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Abstract— Given a graph G with each link in the graph
associated with two positive weights, cost and delay, we consider
the problem of selecting a set ofk link-disjoint paths from a
node s to another node t such that the total cost of these paths
is minimum and that the total delay of these paths is not greater
than a specified bound. This problem, to be called the CSDP(k)
problem, can be formulated as an integer linear programming
(ILP) problem. Relaxing the integrality constraints results in an
upper bounded linear programming problem. We first show that
the integer relaxations of the CSDP(k) problem and a generalized
version of this problem to be called the GCSDP(k) problem
(in which each path is required to satisfy a specified bound
on its delay) both have the same optimal objective value. In
view of this we focus our work on the relaxed form of the
CSDP(k) problem called RELAX-CSDP(k). We study RELAX-
CSDP(k) from the primal perspective using the revised simplex
method of linear programming. We discuss different issues such
as formulas to identify entering and leaving variables, anti-
cycling strategy, computational time complexity etc., related to
an efficient implementation of our approach. We show how to
extract from an optimal solution to RELAX-CSDP(k) a set of
k link-disjoint s-t paths which is an approximate solution to
the original CSDP(k) problem. We also derive bounds on the
quality of this solution with respect to the optimum. We present
simulation results that demonstrate that our algorithm is faster
than currently available approaches. Our simulation results also
indicate that in most cases the individual delays of the paths
produced starting from RELAX-CSDP(k) do not deviate in a
significant way from the individual path delay requirements of
the GCSDP(k) problem.

Index Terms— Constrained shortest paths, link-disjoint paths,
QoS routing, graph theory, combinatorial optimization, linear
programming, network optimization

I. I NTRODUCTION

I N this paper we study a discrete optimization problem
defined on graphs or networks (We use the terms ”graph”

and ”network” interchangeably). Specifically, we are interested
in selecting a set of paths satisfying certain constraints. This
problem is fundamental and arises in several applications. In
this context we encounter two problems. One of them, called
the Constrained Shortest Path (CSP) problem, requires the
determination of a minimum cost path from a source nodes
to a destination nodet such that the delay of the path is within
a specified bound. The other problem, denoted as CSDP(k),
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is to select a set ofk link disjoint paths froms to t such that
the total cost of these paths is minimum and that the total
delay of these paths is not greater than a specified bound.
Both problems are NP-hard [1], [2]. This has led researchers
to propose heuristics and approximation algorithms for these
problems.

For a detailed account of the different algorithms for the
CSP problem, [2]–[13] may be consulted. Of special interest
to us in the context of our work in this paper are [8], [10]–[13].
References [8] and [10]–[12] present the LARAC algorithm
that is based on the Lagrangian dual of the CSP problem
as well as some generalizations. Reference [11] presents a
generalization of the LARAC algorithm and is applicable to
general combinatorial optimization problems involving two
additive metrics. One of such problem is the minimum cost
spanning tree problem with the restriction that the total delay
being within a specified limit. Several such constrained dis-
crete optimization problems arise in the VLSI physical design
area. Reference [13] shows that these algorithms are strongly
polynomial. In perhaps the most recent work [14] on the
CSP problem, we have studied this problem from a primal
perspective.

The CSDP(k) problem arises in the context of provisioning
paths that could be used to provide resilience to failures in
one or more of these paths. Orda et al. [15] have studied the
CSDP(2) problem and have provided several approximation
algorithms. A special case of the CSDP(k) problem which
does not have the delay requirement has been studied in [16].
The algorithms in [11] and [16] can be integrated to provide
an approximate solution to the CSDP(k) problem. We call this
the G-LARAC(k) algorithm.

The rest of the paper is organized as follows. In Section II
we define the CSDP(k) problem and a generalized version of
this problem called the GCSDP(k) problem. The GCSDP(k)
problem requires that the delay of each path in the set of
link-disjoint paths be bounded by a specified value. This is in
contrast to the CSDP(k) problem wherein the delay constraint
is with respect to the total delay of the paths. However, even
finding two delay constrained link-disjoint paths is NP-hard
and is not approximable within a factor of2− ε for any ε > 0
[17]. We first show that the optimal objective values of the LP
relaxations of these two problems have equal value. Hence
we focus our study on the relaxed version of the CSDP(k)
problem, namely, the RELAX-CSDP(k) problem. In Section
III we review the G-LARAC(k) algorithm which is a dual
based approach to solving RELAX-CSDP(k). In Section IV
we introduce a transformation on the CSDP(k) problem. The
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transformed problem will be called the TCSDP(k) problem.
We show that the CSDP(k) problem and the TCSDP(k)
problem are equivalent. As we show later in the paper the
transformed problem has several properties that enable us to
achieve an efficient implementation of our approach. In the
remainder of the paper we study the LP relaxation of the
TCSDP(k) problem, namely, RELAX-TCSDP(k), using the
revised simplex method of linear programming. In Section
V, several properties of basic solutions of RELAX-TCSDP(k)
are established. We also show how to extract an approximate
solution to the CSDP(k) problem starting from an optimal
solution to RELAX-TCSDP(k). In Sections VI-VII, the revised
simplex method and several issues relating to an efficient
implementation are discussed. We also develop an anti-cycling
strategy and establish the pseudo-polynomial time complexity
of the revised simplex method when applied on RELAX-
TCSDP(k). Simulation results comparing our approach with
the G-LARAC(k) algorithm and the commercially available
CPLEX package are presented in Section VIII. These re-
sults demonstrate that our algorithm is faster than currently
available approaches. They also indicate that in most cases
the individual delays of the paths produced starting from
RELAX-CSDP(k) do not deviate in a significant way from
the individual delay requirements of the GCSDP(k) problem,
thereby demonstrating that there is not much loss of generality
in focusing on RELAX-CSDP(k) rather than on the relaxed
version of the more complex GCSDP(k) problem. We con-
clude in Section IX with a summary of our work and pointing
to certain directions for future research.

II. CONSTRAINED SHORTESTL INK -DISJOINT PATHS

SELECTION PROBLEMS: FORMULATIONS, RELAXATIONS ,
AND THEIR EQUIVALENCE

In this section we first define two classes of link-disjoint
paths selection problems. One is a special case of the other.
They both admit integer linear programming (ILP) formu-
lations. They are computationally intractable because of the
integrality constraints. For networks involving small numbers
of nodes and links, these problems can be solved using any
general purpose ILP package. For larger networks, faster
algorithms are desired. So, we are interested in solving these
problems after relaxing the integrality requirement and exploit-
ing the special network structure of these problems for efficient
algorithms. The relaxed versions of these problems are upper
bounded linear programming problems. The main result in
this section is that the relaxed versions of both problems are
equivalent in the sense they have the same optimal objective
value.

We begin with some basic definitions. The network is
modeled as a directed graphG(V, E), whereV and E are
the sets of nodes and links, respectively. Each link(u, v) ∈ E
is associated with a positive integer costcuv and a positive
integer delayduv. A path is a sequence of distinct nodes
u1, u2 . . . , ul such that either(ui, ui+1) ∈ E or (ui+1, ui) ∈
E for all 1 ≤ i ≤ l−1 andui 6= uj if i 6= j. A link on a path
from u to v is a forward link (backward) link if its orientation
agrees (disagrees) with the direction of the traversal of the

path fromu to v. The sets of forward and backward links on
p will be denoted byp+ andp−, respectively. For any directed
path p (or cycle with given orientation) define costc(p) and
delayd(p) of p as

c(p) =
∑

(u,v)∈p+

cuv −
∑

(u,v)∈p−
cuv,

d(p) =
∑

(u,v)∈p+

duv −
∑

(u,v)∈p−
duv.

Given any two nodess andt, ans-t path is a directeds-t path
if all the links on the path are forward links. For the simplicity,
we shall call such directed paths simply ass-t paths. Ans-t
path is called feasible with respect to the delay and a specified
valueT if the delay of the path is at mostT . Without loss of
generality we assume that for every nodeu there is a directed
path froms to u and a directed path fromu to t.

General Constrained Shortest k-Disjoint Paths
(GCSDP(k)) Problem: Given two nodess and t and a
positive integerT , the GCSDP(k) problem is to find a set of
k(k ≥ 2) link-disjoint s-t pathsp1, p2 . . . , pk such that the
delay of each pathpi is at mostT and the total cost of thek
paths is minimum.

Constrained Shortestk-Disjoint Paths (CSDP(k)) Prob-
lem: Given two nodess and t, and a positive integerT , the
CSDP(k) problem is to find a set ofk link disjoint s-t paths
p1, p2 . . . , pk such that the total delay of these paths is at most
kT and that the total cost of thek paths is minimum.

Both the above problems can be formulated as ILP prob-
lems. Relaxing the integrality constraints we get the following
relaxed versions of these problems.

RELAX-GCSDP(k):

Minimize
∑

(u,v)∈E

cuv

k∑

i=1

xi
uv (1)

subject to

For i = 1, 2 . . . k and∀u ∈ V,

∑

{v|(u,v)∈E}
xi

uv −
∑

{v|(v,u)∈E}
xi

vu =





1, for u = s
−1, for u = t
0, otherwise

(2)∑

(u,v)∈E

duv · xi
uv ≤ T (3)

k∑

i=1

xi
uv ≤ 1 andxi

uv ≥ 0,∀(u, v) ∈ E (4)

The solutions to the above problem may not, in general,
be integral. However, every integer solution defines a set of
k link-disjoint s-t paths. In other words, an integer solution
Xi = {xi

uv}(u,v)∈E for i = 1, 2 . . . , k is the flow vector
corresponding to theith path pi, i.e., link (u, v) is on path
pi iff xi

uv = 1.
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RELAX-CSDP(k):

Minimize
∑

(u,v)∈E

cuv · xuv (5)

subject to ∀u ∈ V,

∑

{v|(u,v)∈E}
xuv −

∑

{v|(v,u)∈E}
xvu =





k, for u = s
−k, for u = t
0, otherwise

(6)∑

(u,v)∈E

duv · xuv ≤ kT (7)

0 ≤ xuv ≤ 1, ∀(u, v) ∈ E

We now proceed to show that the RELAX-GCSDP(k) and
RELAX-CSDP(k) are equivalent in the sense that they both
have optimal solutions with the same value for the objective.

Let Λ = (λ1, λ2 . . . , λk) ≥ 0 and define

LG(k, Λ) = min{
∑

(u,v)∈E

cuv

k∑

i=1

xi
uv

+
k∑

i=1

λi(
∑

(u,v)∈E

duv · xi
uv − T )}

Then the Lagrangian dual of RELAX-GCSDP(k) is as
follows.

LAGRANGIAN-GCSDP(k):

Maximize LG(k, Λ), among allΛ ≥ 0

subject to ∀i = 1, 2 . . . k and∀u ∈ V,

∑

{v|(u,v)∈E}
xi

uv −
∑

{v|(v,u)∈E}
xi

vu =





1, for u = s
−1, for u = t
0, otherwise

(8)
k∑

i=1

xi
uv ≤ 1 andxi

uv ≥ 0,∀(u, v) ∈ E (9)

The vectorΛ is called the Lagrangian multiplier. The above
problem can be solved by finding the Lagrangian multiplier
vectorΛ that maximizesLG(k, Λ).

Property 1: Given any Λ = (λ1 . . . , λk), let Λ′ be ob-
tained by permuting the components ofΛ. ThenLG(k, Λ) =
LG(k, Λ′).

Property 2: LG(k, Λ) is a concave function ofΛ [18].
Property 3: There existsΛ with all components equal that

maximizesLG(k, Λ).
By Property 3,LG(k, Λ) can be reformulated with respect

to someΛ = (λ, λ . . . , λ) ≥ 0 as follows:

LG(k, Λ) = min{
∑

(u,v)∈E

cuv

k∑

i=1

xi
uv

+ λ(
∑

(u,v)∈E

(duv

k∑

i=1

xi
uv)− kT )}. (10)

Let

x̄uv =
k∑

i=1

xi
uv, ∀(u, v) ∈ E. (11)

We now define UNIFORM-LAGRANGIAN-GCSDP(k) as
follows.

First let

L(k, λ) = min{
∑

(u,v)∈E

cuv · x̄uv

+ λ(
∑

(u,v)∈E

duv · x̄uv − kT )}.

UNIFORM-LAGRANGIAN-GCSDP(k):

Maximize L(k, λ) among allλ ≥ 0 (12)

subject to

∑

{v|(u,v)∈E}
x̄uv −

∑

{v|(v,u)∈E}
x̄vu =





k, for u = s
−k, for u = t
0, otherwise

(13)

0 ≤ x̄uv ≤ 1, ∀(u, v) ∈ E. (14)

Note that (13) is obtained by summing up thek flow balance
constraints in (8) and thatλ is a scalar.

Theorem 1:UNIFORM-LAGRANGIAN-GCSDP(k) and
LAGRANGIAN-GCSDP(k) have the same optimal value for
the objective.

Proof: Let Λ = (λ, λ . . . , λ) ≥ 0. We first show that
LG(k, Λ) ≥ L(k, λ).

Let {xi
uv}(u,v)∈E,i=1...,k minimizeLG(k, Λ). Then we have

LG(k, Λ) =
∑

(u,v)∈E

cuv

k∑

i=1

xi
uv

+
k∑

i=1

λ(
∑

(u,v)∈E

duvxi
uv − T )

=
∑

(u,v)∈E

cuvx̄uv + λ(
∑

(u,v)∈E

duvx̄uv − kT ) ≥ L(k, λ),

wherex̄uv is defined as in (11).
It follows from the unimodularity [19] of the constraints

(13)-(14) that for a givenλ, there exists an optimal integer
solution to UNIFORM-LAGRANGIAN-CSDP(k) problem.
Also an integer solutionY = {yuv}(u,v)∈E of UNIFORM-
LAGRANGIAN-CSDP(k) that achieves the minimum in
L(k, λ) defines a set ofk link-disjoint s-t paths Pk =
(p1, p2 . . . , pk). Let Xi = {xi

uv}(u,v)∈E be the flow vector
for pathpi, i.e., xi

uv = 1 iff (u, v) ∈ pi; otherwise,xi
uv = 0.

Observe thatyuv =
∑k

i=1 xi
uv. Then

L(k, λ) =
∑

(u,v)∈E

cuvyuv + λ(
∑

(u,v)∈E

duvyuv − kT )

=
∑

(u,v)∈E

cuv

k∑

i=1

xi
uv +

k∑

i=1

λ(
∑

(u,v)∈E

duvxi
uv − T )

≥ LG(k, Λ).
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Hence,L(k, λ) ≥ LG(k, Λ). So L(k, λ) = LG(k, Λ).
By Property 3 there exists a vectorΛ∗ = (λ∗, λ∗ . . . , λ∗)

that maximizesLG(k, Λ). Let η∗ be a maximizing multiplier
for L(k, λ) and denoteH∗ = (η∗ . . . , η∗).

By definition ofΛ∗ andη∗, we haveLG(k, Λ∗) = L(k, λ∗)
≤ L(k, η∗) = LG(k, H∗) ≤ LG(k, Λ∗).

HenceLG(k, Λ∗) = L(k, η∗).
The above theorem has an important implication. It shows

that the optimal objective to RELAX-GCSDP(k) can be
obtained by solving UNIFORM-LAGRANGIAN-GCSDP(k).
But UNIFORM-LAGRANGIAN-GCSDP(k) is the general lin-
ear programming dual of the RELAX-CSDP(k) problem (See
page. 183 of [20]). Thus we have the following result by the
strong duality theorem [20].

Theorem 2:RELAX-GCSDP(k) and RELAX-CSDP(k)
have the same optimal objective value.

The intuition behind the above result is as follows. The
indistinguishability of thek path constraints represented by (3)
guarantees that ifP is a set of feasible paths constituting a so-
lution to RELAX-GCSDP(k) problem then any permutation of
these paths is also a solution (Property 1). Also in the optimal
solution there is no reason for paths to be weighted differently
(Property 3). As formally proved, these two properties lead to
Theorem 2.

Theorem 2 implies that if we are interested only in obtaining
the optimal objective value of the RELAX-GCSDP(k), then
starting with the RELAX-CSDP(k) does not result in any loss
of generality. In view of this, we shall focus on RELAX-
CSDP(k) in the rest of the paper.

III. G-LARAC( k) ALGORITHM: A DUAL BASED

APPROACH TORELAX-CSDP(k)

The G-LARAC(k) algorithm is a generalization of the
LARAC algorithm [8]–[10] that was specifically designed for
CSP problem. The G-LARAC(k) algorithm may be viewed
as an algorithm for solving RELAX-CSDP(k) problem us-
ing its Lagrangian dual which is the same as UNIFORM-
LAGRANGIAN-GCSDP(k) repeated below.

UNIFORM-LAGRANGIAN-GCSDP(k):

Maximize L(k, λ)
subject to ∀u ∈ V,

∑

{v|(u,v)∈E}
xuv −

∑

{v|(v,u)∈E}
xvu =





k, for u = s
−k, for u = t
0, otherwise

0 ≤ xuv ≤ 1,∀(u, v) ∈ E.

In the rest of the paper, we shall use∆ in place ofkT for
the simplicity of writing.

Given λ, L(k, λ) is achieved by a set ofk link-disjoint
paths with minimum total weight, where the weight associated
with link (u, v) is given by cuv + λduv. The key issue is
how to search for the optimalλ that maximizesL(k, λ) and
determining the termination condition for the search. The G-
LARAC(k) algorithm presented as Algorithm 1 is one such
efficient search procedure. In this procedurecλ cost of a path

(also called aggregated cost) refers to the weight of the path
computed usingcuv + λduv as the weight of link(u, v).

Algorithm 1 G-LARAC(s, t, k, ∆ = kT ) algorithm

{computek-link disjoint paths with minimum total cost}
Pc ← Disjoint(s, t, c, k)
if (d(Pc) ≤ ∆) then returnPc

{computek-link disjoint paths with minimum total delay}
Pd ← Disjoint(s, t, d, k)
if (d(Pd) > ∆) then return ”no solution”
loop

λ ← (c(Pc)− c(Pd))/(d(Pd)− d(Pc))
{computek-link disjoint paths with minimumcλ cost}
R ← Disjoint(s, t, cλ, k)
if (cλ(R) = cλ(Pc)) then returnPd

else if (d(R) ≤ ∆) thenPd ← R elsePc ← R
end loop

Basically G-LARAC(k) performs the following steps.

1) In the first step, the algorithm calculates the minimum
cost of a set ofk link-disjoint s-t paths using link costs.
This can be done by the algorithm in [16]. If the total
delay of these paths is at most∆, this is surely the
required set of paths. Otherwise, the algorithm stores
this set as the latest infeasible set, simply called the
Pc set. Then it determines the minimum delay of a set
of k link disjoint s-t paths, called thePd set. If Pd is
infeasible, there is no solution to this instance.

2) Set λ = (c(Pc) − c(Pd))/(d(Pd) − d(Pc)). With this
value of λ, we can find a set ofk link-disjoint paths
with minimum cλ-cost. Let this set be denoted asR.
If cλ(R) = cλ(Pc)(= cλ(Pd)), we have obtained the
optimal λ. Otherwise, setR as the newPc or Pd

according to whetherR is infeasible or feasible.

A detailed discussion of several issues relating to G-
LARAC(k) and properties of solutions produced by G-
LARAC(k) may be found in [12].

We wish to note that when Lagrangian dual is introduced,
an integrated metric is used by adding the penalty of extra
delay into the cost function. However, this integration makes
the new model deviate from the original problem. For example,
considerk = 1. If there is a path which has a delay less than
∆, it will add a negative number into the cost function as a
reward. But in the original problem, there is no such reward.
One way to remedy this situation is to use the formulation
min{c(p) + λ max{0, d(p) − ∆}}. However, if we use this
formulation we cannot reduce it to the shortest path problem
on c+λd for fixedλ. This sub-problem is non-additive shortest
path problem. Finding this minimum is intractable and is as
difficult as the original CSDP(k) problem.

In contrast to the dual approach taken by the G-LARAC(k)
algorithm our interest in the remainder of the paper is to
design an approach to obtain an approximate solution to the
CSDP(k) problem using the primal simplex method of linear
programming.
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IV. T RANSFORMATION OF THERELAX-CSDP(k)
PROBLEM

To achieve an efficient implementation of our approach to
the RELAX-CSDP(k) problem we consider another problem
TCSDP(k) on a transformed network defined as follows.

1) The graph of the transformed problem is the same as
that of the original problem, that is,G(V,E),

2) For all (u, v) ∈ E, d′uv and c′uv in the transformed
problem are given byd′uv = 2duv andc′uv = cuv, and

3) The new upper bound∆′ in the transformed problem is
given by∆′ = 2∆ + 1.

Let P k denote a set ofk link-disjoint s-t paths. Letc(P k)
and d(P k) denote the total cost and the total delay of thek
paths inP k. The TCSDP(k) problem asks for a set ofk link-
disjoint s-t paths with minimum total cost and with total delay
at most∆′.

Theorem 3:P k is a feasible solution (resp. an optimal
solution) to the CSDP(k) problem iff it is a feasible solution
(resp. an optimal solution) to the TCSDP(k) problem.

In view of this equivalence we only consider, in the rest of
the paper, the RELAX-TCSDP(k) problem. Also we use∆
(being odd) andduv (being even) to denote the delay bound
and link delay in the TCSDP(k) problem. Notice that the
transformation does not change the costs of paths.

We conclude this section defining some terminology and
presenting the RELAX-TCSDP(k) problem in matrix form.

Let the links be labeled ase1, e2 . . . , em and the nodes be
labeled as1, 2 . . . , n. We shall denote the delay of each edge
ei asdi and the cost ofei asci. The incidence matrix ofG has
m columns, one for each link andn rows, one for each node
[21]. The rank of this matrix is(n−1), and removing any row
of this matrix will result in a matrix of rank(n−1). We denote
this resulting matrix of rank(n − 1) as H. We also assume
that the row removed from the incidence matrix corresponds
to noden. We denote the column ofH corresponding toek

by the vectorhk. For ek = (i, j), i, j 6= n we havehk =
(h1,k . . . , hi,k . . . , hj,k . . . , hn−1,k)t with all its components
being 0 except forhi,k = 1 and hj,k = −1. Also for ek =
(i, n), hi,k = 1, and for ek = (n, j), hj,k = −1 and all the
rest components are 0. LetD = (−d1,−d2 . . . ,−dm) and

A =
(

H 0
D −1

)
= (a1,a2 . . . , am, am+1), (15)

ai =
(

hi

−di

)
, i ≤ m, andam+1 =

(
0
−1

)
. (16)

Let x be the column vector of them flow variablesxuv

and the slack variablew corresponding to the delay constraint
(7), andc be the row vector(c1, c2 . . . , cm, 0) of the costs.
Note that the cost of the slack variable is 0. Then the RELAX-
TCSDP(k) problem (see (5)-(7)) can be written in matrix form
as follows. Note that to conform to the standard form for
a minimization problem we have used ”≥” form of (7) and

added a slack variablew, i.e.,
∑

(u,v)∈E −duvxuv−w ≥ −∆.

RELAX-TCSDP(k) :
Minimize cx

subject toAx = b (17)

0 ≤ x ≤ 1,∀(u, v) ∈ E andw ≥ 0,

where w is the slack variable andb = (b1 . . . , bn−1,−∆)t

with bs = k, bt = −k, andbi = 0 for i 6= s, t.
We note that the above problem is almost the same as the

minimum cost flow problem except for the additional delay
constraint.

The rest of the paper is concerned with the simplex method
based solution to RELAX-TCSDP(k) and several issues re-
lating to its efficient implementation. We want to emphasize
that most of these properties hold only with the transformation
and we shall use ”*” to denote those properties that also hold
without the transformation. The cost of the optimal solution to
RELAX-TCSDP(k) will be a lower bound to the optimal cost
of the original CSDP(k) problem. We will show in the next
section how to extract an approximate solution to TCSDP(k)
(hence the CSDP(k)) problem from an optimal solution to the
RELAX-TCSDP(k) problem.

V. PROPERTIES OFBASIC SOLUTIONS OF

RELAX-TCSDP(k) AND GENERATION OF AN

APPROXIMATE SOLUTION TO CSDP(k)

Simplex method of linear programming starts with a basic
solution and proceeds by constructing one basic solution from
another. A basic solution consists of two sets of variables,
basic and nonbasic. For the RELAX-TCSDP(k) problem under
consideration, all the nonbasic variables in a basic solution will
be 0 or 1 [22]. Note that the value of the slack variable, when
it is nonbasic, must be equal to 0 because it does not have
an upper bound. Given a basic solution, we shall denote the
subgraph ofG corresponding to the basic variables (except the
slack variable if it is in the basic solution) in this solution by
Gb. The subgraphGb will be called the subgraph of the basic
solution or simply the basis graph. The nonsingular submatrix
of A defined by the basic variables is called a basis matrix or
simply, a basis and is denoted asB. The rest of the matrix
corresponding to the nonbasic variables is called the nonbasic
matrix. In this section we present certain important properties
of the basic solutions of the RELAX-TCSDP(k) problem.

Lemma 1:* Let G(V, E) be a directed network with at least
one cycleW (not necessarily directed). Assigning an arbitrary
orientation toW , let U = (u1, u2, u3 . . . , um)t, where

uj =





1, for ej ∈ W and the orientation ofej

agrees with the orientation ofW
−1, for ej ∈ W and the orientation ofej

disagrees with the orientation ofW
0, otherwise .

Then,HU = 0 [21].
We shall useU(W ) to denote the vector derived from cycle

W as in the above lemma. We shall denote byd(W ) the signed
algebraic sum of the delays of the links on a cycleW as we
traverse around the cycle.
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Fig. 1. Structure of basic solutions

Lemma 2:* Every basis matrix contains the last row ofA.
Proof: This follows from the fact that rank(H)= n−1 <

n.
Lemma 3:* The subgraphGb of a basic solution contains

at most one cycle (See Fig. 1).
Lemma 4:* If there is a cycleW in a basic solution, then

d(W ) 6= 0.
Lemma 5: If there is no cycle in a basic solution, then

∀(u, v) ∈ E, xuv = 0 or 1. If there is a cycleW in a basic
solution, then∀(u, v) ∈ W , 0 < xuv < 1 and ∀(u, v) ∈
E −W , xuv = 0 or 1.

Proof: Let B = (b1, b2 . . . , bn), AN , xB andxN denote
the basis matrix, nonbasic matrix, column vector of basic
variables, and column vector of nonbasic variables in the basic
solution, respectively.

Let b′ = b−ANxN , then we haveBxB = b′.
Since all the components inANxN andb are integers, so

are all the components inb′.
By Cramer’s rule, we havexi = det(Bi)/ det(B), where

Bi = (b1 . . . , bi−1, b
′, bi+1 . . . , bn).

We first show thatxi is an integer if the corresponding link
is not on the cycle. We consider two cases:

Case 1: There is no cycle in the basic solution. Thus the
slack variable is a basic variable. AlsoGb is a spanning tree.
Let the nth column in the basisB correspond to the slack
variable.

Thenbn = (0 . . . , 0,−1)t and soB has the following form.

B =
(

H ′ 0
D′ −1

)
, whereH ′ is the incidence matrix of

Gb andD′ is the corresponding delay vector.
SinceH ′ is the incidence matrix of a spanning tree it follows

that |det(H ′)| = 1. So | det(B)| = 1. Also, det(Bi) is an
integer because all the components ofBi are integers. Soxi

is also an integer for alli.
Case 2: There is a cycleW in the basic solution. That is,

the slack variable is not in the basis.
Let l = |W |, i.e., l is the number of links inW .

s

t

0 < λ < 11

1

1

1

λ

λ

1− λ

1− λ

Merging node

Branching node

Fig. 2. Branching and merging nodes

In this case, we first show that the flow on any linki not
on the cycle is an integer. Without loss of generality, let

B =
(

HW H ′

DW D′

)
andBi =

(
HW H ′

i

DW D′
i

)
,

where the columns ofHW = (h1,h2 . . . , hl) correspond to
the links on the cycleW and the components ofDW are the
delays of these links. Note thatH ′

i contains the column vector
b′.

Let H ′
W = (h2 . . . , hl) and D′

W = (d2 . . . , dl). Defining
the direction of the linkh1 as the orientation of the cycleW
we get by Lemma 1 thatHW U(W ) = 0.

Using elementary column operations,det(B) and det(Bi)
can be written as:

det(B) = det
(

0 H ′
W H ′

DW U(W ) D′
W D′

)

= (−1)n+1 det(H ′
W H ′)(DW U(W )), and

det(Bi) = det
(

0 H ′
W H ′

i

DW U(W ) D′
W D′

i

)

= (−1)n+1 det(H ′
W H ′

i)(DW U(W )).

Hencexi = det((H ′
W H ′

i))/ det((H ′
W H ′)).

Since all the components in matrix(H ′
W H ′

i) are integer,
det((H ′

W H ′
i)) is also integer.

The denominator is equal to±1 because(H ′
W H ′) is the

incidence matrix of the spanning tree obtained by removing
link i from Gb. So it is follows thatxi is an integer. Hence
xuv = 0 or 1 because0 ≤ xuv ≤ 1.

We next show that if the basis graph contains a cycle, then
the flow on each link on the cycleW is less than 1 and greater
than 0. Assuming the contrary we establish a contradiction.
First recall that the flow on each link that is not inGb (that
is, each nonbasic variable) is either 0 or 1. If the flow on any
link on W is an integer (0 or 1) then it follows from the flow
balance constraints that all the flows on the links onW will be
integers. But this would mean that in the current basic solution
the total delay of all the links is an even integer. This violates
the requirement that the total delay must be equal to∆ which
is odd.

Definition 1: (a) On a directed cycle, a node is called a
branching (resp. merging) node if it is the tail (resp. head)
of two links on the cycle (See Fig. 2). A segment of the
cycle is the set of all the links on the cycle between two
consecutive branching and merging nodes. A segment consists
of consecutive links with the same direction and the direction
of a segment is defined as the direction of its links.
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(b) For a subgraphGs of G, let d(Gs) =
∑

(u,v)∈Gs
duv

and dx(Gs) =
∑

(u,v)∈Gs
xuvduv with respect to the flow

vectorx.
Lemma 6:Suppose the basis graphGb contains a cycleW .

Let e = (u, v) ∈ W and xuv = λ(0 < λ < 1). Define
the direction ofe as the orientation ofW . Then for any link
e′ = (i, j), xij = λ if the direction of e′ agrees with the
orientation ofW andxij = 1− λ otherwise (See Fig. 2).

Proof: This follows from the flow balance constraints
and the fact the nonbasic variables corresponding to links have
value 0 or 1.

Theorem 4:Given an optimal solutionx to RELAX-
TCSDP(k) with Gb as the corresponding basis graph.

(a) If Gb contains no cycle thenGb contains a set ofk link
disjoint s-t pathsP k with d(P k) < ∆, where∆ is the delay
constraint in the TCSDP(k) problem. These paths constitute
an optimal solution to the original CSDP(k) problem.

(b) Suppose thatGb contains a cycleW and letG′(V ′, E′)
be obtained fromG(V, E) such thatV ′ = V and E′ =
{(u, v) ∈ E|xuv > 0}. Then G′ contains a set ofk link
disjoint s-t pathsP k with d(P k) < ∆, and a set ofk link
disjoint s-t pathsQk with d(Qk) > ∆, such thatc(Qk) ≤
OPT ≤ c(P ∗) ≤ c(P k), whereOPT is the optimal objective
value of the RELAX-TCSDP(k) problem,P ∗ is the optimal
integer solution to the TCSDP(k) problem (equivalently, the
optimal solution to the CSDP(k)) problem). Also c(P k)

c(P∗) ≤
1 + 1−λ

λ (1− c(Qk)
c(P k)

) and d(Qk)
∆ ≤ 1 + λ

1−λ (1− d(P k)
∆ ), where

λ is as defined in Lemma 6 with the orientation of the cycle
W selected so thatd(W ) < 0.

Proof: (a) If there is no cycle in the optimal basis graph
Gb, then all the link flows will be integers and the flow vector
can be decomposed into unit flows alongk link-disjoint s-t
paths. The total delay of these paths will be even and hence
less than∆ (because∆ is odd). These integral flows form an
optimal integer solution to the RELAX-TCSDP(k) problem
and hence an optimal solution to the original TCSDP(k)
problem. By Theorem 3 this is also an optimal solution to
the original CSDP(k) problem.

(b) Assume that the basis graph contains a cycleW . By
Lemma 5, the flows on links onW are nonzero and thus
G′ containsW . Obviously, OPT ≤ c(P ∗). Also note that
dx(G′) = ∆ because the slack variable is nonbasic and thus
its value in the current basic solution is 0.

Define the orientation ofW such thatd(W ) < 0. Now push
flow along the orientation ofW until some link’s flow reaches
0 or 1 (See Fig. 3-(b)). By Lemma 6, all the resultant link flows
will be either 0 or 1. Remove all the links with zero flow
from G′ and letGz denote the resultant network. Evidently,
the flows on all links inGz are 1 andd(Gz) < dx(G′) = ∆
(becaused(W ) < 0, the network delay is reduced when we
push the flow along the orientation ofW ). It can also be seen
that c(W ) ≥ 0 for otherwise, the cost of the new flow will be
less than the cost of the flow defined byG′.

Notice that the above operation does not change the amount
of flow from s to t. Since the total flow froms to t in Gz is
k and all the flows on all links inGz are 1, there must bek
link disjoint s-t pathsP k andd(P k) = d(Gz) < ∆.

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1

1

0

0

0

0

s

s

s

t

t

t

a) The optimal basic solution

b) Push flow along the direction of the 


arrow to obtain Pk. W
P
 consists of the two 


solid links on W. Pk − W
P
 consists of the 


remaining solid links.

c) Push flow along the direction of the 


arrow to obtain Qk. W
Q

 consists of the two 


solid links on W. Qk − W
Q

 consists of the 


remaining solid links

W

λ

λ 1− λ

1− λ

Fig. 3. Illustrations for the proof of Theorem 4

Similarly, we can obtainQk(See Fig. 3-(c)). Here, the
flow is pushed alongW in the reverse direction. Along this
direction,d(W ) > 0 and sod(Qk) > ∆.

Since c(W ) < 0 along this direction,c(Qk) ≤ OPT ≤
c(P ∗) ≤ c(P k).

In the rest of the proof, we useP k, Qk and W to denote
the corresponding set of links. LetWP = P k ∩W andWQ =
Qk ∩W , i.e., WP (resp.WQ) is the set of links on both the
cycle W and P k (resp.Qk). Evidently, WP ∩ WQ = ∅ and
P k −WP = Qk −WQ(See Fig. 3. (b) and (c)).

Then we have

c(P ∗) ≥ OPT = c(P k −WP ) + λc(WP ) + (1− λ)c(WQ)

= λc(P k −WP ) + (1− λ)c(Qk −WQ)
+ λc(WP ) + (1− λ)c(WQ)

= λ(c(P k −WP ) + c(WP ))

+ (1− λ)(c(Qk −WQ) + c(WQ))

= λc(P k) + (1− λ)c(Qk).

The second equality holds becauseP k −WP = Qk −WQ.
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Becausec(P ∗) ≤ c(P k),

c(P k)
c(P ∗)

≤ c(P ∗)− (1− λ)c(Qk)
λc(P ∗)

=
1
λ
− 1− λ

λ

c(Qk)
c(P ∗)

≤ 1
λ
− 1− λ

λ

c(Qk)
c(P k)

= 1 +
1− λ

λ
(1− c(Qk)

c(P k)
).

Similarly, we can show thatd(Qk)
∆ ≤ 1 + λ

1−λ (1− d(P k)
∆ ).

Notice that all the individual paths in the above theorem
can be obtained using flow decomposition [19].

VI. REVISED SIMPLEX METHOD FOR THE

RELAX-CSDP(k) PROBLEM

In this section, we first briefly present the different steps in
the revised simplex method of linear programming. A detailed
description of this method may be found in Chapter 8 of [22]
(Note that in [22] the revised simplex method is presented for
a maximization problem). We then derive formulas required to
identify the entering and the leaving variables that are needed
to generate a new basic solution from a given basic solution.

A. Revised Simplex Method

Consider the following linear programming problem.

Minimize cx

subject toAx = b, l ≤ x ≤ u.

For the RELAX-CSDP(k) problem A is an n × (m +
1) matrix with rank(A) = n, x = (x1 . . . , xm+1)t, c =
(c1, c2 . . . , cm+1), b = (b1, b2 . . . , bn)t. Each feasible basic
solutionx∗ of this linear program is partitioned into two sets,
one set consisting of then basic variables and the other set
consisting of the remainingm+1−n non-basic variables. This
partition induces a partition ofA into B andAN , a partition
of x into xB and xN and a partition ofc into cB and cN ,
corresponding to the set of basic variables and the set of non-
basic variables, respectively. The matrixB is the basis matrix
and is nonsingular. See Sections IV and V for the form of the
basis matrix and properties of basic solutions for the RELAX-
TCSDP(k) problem.

Revised Simplex Method [22]
1) Solve the systemY B = cB, whereY = (y1, y2 . . . yn).
2) Choose an entering variablexj . This may be any non-

basic variablexj such that, witha standing for the
corresponding column ofA, we have eitherY a > cj ,
x∗j < uj or Y a < cj , x∗j > lj . If there is no such
variable then stop; the current solutionx∗ is optimal.

3) Solve the systemBV = a, whereV = (v1, v2 . . . , vn)t.
4) Definexj(t) = x∗j + t and xB(t) = x∗B − tV in case

Y a < cj and xj(t) = x∗j − t, xB(t) = x∗B + tV in
caseY a > cj . If the constraintslj ≤ xj(t) ≤ uj , lB ≤
xB(t) ≤ uB are satisfied for all positivet then the
problem is unbounded. Otherwise sett as the largest
value allowed by these constraints. If the upper bound

imposed ont by the constraintslB ≤ xB(t) ≤ uB is
stricter than the upper bound imposed bylj ≤ xj(t) ≤
uj , then determine the leaving variable. This may be any
basic variablexi such that the upper bound imposed on
t by li ≤ xi(t) ≤ ui alone is as strict as the upper bound
imposed by all the constraintslB ≤ xB(t) ≤ uB .

5) Replacex∗j by xj(t) andx∗B by xB(t). If the value of
the entering variablexj has just switched from one of its
bounds to the other, then proceed directly to Step 2 of
the next iteration. Otherwise, replace the leaving variable
xi by the entering variablexj in the basis heading, and
replace the leaving column ofB by columna.

Steps 2-5 in the revised simplex method that generate a new
basic solution from a given basic solution are called a pivot.

In the following we solve the systems of equations in Steps
1 and 3 and derive explicit formulas forY andV .

B. Solving the SystemY B = cB

Let Y = (y1 . . . , yn−1, γ). Here y1 . . . , yn−1, γ are called
potentials (or dual variables) andY is called the potential
vector. Eachyi, i = 1, 2 . . . , n− 1 is the potential associated
with nodei (or row i) andγ is the potential associated with
the last row (delay constraint row) ofA. The potential of node
n is not in Y , and may be set to zero as we will see below.

Now consider
Y B = cB . (18)

This system of equations hasn equations inn variables.
We get the following from (18).

For each linkek = (i, j) in Gb, (y1 . . . , yn−1, γ)ak = cij .
That is,

yi − yj − γdij = cij , for i 6= n and j 6= n,

yi − γdin = cin, for j = n, (19)

− yj − γdnj = cnj , for i = n.

The last two equations in (19) can be obtained by setting
the potentialyn of noden to zero in the first equation, namely,
yi− yj − γdij = cij . Thus in all the computations that follow
we setyn = 0.

Definition 2: 1) For link ek = (i, j), c(ek, γ) = γdij +
cij is called theactive costof link (i, j).

2) r(i, j) = yj − yi + γdij + cij is called thereduced cost
of link (i, j).

3) The reduced cost of the slack variablew is given by
r(w) = γ. (Note: Since the column corresponding to
the slack variablew is (0, 0 . . . ,−1)t, we can get the
reduced cost ofw from the equation in 2) by setting
yi = yj = 0, cij = 0, anddij = 1.

4) The reduced cost of a pathp is defined asr(p) =∑
(i,j)∈p+ r(i, j)−∑

(i,j)∈p− r(i, j). Recall thatp+ and
p− denote the sets of forward and backward links onp,
respectively.

5) Noden is called the root node.
It can be seen from (19) that for any link(i, j) in Gb

r(i, j) = yj − yi + γdij + cij = 0. (20)
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From (20) we also have that for any pathp from i to j and
any cycleW in Gb

r(p) = yj − yi + γd(p) + c(p) = 0, and

r(W ) = γd(W ) + c(W ) = 0. (21)

Lemma 7:* If Gb contains a cycleW , thenγ = −c(W )
d(W ) ;

otherwise,γ = 0.
Once we have computed the value ofγ, the other potentials

yi’s can be calculated using (20) and selecting the path inGb

from noden (whose potential is 0) to nodei. We summarize
these steps as follows:

1) Set the potential of noden to zero.
2) Computeγ as in Lemma 7.
3) For each nodei, let pi be a path inGb from noden to

node i. If there are two paths inGb due to the cycle,
we can derive the same results no matter which one is
selected.

4) Setyi = −∑
(u,v)∈p+

i
c(euv, γ) +

∑
(u,v)∈p−i

c(euv, γ),
wherep+

i andp−i are the sets of forward and backward
links on pi, respectively, as we traverse the path from
noden to nodei.

C. Solving the SystemBV = ak

We now show how to solve the system of equationsBV =
ak, whereak is the column ofA corresponding to the entering
variable. In the following an entering link is called an in-arc
and a leaving link is called an out-arc. We consider three cases:

(a) Basis graphGb contains onlyn−1 links, i.e., there is no
cycle inGb and the slack variablew is a basic variable,
and some linkek = (i, j) is the entering variable.

(b) The basic variables are associated withn links and the
entering variable isek = (i, j).

(c) The basic variables are associated withn links and the
entering variable isw.

Results in all the three cases are summarized in the follow-
ing theorem.

Theorem 5:* a) If Gb contains no cycle and the entering
variable is an in-arcek = (i, j), then the vectorV =
(v1 . . . , vn)t defined below is the desired solution toBV =
ak, whereW ′ is the new cycle formed by adding the in-arc
ek and the orientation ofW ′ is chosen to be the same as the
direction ofek.

vi =





−1, for i < n and the link corresponding to
the ith column ofB is on W ′ and its
orientation agrees with the cycle orientation

1, for i < n and the link corresponding to
the ith column ofB is on W ′ and its
orientation disagrees with the cycle orientation

d(W ′), for i = n
0, otherwise

b) If Gb contains a cycleW and the entering variable is a
link ek = (i, j), thenV = −V ′

p + d(W ′)
d(W ) V0, is the solution to

BV = ak, whered(W ′) and d(W ) are the delays of cycles
W ′ and W , respectively andV ′

p and V0 are defined by the
cyclesW ′ andW , respectively (See Lemma 1).

c) If Gb contains a cycleW and the entering variable is the
slack variablew, thenV = V0

d(W ) is the solution toBV = ak,
whereV0 is defined by cycleW (See Lemma 1).

Proof: Case a): Gb contains onlyn− 1 links, i.e., there
is no cycle inGb and the slack variablew is a basic variable,
and the linkek = (i, j) is the entering variable. In this case,

B =
(

Hn−1,n−1 0
D1,n−1 −1

)
,

where Hn−1,n−1 is associated with the(n − 1) links in
Gb and n − 1 nodes, andD1,n−1 is the vector of(n − 1)
components (corresponding to the basic variables except for
w) of the last row of matrixA.

Let W ′ denote the new cycle formed by adding the in-arc
ek = (i, j) and let the orientation ofW ′ be chosen to be the
same as the orientation of the in-arc. By Lemma 1 , it is easy
to verify that the vectorV = (v1 . . . , vn)t defined as in the
theorem solves the systemBV = ak.

Case b): The basic variables are associated withn links and
the entering variable isek = (i, j). In this case,

B =
(

Hn−1,n

D1,n

)
,

whereHn−1,n is associated with then links andn−1 nodes,
andD1,n is the vector of then components of the last row of
A corresponding to thesen links, and

ak =
(

hk

−dij

)
.

We need to solve the system of equations
(

Hn−1,n

D1,n

)
V =

(
hk

−dij

)
. (22)

First, let us consider

Hn−1,nV = hk. (23)

Because there aren links in Gb, there is exactly one cycle,
denoted byW . Therefore according to Lemma 1,

∃V0,Hn−1,nV0 = 0. (24)

After adding link ek = (i, j), we get a new cycleW ′ and
let us choose the orientation of this cycle to be the same as
that of ek. Then by Lemma 1,

∃V ′ =
(

V ′
p

1

)
, (Hn−1,n,hk)

(
V ′

p

1

)
= 0. (25)

So, Hn−1,n(−V ′
p) = hk.

Because rank(Hn−1,n) = n − 1, −V ′
p + uV0, u ∈ R is the

solution space of (23). We can computeu as follows.

D1,n(−V ′
p + u · V0) = −dij . (26)

SinceD1,nV0 = −d(W ) and D1,n(−V ′
p) + dij = d(W ′),

we get from (26)

d(W ′)− u · d(W ) = 0 and henceu = d(W ′)/d(W ).

Therefore we have proven thatV = −V ′
p + d(W ′)

d(W ) V0 is the
desired solution toBV = ak.
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Case c): The basic variables are associated withn links and
the entering variable is the slack variablew.

Following the arguments in Case (b), we can show that
V = V0

d(W ) is the solution toBV = ak. HereV0 is defined by
the cycleW in Gb.

VII. I NITIALIZATION AND PIVOT RULES

A. Initialization

We first computek minimum delay link-disjoints-t paths
using Suurballe’s algorithm [16]. There is no feasible solution
if the total delay of these paths is greater than∆. Assume that
this is not the case. A treeT ′ (not necessarily a spanning tree)
rooted att can be constructed from these paths by removing
links incident with s to break cycles. Note that inT ′ every
path from a node inT ′ to t is a directed path. Such a tree is
called a directed tree rooted at nodet [21]. We next obtain a
directed spanning tree rooted att and havingT ′ as a subtree.
We proceed as follows.

First condense or coalesce all the nodes inT ′ into a single
nodeP . Then for the resulting network determine a directed
spanning tree rooted atP with all links orientated away from
P . Such a tree exists because of our assumption that there is
a directed path from nodes to each node in the network and
similarly there is a directed path from each node to nodet.
The links of the directed tree selected as above and the links
in T ′ together constitute a directed spanning treeT .

Assigning flow of 1 to all the links on the disjoint paths
and flow of 0 to all other links, we obtain a basic solution
represented byT .

Definition 3: [19] Given a feasible basic solution subgraph
Gb, we say that the link(u, v) ∈ Gb is oriented toward (resp.
away from) the root if any of the paths inGb from the root
to u (resp. v) passes throughv (resp. u). A feasible basic
solution Gb with corresponding flow vectorx is said to be
strongly feasible if every link(u, v) of Gb with xuv = 0
(resp.xuv = 1) is oriented away from (resp. toward) the root.

It can be easily verified that the initial spanning treeT
selected as above is strongly feasible.

B. Pivot Rules and an Anti Cycling Strategy

For an efficient implementation of the revised simplex
method, we want to avoid directed cycles in basic solutions.
This can be achieved by the following pivot rule:

P1: Slack variablew assumes the highest priority in choos-
ing the entering variable (Step 2 of the Revised Simplex
Method).

Lemma 8:The slack variablew is eligible to enter the basis
iff γ < 0.

Proof: Since the reduced cost ofw is equal toγ, w is
eligible to enter the basis iffγ < 0.

Lemma 9:Suppose the Pivot rule P1 is followed. If a
directed cycleW is created inGb during a pivot, then in the
next pivot the slack variablew will enter the basis and a link
on W will leave the basis.

Proof: Since W is a directed cycle,c(W ) 6= 0 and
γ = −c(W )/d(W ) < 0. It follows that in the pivot after

the directed cycle is created,w will enter the basis and the
new basis graph will be a spanning tree.

A basic solution in which one or more basic variables
assume zero values is called degenerate [22]. Simplex pivots
that do not alter the basic solution are called degenerate.
Furthermore, a basic solution generated at one pivot and
reappearing at another will lead to cycling (or infinite looping
and non-convergence). Thus we need a strategy to avoid
cycling.

There are several anticylcing strategies for general linear
programming problems. Cunningham developed a strategy
specifically designed for the network simplex method used
for solving minimum cost flow problems. Since RELAX-
TCSDP(k) has almost the same structure as the minimum cost
flow problem except for the presence of one additional con-
straint imposed by the delay requirement, we examine if Cun-
ningham’s strategy can be adopted for RELAX-TCSDP(k).
We show next that the transformation introduced on the
CSDP(k) problem in Section IV indeed makes Cunningham’s
strategy suitable for avoiding cycling in the case of RELAX-
TCSDP(k).

Lemma 10:For any degenerate pivot, the out-arc is not on
the cycle of the currentGb.

Proof: A degenerate pivot does not alter the basic
solution. This means that each variable has the same value
in the current basic solution as well as in the basic solution
that results from the degenerate pivot. Consider now the flows
on the links on a cycle. By Lemma 5 these flows are not 0
or 1. So if a link on a cycle were to leave the basis during a
degenerate pivot, then after the pivot it would become nonbasic
with flow of value 0 or 1. But that would contradict the fact
that the current pivot is degenerate.

If the out-arc is not on the cycle in the currentGb, then the
potentials can be updated easily as described next (Chapter
5.1.2 of [23]). LetT be the currentGb and e = (u, v) and
e′ = (u′, v′) be the out-arc and the in-arc, respectively. Let
T ′ = T −e+e′ be the subgraph of the new basic variables. If
e is not on the cycle in the currentGb , then the new potential
vectorY ′ associated withT ′ can be obtained as follows [23].

y′u =
{

yu + ru′v′ , for u ∈ Tu′

yu, for u ∈ Tv′
(27)

whereru′v′ = c(eu′v′ , γ) + yv′ − yu′ andTu′(resp.Tv′) is
the component ofT − e containingu′ (resp.v′).

The convergence part of the following theorem closely
follows the proof of Theorem 19.1 in [22].

Theorem 6:If the subgraphsGb’s of feasible basic solu-
tions generated by the simplex method are strongly feasible
then the simplex method does not cycle and its computational
time complexity is pseudo-polynomial.

Proof: First observe that in any sequence of degenerate
pivots, the value of every variable, in particular, the value
of the slack variable will remain the same. Also if the slack
variable is a basic variable then its value is nonzero; otherwise
its value is zero. So during a given sequence of degenerate
pivots, the slack variable will remain basic or nonbasic during
the entire sequence of degenerate pivots. So the leaving and
entering variables can only be the links in the network.
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Let Gb be a feasible basic solution subgraph andt be the
root. We define two values forGb.

C(Gb) =
∑

(u,v)∈E

cuvxuv andW (Gb) =
∑

u∈V

(yt − yu).

Consider two consecutive basic solutionsGi
b with Gi+1

b

= Gi
b + e − f , where e and f are the in-arc and out-arc,

respectively.
We first show that eitherC(Gi+1

b ) < C(Gi
b) or W (Gi+1

b ) <
W (Gi

b).
Indeed if the pivot that generatesGi+1

b from Gi
b is non-

degenerate, thenC(Gi+1
b ) < C(Gi

b). If it is degenerate, we
haveC(Gi+1

b ) = C(Gi
b). In this case we need to show that

W (Gi+1
b ) < W (Gi

b).
Note that the in-arce = (u, v) still has flow equal to 0

or 1 in Gi+1
b . By Lemma 10,f is not a link on the cycle

in Gi
b. So the value ofγ does not change. BecauseGi+1

b is
strongly feasible, inGi+1

b , link e must be oriented toward the
root nodet if xe = 1 and oriented away fromt if xe = 0,
which implies that nodet belongs toGi

b(v) (the component of
Gi

b−f containingv) if xe = 1 and nodet belongs toGi
b(u) if

xe = 0. The potentials with respect toGi+1
b can be calculated

using (27).
Then we haveW (Gi+1

b ) = W (Gi
b)−|Gb(u)|ruv < W (Gi

b),
whereruv = c(euv, γ)+yv−yu > 0 if xe = 1 or W (Gi+1

b ) =
W (Gi

b)+|Gb(u)|ruv < W (Gi
b), whereruv = c(euv, γ)+yv−

yu < 0 if xe = 0.
If the simplex method cycles, then for somei < j, Gi

b =
Gj

b. This meansC(Gi
b) = C(Gi+1

b ) · · · = C(Gj
b). But then

W (Gi
b) > W (Gi+1

b ) > . . . > W (Gj
b) = W (Gi

b) contradicting
that W (Gi

b) = W (Gj
b).

Thus we have proved that the simplex method when applied
on RELAX-TCSDP(k) does not cycle if all the basic feasible
solutions are strongly feasible.

We next establish the pseudo-polynomial time complexity
of this method. We have

W (Gi
b)−W (Gi+1

b ) = |Gb(u)| · |ruv| ≥ |ruv|,
|ruv| = |c(euv, γ) + yv − yu| = |cuv + γduv + yv − yu|.

We proceed to show that

0 < |yu − yv − γduv − cuv| = |γd(W ′) + c(W ′)|
=

{ |c(W ′)|, γ = 0,
|c(W ′)d(W )− d(W ′)c(W )|/|d(W )|, γ 6= 0.

(28)

Since euv is an in-arc,|yu − yv − γduv − cuv| 6= 0. To
establish the equalities on the right hand side of (28) suppose
that the new cycleW ′ in Gb is e1e2 . . . ek wheree1 = euv.
Since all the links onW ′ excepteuv are in Gb, the reduced
costs on all these links are 0. So we get from (21) that|ruv|
= |yu − yv − γduv − cuv| = |γd(W ′) + c(W ′)|. Recalling
that γ = −c(W )/d(W ) if there exists a cycleW in the basic
solution orγ = 0 if no such cycle exists, we get the equalities
on the right side of (28).

Since|ruv| 6= 0, we get from (28) that|ruv| ≥ |1/d(W )| ≥
1/(ndmax), wheredmax is the maximum link delay.

Also, the inequality below follows from the fact that the
potential of a node is the sum of the active costs of the links
on the path from that node to nodet (See Section VI-B).

W (Gi
b) =

∑

u∈V

(yt − yu) ≤ n2(cmax + γdmax),

wherecmax is the maximum link cost.
If γ 6= 0, then by Lemma 7,|γ| = | c(W )

d(W ) | ≤ ncmax. Hence
W (Gi

b) ≤ n2(cmax + ncmaxdmax).
So the length of the sequence of degenerate pivots is

bounded by a polynomial function ofcmax, dmax, andn. Sim-
ilarly, we can prove that the total number of non-degenerate
pivots is also a polynomial function ofm, n, cmax, anddmax.
Pseudo polynomial complexity of the revised simplex method
when applied on RELAX-TCSDP(k) follows since each pivot
takesO(m) steps [22].

C. Leaving Variable

Now, we investigate how to find a leaving variable (out-arc)
using Theorem 5. As before, let the cycle created by adding
the in-arc be denoted byW ′ with its orientation defined as
that of the in-arc.

We note that the reduced cost of the in-arc may be positive
or negative. In the following we consider only the latter case.
The former case can be treated in a similar way.

Case 1: Slack variablew is in the basic solution (the current
Gb is a spanning tree and sow > 0). This corresponds to
Theorem 5(a). According to Step 4 of the revised simplex
method, we need to consider only the entries ofV that are
±1 or d(W ′) if d(W ′) 6= 0. These entries correspond to the
links of W ′ of the currentGb or the slack variablew. The
maximum value oft is constrained byx∗B − tV ≥ 0, and the
corresponding constraining variables (links orw) are eligible
to leave the basis. If certain links are eligible to leave the basis
then we select the one which keeps the new basic solution
strongly feasible (to be discussed next). In this casew will
continue to be in the basis. Ifw is eligible to leave the basis,
we select it to leave the basis. In that case the new basis graph
G′b will have a cycle. The flow values (λ or 1−λ) on the links
on the cycle can be determined by the equationdx(G′b) = ∆
because the slack variablew is nonbasic and has zero value.

Case 2: The basic solution consists ofn links, i.e., there
is a cycleW in Gb. The slack variablew is eligible to enter
the basis ifγ < 0. Then according to pivot rule P1, we letw
enter the basis and shall select one of the links onW to leave
the basis. The choice can be made according to the case (c)
in Theorem 5.

If γ ≥ 0, an entering link will create a new cycleW ′

when added to the currentGb. We need to consider different
subcases that capture all possibilities (See Fig. 4). For each
one of these subcases we can select the leaving variable using
Theorem 5 (b) and Step 4 in the revised simplex method.

Now, we need to consider how to preserve the strong
feasibility of the basic solutions. We define the join of a cycle
in Gb as the node on the cycle that is closest to the nodet
in terms of hops. Without loss of generality, assume that the
current basic solution is strongly feasible and consists ofn
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Case 2.1:

in-arc
W'

W

λ 1 − λ

λ
1 − λ

Case 2.2:

Case 2.3:

1 − λ

1 − λ

λ

λ

W'

W'

W

W

in-arc

in-arc

Fig. 4. Basic solution structures in case 2

links and that the leaving variable is a linkf (other cases
are trivial). Let Ge = Gb + e be the network obtained by
adding the in-arce to Gb. Evidently, f is on some cycle
C ∈ {W,W ′} in Ge. If C = W ′, the orientation ofC is
chosen to agree (resp. disagree) with the orientation ofe if
xe = 0 (resp. xe = 1) in the current flow. If C = W ,
the orientation ofC is defined such thatd(W ′)/d(W ) < 0
(resp.d(W ′)/d(W ) > 0) if xe = 0 (resp.xe = 1), where
the orientation ofW ′ agrees with the direction ofe. Starting
from the join ofC and traversing along the orientation ofC,
we choose the first link whose flow is 1 and whose direction
agrees with the orientation ofC or whose flow is 0 and whose
direction disagrees with the orientation ofC. This guarantees
the strong feasibility of the resulting tree.

VIII. S IMULATION

We denote our algorithm as DISJOINT-NBS (NBS: Net-
work Based Simplex method) and compare its performance
with CPLEX and G-LARAC(k). We use three classes of
network topologies: regular graphsHk,n (see Chapter 8, [21]),
power-law out-degree graphs [24] and Waxman’s random
graphs [25]. For a graphG(V, E), the nodes are labeled as
1, 2 . . . , n = |V |. Nodesbn/2c andn are chosen as the source
and target nodes. The link costs and delays are randomly
independently generated even integers in the range from 1 to
200. The delay bound is1.2 × k the delay of the minimum
delay s-t paths inG. For regular graphs,k = 4. For random
graphs and power-law graphs,k = 2. The results are shown in
Fig. 5. In these figures, we use NBS to denote the DISJOINT-
NBS algorithm and NBS-REGULAR to denote the running
time of DISJOINT-NBS algorithm on regular graphs. Other
labels can be interpreted in a similar manner. Experiments
show that DISJOINT-NBS algorithm is faster than CPLEX

and G-LARAC(k) on all the topologies. For the power-law out-
degree graph and Waxman’s random graph, the hop number of
feasibles-t paths is usually very small even when the graph
is very large. So the running times of DISJOINT-NBS, G-
LARAC(k), and CPLEX are close (but DISJOINT-NBS is still
faster) for random graphs and power-law out-degree graphs.

Our simulation results in Tables I-III show that the delay of
each path derived as in Theorem 4 deviates from the individual
delay bound by a small fraction. Note that in these tables the
second column specifies the delay bound on each path.

IX. SUMMARY

In this paper we studied the CSDP(k) problem which is NP-
hard. So our goal has been to design an efficient algorithm for
constructing an approximate solution to this problem. Towards
this end, we studied the LP relaxation of CSDP(k) problem
using the revised simplex method of linear programming. This
relaxed problem is an upper bounded LP problem. We have
discussed several issues relating to an efficient implementation
of our approach. We have shown that an approximate solution
to the CSDP(k) problem can be extracted from an optimal
solution to the relaxed problem. We have derived bounds
on the quality of this solution with respect to the optimal
solution. Our work can be considered as the study of the
CSDP(k) problem from a primal perspective in contrast to
the dual perspective employed in the G-LARAC(k) algorithm
which is based on the algorithms in [11] and [16]. Simulation
results demonstrate that our algorithm is slightly faster than
both the G-LARAC(k) algorithm and the commercial quality
CPLEX package in the case of random graphs and power-law
out-degree graphs. On the other hand, for regular graphs our
algorithm is much faster.

The GCSDP(k) problem defined in Section II requires that
the delay of each individual path satisfies a specified bound,
in contrast to the CSDP(k) problem where the constraint is on
the total delay of all thek link-disjoint paths. We have shown
in Theorem 2 that the LP relaxations of the two problems
have the same optimal objective value. Thus, if one is in-
terested in obtaining the optimal objective values of RELAX-
GCSDP(k) and RELAX-CSDP(k) problems, then starting with
the RELAX-CSDP(k) does not result in any loss of generality.
However, the paths produced by the approximate solution
derived from the optimal solution to RELAX-CSDP(k) may
not satisfy the individual path delay requirements of the
GCSDP(k) problem. Fortunately, our simulation results in
Table I-III indicate that in most cases the individual delays
of the paths produced starting from RELAX-CSDP(k) do
not deviate in a significant way from the individual delay
requirements of the GCSDP(k) problem.

If one were interested in studying the GCSDP(k) problem
then the issue of finding feasible solutions to this problem
will arise. The algorithm in the present paper may be used as
a subroutine in a branch and bound scheme to find feasible
solutions to the GCSDP(k) problem

One direction of further research is to develop approxima-
tion schemes for the CSDP(k) problem along the lines of
the approximation algorithms given in [15] for the CSDP(2)
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Fig. 5. Comparison of running times of DISJOINT-NBS algorithm and CPLEX and G-LARAC(k). The experiments were carried out on IBM Regatta p690
with AIX 5.1 OS and Power4 1.1 GHz CPU.

TABLE I

PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(2)APPLIED ON RANDOM GRAPHS

Graph Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay)

1000 1087 (1240, 1056) (1536, 1082)

2000 601 (1548, 560) (1344, 604)

3000 409 (1496, 368) (1328, 428)

TABLE II

PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(2)APPLIED ON POWER-LAW GRAPHS

Graph Size(#Nodes) Delay Bound Path-1(Cost, Delay) Path-2(Cost, Delay)

1000 109 (426, 110) (372, 72)

2000 134 (352, 82) (190, 172)

3000 206 (380, 206) (254, 138)

TABLE III

PATHS OBTAINED FROM THE OPTIMAL SOLUTION TORELAX-TCSDP(4)APPLIED ON REGULAR GRAPHS

Graph Size(#Nodes) Delay Bound Path-1 Path-2 Path-3 Path-4

1000 736 (2208, 686) (2216, 686) (2054, 764) (1872, 782)

2000 1425 (3920, 1412) (4168, 1424) (4014, 1454) (4198, 1406)

3000 2127 (6092, 2044) ((6126, 2104) (5862, 2242) (5702, 2110)

problem. Since the link-disjoint shortest paths problem is a
special case of the minimum cost flow problem, it will be
interesting to investigate if the ideas developed in this paper
could be used to design efficient algorithms for the constrained
minimum cost flow problem.
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