞ is the state
estimate at time k after the enforcement of the first

constraint, ~x2ðkÞ is the state estimate at time k after the

enforcement of the first two constraints, etc. After

going through this process s times (once for each

constraint) we have the final constrained state estimate

and covariance at time k.

~xðkÞ ¼ ~xsðkÞ
~�ðkÞ ¼ ~�sðkÞ:

ð18Þ

After this procedure, all of the original constraints of

(4) will be satisified, assuming that they are linearly

independent.
Figure 1 shows an example of a one-dimensional

state estimate before and after truncation. Before

truncation the state estimate is outside of the state

constraints. After truncation, the state estimate is set

equal to the mean of the truncated PDF. This figure

illustrates the motivation behind the constraint

enforcement method presented in the preceding equa-

tions. The unconstrained state is assumed to be

Gaussian. The Gaussian PDF is truncated at the

constraint boundaries, and the constrained estimate is

equal to the mean of the truncated PDF. An initial

consideration of Figure 1(a) might indicate that the

constrained estimate should lie on the constraint

boundary. In fact, this is exactly the philosophy of

the projection approach to constrained filtering
(Simson and Simon 2005). However, the PDF trunca-
tion approach considers both the constraints and the
unconstrained Kalman filter’s Gaussian distribution of
the estimate. The resulting constrained estimate lies at
a place within the constraint boundaries that is
determined by both the information from the uncon-
strained filter and the constraints. Simulation results
presented later in this article show that this PDF
truncation approach outperforms the projection
approach for turbofan engine health estimation.

Figure 2 shows another example of PDF trunca-
tion. In this case the unconstrained state estimate is
inside the state constraints. However, truncation
changes the PDF and so the constrained state estimate
changes to the mean of the truncated PDF. It could be
argued that the estimate should not be changed if it
satisfies the constraints. In fact, the PDF truncation
filter could be implemented either way. Whether to
modify estimates that already satisfy the constraints
(as shown in Figure 2), or leave those estimates
unchanged, is an implementation decision that depends
on the application and the engineer’s judgement.

2.1. Bias

Probability density function truncation imposes a bias
on the state estimate. The unconstrained Kalman filter
has the property that the state estimate is the mean of
the true state conditioned on the measurements.
However, the truncated state estimate is biased. This
is a drawback to this method of constraint enforcement,
especially since other methods of constraint enforce-
ment preserve unbiasedness (Simon and Simon 2005).
However, if other features of the estimate are more
important to the user than unbiasedness (e.g. root mean
square (RMS) estimation error) then the truncation
approach to constraint enforcement may still be
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Figure 1. The unconstrained estimate violates the constraints. The constrained estimate is the centroid of the truncated PDF:
(a) Unconstrained PDF; (b) contrained PDF.
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attractive. It is shown later in Section 4 that the
truncation approach outperforms the projection
approach in our example in terms of RMS estimation
error in spite of the biasedness of the truncated state
estimate.

2.2. Order of constraint application

Since the algorithm of (5)–(18) is non-linear, the
constrained state estimate depends on the order in
which the constraints are applied. The constraints will
all be satisfied regardless of the order of constraint
application, but the final state estimate may change if
the order is changed. This shows that, in general, PDF
truncation is not optimal. However, if the constraints
are decoupled, as they are in the turbofan engine health
estimation problem discussed in Section 3, then the
order of constraint application does not matter.

2.3. Non-recursiveness of PDF truncation

If estimates that satisfy the constraints are modified via
PDF truncation, as shown in Figure 2, it is important
that the unconstrained Kalman filter be run indepen-
dently of the truncation process. That is, the truncated
state estimate and covariance ~xðkÞ and ~�ðkÞ must not
be used as the starting point for the unconstrained
Kalman filter iteration in (3). This is because the
information in the constraint at each time step should
be limited to that specific time step, and should not be
used (even implicitly) in succeeding time steps. The
constraint at time k should be used only at time k, and
should not have even an indirect effect on the filter at
later time steps.

To illustrate this point, suppose that we use the
constrained a posteriori state estimate to obtain the a
priori estimate at the next time step. Consider the
noise-free scalar system xkþ 1¼ xk and the constraint

xk� 0. Suppose that the PDF of the unconstrained a
priori estimate is zero-mean with a variance of 1. If the
next measurement is information-free (i.e. R¼1) the
a posteriori estimate is the same as the a priori estimate.
The xk� 0 constraint then gives a constrained estimate
with a mean of

ffiffiffiffiffiffiffiffi
2=�

p
and a variance of (��2)/�. After

the next time update and information-free measure-
ment, we truncate the PDF again. The mean increases
and the variance decreases. Continuing this process
gives a series of supposedly normal distributions with
a mean that increases monotonically and a variance
that decreases monotonically. The problem is that the
information in the constraint was used recursively.

If the engineer chooses to not modify those state
estimates that satisfy the constraints, then constrained
state estimates could be recursively fed back into the
Kalman filter algorithm without any problems. In that
case only estimates that violate the constraints would
be modified, which is similar to other approaches of
constrained estimation (e.g. the projection approach
(Simon and Simon 2005) and moving horizon estima-
tion (Rao et al. 2003)).

2.4. Non-linear constraints

Although we have considered only linear state
constraints, it is not conceptually difficult to extend
this method to non-linear constraints. If the state
constraints are non-linear they can be linearised as
discussed in Simon and Chia (2002). The PDF trun-
cation method has been extended to non-linear
unscented Kalman filters in Teixeira, Chandrasekar,
Torres, Aguirre and Bernstein (2009).

3. Turbofan engine health monitoring

Figure 3 shows a schematic representation of an aircraft
turbofan engine (Parker and Guo 2003; Parker and
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Figure 2. The unconstrained estimate satisfies the constraints. Nevertheless, the truncation approach to constrained estimation
shifts the estimate to the centroid of the truncated PDF: (a) Unconstrained PDF; (b) contrained PDF.
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Melcher 2004). A single inlet supplies airflow to

the fan. Air leaving the fan separates into two streams:

one stream passes through the engine core, and the

other stream passes through the annular bypass duct.

The fan is driven by the low pressure turbine. The air

passing through the engine core moves through the

compressor, which is driven by the high pressure

turbine. Fuel is injected in the main combustor

and burned to produce hot gas for driving the

turbines. The two air streams combine in the augmentor

duct, where additional fuel is added to further

increase the air temperature. The air leaves the

augmentor through the nozzle, which has a variable

cross-section area.
The simulation used in this article is a gas turbine

engine simulation software package called Modular

Aero Propulsion System Simulation (MAPSS) (Parker

and Guo 2003; Parker and Melcher 2004). MAPSS is

written using Simulink�. The MAPSS engine model

is based on a low frequency, transient, performance

model of a high-pressure ratio, dual-spool, low-bypass,

military-type, variable cycle, turbofan engine with a

digital controller. MAPSS does not simulate a specific

engine, but instead provides a simulation environment

for a generic engine. The controller update rate is

50Hz, and the component level model balances the

mass/energy equations of the system at a rate of

2500Hz. The three state variables used in MAPSS are

low-pressure rotor speed (XNL), high-pressure rotor

speed (XNH) and the average hot section metal

temperature (TMPC) (measured from aft of the

combustor to the high pressure turbine). The discre-

tised time invariant equations that model the turbofan

engine can be summarised as follows:

xðkþ 1Þ ¼ f ½xðkÞ, uðkÞ, pðkÞ� þ wxðkÞ
pðkþ 1Þ ¼ pðkÞ þ wpðkÞ

yðkÞ ¼ g½xðkÞ, uðkÞ, pðkÞ� þ eðkÞ
, ð19Þ

where k is the time index, x is the 3-element state

vector, u is the 3-element control vector, p is the

10-element health parameter vector and y is the

11-element measurement vector. Note that the noise

terms and health parameter degradation are not mod-

elled in MAPSS but have been added to the model for

the problem studied in this article. The health param-

eters change slowly over time. Between measurement

times their deviations can be approximated by the zero

mean noise wp(k) (although in our study the health

parameters only changed once per flight). The noise

term wx(k) represents inaccuracies in the system model

and e(k) represents measurement noise.
The states, controls, health parameters and mea-

surements are summarised in Tables 1–4, along with

their values at the nominal operating point considered

in this article, which is a power lever angle of 21� at sea
level static conditions (zero altitude and zero mach).

Table 4 also shows typical signal-to-noise ratios for the

measurements, based on NASA experience and pre-

viously published data (Merrill 1984). Sensor dynamics

are assumed to be high enough bandwidth that

they can be ignored in the dynamic equations. In

Tables 1–4, LPT is used for Low Pressure Turbine,

HPT is used for High Pressure Turbine, LPC is used

for Low Pressure Compressor and HPC is used for

High Pressure Compressor.
We linearise and augment (19) to obtain the system

xðkþ 1Þ
pðkþ 1Þ

� �
¼ A1 A2

0 I

� �
xðkÞ
pðkÞ

� �
þ B

0

� �
uðkÞ� �

þ wxðkÞ
wpðkÞ

� �

yðkÞ ¼ C1 C2

� � xðkÞ
pðkÞ

� �
þ eðkÞ

¼ C
xðkÞ
pðkÞ

� �
þ eðkÞ

:

ð20Þ

Figure 3. Schematic representation of a turbofan engine.
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A Kalman filter can be applied to these linearised
equations to estimate the state vector x and the health
parameter vector p. The system matrices are given in
Appendix 2.

Constraints can be incorporated in the state
estimator by using heuristic knowledge of the behav-
iour of the health parameters. For example, it is known
that health parameters generally do not improve with
time. It is also expected that they degrade within a
specific envelope.

pmðkÞ � pmax
m ðkÞ, m 2 ½1�10�

pmðkÞ � pmin
m ðkÞ: : ð21Þ

This envelope constraint is in the linear form required
in the constrained filtering problem statement (4) and
is therefore amenable to the approach presented in this
article. Note that this technique of constrained esti-
mation does not take into account the possibility of
abrupt changes in health parameters due to discrete
damage events. That possibility must be addressed by
some other means (e.g. residual checking (Doel 1994a))
in conjuction with the methods presented in this article.

4. Simulation results

We simulated the methods discussed in this article
using MATLAB�. We measured a steady state 3 s
burst of engine data at 10Hz during each flight.
These routine data collections were performed over 100
flights at the single operating point shown in Tables 1,
2 and 4, except the engine’s health parameters
deteriorated a small amount each flight. We simulated
a linear-plus-exponential degradation of the 10 health
parameters over 100 flights. The simulated health
parameter degradation was representative of turbofan
performance data reported in the literature (Sasahara
1985). Figure 4 shows the degradations of all 10 health
parameters that we used in our simulations.

In the Kalman filter we used a one-sigma state
process noise equal to 0.005% of the nominal state
values to allow the filter to be responsive to changes in
the state variables. We also set the one sigma process
noise for each component of the health parameter
vector to 0.01% of the nominal parameter value.

These values were obtained by manual tuning. They
were small enough to give reasonably smooth esti-
mates, and large enough to allow the filter to track
slowly time-varying parameters. The Kalman filter
gain was time varying, although it converged to steady
state after about 50 flights. The health parameter
estimates were updated once per time step (i.e. 30 times

Table 4. Modular aero propulsion system simulation turbo-
fan model measurements, nominal values and signal-to-noise
ratios.

Measurement
Nominal
value SNR

LPT exit pressure 19.33 psia 100
LPT exit temperature 1394�R 100
Percent low pressure spool rotor
speed

63.47% 150

HPC inlet temperature 580.8�R 100
HPC exit temperature 965.1�R 200
Bypass duct pressure 20.66 psia 100
Fan exit pressure 17.78 psia 200
Booster inlet pressure 20.19 psia 200
HPC exit pressure 85.06 psia 100
Core rotor speed 12152 RPM 150
LPT blade temperature 1179�R 70

Note: SNR values are linear (not in decibels).

Table 3. Modular aero propulsion system simulation turbo-
fan model health parameters and nominal values.

Health parameter Normalized value

Fan airflow 1
Fan efficiency 1
Booster tip airflow 1
Booster tip efficiencya 1
Booster hub airflow 1
Booster hub efficiency 1
High pressure turbine airflow 1
High pressure turbine efficiency 1
Low pressure turbine airflow 1
Low pressure turbine efficiency 1

Note: aThe fourth health parameter is not yet implemented in
MAPSS.

Table 2. Modular aero propulsion system simulation tur-
bofan model controls and nominal values.

Control Nominal value

Main burner fuel flow 2454 lbmhr�1

Variable nozzle area 343 in2

Rear bypass door variable area 154 in2

Table 1. Modular aero propulsion system simulation turbo-
fan model states and nominal values.

State Nominal value

LPT rotor speed 7264 RPM
HPT rotor speed 12152 RPM
Average hot section metal temperature 1533�R
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per flight). In the enforcement of the constraints in (21)
we chose the constraint envelope as follows:

(1) For the turbine airflow health parameters (m 2
[7, 9]), whose values increase with time (i.e. an
increase corresponds to a degradation), pmax

m ðkÞ
was set equal to a linear-plus-exponential
degradation that was initialised to zero (i.e.
pmax
m ð0Þ ¼ 0) and reached a maximum of 6%

after 500 flights, while pmin
m ðkÞ was set equal to 0

for all k.
(2) For the other health parameters (m 2 [1–6, 8,

10]), whose values decrease with time (i.e. a
decrease corresponds to a degradation), pmin

m ðkÞ
was set equal to a linear-plus-exponential
degradation that was initialised to zero (i.e.
pmin
m ð0Þ ¼ 0) and reached a maximum magni-

tude of –6% after 500 flights, while pmax
m ðkÞ was

set equal to 0 for all k.

The constraint envelope was chosen on the basis
of domain knowledge of the turbofan engine health
estimation problem, and manual tuning. If the
constraints are too loose then they do not provide
any improvement over unconstrained filtering. If the
constraints are too tight then they overly restrict the
state estimates and do not make enough of an
allowance for random variations in the health
parameters.

Figure 5 shows a typical plot of health parameter
deviation, along with the constraint envelope, the
unconstrained estimate and the constrained estimate.
The initial health parameter estimation errors were
assumed to be zero. Note that the true health param-
eter changes once per flight, but the filter estimate is

updated each time step (i.e. 30 times per flight). It is
seen that even though the unconstrained estimate lies
within the constraint envelope, the constrained esti-
mate is more accurate.

Figure 6 shows a different type of example where
the true health parameter deviation is closer to the
constraint envelope. In this case there are times when
the unconstrained estimate lies outside of the con-
straint envelope, but the enforcement of constraints
forces the constrained estimate to remain within the
envelope.

Note that Figures 5 and 6 cannot be compared
directly with our previous results in Simon and Simon
(2006). First, the results in Simon and Simon (2006)
were obtained with different turbine engine simulation
software. Second, the estimation error percentages in
Simon and Simon (2006) were calculated relative to
nominal health parameter values, while the percentages
in this article are calculated relative to health param-
eter degradation magnitudes. For example, suppose
that nominal airflow is 100 kg s�1, it degrades by
1 kg s�1, and we estimate it to within 0.1 kg s�1. That
estimation accuracy would be reported in Simon and
Simon (2006) as a 0.1% estimation error (i.e. 0.1/100),
while it is reported in this article as a 10% estimation
error (i.e. 0.1/1).

We obtained estimates of the health parameters
using unconstrained (standard) Kalman filtering,
constrained Kalman filtering using the projection
approach (Simon and Simon 2005) and constrained
Kalman filtering using the PDF truncation approach.
We ran 100 Monte Carlo simulations, each simulation
consisting of 100 flights and the same health parameter
degradation, but different realisations of the
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Figure 5. In this example, constraint enforcement decreases
the RMS estimation error from 12.2% to 9.2%.
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Figure 4. This figure shows the true health parameter
deviations that were simulated for each of the 10 health
parameters.
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measurement noise. Table 5 shows the performance of

the filters averaged over 100 Monte Carlo simulations
of 100 flights each. The standard Kalman filter
estimates the health parameters to within 7.3% of

their final degradations. The projection-based con-
strained filter estimates the health parameters to within
6.5% of their final degradations. The truncation

approach to constrained filtering estimates the para-
meters to within 6.0% of their final degradations.
These numbers show the improvement that is possible

with the truncation approach to constrained Kalman
filtering.

These examples involve processing 3 s of data each
flight, which is similar to standard ground-based

estimation based on snap-shot measurements. In this
scenario, it could be argued that static estimators (e.g.
least squares) would work just as well as a Kalman

filter. However, when we consider on-board real-time
estimation, a Kalman filter will give better perfor-
mance than a static estimator. Dynamic estimators can

be used to update health estimation in flight, which
could then be input to a flight control algorithm.

A comparison between other constrained
approaches to filtering for aircraft turbofan engine

health estimation can be found in the literature.
These methods include the projection approach
(which is compared with PDF truncation here) and

the switched projection approach (Simon and Simon
2006), the use of soft constraints (Simon and Simon
2006), constrained H1 filtering (Simon 2006b) and

ridge regression (Dewallef et al. 2004). A general
comparison of different methods of constrained
Kalman filtering, including the PDF truncation

method presented here, can be found in Simon (2008b).

4.1. Determination of constraints

The pmax
m ðkÞ and pmin

m ðkÞ constraints are system depen-
dent and were obtained in this example using domain
knowledge and tuning. Constraints that are too loose
or too tight will result in worse performance as shown
in Table 5. The results in Table 5 were obtained with
constraints of 0% and 6%, as discussed at the
beginning of this section. If the constraints are relaxed
to –3% and 9%, the average constrained performance
degrades to 7.3%, which is the same as the uncon-
strained filter, showing that loose constraints do not
provide any improvement relative to unconstrained
filtering. If the constraints are tightened to 0% and
2%, the average constrained performance degrades to
10.6%, which is worse than the unconstrained filter.
Constraint tuning affects the performance of both the
projection approach and the PDF truncation approach
to constrained filtering. However, for all reasonable
constraint envelopes that we investigated, the PDF
truncation approach outperformed projection by an
amount similar to that seen in Table 5.

4.2. Estimation of slower health degradations

The robustness of constrained Kalman filtering
to varying rates of health parameter degradation
is suggested by further simulation results. The

Table 5. Percent RMS health parameter estimation errors of
the Kalman filters averaged over 100 Monte Carlo
simulations.

Estimation error (%)

Health parameter
Unconstrained

filter
Projection

filter
Truncated

filter

Fan airflow 12.6 8.7 7.5
Fan efficiency 7.1 6.4 6.5
Booster tip airflow 11.3 11.1 9.3
Booster tip efficiencya N/A N/A N/A
Booster hub airflow 7.2 6.6 7.0
Booster hub efficiency 3.9 3.2 3.8
High pressure turbine
airflow

4.2 3.2 3.9

High pressure turbine
efficiency

4.3 4.0 3.9

Low pressure turbine
airflow

3.8 3.5 3.5

Low pressure turbine
efficiency

11.4 11.3 8.6

Average 7.3 6.5 6.0

Note: The estimation error is measured as jð p� p̂Þ=pf j, where
p is the true health parameter value, p̂ is the estimated health
parameter value, and pf is the health parameter value at the
end of the simulation.
aThe fourth health parameter is not yet implemented in
MAPSS.
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Figure 6. In this example, constraint enforcement decreases
the RMS estimation error from 13.4% to 6.6%.
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simulations discussed above were repeated except that
the health parameters degraded only 10% as fast as
shown in Figure 4 but over 1000 flight cycles. In this
case the standard unconstrained Kalman filter esti-
mated the health parameters with an average RMS
error of 6.7%, while the PDF truncation filter
estimated the health parameters with an average
RMS error of 5.0% (averaged over 100 Monte Carlo
simulations). Comparing these results with Table 5
shows that both standard unconstrained Kalman
filtering and PDF truncation filtering perform better
when the health parameter degradation is slower.

4.3. Computational effort

The improved performance of the constrained filter
comes with a price, and that price is computational
effort. The algorithm outlined in (6)–(17) requires
Jordan decomposition and Gram–Schmidt orthogona-
lisation. However, if the constraints of (4) are
decoupled (as they are in our example) then the com-
putational effort can be largely reduced by ignoring the
cross-covariance terms in the state estimator and hence
avoiding these matrix computations. In any case,
computational effort is not a critical issue for turbofan
health estimation since the filtering is performed on
ground-based computers after each flight.

In this example, the projection approach to
constrained filtering requires a negligible amount of
additional computational effort relative to uncon-
strained filtering. This is because the constraints are
decoupled. However, the PDF truncation approach
discussed in this article requires a noticeable amount of
additional computational effort. This is primarily
because of the error function and exponential calcula-
tions in (14) and (15). (If the constraints were coupled,
then the computational effort would be primarily due
to the Jordan decomposition and Gram–Schmidt
orthogonalisation.) For the 100-flight simulations
performed for this article on a 1.5 GHz PC with
1GB of RAM, unconstrained Kalman filtering
required 1.8 s of CPU time and the PDF truncation
approach required 5.6 s of CPU time. Even with its
increased complexity, CPU time will probably not be a
primary concern for the truncation approach to
constrained filtering. For example, extrapolating the
CPU times obtained above, we see that processing data
for 1000 flights of 1000 engines would require 16 h of
CPU time using the truncation approach to con-
strained filtering. Also, since the Kalman filter is
applied recursively, the health parameter estimates are
updated with only a small number of new data points
each flight (30 measurements per flight in this article).

However, a relinearisation process should be per-
formed every few flights in order to obtain the best
possible estimation performance (Simon 2008a).
If CPU time is a consideration, fast table lookups for
the error function and exponential calculations in (14)
and (15) could be implemented.

4.4. Abrupt faults

The Kalman filter works well only if the assumed
system model matches reality fairly closely. This
implies that the system model should be relinearised
periodically in order to maximise estimation perfor-
mances (Simon 2008a). The method presented in this
article will not work well by itself if there are large
sensor biases or hard faults due to severe component
failures. A mission-critical implementation of a
Kalman filter should always include some sort of
additional residual check to verify the validity of the
Kalman filter results (Gelb 1974), particularly for the
application of turbofan engine health estimation
considered in this article (Doel 1994a).

5. Conclusion

We have presented a PDF truncation method for
incorporating constraints into a Kalman filter. If the
system whose state variables are being estimated
has known state variable constraints, then those
constraints can be incorporated into the Kalman filter
as shown in this article. For the aircraft turbofan engine
health estimation problem, the use of constraints
generally improves the accuracy of health estimation.

We have seen that the constrained filter requires
more computational effort than the standard Kalman
filter. This is due to the addition of s matrix
decompositions and associated computations that
must be performed at each time step (one for each
constraint). The engineer must therefore perform a
tradeoff between computational effort and estimation
accuracy.

The Kalman filter works well only if the assumed
system model matches reality fairly closely. The
constraint enforcement method presented in this article
will not work well if there are large sensor biases or
hard faults due to severe component failures. A
mission-critical implementation of a Kalman filter
should always include some sort of residual check to
verify the validity of the Kalman filter results, partic-
ularly for the application of turbofan engine health
estimation considered in this article.

The method presented in this article changes the
unconstrained estimate even if the unconstrained
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estimate satisfies the constraints. An improvement
might be seen if PDF truncation is performed only for
those estimates that violate the constraints. The desired
approach depends on if the engineer is more confident
in the unconstrained state estimate or more confident
in the constraint information.
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Appendix 1

This appendix contains a proof of Lemma 1. First
we prove the covariance part of the lemma. Note from (6)
to (7) that

E ðziðkÞ� �ziðkÞÞðziðkÞ� �ziðkÞÞT
� �¼SW�1=2TT ~�iðkÞTW�1=2ST

¼SW�1=2TTðTWTTÞT�1=2ST

¼ I: ð22Þ
We have proved that the covariance of zi (k) is the identity
matrix.

Next consider the mean of zi (k). When i¼ 0, the mean of
zi(k) is given as

Eðz0ðkÞÞ ¼ SW�1=2TTEðxðkÞ � ~x0ðkÞÞ
¼ SW�1=2TTEðxðkÞ � x̂ðkÞÞ
¼ 0: ð23Þ

Now we use induction to show that only the first
component of the mean of zi(k) can be non-zero.
For i4 0, suppose that ~ziðkÞ ¼ ½� 0 � � � 0 �T and
Eðzi�1ðkÞÞ ¼ ½ 
 0 � � � 0 �T. Then the mean of zi (k) is
given as

EðziðkÞÞ ¼ SW �1=2TTEðxðkÞ � ~xiðkÞÞ
¼ SW �1=2TTEðxðkÞ � TW1=2ST ~ziðkÞ � ~xi�1ðkÞÞ
¼ ~ziðkÞ þ SW �1=2TTEðx� ~xi�1ðkÞÞ
¼ � 0 � � � 0

� �TþEðzi�1ðkÞÞ
¼ � 0 � � � 0

� �Tþ 
 0 � � � 0
� �T

: ð24Þ
We have proved that only the first element of zi(k) can have a
non-zero mean.

Appendix 2

This appendix gives the matrices that are used in (20).

A1 ¼
0:9029 0:0411 0:0381

�0:0069 0:9088 0:0432

�0:0001 �0:0004 0:9924

2
64

3
75

A2 ¼
�294:2884 254:1007 �8:8834 0 241:4922 �47:2503 10:0174 �19:6286 �365:4922 116:1297

�17:6391 �38:4735 �131:9580 0 �274:2797 449:5393 �61:9914 302:5021 126:9419 35:4716

0:1598 �1:2844 0:0262 0 �2:3248 �3:3278 �1:4288 �0:1425 �0:0200 �0:0275

2
64

3
75
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B ¼
0:0805 0:4928 �0:1557

0:0910 0:1678 �0:0341

0:0018 �0:0003 �0:0001

2
64

3
75; C1 ¼

�0:0034 1 0:0237

0:0087 0:0002 0:0002

0:0016 �0:0006 0:0001

0:0022 �0:0005 0:0001

0:0181 �0:0024 0:0008

0:0148 0:0493 0:0094

0:0018 0:0000 0:0002

0:0030 0:0127 0:0048

�0:0012 �0:0302 0:0656

�0:0172 �0:1098 0:1218

0:0010 0:0007 0:0004

2
6666666666666666666664

3
7777777777777777777775

C2 ¼

�2:5330 �21:8759 �64:9562 0:0000 �161:0030 240:9109 �34:5505 160:8764 66:6444 18:8739

�1:3496 1:1914 0:0113 0:0000 1:1016 �0:2965 0:0416 �0:1417 �1:7128 0:5402

2:2717 �0:2729 �1:4787 0:0000 �1:9038 �0:5124 �0:0734 �0:3334 �0:2629 0:0053

5:6643 �0:3723 �1:4596 0:0000 �1:6750 �0:4341 �0:0741 �0:2731 �0:4132 0:0709

30:3031 �62:3520 �6:3313 0:0000 �7:7714 �2:6506 �0:3207 �1:6537 �3:3329 0:7082
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