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Abstract—Given a graph G with each link in the graph is to select a set of link disjoint paths froms to ¢ such that
associated with two positive weights, cost and delay, we considerthe total cost of these paths is minimum and that the total
the problem of selecting a set oft link-disjoint paths from a delay of these paths is not greater than a specified bound.
node s to another nodet¢ such that the total cost of these paths Both bl NP-hard [11. [21. This has led h
is minimum and that the total delay of these paths is not greater oth problems gre. -hard [1], [,]' . IS has 9 researchers
than a specified bound. This problem, to be called the CSDR] 0 propose heuristics and approximation algorithms for these
problem, can be formulated as an integer linear programming problems.

(ILP) problem. Relaxing the integrality constraints results in an For a detailed account of the different algorithms for the
upper bounded linear programming problem. We first show that  ~gp problem, [2]-[13] may be consulted. Of special interest

the integer relaxations of the CSDP%) problem and a generalized h . .
Versiongof this problem to be caﬁ)edp the GCSDP,(Q) problem to us in the context of our work in this paper are [8], [10]-[13].

(in which each path is required to satisfy a specified bound References [8] and [10]-[12] present the LARAC algorithm
on its delay) both have the same optimal objective value. In that is based on the Lagrangian dual of the CSP problem
view of this we focus our work on the relaxed form of the as well as some generalizations. Reference [11] presents a
CSDP() problem called RELAX-CSDP(k). We study RELAX- — genergjization of the LARAC algorithm and is applicable to
CSDP() from the primal perspective using the revised simplex . . Lo . -

method of linear programming. We discuss different issues such gengral compmatonal optimization proplems '”YQ'V'”G two
as formulas to identify entering and leaving variables, anti- additive metrics. One of such problem is the minimum cost
cycling strategy, computational time complexity etc., related to spanning tree problem with the restriction that the total delay
an efficient implementation of our approach. We show how to peing within a specified limit. Several such constrained dis-
extract from an optimal solution to RELAX-CSDP(k) a set of = rata gptimization problems arise in the VLSI physical design

k link-disjoint s-t paths which is an approximate solution to .
the originJaI CSDP(Z) problem. We alsopfj)erive bounds on the area. Reference [13] shows that these algorithms are strongly

quality of this solution with respect to the optimum. We present Polynomial. In perhaps the most recent work [14] on the

simulation results that demonstrate that our algorithm is faster CSP problem, we have studied this problem from a primal

than currently available approaches. Our simulation results also perspective.

indicate that in most cases the individual delays of the paths ; ; i

produced starting from RELAX-CSDP(k) do not deviate in a The CSDPX) problem arises in t_he cont_e_xt of prOVIs_Ionlng_
paths that could be used to provide resilience to failures in

significant way from the individual path delay requirements of .
the GCSDP¢) problem. one or more of these paths. Orda et al. [15] have studied the

Index Terms— Constrained shortest paths, link-disjoint paths, CSDI.D(Z) problem ?nd have provided several apprOXI.matlon
QoS routing, graph theory, combinatorial optimization, linear ~&/90rithms. A special case of the CSDRJ(problem which
programming, network optimization does not have the delay requirement has been studied in [16].
The algorithms in [11] and [16] can be integrated to provide
an approximate solution to the CSDHpproblem. We call this
the G-LARAC() algorithm.

N this paper we study a discrete optimization problem The rest of the paper is organized as follows. In Section II

defined on graphs or networks (We use the terms "grapiye define the CSDR] problem and a generalized version of
and "network” interchangeably). Specifically, we are interestegis problem called the GCSDP)( problem. The GCSDR]
in selecting a set of paths satisfying certain constraints. Thieoblem requires that the delay of each path in the set of
problem is fundamental and arises in several applications. |ifik-disjoint paths be bounded by a specified value. This is in
this context we encounter two problems. One of them, calle@ntrast to the CSDRJ problem wherein the delay constraint
the Constrained Shortest Path (CSP) problem, requires t§6with respect to the total delay of the paths. However, even
determination of a minimum cost path from a source nedefinding two delay constrained link-disjoint paths is NP-hard
to a destination nodéesuch that the delay of the path is withinand is not approximable within a factor Bf- ¢ for anye > 0
a specified bound. The other problem, denoted as CBPP([17]. We first show that the optimal objective values of the LP

. relaxations of these two problems have equal value. Hence
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transformed problem will be called the TCSIpP(problem. path fromu to v. The sets of forward and backward links on
We show that the CSDR) problem and the TCSDR) p will be denoted byy* andp—, respectively. For any directed
problem are equivalent. As we show later in the paper tipathp (or cycle with given orientation) define cosfp) and
transformed problem has several properties that enable usiétay d(p) of p as

achieve an efficient implementation of our approach. In the

remainder of the paper we study the LP relaxation of the

TCSDP¢) problem, namely, RELAX-TCSDR{, using the c(p) = Z Cuv = Z Cuvs
revised simplex method of linear programming. In Section (wv)ept (uv)ep™
V, several properties of basic solutions of RELAX-TCSBP( dp)= Y duw— > du
are established. We also show how to extract an approximate (u,v)ept (uw)ep=

solution to the CSDRY{) problem starting from an optimal

splution to RELAX-TCSDPX). In_Sections VIV, the revise_d_ Given any two nodes andt, ans-t path is a directed-¢ path
simplex method and several issues relating to an efficigah| the Jinks on the path are forward links. For the simplicity,
implementation are.d|scussed. We also devglop an ann-cyclwg shall call such directed paths simply & paths. Ans-t
strategy and establish the pseudo-polynomial time complexifyi is called feasible with respect to the delay and a specified
of the revised simplex method when applied on RELAXjajye T if the delay of the path is at mogt. Without loss of

TCSDP¢). Simulation results comparing our approach Wit'&enerality we assume that for every nadéhere is a directed
the G-LARAC() algorithm and the commercially availablepath froms to « and a directed path from to ¢.

CPLEX package are presented in Section VIII. These re-

sults demonstrate that our algorithm is faster than curreniléCSDP(k)) Problem: Given two nodess and ¢ and a
es )

available approaches. They also indicate that in most cases... . . X
the individual delays of the paths produced starting fro%?]j Itge;)nﬁ?fgéjgiﬁ f_?igzés)pﬁr;zlﬁm Ipsktzuﬁcnhd tzastetthzf

RELAX-CSDP{) do not deviate in a significant way from .
the individual delay requirements of the GCSBPproblem, diﬁi g ;ailrfi?nz?rtlmz 's at mostT" and the total cost of thé

thereby demonstrating that there is not much loss of generaﬁ)ty . o
in focusing on RELAX-CSDF¥) rather than on the relaxed ~Constrained Shortestk-Disjoint Paths (CSDP()) Prob-
version of the more complex GCSDR(problem. We con- €m: Given two nodess and¢, and a positive integet’, the
clude in Section IX with a summary of our work and pointing>SPP&) problem is to find a set of link disjoint s-¢ paths
to certain directions for future research. P1,D2 - - ., Pk SUch that the total delay of these paths is at most
kT and that the total cost of thie paths is minimum.

Both the above problems can be formulated as ILP prob-
lems. Relaxing the integrality constraints we get the following
relaxed versions of these problems.

General Constrained Shortest k-Disjoint  Paths

Il. CONSTRAINED SHORTESTLINK-DISJOINT PATHS
SELECTION PROBLEMS: FORMULATIONS, RELAXATIONS,
AND THEIR EQUIVALENCE

In this section we first define two classes of ”nk'disjomtRELAX-GCSDP@):
paths selection problems. One is a special case of the other.
They both admit integer linear programming (ILP) formu- L ~ i
lations. They are computationally intractable because of the Minimize Z C“”Zx“”
integrality constraints. For networks involving small numbers )
of nodes and links, these problems can be solved using anySubject to
general purpose ILP package. For larger networks, faster Fori=1,2...k andVu €V,
algorithms are desired. So, we are interested in solving these 1 for u = s
problems after relaxing the integrality requirement and exploit- - Z P _717 for u =t
ing the special network structure of these problems for efficient /=% ;. (olrmeE} 0, otherwise
algorithms. The relaxed versions of these problems are upper )
bounded linear programming problems. The main result in .
this section is that the relaxed versions of both problems are Z duo @y <T ®3)
equivalent in the sense they have the same optimal objective (**)€E
value. koo ,

We begin with some basic definitions. The network is szw <landzy, > 0,Y(u,0) € E 4)
modeled as a directed gragh(V, E), whereV and E are =1
the sets of nodes and links, respectively. Each (ink) € E
is associated with a positive integer cest, and a positive  The solutions to the above problem may not, in general,
integer delayd,,. A path is a sequence of distinct nodede integral. However, every integer solution defines a set of
uy,us ..., u; such that eithefu;,u;11) € E or (u;11,u;) € k link-disjoint s-t paths. In other words, an integer solution
Eforalll <i<l-1andu; #u;if i # j. Alinkonapath X' = {2}, }ep for i = 1,2... k is the flow vector
from w to v is a forward link (backward) link if its orientation corresponding to théth pathp;, i.e., link (u,v) is on path
agrees (disagrees) with the direction of the traversal of theiff 2, = 1.

)

(u,v)EE i=1



Let

_ k
Minimize Z Cuv * Tuw (5) i=1
(uv)eE We now define UNIFORM-LAGRANGIAN-GCSDR{ as
subjectto Vu €V, follows.
k, foru=-s First let
Z Lyv — Z Tyu = _k’ for :. t L(k7 )\) = mln{ Z Cuv * Tuw
(ol (0B} {v](v,0)€E} 0, otherwise (Ve B
©) A | d T kT
Z du’u : xu’u S ij (7) + ( Z v )}
(u,w)ER
(u,v)EE

0 < Zyy < 1,V(u,v) € E
UNIFORM-LAGRANGIAN-GCSDP¢):

We now proceed to show that the RELAX-GCSRBP&and Maximize L(k, \) among all\ > 0 (12)
RELAX-CSDP¢) are equivalent in the sense that they both ’ B

have optimal solutions with the same value for the objective. subject to .
Let A = (A1, A2..., ;) > 0 and define k, oru=-s
. Yo Zw— Y, Teu=4{ —k, foru=t
. i {v|(u,v)EE} {v|(v,u)EE} 0, otherwise
La(k,A) =min{ > cyu E;xu Vit Vit (13)
w)eE 1=
e 0 < Fup < 1,Y(u,0) € E. (14)
Y N duw-al, —T)} Note that (13) is obtained by summing up théow balance
=1 (u)eE constraints in (8) and that is a scalar.
Then the Lagrangian dual of RELAX-GCSDP(is as  Theorem 1:UNIFORM-LAGRANGIAN-GCSDP¢) and
follows. LAGRANGIAN-GCSDPE) have the same optimal value for

the objective.
Proof: Let A = (A, A...,;\) > 0. We first show that
LAGRANGIAN-GCSDP): La(k,A) > L(k,\).

Maximize Lg(k,A), among allA > 0 Let {xgv}(weE,i:L“,k minimize L (k, A). Then we have
subjectto Vi=1,2...k andVu €V,

k
{ 1, foru=-s LG(kﬂA) = Z Cuv szw

Soooal, - Y, ah,=q -1, foru=t (wv)eE =1
{v|(u,v)EE} {v|(v,u)€E} 0, otherwise k _
8) +Y MY duly, = T)
k i=1 (u,w)EE
> al, <1andz}, >0,Y(u,v) € E ©) = > cuwBuw+ A D duwTuw — KT) > Lk, N),
Lt (uw)EE (uw)EE

The vectorA is called the Lagrangian multiplier. The abov%vheref is defined as in (11).
problem can be solved by finding the Lagrangian multiplier It follows from the unimodularity [19] of the constraints

vector A that maximizesLg (k, A). (13)-(14) that for a given\, there exists an optimal integer

Property 1: Given anyA = (A1...,Ay), let A" be ob- g 4ti0n" to UNIFORM-LAGRANGIAN-CSDP) problem.
tained by permuting the components ®f ThenL¢ (k,A) = p|50 an integer solutiot” = {yuy}(uw)ecr Of UNIFORM-

La(k, ). _ ) i LAGRANGIAN-CSDP({) that achieves the minimum in
Property 2: La (K, A) 1S a concave function o [18]. L(k,)\) defines a set oft link-disjoint s-t paths P, =
Property 3: There existsA with all components equal that (p1, po pe). Let X7 = {zi Yuwyer be the flow vector

.. I ctt . - uvJ (uw,v .

maximizesLq (k, A). for pathp,, i.e.,z’,, = 1 iff (u,v) € p;; otherwise,z’,, = 0.

can be reformulated with respect  qp .\ /q tha,., — Ek‘ 2 . Then

By Property 3,L¢(k,A) '
) > 0 as follows: i=1 Tuv-

to someA = (A A... )\
Lk N) = > cutur + A Y duvlur — kT)

k
Lo(k,A) =min{ > cu > i, (uv)€E (uw)EE
(u,w)ER i=1 k , k .
. = Z Cuv Z x5, + Z A( Z dypzy, —T)
A Y (duw > _al,) — KT} (10) (uv)eB =1 =1 (u,0)€E

(u,v)EE i=1 > LG(k,A)



Hence,L(k, \) > Lg(k,A). SoL(k,\) = Lg(k, A). (also called aggregated cost) refers to the weight of the path
By Property 3 there exists a vectdr = (A\*, A\*...,\*) computed using.,, + Ad,, as the weight of link(u, v).
that maximizesLq(k, A). Let n* be a maximizing multiplier

for L(k,\) and denote™* = (n*...,n%). . - — c
By definition of A* andn*, we haveLq(k, A*) = L(k, \*) Algorithm 1 G-LARAC(s, t, k, A = kT) algorithm

< L(k,n*) = La(k, H*) < Le(k, A*). {computek-link disjoint paths with minimum total cokt

HenceLe(k, A*) = L(k,n*). n :PC «— Disjoint(s, t, ¢, k)
The above theorem has an important implication. It shows! (4(Fc) < A) then returnp.
that the optimal objective to RELAX-GCSDPY( can be {compu_te_k:lmk disjoint paths with minimum total delgy
obtained by solving UNIFORM-LAGRANGIAN-GCSDRY. ~ La < Disjoint(s,t,d.k) .
But UNIFORM-LAGRANGIAN-GCSDPY) is the general lin- :gé‘é(P a) > A) then return "no solution
ear programming dual of the RELAX-CSD#)(problem (See
page. 183 of [20]). Thus we have the following result by the < (c(Pe) = c(Fa))/(d(Py) — d(Pe))
strong duality theorem [20]. {compgt'el?-lmk disjoint paths with minimunx,, cost
Theorem 2:RELAX-GCSDP¢) and RELAX-CSDPF) [t — Disjoint(s, t, cx, k)
have the same optimal objective value. if (cx(R) = ex(Fe)) then returnp
The intuition behind the above result is as follows. The €€ if (R) < A) thenPy — R else P — R
indistinguishability of the: path constraints represented by (3) end loop
guarantees that iP is a set of feasible paths constituting a so-
lution to RELAX-GCSDP) problem then any permutation of
these paths is also a solution (Property 1). Also in the optimal
solution there is no reason for paths to be weighted differently1) In the first step, the algorithm calculates the minimum
(Property 3). As formally proved, these two properties lead to  cost of a set of link-disjoint s-¢ paths using link costs.

Basically G-LARAC{) performs the following steps.

Theorem 2. This can be done by the algorithm in [16]. If the total
Theorem 2 implies that if we are interested only in obtaining delay of these paths is at mog&t, this is surely the
the optimal objective value of the RELAX-GCSDH( then required set of paths. Otherwise, the algorithm stores
starting with the RELAX-CSDHR) does not result in any loss this set as the latest infeasible set, simply called the
of generality. In view of this, we shall focus on RELAX- P, set. Then it determines the minimum delay of a set

CSDP¢) in the rest of the paper. of k£ link disjoint s-t paths, called theP; set. If P, is
infeasible, there is no solution to this instance.
lIl. G-LARAC(k) ALGORITHM: A DUAL BASED 2) SetA = (c(Fe) — c(Fa))/(d(Pa) — d(Fe)). With this
APPROACH TORELAX-CSDP ) value of A\, we can find a set ok link-disjoint paths
) . L with minimum cy-cost. Let this set be denoted &
The G-LARAC() algorithm is a generalization of the If ex(R) = ex(P.)(= ex(Py)), we have obtained the

LARAC algorithm [8]-[10] that was specifically designed for

CSP problem. The G-LARAG{ algorithm may be viewed

as an algorithm for solving RELAX-CSDR) problem us-

ing its Lagrangian dual which is the same as UNIFORM- A detailed discussion of several issues relating to G-

LAGRANGIAN-GCSDP) repeated below. LARAC(k) and properties of solutions produced by G-
LARAC(k) may be found in [12].

We wish to note that when Lagrangian dual is introduced,
an integrated metric is used by adding the penalty of extra

optimal \. Otherwise, setR as the newP, or P,
according to whethekR is infeasible or feasible.

UNIFORM-LAGRANGIAN-GCSDP¢):

Maximize L(k, ) delay into the cost function. However, this integration makes
subjectto Vu eV, the new model deviate from the original problem. For example,
k, for u = s considerk = 1. If there is a path which has a delay less than

Z Tuy — Z Tow =4 —k, foru=t A, it will add a negative number into the cost function as a

(ol (emye B} (ol B} 0, otherwise reward. Butin the original problem, there is no such reward.

One way to remedy this situation is to use the formulation
min{c(p) + Amax{0,d(p) — A}}. However, if we use this
In the rest of the paper, we shall udein place ofxT for formulation we cannot reduce it to the shortest path problem
the simplicity of writing. on ¢+ \d for fixed A. This sub-problem is non-additive shortest
Given ), L(k,)\) is achieved by a set of link-disjoint Path problem. Finding this minimum is intractable and is as
paths with minimum total weight, where the weight associatétifficult as the original CSDR{) problem.
with link (u,v) is given by c,, + Ady,. The key issue is  In contrast to the dual approach taken by the G-LARBC(
how to search for the optimal that maximizesL(k, \) and algorithm our interest in the remainder of the paper is to
determining the termination condition for the search. The @esign an approach to obtain an approximate solution to the
LARAC(k) algorithm presented as Algorithm 1 is one sucSDP¢§) problem using the primal simplex method of linear
efficient search procedure. In this procedusecost of a path programming.

0 <zyy < 1,Y(u,v) € E.



IV. TRANSFORMATION OF THERELAX-CSDP ) added a slack variable, i.e.,> ", ,)ep —duvTuw —w = —A.

PROBLEM
RELAX-TCSDR() :
To achieve an efficient implementation of our approach to Mln!m|ze cx
the RELAX-CSDP%) problem we consider another problem subject toAz = b (17)
TCSDP¢) on a transformed network defined as follows. 0<z<1,V(u,v) € Eandw >0,

1) The graph of the transformed problem is the same wéere w is the slack variable ané = (by...,b,_1,—A)!
that of the original problem, that i&;(V, E), with b, = k, by, = —k, andb; = 0 for i #£ s,t.

2) For all (u,v) € E, d,, and ¢, in the transformed We note that the above problem is almost the same as the
problem are given byl,, = 2d,, andc,, = cu,, and  minimum cost flow problem except for the additional delay

3) The new upper bound’ in the transformed problem is constraint.
given by A’ = 2A + 1. The rest of the paper is concerned with the simplex method

Let P* denote a set of link-disjoint s- paths. Lete(P*) based solution to RELAX-TCSDR) and several issues re-

lating to its efficient implementation. We want to emphasize
and d(P*) denote the total cost and the total delay of the g P P

L ) that most of these properties hold only with the transformation

ggt_h_s Inpe, T?]e T.ChSD'.%.) probleml asks forda ?it df “Inclj(-l and we shall use "*” to denote those properties that also hold

'Sjomts_é paths with minimum total cost and with total de Byithout the transformation. The cost of the optimal solution to
at MostA'. ) ) ) ~ RELAX-TCSDP¢) will be a lower bound to the optimal cost
Theorem 3:P* is a feasible solution (resp. an optimaly the original CSDP¥K) problem. We will show in the next
solution) to the CSDFAJ(_) problem iff it is a feasible solution gaction how to extract an approximate solution to TCSDP(
(resp. an optimal solution) to the TCSD{# (roblem. (hence the CSDR}) problem from an optimal solution to the

In view of this equivalence we only consider, in the rest GRELAX-TCSDP¢) problem.

the paper, the RELAX-TCSDRJ problem. Also we useA

(being odd) andi,,, (being even) to denote the delay bound V.. PROPERTIES OFBASIC SOLUTIONS OF
and link delay in the TCSDR] problem. Notice that the RELAX-TCSDP () AND GENERATION OF AN
transformation does not change the costs of paths. APPROXIMATE SOLUTION TO CSDP{)

We conclude this section defining some terminology and simplex method of linear programming starts with a basic
presenting the RELAX-TCSDRJ problem in matrix form.  sojution and proceeds by constructing one basic solution from
Let the links be labeled as;, e ..., e, and the nodes be another. A basic solution consists of two sets of variables,
labeled asl, 2. ..,n. We shall denote the delay of each edgbasic and nonbasic. For the RELAX-TCSRIPproblem under
e; asd; and the cost 0¢; asc;. The incidence matrix off has consideration, all the nonbasic variables in a basic solution will
m columns, one for each link and rows, one for each node be 0 or 1 [22]. Note that the value of the slack variable, when
[21]. The rank of this matrix i§n — 1), and removing any row it is nonbasic, must be equal to 0 because it does not have
of this matrix will result in a matrix of rankn—1). We denote an upper bound. Given a basic solution, we shall denote the
this resulting matrix of ranKn — 1) as H. We also assume subgraph of~ corresponding to the basic variables (except the
that the row removed from the incidence matrix correspondkack variable if it is in the basic solution) in this solution by
to noden. We denote the column off corresponding te;,  Gy. The subgraplty, will be called the subgraph of the basic
by the vectorhy. For e, = (i,5),4,j # n we havehi = solution or simply the basis graph. The nonsingular submatrix
(hig - shig-- s hjk...,hn_1 k)t with all its components of A defined by the basic variables is called a basis matrix or
being O except forh; , = 1 and h;; = —1. Also for e, = simply, a basis and is denoted & The rest of the matrix
(¢,n), hir = 1, and fore, = (n,j),h;r = —1 and all the corresponding to the nonbasic variables is called the nonbasic
rest components are 0. L& = (—d;, —ds...,—d,,) and matrix. In this section we present certain important properties
of the basic solutions of the RELAX-TCSDB)(problem.
Lemma 1:* Let G(V, E) be a directed network with at least
H 0 one cyclelV (not necessarily directed). Assigning an arbitrary
A= ( D -1 ) =(a,a2...,8m,Qn41), (5)  orientation tow, let U = (uy,uz,u3...,un), where

o h; ;< and _ 0 (16) 1,for e; € W and the orientation of;
4=\ - = mi1 =1\ _1 |- agrees with the orientation 6#

u; = ¢ —1,for e; € W and the orientation of;

Let & be the column vector of the: flow variablesz,,, d|sagre_zes with the orientation &F
and the slack variable corresponding to the delay constraint 0, otherwise .
(7), andc be the row vector(cy, ¢ ..., cn,0) of the costs. Then, HU = 0 [21].
Note that the cost of the slack variable is 0. Then the RELAX- We shall usd/ (W) to denote the vector derived from cycle
TCSDP¢) problem (see (5)-(7)) can be written in matrix formi?” as in the above lemma. We shall denotelbiy’) the signed
as follows. Note that to conform to the standard form faalgebraic sum of the delays of the links on a cydleas we
a minimization problem we have use@” form of (7) and traverse around the cycle.



Merging node

Fig. 2. Branching and merging nodes

In this case, we first show that the flow on any lihkot
on the cycle is an integer. Without loss of generality, let

_( Hy H _( Hy H
B_(DW D’)andBl_(DW o )

b) Basic solution with a cycle

where the columns ofiy, = (hy,hs...,h;) correspond to

Fig. 1. Structure of basic solutions the links on the cycléV and the components dby, are the
delays of these links. Note thaf; contains the column vector
b
Lemma 2:* Every basis matrix contains the last row df Let Hy, = (ha...,h;) and Dy, = (dz...,d;). Defining
Proof: This follows from the fact that rank{)=n—1 < the direction of the linkk, as the orientation of the cyclé’
n. m Wwe get by Lemma 1 thally, U(W) = 0.
Lemma 3:* The subgrapht, of a basic solution contains Using elementary column operations;t(B) and det(B;)
at most one cycle (See Fig. 1). can be written as:
Lemma 4:* If there is a cyclelV in a basic solution, then det(B) = det ( 0 Hy, H’ )
d(W) # 0. DwU(W) D, D'
Lemma 5:1f there is no cycle in a basic solution, then = (=1)"*' det(H}, H')(DwU(W)), and
V(u,v) € E,xz,, = 0 or 1. If there is a cycldV in a basic 0 ", H
solution, thenV(u,v) € W, 0 < z,, < 1 andV¥(u,v) € det(B;) = det < DwU(W) DW D’ >
w w
E—-W,zu,, =0o0r1l. i , ,
Proof: Let B = (by,bs...,b,), Ay, xp andzy denote =(-1) det(Hy, H;)(DwU(W)).

the basis matrix, nonba5|c matrlx column vector of basic Hencey; = det((HJ, H)))/det((H}, H")).
variables, and column vector of nonbasic variables in the basicsjnce all the components in matri¥l}, H!) are integer,

solution, respectively. det((H}, HY))is also integer.
Letb’ = b — Ayzy, then we haveBzp = b'. The denominator is equal té1 becausg Hy, H') is the
Since all the components iHyxy andb are integers, so incidence matrix of the spanning tree obtained by removing
are all the components ibi. link i from G,. So it is follows thatz; is an integer. Hence
By Cramer’s rule, we have; = det(B;)/det(B), where z,, =0 or 1 becaus® < z,, < 1.
Bi=(bi...,bj—1,b,biy1...,by). We next show that if the basis graph contains a cycle, then
We first show that:; is an integer if the corresponding linkthe flow on each link on the cycl is less than 1 and greater
is not on the cycle. We consider two cases: than 0. Assuming the contrary we establish a contradiction.

Case 1: There is no cycle in the basic solution. Thus tiérst recall that the flow on each link that is not @, (that
slack variable is a basic variable. Algg, is a spanning tree. is, each nonbasic variable) is either 0 or 1. If the flow on any
Let the nth column in the basiB correspond to the slacklink on W is an integer (0 or 1) then it follows from the flow
variable. balance constraints that all the flows on the links/Brwill be

Thenb,, = (0...,0,—1)! and soB has the following form. integers. But this would mean that in the current basic solution

_(H 0 , o , the total delay of all the links is an even integer. This violates
B = D -1 ) where H" is the incidence matrix of the requirement that the total delay must be equal tavhich
G, and D’ is the corresponding delay vector. is odd. ]

SinceH' is the incidence matrix of a spanning tree it follows Definition 1: (a) On a directed cycle, a node is called a
that | det(H’)| = 1. So |det(B)| = 1. Also, det(B;) is an branching (resp. merging) node if it is the tail (resp. head)
integer because all the componentsi®fare integers. Sa; of two links on the cycle (See Fig. 2). A segment of the

is also an integer for all. cycle is the set of all the links on the cycle between two
Case 2: There is a cycl# in the basic solution. That is, consecutive branching and merging nodes. A segment consists
the slack variable is not in the basis. of consecutive links with the same direction and the direction

Let ! = |IV|, i.e., [ is the number of links V. of a segment is defined as the direction of its links.



(b) For a subgrapli, of G, let d(G,) =
and d.(Gs)
vector x.

Lemma 6: Suppose the basis gragh, contains a cycléV.

Let e = (u,v) € W andz,, = A0 < A < 1). Define
the direction ofe as the orientation oft/. Then for any link
e = (i,7), ;; = X if the direction ofe’ agrees with the
orientation ofi¥ andz;; = 1 — A otherwise (See Fig. 2).

Proof: This follows from the flow balance constraints
and the fact the nonbasic variables corresponding to links have
value 0 or 1. ]

Theorem 4:Given an optimal solutionz to RELAX-
TCSDP¢) with G, as the corresponding basis graph.

(a) If Gy, contains no cycle thetr, contains a set of link
disjoint s-t paths P* with d(P*) < A, whereA is the delay
constraint in the TCSDR] problem. These paths constitute
an optimal solution to the original CSDB)(problem.

(b) Suppose that?, contains a cycléV and letG'(V', E')
be obtained fromG(V, E) such thatV’ = V and E' =
{(u,v) € E|xy, > 0}. Then G’ contains a set of link
disjoint s-t paths P* with d(P*) < A, and a set ofk link
disjoint s-t pathsQ* with d(Q*) > A, such thate(Q*) <
OPT < ¢(P*) < ¢(P*), whereOPT is the optimal objective
value of the RELAX-TCSDF) problem, P* is the optimal
integer solution to the TCSDP) problem (equivalently, the
optimal solution to the CSDRY) problem). Also e(P") <

oP)
1+ 132 A(l—cgpk))andd(Q)<1+ (-4 )y, where
A is as defined in Lemma 6 with the orlentatlon of the cycle
W selected so thaf(1V) < 0.

Proof: (a) If there is no cycle in the optimal basis graph
G, then all the link flows will be integers and the flow vector
can be decomposed into unit flows alohdink-disjoint s-t
paths. The total delay of these paths will be even and hence

less thanA (becauseA is odd). These integral flows form an

\ Z(u,v)EGs du
= Z(u)v)egs Tuvdyy With respect to the flow

optimal integer solution to the RELAX-TCSD#®)( problem Fig. 3.

and hence an optimal solution to the original TCSBP(
problem. By Theorem 3 this is also an optimal solution to
the original CSDPX) problem.

(b) Assume that the basis graph contains a cyéle By
Lemma 5, the flows on links oM are nonzero and thus
G’ containsW. Obviously, OPT < ¢(P*). Also note that

b) Push flow along the direction of the
arrow to obtain Pk, W, consists of the two
solid links on W. Pk — W, consists of the
remaining solid links.

c) Push flow along the direction of the
arrow to obtain QK. Wy consists of the two
solid links on W. Q% — W), consists of the
remaining solid links

lllustrations for the proof of Theorem 4

Similarly, we can obtainQ*(See Fig. 3-(c)). Here, the
flow is pushed alondV in the reverse direction. Along this
direction,d(W) > 0 and sod(Q*) > A.

Since ¢(W) < 0 along this directionc(Q*) < OPT <

k
dx(G") = A because the slack variable is nonbasic and thGe") < e(P%)

its value in the current basic solution is 0.
Define the orientation off” such thatd(WW) < 0. Now push
flow along the orientation oft” until some link’s flow reaches

0 or 1 (See Fig. 3-(b)). By Lemma 6, all the resultant link flow%/Cle

will be either 0 or 1. Remove all the links with zero flow
from G’ and letG, denote the resultant network. Evidently,
the flows on all links inG, are 1 andd(G,) < dz(G') = A
(becausel(W) < 0, the network delay is reduced when we
push the flow along the orientation @f). It can also be seen
that ¢(1¥) > 0 for otherwise, the cost of the new flow will be
less than the cost of the flow defined &¢.

Notice that the above operation does not change the amount
of flow from s to t. Since the total flow frons to ¢ in G, is
k and all the flows on all links irG, are 1, there must bk
link disjoint s-t paths P* andd(P*) = d(G.) < A.

In the rest of the proof, we usB*, Q* and W to denote
the corresponding set of links. L&tp =
Q¥ NW, i.e., Wp(resp. W) is the set of links on both the
W and P* (resp.QF). Evidently, Wp N Wg = () and
Wp=QF—
Then we have

P*AW andW, =

Wq(See Fig. 3. (b) and (c)).

¢(P*) > OPT = ¢(P* — Wp) + Ae(Wp) + (1 — N)e(Wo)
= Ae(P" = Wp) + (1 - Ne(QF — Wqg)
+ Ac(Wp) + (1 = Ne(Wg)
= \c(P¥ = Wp) + c(Wp))
+ (1= X)(c(Q" = W) + c(Wg))
= Xe(PR) + (1= N)e(QF).

The second equality holds becauBe — Wp = QF —



Becausec( P*) < c¢(P*), imposed ont by the constraintdg < xp(t) < up is
stricter than the upper bound imposed by< z;(t) <

c(P¥)  o(P*) = (1= \)e(Q) uj, 'Fhen d_etermine the leaving variable. This_ may be any
o(P*) < Ae(P¥) basic variabler; such that_ the upper bound imposed on
1 1-Ae@Y) 1 1-Ae(QY) tbyl; <uz;(t) < u; alone is as strict as the upper bound
S <_____= imposed by all the constrainlg < xp(t) < up.
AA P T A A (P 5) Replacer’ by z;(t) andz} by zp(t). If the value of
-1+ ﬂ(l _ C(Qk)) the entering variable; has just switched from one of its
A c(PF) bounds to the other, then proceed directly to Step 2 of
o k K the next iteration. Otherwise, replace the leaving variable
Similarly, we can show tha#@- <1+ 2;(1 — 4. x; by the entering variable; in the basis heading, and

. replace the leaving column d§ by columna.

Notice that all the individual paths in the above theorem St 2-5in th ised simpl thod that t
can be obtained using flow decomposition [19]. teps 25 In the revised simpleéx method that generalte a new
basic solution from a given basic solution are called a pivot.
In the following we solve the systems of equations in Steps

VI. REVISED SIMPLEX METHOD FOR THE 1 and 3 and derive explicit formulas fof and V.

RELAX-CSDP ) PROBLEM

In this section, we first briefly present the different steps in

the revised simplex method of linear programming. A detaildd Solving the SysteiB = cp

description of this method may be found in Chapter 8 of [22] | et v = (y;...,4,_1,7). Herey; ..., y,_1,~ are called

(Note that in [22] the revised simplex method is presented fgbtentials (or dual variables) and is called the potential

a maximization problem). We then derive formulas required {gctor, Eachy;, i = 1,2...,n — 1 is the potential associated

identify the entering and the leaving variables that are needgfih nodei (or row i) and is the potential associated with

to generate a new basic solution from a given basic solutiofe |ast row (delay constraint row) of. The potential of node
n is not inY, and may be set to zero as we will see below.

A. Revised Simplex Method Now consider
Consider the following linear programming problem. YB =cp. (18)
Minimize cz This system of equations has equations inn variables.
subject toAx = b,1 < = < u. We get the following from (18).

For each linke, = (7,7) in Gy, ey Yn—1, . = Cij-
For the RELAX-CSDP) problem A is ann x (m +  Thatis o =7) b (1 1, W)k =

1) matrix with rankd) = n, £ = (z1...,Zms1)% ¢ =
(1,62 y¢me1), b = (b1,b2...,b,)t. Each feasible basic yi —yj —vdij = ¢ij,for i #n andj # n,
solutionx* of this linear program is partitioned into two sets,
one set consisting of the basic variables and the other set
consisting of the remaining:+1—n non-basic variables. This

partition induces a partition afl into B and Ay, a partition  7pe |ast two equations in (19) can be obtained by setting
of z into z andzy and a partition ofc into cg andew,  the potentialy,, of noden to zero in the first equation, namely,
corresponding to the set of basic variables and the set of NON= 4. — vd;; = c;;. Thus in all the computations that follow
basic variables, respectively. The matfiis the basis matrix |y sety,, = 0.

and is nonsingular. See Sections IV and V for the form of the pqinition 2: 1) For link ey, = (i, §), cex, ) = vdi; +
basis matrix and properties of basic solutions for the RELAX- PR Y

Yi — ,den = Cin, for J=n, (19)
—y; — Vdnj = Cpj,for i =n.

¢;; is called theactive costof link (i, 7).

TCSDP¢) problem. 2) 7(i,7) = y; —yi +vds; + ci; is called thereduced cost
Revised Simplex Method [22] ) 0](c [,‘r]]?( (iyj)_ ST
1) Solve the syster’ B = cpg, whereY = (y1,ya... yn). 3) The reduced cost of the slack variahleis given by
2) Choose an entering variabtg. This may be any non- r(w) = 7. (Note: Since the column corresponding to
basic variablexz; such that, witha standing for the the slack variablew is (0,0...,—1)f, we can get the
corresponding column ofl, we have eithed’a > ¢;, reduced cost ofv from the equation in 2) by setting
xj < u; orYa < ¢j, xj > I;. If there is no such yi=y; =0, ¢;; =0, andd;; = 1.
variable then stop; the current solutiari is optimal. 4) The reduced cost of a path is defined asr(p) =
3) Solve the systenBV' = a, whereV' = (vy,v; ..., vn)". S tijept T(69) = X (i jyep- (i, 7). Recall thap™ and
4) Definex;(t) = =7 +t andzp(t) = = — tV in case p~ denote the sets of forward and backward linkspon
Ya < cj andz;(t) = «j — ¢, ®p(t) = o +tV in respectively.

caseYa > ¢;. If the constraintd; < z;({) <u;, Iz < 5) Noden is called the root node.

xzp(t) < up are satisfied for all positivé then the |+ can be seen from (19) that for any linfk, j) in G,
problem is unbounded. Otherwise gets the largest

value allowed by these constraints. If the upper bound r(4,5) =y; — yi +vdij + ci; = 0. (20)



From (20) we also have that for any pattirom ¢ to j and ¢) If G, contains a cyclé? and the entering variable is the

any cycleW in G, slack variablew, thenV = 2 is the solution taBV = ay,
whereV, is defined by cycldV (See Lemma 1).
r(p) = y; — yi +7d(p) +c(p) =0, and Proof: Case a) G contains onlyn — 1 links, i.e., there
(W) =~vd(W) +¢(W) = 0. (21) is no cycle inG, and the slack variable is a basic variable,

Lemma 7:* If G, contains a cycldV, then~ = —<U7). and the linkey, = (¢, j) is the entering variable. In this case,
‘ ’ T odw)

otherwise,y = 0. Hy 1n-1 O

Once we have computed the valueygfthe other potentials B= ( D1.n—71 -1 ) ’
y;'s can be calculated using (20) and selecting the patfi;in ’
from noden (whose potential is 0) to node We summarize

these steps as fo”O\.NS' components (corresponding to the basic variables except for

1) Set the potent_|al of node to zero. w) of the last row of matrixA.

g; Icizgpqep:c:t?nza!nllejte;qngz ;.path in, from noden to Let W’ denote the new cyc!e formed by adding the in-arc
nodei. If there, are 'EWO paths ids, due to the cycle ek = (i,j) and _Iet th? orientation ofV”" be chosen to pg the
we caﬁ derive the same results no matter which On’eslgme as the orientation of the in-arc. By Lemma L .It IS easy

lected to verify that the vectod” = (v;...,v,)" defined as in the

4 SSeetecv _ - ) theorem solves the_ syst_eB\V = ay. _ N

) Yi Z(uvv)eﬁ clew, ) + Z(uvv)epi cleww, ), Case b) The basic variables are associated witlinks and
wherep;” andp; are the sets of forward and backwargpe entering variable is;, = (i, j). In this case,
links on p,, respectively, as we traverse the path from

where H,,_1 ,,_1 is associated with thén — 1) links in
Gy andn — 1 nodes, andD; ,,—; is the vector of(n — 1)

noden to nodei. g ( Ho-1n
Dl,n ’
C. Solving the Syste®V = ay, whereH,,_, ,, is associated with the links andn — 1 nodes,

and D, , is the vector of thex components of the last row of

We now show how to solve the system of equati@tis = ; )
y d A corresponding to these links, and

aj, Wherea,, is the column ofA corresponding to the entering
variable. In the following an entering link is called an in-arc hs,
and a leaving link is called an out-arc. We consider three cases: ap = ( —d;; )
(a) Basis graplds, contains onlyn—1 links, i.e., there is no .
cycle inG, and the slack variable is a basic variable, We need to solve the system of equations
and some linke;, = (i,7) is the entering variable. ( Hy 14 ) V= ( hy ) 22)
(b) The basic variables are associated witlinks and the D, S\ —dy )

entering variable iz = (4, j). First let us consider
(c) The basic variables are associated witlinks and the '

entering variable isv. Hy, 1,V = hy. (23)
Results in all the three cases are summarized in the foIIow—Because there ane links in Gy, there is exactly one cycle
ing theorem. d i’ '
. . denoted byi¥. Therefore according to Lemma 1,
Theorem 5:* a) If G, contains no cycle and the entering W 9
variable is an in-arce, = (i,5), then the vectorV = Vo, Hy—1,, Vo = 0. (24)

(v1...,v,)" defined below is the desired solution BV =
ai, whereW’ is the new cycle formed by adding the in-ar
er, and the orientation ofV’’ is chosen to be the same as th
direction ofey,.

After adding linke, = (i,7), we get a new cycléV’ and
t us choose the orientation of this cycle to be the same as
that of e;,. Then by Lemma 1,

—1,for i < n and the link corresponding to V= ( Vs ) . (Hu—1n, i) ( v ) =0. (25)
the ith column of B is on W’ and its 1 7 1
orientation agrees with the cycle orientation S0, Hy—1,n(=V}) = hu.
o — 1, for i’< n and the Iin]( correspondi_ng to Because rank{,_1,,) =n —1, =V, +uVp, u € R is the
! the ith column of B is on W’ and its solution space of (23). We can computeas follows.
orientation disagrees with the cycle orientation
dW'),fori=n Dl,n(_V;; +u-Vp) = —d;. (26)
0, otherwise since D1, Vo = —d(W) and D (- V) + di; = d(W"),
b) If G, contains a cycldV and the entering variable is awe get from (26)

. e _ d(W/) . .

link ey = (7,7), thenV = -V + o) Vo, s the solution to d(W') — u-d(W) = 0 and hence: = d(W') /d(W).
BV = ay, whered(W’) and d(W) are the delays of cycles )

W' and W, respectively ach; and V;, are defined by the Therefore we have proven that = —V;f + %VO is the

cyclesW’ and W, respectively (See Lemma 1). desired solution tadBV = ay.
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Case c) The basic variables are associated witlinks and the directed cycle is created; will enter the basis and the
the entering variable is the slack variahle new basis graph will be a spanning tree. [ ]

Following the arguments in Case (b), we can show thatA basic solution in which one or more basic variables
V= % is the solution toBV = ay. HereVj is defined by assume zero values is called degenerate [22]. Simplex pivots

the cycleW in G,. m that do not alter the basic solution are called degenerate.
Furthermore, a basic solution generated at one pivot and
VII. | NITIALIZATION AND PIVOT RULES reappearing at another will lead to cycling (or infinite looping
o and non-convergence). Thus we need a strategy to avoid
A. Initialization cycling.

We first computek minimum delay link-disjoints-¢ paths There are several anticylcing strategies for general linear
using Suurballe’s algorithm [16]. There is no feasible solutioprogramming problems. Cunningham developed a strategy
if the total delay of these paths is greater tllanAssume that specifically designed for the network simplex method used
this is not the case. A tréE’ (not necessarily a spanning treefor solving minimum cost flow problems. Since RELAX-
rooted att can be constructed from these paths by removingCSDP¢) has almost the same structure as the minimum cost
links incident withs to break cycles. Note that if?” every flow problem except for the presence of one additional con-
path from a node ir7” to ¢ is a directed path. Such a tree isstraint imposed by the delay requirement, we examine if Cun-
called a directed tree rooted at nodg1]. We next obtain a ningham’s strategy can be adopted for RELAX-TCSBP(
directed spanning tree rootedtaand havingl” as a subtree. We show next that the transformation introduced on the
We proceed as follows. CSDP¢) problem in Section 1V indeed makes Cunningham'’s

First condense or coalesce all the node§"innto a single strategy suitable for avoiding cycling in the case of RELAX-
node P. Then for the resulting network determine a directedCSDP§).
spanning tree rooted & with all links orientated away from Lemma 10:For any degenerate pivot, the out-arc is not on
P. Such a tree exists because of our assumption that ther¢his cycle of the currents,.

a directed path from nodeto each node in the network and Proof: A degenerate pivot does not alter the basic
similarly there is a directed path from each node to nede solution. This means that each variable has the same value
The links of the directed tree selected as above and the linksthe current basic solution as well as in the basic solution
in 7" together constitute a directed spanning tfee that results from the degenerate pivot. Consider now the flows

Assigning flow of 1 to all the links on the disjoint pathson the links on a cycle. By Lemma 5 these flows are not 0
and flow of 0 to all other links, we obtain a basic solutiomr 1. So if a link on a cycle were to leave the basis during a
represented by". degenerate pivot, then after the pivot it would become nonbasic

Definition 3: [19] Given a feasible basic solution subgraphvith flow of value 0 or 1. But that would contradict the fact
Gy, We say that the linKu, v) € Gy, is oriented toward (resp. that the current pivot is degenerate. [ ]
away from) the root if any of the paths i, from the root If the out-arc is not on the cycle in the curraft, then the
to u (resp.v) passes through (resp.u). A feasible basic potentials can be updated easily as described next (Chapter
solution G}, with corresponding flow vector: is said to be 5.1.2 of [23]). LetT be the currenG, ande = (u,v) and
strongly feasible if every link(u,v) of G, with z,, = 0 € = (u/,v’) be the out-arc and the in-arc, respectively. Let
(resp.zy., = 1) is oriented away from (resp. toward) the rootl” = T'— e+ ¢’ be the subgraph of the new basic variables. If

It can be easily verified that the initial spanning tr€e e is not on the cycle in the curred, , then the new potential

selected as above is strongly feasible. vectorY’ associated witll” can be obtained as follows [23].
ro_ Yu + Tu'v’, for u € Tu’ (27)
B. Pivot Rules and an Anti Cycling Strategy Yu = Yus for u € Ty

For an efficient implementation of the revised simplex wherer, ,, = c(euvr,v) + yor — yur and T, (resp.T,) is
method, we want to avoid directed cycles in basic solutiongie component of” — e containingu’ (resp.v’).
This can be achieved by the following pivot rule: The convergence part of the following theorem closely
P1: Slack variablev assumes the highest priority in choosfollows the proof of Theorem 19.1 in [22].
ing the entering variable (Step 2 of the Revised Simplex Theorem 6:If the subgraphsG;’s of feasible basic solu-

Method). tions generated by the simplex method are strongly feasible
Lemma 8:The slack variabley is eligible to enter the basis then the simplex method does not cycle and its computational
iff v <0. time complexity is pseudo-polynomial.
Proof: Since the reduced cost af is equal toy, w is Proof: First observe that in any sequence of degenerate
eligible to enter the basis iff < 0. W pivots, the value of every variable, in particular, the value

Lemma 9:Suppose the Pivot rule P1 is followed. If aof the slack variable will remain the same. Also if the slack
directed cyclelV is created inG}, during a pivot, then in the variable is a basic variable then its value is nonzero; otherwise
next pivot the slack variable will enter the basis and a link its value is zero. So during a given sequence of degenerate
on W will leave the basis. pivots, the slack variable will remain basic or nonbasic during

Proof: Since W is a directed cyclec(WW) # 0 and the entire sequence of degenerate pivots. So the leaving and
v = —c(W)/d(W) < 0. It follows that in the pivot after entering variables can only be the links in the network.
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Let G, be a feasible basic solution subgraph ange the Also, the inequality below follows from the fact that the
root. We define two values faky,. potential of a node is the sum of the active costs of the links

on the path from that node to nodgSee Section VI-B).
C(Gb) = Z CuvTyw and W(Gb) = Z(yt - yu)

(u,v)EE ueV W( }L;) = E (yt - yu) < nz(cmar + 'Ydmaz)v
ueV
. . . . 5 . i+l . . .
Consider two consecutive basic solutio6§ with G} wherec,, .. is the maximum link cost.

=G +e— [, wheree and f are the in-arc and out-arc, ~ # 0, then by Lemma 7}y| = |c(W)| < nemas. Hence
respectively. W(GE) < n?(c + NCmazrdmaz) o
. . i+1 i i+1 b/ = max maxr¥max)-
W\(Ag;'r‘c't show that eithef(G;,™) < C(G}) or W(G™) < So the length of the sequence of degenerate pivots is
0.

. . i1 . bounded by a polynomial function of,.., dmaz, @andn. Sim-
Indeed if the pivot +t1hat generlategb_ from Gj is non- a1y e can prove that the total number of non-degenerate

degenerafr,l thed'(G™') < C(Gy). If it is degenerate, we hy s s also a polynomial function of, n, ¢y, andd,,q..

have C(G,™) = C(G}). In this case we need to show thaEseudo polynomial complexity of the revised simplex method

i+1 %
W(G,™) < W(G_b)' _ when applied on RELAX-TCSDRY] follows since each pivot
Note that the in-are = (u,v) still has flow equal to 0 takesO(m) steps [22]. -

or 1in Gjt'. By Lemma 10,f is not a link on the cycle

in Gi. So the value ofy does not change. Becaus&™ is _ _

strongly feasible, iGi*!, link e must be oriented toward theC- Leaving Variable

root nodet if z. = 1 and oriented away from if z. = 0, Now, we investigate how to find a leaving variable (out-arc)
which implies that node belongs to&; (v) (the component of using Theorem 5. As before, let the cycle created by adding
G! — f containingv) if z. = 1 and nodet belongs toG: (u) if  the in-arc be denoted by’ with its orientation defined as
z. = 0. The potentials with respect @, can be calculated that of the in-arc.

using (27). ' We note that the reduced cost of the in-arc may be positive
Then we havéV (Gt) = W(G3) — |Gy (u)|ryy < W(G}), or negative. In the following we consider only the latter case.
wherer,, = c(eyy,¥)+yo—yu > 0if 7. = 1or W(G;™) = The former case can be treated in a similar way.
W (G +|Gy(uw)|rue < W(G3), wherery,, = c(eww, 7)+ Yo — Case 1: Slack variable is in the basic solution (the current
Yo < 0if 2. =0. Gy is a spanning tree and so > 0). This corresponds to
If the simplex method cycles, then for some< j, Gi = Theorem 5(a). According to Step 4 of the revised simplex
Gi. This meansC(Gj) = cG- = C(G}). But then method, we need to consider only the entrieslothat are
W(Gi) > W (Gt >...>W(Gy) = W(G}) contradicting =1 or d(W’) if d(W’) # 0. These entries correspond to the
thatW(G’;;) =W(GY). links of W’ of the currentG, or the slack variablev. The

Thus we have proved that the simplex method when appligtximum value of is constrained bye; —tV' > 0, and the
on RELAX-TCSDP§) does not cycle if all the basic feasiblecorresponding constraining variables (linkswoy are eligible

solutions are strongly feasible. to leave the basis. If certain links are eligible to leave the basis
We next establish the pseudo-polynomial time complexifien we select the one which keeps the new basic solution
of this method. We have strongly feasible (to be discussed next). In this cassill
_ 4 continue to be in the basis. 1 is eligible to leave the basis,
W(GY) — W(G™) = |Go()| - [rus] > |7usl, we select it to leave the basis. In that case the new basis graph

G}, will have a cycle. The flow values\(or 1 —\) on the links

Tuv| = [C\Cuvs Y +yv_yuzcuv+’7duv+yv_yu~ X
ru] = et ) =1 | on the cycle can be determined by the equatipiG}) = A

We proceed to show that because the slack variable is nonbasic and has zero value.
Case 2: The basic solution consistsroflinks, i.e., there
0 < |Yu — Yo — Yduv — Cuv| = [¥d(W') + c(W')] is a cycleW in Gp. The slack variablev is eligible to enter
o Je(W)],y =0, 08 the basis ify < 0. Then according to pivot rule P1, we let
{ lc(WA(W) — d(W")e(W)|/|d(W)],~ # 0. (28)  enter the basis and shall select one of the link$i6ro leave

the basis. The choice can be made according to the case (c)
Since ey, Is an in-arc,|y, — y» — Yduy — Cuw| # 0. TO in Theorem 5.
establish the equalities on the right hand side of (28) supposéf v > 0, an entering link will create a new cycld”’
that the new cycléV’ in G, is ejes...e, Wheree; = e,,,. When added to the curref,. We need to consider different
Since all the links ori¥’ excepte,, are inGy, the reduced subcases that capture all possibilities (See Fig. 4). For each
costs on all these links are 0. So we get from (21) that| one of these subcases we can select the leaving variable using
= Yy — Yo — Yduw — Cuw| = |¥d(W') + ¢(W’)|. Recalling Theorem 5 (b) and Step 4 in the revised simplex method.
thaty = —c(W)/d(W) if there exists a cycléV in the basic  Now, we need to consider how to preserve the strong
solution ory = 0 if no such cycle exists, we get the equalitiegeasibility of the basic solutions. We define the join of a cycle
on the right side of (28). in G as the node on the cycle that is closest to the niode
Since|ry,| # 0, we get from (28) thafr,,,| > |1/d(W)| > in terms of hops. Without loss of generality, assume that the
1/(ndmaz), Whered,, ., is the maximum link delay. current basic solution is strongly feasible and consists: of
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Case 2.1: and G-LARAC) on all the topologies. For the power-law out-
degree graph and Waxman’s random graph, the hop number of
feasibles-t paths is usually very small even when the graph
is very large. So the running times of DISJOINT-NBS, G-
LARAC(k), and CPLEX are close (but DISJOINT-NBS is still
faster) for random graphs and power-law out-degree graphs.
Our simulation results in Tables I-1ll show that the delay of
each path derived as in Theorem 4 deviates from the individual
delay bound by a small fraction. Note that in these tables the

/ second column specifies the delay bound on each path.
in-arc ;W' 1-A

' A
~—/_><:W_j/>> IX. SUMMARY

In this paper we studied the CSD# (problem which is NP-

hard. So our goal has been to design an efficient algorithm for
Case 2.3: constructing an approximate solution to this problem. Towards
this end, we studied the LP relaxation of CSBPproblem
using the revised simplex method of linear programming. This
relaxed problem is an upper bounded LP problem. We have
discussed several issues relating to an efficient implementation
of our approach. We have shown that an approximate solution
to the CSDPX) problem can be extracted from an optimal
solution to the relaxed problem. We have derived bounds
on the quality of this solution with respect to the optimal
solution. Our work can be considered as the study of the
CSDP¢) problem from a primal perspective in contrast to
the dual perspective employed in the G-LARAL&lgorithm
which is based on the algorithms in [11] and [16]. Simulation
results demonstrate that our algorithm is slightly faster than
both the G-LARACE) algorithm and the commercial quality
CPLEX package in the case of random graphs and power-law
out-degree graphs. On the other hand, for regular graphs our
algorithm is much faster.

The GCSDPX) problem defined in Section Il requires that
Otne delay of each individual path satisfies a specified bound,
in contrast to the CSDR] problem where the constraint is on
the total delay of all thé link-disjoint paths. We have shown
in Theorem 2 that the LP relaxations of the two problems

have the same optimal objective value. Thus, if one is in-
terested in obtaining the optimal objective values of RELAX-
VIIl. SIMULATION GCSDP¢) and RELAX-CSDPE) problems, then starting with

We denote our algorithm as DISJOINT-NBS (NBS: Netthe RELAX-CSDPk) does not result in any loss of generality.
work Based Simplex method) and compare its performant@wever, the paths produced by the approximate solution
with CPLEX and G-LARACE). We use three classes ofderived from the optimal solution to RELAX-CSDB(may
network topologies: regular graplis. ,, (see Chapter 8, [21]), not satisfy the individual path delay requirements of the
power-law out-degree graphs [24] and Waxman's rando@CSDPf{) problem. Fortunately, our simulation results in
graphs [25]. For a grapl(V, E), the nodes are labeled asTable I-1ll indicate that in most cases the individual delays
1,2...,n = |V|. Nodes|n/2| andn are chosen as the sourcedf the paths produced starting from RELAX-CSRP(do
and target nodes. The link costs and delays are randomit deviate in a significant way from the individual delay
independently generated even integers in the range from lreguirements of the GCSDB)(problem.

200. The delay bound i$.2 x k the delay of the minimum If one were interested in studying the GCSBPproblem
delay s-t paths inG. For regular graphsy = 4. For random then the issue of finding feasible solutions to this problem
graphs and power-law graphis= 2. The results are shown inwill arise. The algorithm in the present paper may be used as
Fig. 5. In these figures, we use NBS to denote the DISJOINd-subroutine in a branch and bound scheme to find feasible
NBS algorithm and NBS-REGULAR to denote the runningolutions to the GCSDRJ problem

time of DISJOINT-NBS algorithm on regular graphs. Other One direction of further research is to develop approxima-
labels can be interpreted in a similar manner. Experimenisn schemes for the CSDB)Y( problem along the lines of
show that DISJOINT-NBS algorithm is faster than CPLEXhe approximation algorithms given in [15] for the CSDP(2)

Case 2.2:

Fig. 4. Basic solution structures in case 2

links and that the leaving variable is a link (other cases
are trivial). LetG, = G, + e be the network obtained by
adding the in-arce to G,. Evidently, f is on some cycle
C e {W,W'} in G.. If C = W', the orientation ofC is
chosen to agree (resp. disagree) with the orientation ibf
ze = 0 (resp.z. = 1) in the current flow. IfC = W,
the orientation ofC is defined such thad(W')/d(W) < 0
(resp.d(W')/d(W) > 0) if 2. = 0 (resp.z. = 1), where
the orientation ofi¥’’ agrees with the direction of. Starting
from the join of C and traversing along the orientation ©f
we choose the first link whose flow is 1 and whose directi
agrees with the orientation @f or whose flow is 0 and whose
direction disagrees with the orientation ©f This guarantees
the strong feasibility of the resulting tree.
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Fig. 5. Comparison of running times of DISJOINT-NBS algorithm and CPLEX and G-LARMAC(he experiments were carried out on IBM Regatta p690

with AIX 5.1 OS and Power4 1.1 GHz CPU.

TABLE |
PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(2)APPLIED ON RANDOM GRAPHS

Graph Size(#NodeS)‘ Delay Bound ‘ Path-1(Cost, Delay)‘ Path-2(Cost, Delay)‘

1000 1087 (1240, 1056) (1536, 1082)
2000 601 (1548, 560) (1344, 604)
3000 409 (1496, 368) (1328, 428)

TABLE Il
PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(2)APPLIED ON POWERLAW GRAPHS

Graph Size(#Nodes)\ Delay Bound \ Path-1(Cost, Delay)\ Path-2(Cost, Delay)‘

1000 109 (426, 110) (372, 72)
2000 134 (352, 82) (190, 172)
3000 206 (380, 206) (254, 138)

TABLE Il
PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(4)APPLIED ON REGULAR GRAPHS

Graph Size(#Nodes)\ Delay Bound \ Path-1 \ Path-2 \ Path-3 \ Path-4 ‘
1000 736 (2208, 686) | (2216, 686) | (2054, 764) | (1872, 782)
2000 1425 (3920, 1412)| (4168, 1424) | (4014, 1454)| (4198, 1406)
3000 2127 (6092, 2044)| ((6126, 2104)| (5862, 2242)| (5702, 2110)

problem. Since the link-disjoint shortest paths problem is ] R. Hassin, “Approximation schemes for the restricted shortest path
special case of the minimum cost flow problem, it will be

interesting to investigate if the ideas developed in this papé‘}]
could be used to design efficient algorithms for the constrainegd]

minimum cost flow problem.
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