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Abstract

The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have
different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (262 factorial design)
were formulated having a contrast in i) the ratio of protein to energy (P/E): high (HP/E) vs. low (LP/E) and ii) the type of non-
protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of
rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions.
Feed intake (FI), DEI (kJ kg20.8 d21) and growth (g kg20.8 d21) of trout were affected by the interaction between P/E ratio
and NPE source of the diet (P,0.05). Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main
NPE source reduced DEI and growth of trout by ,20%. The diet-induced differences in FI and DEI show that trout did not
compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store
and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition,
heat production of trout did not differ (P.0.05). Our data suggest that the control of DEI in trout might be a function of
heat production, which in turn might reflect a physiological limit related with oxidative metabolism.
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Introduction

Fish under farming conditions are mostly fed pre-set amounts of

a single feed type so that the fish cannot compensate feed intake

(FI) for the eventual lack of a particular nutrient or for energy

content, which may lead to reduced growth. Thus, predicting the

feed ration close to the voluntary FI level of fish as a function of

diet composition and culture conditions is essential to maximize

growth rate and feed use and also to minimize feed wastage in the

aquatic environment. This requires a better understanding of the

dietary, physiological and environmental factors affecting FI and

their underlying mechanisms.

Compared to mammals, mechanisms controlling FI are

relatively less explored in fish. It was stated that ‘‘fish like other

animals, eat to satisfy their energy requirements’’ [1]. Indeed,

among the dietary factors, the digestible energy (DE) content has

been widely suggested to be a major determinant of FI control in

several fish species such as rainbow trout, Oncorhynchus mykiss

[2,3,4,5], Atlantic salmon, Salmo salar [6], Atlantic cod, Gadus

morhua [7], European seabass, Dicentrarchus labrax [8], turbot,

Scophthalmus maximus [9] and Channel catfish, Ictalurus punctatus

[10].

In contrast, some studies have shown that fish do not regulate

their FI based on dietary DE density as a whole, as seen in rainbow

trout [11,12], Atlantic salmon [13], Arctic charr, Salvelinus alpinus

[14] and European seabass [15], suggesting a possible role of

energy or nutrient utilization and thus of DE source in FI

regulation in fish. Recently, Tran Duy et al. [16] studied the effect

of changes in DE source (fat vs. starch) on FI in Nile tilapia,

Oreochromis niloticus and found similar dry matter FI but different

digestible energy intake (DEI) as affected by the DE source of the

diet. One striking observation in that study was the similar total

heat production of fish, irrespective of the diet-induced differences

in ingested (DE) and retained (RE) energy. Based on the

observation of similar heat production, calculated as the difference

between metabolisable and retained energy, the authors postulated

the involvement of heat production in the control of FI in Nile

tilapia. Therefore, the present study further investigates the

relation between heat production and the effect of macronutrient

composition on FI and DEI in another teleost model, rainbow

trout. We hypothesized that rainbow trout fed to satiation with iso-

energetic diets, differing in protein to energy ratio (P/E) as well as

in non-protein energy (NPE) source, would result in different DEI

but with similar heat production.
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Materials and Methods

The experiments were conducted following the Guidelines of

the National Legislation on Animal Care of the French Ministry of

Research (Decree 2001-464 of May 29, 2001) and were approved

by the Ethics Committee of INRA (according to INRA 2002-36 of

April 14, 2002).

Diets
Four diets were formulated in a 262 factorial design with

protein to energy ratio (P/E) and non-protein energy (NPE) source

as main factors, each consisting of two levels, being ‘high’ vs. ‘low’

and ‘fat’ vs. ‘carbohydrate’, respectively. The formulation and

ingredient composition of diets are shown in Table 1. In order to

have identical nutrient and energy density between diets, 15% of

cellulose was included in the fat diets. We thus had four diets

(Table 1) viz., high P/E ratio with fat as energy source (HP/EF),

high P/E ratio with carbohydrate as energy source (HP/EC), low

P/E ratio with fat as energy source (LP/EF) and low P/E ratio with

carbohydrate as energy source (LP/EC). As expected, all four diets

resulted in similar digestible energy content (,18 kJ g21) and

contrast in P/E ratio between HP/E diets (,26 mg kJ21) and LP/E

diets (,14 mg kJ21). The ingredient mixtures of each diet were

extruded through a 2 mm die, dried, sieved, and stored in plastic

bags (feed extrusion plant, INRA Donzacq, France). The analyzed

nutrient compositions of the four diets are detailed in Table 1.

Feeding trial and sampling
Rainbow trout (O. mykiss) were obtained from the same parental

stock (INRA Lées-Athas fish farm, France) and were transferred to

the experimental facilities of INRA (Donzacq, France) where they

were acclimatized to the rearing conditions prior to the start of the

feeding trial. The experimental setup consisted of 12 independent

circular tanks (150 L) in a flow-through system (flow rate,

0.4 L sec21; water renewal in tank minimum 8 times per h)

supplied with natural spring water having a temperature of

1661uC (mean 6 SD), average pH (7.4), ammonia

(,0.05 mg L21), nitrite (,0.02 mg L21), nitrate (,15 mg L21),

dissolved oxygen (DO; .8.5 and .7.0 mg L21 respectively in

inlet and outlet) under natural light regimen (February-April). At

the start of experiment, fish (32.4 g initial body weight) were sorted

for homogenous size and randomly allotted among the 12 tanks

(35 fish/tank). Diets were assigned randomly to triplicate tanks and

hand-fed twice daily to visual satiation (i.e., feed distributed until

the fish stop displaying active feeding) in morning and afternoon.

In total, the feeding trial lasted for 7 weeks, during the first 6 weeks

(growth period) we assessed feed intake, growth and nutrient

utilisation, and then fish were allowed to recover for 1 week

(recovery period) before post-prandial sampling. During the

growth period, mortality was monitored daily and fish were group

weighed every 2 weeks to calculate intermediate growth and feed

intake. A random sample of 36 h feed deprived fish were

euthanized (overdose of anaesthesia, 2-phenoxy-ethanol) and

stored at 220uC for subsequent analyses of whole body

composition, at the beginning (35 fish) and end (8 fish/tank) of

the growth period. At the end of the 6 weeks, all fish were counted

and weighed to calculate the final body weight of fish. The fish

were then continued to be fed their respective diets for a period of

1 week (recovery period) prior to post-prandial blood sampling. At

7 h post-feeding, nine fish per dietary treatment were sampled for

blood. The blood was drawn from the caudal vein and transferred

into a vial containing 20 ml anticoagulant (2 g potassium

oxalate+1 g sodium fluoride in 100 ml distilled water). Blood

samples were centrifuged (3000 G, 10 min) and the plasma

obtained were stored at 220uC until analyses of glucose and

triglycerides.

Digestibility study
In parallel to the 6-week feeding trial, a separate 4-week

digestibility trial was conducted at the INRA fish rearing unit (St

Pée-sur-Nivelle, France) with rainbow trout from the same stock as

in the feed intake study. Fifteen fish (mean body weight, 65 g) were

stocked in 12 cylindro-conical tanks (60 L) connected to an

automatic faeces collection unit [17], the diets were assigned

randomly among tanks in triplicates. The tanks received

continuous supply of water (1461uC; mean 6 SD) from the

recirculation water system and were maintained at uniform

conditions throughout the experiment. Prior to faeces collection,

fish were acclimatized for a week to the experimental conditions

and to their respective experimental diets. Diamol (acid insoluble

Table 1. Formulation, ingredient composition and analyzed
nutrient content of experimental diets.

Diets1

HP/EF HP/EC LP/EF LP/EC

Ingredients (%)

Protein mixture2 66.0 66.0 35.9 35.9

Oils3 11.0 1.0 19.1 9.1

Gelatinized maize starch4 5.0 30.0 24.3 49.3

Cellulose5 15.0 0.0 15.0 0.0

Other6 3.0 3.0 5.7 5.7

Analyzed nutrient content on DM basis (g kg21)

Dry matter (DM; g kg21 diet) 938 924 949 947

Crude protein (N66.25) 519 511 276 261

Crude fat 152 34 207 143

Total carbohydrates7 254 380 444 528

Starch 49 303 246 456

Ash 75 75 73 68

Gross energy (GE; kJ g21) 22.8 20.6 22.8 21.2

Digestible energy (DE; kJ g21) 18.70 18.27 18.74 18.19

DP/DE (mg kJ21)8 26.5 26.8 14.1 13.7

1HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC -
High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF -
Low P/E ratio diet with fat as main non-protein energy source; LP/EC - Low P/E
ratio diet with carbohydrate as main non-protein energy source.
2Protein mixture (% mixture): 50% fishmeal (Sopropêche 56100 Lorient, France),
16.5% soybean protein concentrate (Sopropêche 56100 Lorient, France), 16.5%
pea protein concentrate (Roquette 62080 Lestrem, France), 16.5% wheat gluten
(Roquette 62080 Lestrem, France) and 0.5% DL methionine (Ajinomoto
Eurolysine 75017 Paris, France).
3Oils: rapeseed oil (Daudruy 59640 Dunkerque, France) in HP/E diets; 5% (% diet)
fish oil (Sopropêche 56100 Lorient, France) and the remaining part from
rapeseed oil in LP/E diets.
4Gelatinized maize starch: Roquette 62080 Lestrem, France.
5Cellulose: Rettenmeier et Sohne 73494 Rosenberg, Germany.
6Other (% diet): 2% Diamol (indigestible marker, Diamol GM, Franz Bertram
Hamburg, Germany); 1% vitamin and mineral premix (INRA UPAE 78200 Jouy en
Josas). For LP/E-diets 0.4% CaCO3, 1.8% Ca(HPO4)2, and 0.5% Na2CO3 were
added.
7Calculated as, total carbohydrates (starch, free sugars, cellulose) = 10002(crude
protein+crude fat+ash).
8DP/DE (Digestible protein to digestible energy ratio) = (Crude protein6%
apparent digestibility coefficient of crude protein)/(gross energy6% apparent
digestibility coefficient of gross energy- see table 4).
doi:10.1371/journal.pone.0034743.t001
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ash, AIA) was added into the feed as inert marker for determining

digestibility. Fish were fed twice daily (1.5% of body weight) and

faeces collected twice daily over 3 weeks, pooled per tank and

stored at 220uC.

Chemical analyses
Whole fish from each tank were ground, pooled and fresh

moisture content was determined. Fish and faeces were subse-

quently freeze-dried before further analyses. The nutrient

compositions of fish, diet and faeces were analyzed according to

the following procedures. Feed, faeces and whole body samples

were analyzed for dry matter (105uC for 24 h), protein (Kjeldahl;

N66.25) after acid digestion, fat content of feed and faeces [18]

using dichloromethane instead of chloroform and the fat content

of fish by petroleum ether extraction (Soxhlet; 40–60uC) and gross

energy content by adiabatic bomb calorimeter (IKA-Werke

C5000). Ash contents were determined by combustion in muffle

furnace (550uC for 12 h). The same ash samples of feed and faeces

were used to determine acid insoluble ash [19]. Starch content was

determined as glucose, using the amyloglucosidase/hexokinase/

glucose-6-phosphate dehydrogenase method after ethanol (40%)

extraction and starch decomposition in dimethylsulfoxide/HCl

[20]. Plasma glucose and triglycerides were determined following

the procedures provided in the commercial kits, Glucose RTU (nu
61269) and Triglycérides (PAP 150 nu 61236) from Bio-Mérieux,

Marcy-L’Etoile, France.

Calculations
The mean individual initial (Wi) and final (Wf) body weight of

fish was obtained dividing the total initial and final fish biomass of

the tank by the number of fish present in tank at start and end of

study respectively. Absolute growth of fish (in g d21) was

calculated as the difference between mean individual final (Wf)

and initial (Wi) body weight of fish per tank divided by duration of

experimental period (t). The geometric mean body weight (WG; in

g) is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wi|Wfð Þ

p
, from which mean metabolic body

weight (MBWG; in kg0.8) was calculated as (WG/1000)0.8. Growth

rate on metabolic body weight (GRMBW; in g kg20.8 d21) was

calculated as (Wf2Wi)/(MBWG6t). Daily growth coefficient

(DGC, in % d21) was calculated as 1006(Wf
1/32Wi

1/3)/t.

Absolute feed intake (FIABS; g DM fish21 d21) was calculated

on dry matter (DM) basis as FItot/(n6t) where FItot is the total feed

intake per tank (in g DM) over experimental period, n is the

number of fish in tank and t is the experimental period. FI as fed (g

fish21 d21) was calculated in similar way as FIABS but on as fed

basis. Feed intake of fish expressed as a percentage of body weight

(FIPCT; % d21) was calculated as (FIABS/WG)6100/t and feed

intake per metabolic body weight (FIMBW; g DM kg20.8 d21) was

calculated as FIABS/MBWG. Feed gain ratio (FGR; dry matter

intake/wet weight gain) was calculated on DM basis as FIMBW/

GRMBW.

Apparent digestibility coefficients (ADC, in %) of dry matter,

crude protein, crude fat, total carbohydrate, gross energy and ash

were calculated for each tank using acid insoluble ash (AIA) as

inert marker as described previously [16]. Apparent digestibility

coefficients were calculated as ADCX = (12(AIAdiet/AIAfaeces)6
(Xfaeces/Xdiet))6100, where X represents dry matter, crude

protein, crude fat, total carbohydrate, gross energy and ash,

AIAdiet and AIAfaeces are the AIA content in the diet and faeces,

respectively and Xdiet and Xfaeces are the quantity of X in the diet

and faeces, respectively.

The parameters of nitrogen balance (mg N kg20.8 d21) and

energy balance (kJ kg20.8 d21) were calculated per tank, without

changes as described earlier [16]. The gross nitrogen intake (GNI)

was calculated as product of total feed intake (g DM kg20.8 d21)

and nitrogen content of feed (mg g21). The digestible nitrogen

intake (DNI) was calculated as product of GNI and ADC of

nitrogen (%). Faecal nitrogen loss (FN) was calculated as the

difference between GNI and DNI. The retained nitrogen (RN)

was calculated as the difference between nitrogen content of final

and initial fish carcass. Branchial and urinary nitrogen loss (BUN)

was calculated as difference between DNI and RN. Parameters of

energy balance were calculated as follows: gross energy intake

(GEI) as the product of feed intake (g DM kg20.8 d21) and energy

content of the diet; digestible energy intake (DEI) as product of

GEI and ADC of energy; metabolisable energy intake (MEI) was

calculated as the difference between DEI and the branchial and

urinary energy loss (BUE), which was estimated as BUE =

(BUN624.85)/1000, where 24.85 is the amount of energy (in kJ)

equivalent to 1 g excreted nitrogen, assuming that all nitrogen is

excreted as NH3–N [21]; retained energy (RE) as the difference

between energy content of final and initial fish carcass. The total

heat production (H) was calculated as the difference between

metabolisable energy intake (MEI) and retained (RE) energy from

the energy balance. Similarly, the fat balance (mg kg20.8 d21) was

calculated per tank. The gross fat intake (GFI) was calculated as

product of total feed intake (g kg20.8 d21) and fat content of feed

(mg g21). The digestible fat intake (DFI) was calculated as product

of GFI and ADC of fat (%). Faecal fat loss (FF) was calculated as

the difference between GFI and DFI. The retained fat (RF) was

calculated as difference between fat content of final and initial fish

carcass.

Statistical procedure
Statistical analyses were performed using SAS 9.2 (SAS

Institute, Cary, NC, USA). Data were analyzed for the effect of

P/E ratio, type of NPE source and their interaction by two-way

ANOVA (PROC GLM). Normal distribution of the residuals was

verified using Kolmogorov-Smirnov’s test (PROC UNIVARI-

ATE). The faecal fat loss (FF) overruled the assumption of normal

distribution (P,0.05) and logarithmic data transformation satisfied

the assumptions. In the case of a significant interaction, post-hoc

pair wise comparison of means was done using Tukey-Karmer

test.

Results

Feed intake and growth
Feed intake (in g fish21 d21, g DM fish21 d21, % d21, and

g DM kg20.8 d21), growth (in g d21 and g kg20.8 d21), and feed

gain ratio (FGR) were significantly affected by the P/E ratio and

by the NPE source of the diet with a highly significant interaction

between both factors (Table 2).

Within HP/E and LP/E groups, feed intakes were affected by the

type of NPE, being lower in trout fed carbohydrate relative to fat

as NPE source. The effect of NPE source on FI was greater with

LP/E diets (,20% difference) than with HP/E diets (,11%

difference); with lowest intakes registered in trout fed the LP/EC

diet (11.6 g DM kg20.8 d21). Trout fed the diets containing fat as

NPE source, i.e. HP/EF (16.6 g DM kg20.8 d21) and LP/EF

(15.4 g DM kg20.8 d21) had similar dry matter intakes, irrespec-

tive of P/E ratio. Intakes of trout fed the diets with carbohydrate

as NPE source were lower at low than at high P/E ratio. At high

P/E ratio, growth (g kg20.8 d21) was not significantly different

between groups fed diet HP/EF and HP/EC, despite their different

feed intakes. At low P/E intake, growth was lower in trout fed

carbohydrate (LP/EC) relative to fat (LP/EF) as NPE source. The

Control of Feed Intake in Rainbow Trout
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lowest growth was found in fish fed diet LP/EC (7.9 g kg20.8 d21),

being 1.6 times lower than that of the LP/EF group. Remarkably,

growth of trout fed the LP/EF diet (with only DP/DE of

14 mg kJ21) did not differ significantly from that of fish fed diet

HP/EC (with DP/DE of 26 mg kJ21). The FGR was also affected

by a significant interaction between both factors (NPE source and

P/E ratio), being higher in trout fed carbohydrate compared to fat

at the low P/E ratio, but not at the high P/E ratio at which FGR

was not affected by the NPE source.

Body composition
The initial and final body compositions of the trout are shown in

Table 3. Except for dry matter, other parameters (protein, fat, ash,

and energy) of final body composition were affected (P,0.01) by

P/E ratio of diet. Similarly, NPE source of diet affected (P,0.01)

all parameters except protein and ash. There was no significant

interaction between both effects on final body composition, except

for ash content. Whole body protein content of fish fed LP/E diets

was about 11% lower than in those fed with HP/E diets (P,0.001).

Compared to initial body protein content, fish fed with LP/E diets

had 7.5% lower protein content. Final body fat content increased

in all groups compared to initial body fat content. Whole body fat

content was 24% significantly higher in trout fed with LP/E diets

(low P/E ratio) and 44% higher in groups fed diets containing fat

as NPE source (P,0.01).

Nitrogen, fat and energy balance
Table 4 presents the apparent nutrient and energy digestibility

coefficients (ADC) used to calculate parameters of nitrogen, fat

and energy balance presented in Table 5. Digestible nutrient

intakes in terms of digestible nitrogen intake (DNI), digestible fat

intake (DFI) and DEI were different between the dietary groups.

DNI was affected (P,0.001) by P/E ratio and the source of NPE

without interaction between both factors (P.0.3). The DNI was

54% higher with HP/E than LP/E diets and 18% lower in diets

with carbohydrate compared to fat as NPE source. Despite the

differences in DNI between both HP/E diets, RN was similar in

trout fed the HP/EF and HP/EC diets. However, with LP/E diets,

retained nitrogen (RN) differed significantly in line with their

DNI. DFI was affected (P,0.05) by the interaction between P/E

ratio and NPE source of diet, being the lowest and the highest

respectively in HP/EC and LP/EF diets. In contrast to DFI,

retained fat (RF) was only influenced by the dietary NPE source,

with 46% higher RF in trout fed fat relative to carbohydrate

diets.

The amount of voluntary DEI, as supplied from the different

dietary macronutrients, is shown in Fig. 1. The DEI paralleled

dry matter intake, showing a significant interaction between

dietary P/E ratio and NPE source (Table 5). The lowest DEI

were observed in LP/EC fed groups, whereas DEI of trout fed

diet LP/EF were not significantly different from those in HP/E

groups. There was no significant difference in metabolisable

energy intake (MEI) between HP/EF and LP/EF groups, both

being higher than in groups fed carbohydrate as NPE source.

However, retained energy (RE) was different and significantly

affected by both P/E ratio and NPE source of diet, being lower

in trout fed LP/E- relative to HP/E-diets and in trout fed

carbohydrate relative to fat as NPE source. Although DEI and

RE was different, the total heat production (H) was unaffected

(P.0.05) by the P/E ratio, the NPE source and their interaction

(Fig. 2).

Table 2. Voluntary feed intake and growth performance of rainbow trout fed the experimental diets for 6 weeks1.

Diets2 P- value

HP/EF HP/EC LP/EF LP/EC Pooled SEM P/E ratio NPE source P/E6NPE

Growth period (d) 42 42 42 42 - - - -

No. of tanks 3 3 3 3 - - - -

No. of fish/tank 35 35 35 35 - - - -

Survival (%) 98.1 98.1 96.2 89.5 1.90 0.025 0.118 0.118

Initial body weight (g) 32.4 32.5 32.3 32.4 0.35 0.792 0.792 1.000

Final body weight (g) 103.7a 96.6ab 84.4b 59.5c 3.26 ,0.001 0.001 0.025

Feed intake (FI)

FI as fed (g fish21 d21) 1.82a 1.59b 1.53b 1.00c 0.044 ,0.001 ,0.001 0.010

FIPCT (% d21) 2.9a 2.6b 2.8ab 2.2c 0.05 ,0.001 ,0.001 0.018

FIABS (g DM fish21 d21) 1.70a 1.46b 1.45b 0.95c 0.042 ,0.001 ,0.001 0.013

FIMBW (g DM kg 20.8 d21) 16.6a 14.7b 15.4ab 11.6c 0.29 ,0.001 ,0.001 0.012

Growth

Absolute (g d21) 1.70a 1.53ab 1.24b 0.65c 0.078 ,0.001 0.001 0.026

GRMBW (g kg20.8 d21) 16.5a 15.3ab 13.2b 7.9c 0.60 ,0.001 ,0.001 0.009

DGC 3.6a 3.3ab 2.9b 1.8c 0.13 ,0.001 ,0.001 0.008

FGR (DM intake/wt.gain) 1.01a 0.96a 1.17b 1.48c 0.037 ,0.001 0.008 0.001

DM, dry matter; FIPCT, Feed intake per percentage body weight; FIABS, Absolute feed intake; FIMBW, Feed intake per metabolic body weight; DGC, Daily growth
coefficient; FGR, Feed gain ratio.
1Values represent least squares (LS) means (n = 3), row means with different superscript letters were significantly different and assigned only if interaction effect was
significant (P,0.05).
2HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E
ratio diet with fat as main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-protein energy source.
doi:10.1371/journal.pone.0034743.t002
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Post-prandial glucose and triglyceride circulating levels
Figure 3 depicts the 7 h post-prandial plasma glucose and

triglyceride (TAG) levels in rainbow trout fed the four experi-

mental diets. The plasma glucose (g L21) was affected (P,0.001)

by the dietary P/E ratio, NPE source and their interaction. Plasma

glucose being higher in trout fed the LP/E compared to HP/E diets.

The effect of NPE source on plasma glucose was significantly

greater with the LP/E diets than HP/E diets. HP/EF and HP/EC diet

showed similar plasma glucose levels and fish fed LP/EC diet

attained the highest glucose levels. In contrast, TAG levels were

affected by the NPE source (P = 0.037), being higher in trout fed

fat vs. carbohydrate, but not (P.0.05) by the P/E ratio. There was

no interaction between P/E ratio and NPE source on plasma

TAG.

Discussion

In the present study, voluntary FI paralleled DEI due to the

similar DE contents of the formulated diets. FI in rainbow trout as

in several other fish species has been reported to be regulated by

the total DE content of the diet [3,4]. The present data show that

under satiation feeding conditions, rainbow trout consumed

different amounts of DE, depending on the diet composition.

These findings agree with previous reports in rainbow trout

[11,12,22], highlighting the controversy on whether FI is adjusted

to maintain a constant DEI in fish. In addition, these findings

further suggest the involvement of dietary or physiological factors

other than dietary DE content alone in the regulation of FI.

Independent of dietary DE level, FI has been shown to be

directed by the animal’s genetic growth potential in such a way

that the animal will attempt to eat as much of a feed as needed to

fulfil the nutrient requirements for achieving its (maximal) growth

potential [23]. In this respect, intakes of specific nutrients such as

protein have been shown to be separately regulated from energy

intake, as shown in pig [24], poultry [25] and rat [26]. As a result,

an excess of energy is ingested with low protein diets while an

energy deficit may occur with high protein diets. Also fish have

been reported to show hyperphagia and over-consume DE to

compensate for reduced dietary protein as seen in Atlantic salmon

[13]. In contrast, protein levels above optimum do not seem to

down-regulate DEI in rainbow trout [11] in line with findings in

mammalian carnivores used to deal with high protein intakes

[27,28]. The present low P/E (LP/E) and high P/E (HP/E) diets

provided respectively 14 and 26 mg of digestible protein per kJ DE

being, respectively, above and below the optimal DP/DE ratio of

17–19 mg kJ21 [29] or 21 mg kJ21 [30] for rainbow trout.

Table 3. Effect of dietary treatments on final body composition (on fresh weight basis) of rainbow trout fed the experimental diets
for 6 weeks1.

Final body composition

Unit in g kg21
Initial body
composition Diets2 P- value

HP/EF HP/EC LP/EF LP/EC Pooled SEM P/E ratio NPE source P/E6NPE

Dry matter (DM) 220 278 251 285 257 4.1 0.125 ,0.001 0.871

Protein 153 156 162 143 140 3.4 ,0.001 0.632 0.263

Fat 34 94 61 111 81 3.9 0.001 ,0.001 0.684

Ash 26 21a 21a 19b 20ab 0.5 0.008 0.223 0.042

Energy (kJ g21) 5.0 7.5 6.3 8.1 6.8 0.16 0.015 ,0.001 0.913

1Values represent least squares (LS) means (n = 3), row means with different superscript letters were significantly different and assigned only if interaction effect was
significant (P,0?05).
2HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E
ratio diet with fat as main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-protein energy source.
doi:10.1371/journal.pone.0034743.t003

Table 4. Apparent nutrient digestibility coefficient (%; ADC) in rainbow trout fed with four experimental diets1.

Diets2 P- value

Unit in % HP/EF HP/EC LP/EF LP/EC Pooled SEM P/E ratio NPE source P/E6NPE

Dry matter (DM) 72.7a 83.8b 73.7a 80.1b 0.88 0.156 ,0.001 0.027

Protein 95.5 95.9 96.1 95.2 0.24 0.750 0.338 0.028

Fat 96.7a 89.0b 95.8a 96.7a 0.38 ,0.001 ,0.001 ,0.001

Total carbohydrates3 23.0a 76.4b 56.3c 74.0b 2.03 ,0.001 ,0.001 ,0.001

Ash 34.0 36.5 32.7 33.8 1.99 0.346 0.396 0.709

Energy3 82.0a 88.7b 82.1a 85.7c 0.64 0.053 ,0.001 0.040

1Values represent least squares (LS) means (n = 3), row means with different superscript letters were significantly different and assigned only if interaction effect was
significant (P,0?05).
2HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E
ratio diet with fat as main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-protein energy source.
3ADC of total carbohydrates and energy includes the effect of the added cellulose (indigestible) in diets HP/EF and LP/EF.
doi:10.1371/journal.pone.0034743.t004
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Table 5. Nitrogen, fat and energy balance in rainbow trout fed the experimental diets for 6 weeks1.

Diets2 P- value

HP/EF HP/EC LP/EF LP/EC Pooled SEM P/E ratio NPE source P/E6NPE

Nitrogen balance (mg N kg20.8 d21)

GNI 1384 1204 680 484 15.1 ,0.001 ,0.001 0.593

FN 62.1 49.2 26.7 23.3 2.6 ,0.001 0.011 0.103

DNI 1240 1068 620 437 13.7 ,0.001 ,0.001 0.393

BUN 905a 748b 367c 304c 16.3 ,0.001 ,0.001 0.021

RN 417a 408a 287b 157c 12.9 ,0.001 ,0.001 0.002

Fat balance (mg kg20.8 d21)

GFI 2532a 501b 3198c 1661d 55.8 ,0.001 ,0.001 0.002

FF 84a 55a 136b 55a 7.2 0.005 ,0.001 0.004

DFI 2448a 446b 3062c 1606d 56.8 ,0.001 ,0.001 0.001

RF 2011 1133 2093 1072 101 0.919 ,0.001 0.496

RF/DF 0.83 2.54 0.68 0.67 - - - -

Energy balance (kJ kg20.8 d21)

GEI 380 303 352 246 6.6 ,0.001 ,0.001 0.055

FE 68 34 63 35 1.9 0.278 ,0.001 0.133

DEI 311a 269b 289ab 211c 6.7 ,0.001 ,0.001 0.027

BUE 22a 19b 9c 7c 0.4 ,0.001 ,0.001 0.021

MEI 288a 250b 280a 203c 6.5 0.003 ,0.001 0.018

RE 144 107 131 70 6.1 0.003 ,0.001 0.083

SEM, Standard error mean; GNI, Gross nitrogen intake; FN, Faecal nitrogen loss; DNI, Digestible nitrogen intake; BUN, Branchial and urinary nitrogen loss; RN, Retained
nitrogen; GFI, Gross fat intake; FF, Faecal fat loss; DFI, Digestible fat intake; RF, retained fat; RF/DF, fat efficiency; GEI, Gross energy intake; FE, faecal energy loss; DEI,
digestible energy intake; BUE, branchial and urinary energy loss; MEI, metabolisable energy intake; RE, retained energy.
1Values represent least squares (LS) means (n = 3), row means with different superscript letters were significantly different and assigned only if interaction effect was
significant (P,0?05).
2HP/EF - High P/E ratio diet with fat as main non-protein energy source; HP/EC - High P/E ratio diet with carbohydrate as main non-protein energy source; LP/EF - Low P/E
ratio diet with fat as main non-protein energy source; LP/EC - Low P/E ratio diet with carbohydrate as main non-protein energy source.
doi:10.1371/journal.pone.0034743.t005

Figure 1. Effect of diet composition on digestible energy intake (DEI) in rainbow trout. Fish were fed to satiation with iso-energetic diets
of different macronutrient composition having contrast in P/E ratio (high, HP/E vs. low, LP/E) and NPE source (fat, F vs. carbohydrates, C) for 6 weeks.
The bars show the amount of DEI derived from the digestible protein, fat and total carbohydrate (nitrogen-free extract) for each dietary group.
Different superscripts indicate significant differences in total DEI.
doi:10.1371/journal.pone.0034743.g001
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However, the similar or even decreased DEI in LP/E- compared

with the HP/E-groups show that the trout fed the low P/E diets did

not ‘over-eat’ energy to compensate for the reduced protein. In

both cases, this resulted in lower digestible nitrogen intake (DNI)

as well as lower weight and protein (RN) gain than with the high

P/E diets.

According to the lipostatic theory of FI regulation [31], the

failure of the trout fed LP/E diets to increase DEI and hence

compensate DNI may be caused by the higher relative level of

body fatness of fish fed the LP/E compared with HP/E diets. The

negative effect of high body fat content on FI or DEI [31],

mediated through the feedback mechanism of leptin is well

documented in mammals [32]. Adipostatic feedback control of FI

has also been reported to occur in salmonid fish [29,33,34].

However, diet-induced increases in the relative level of adiposity,

which moreover varies depending on body size [35], did not

necessarily reduce appetite or energy intakes in rainbow trout

[11,36]. Similarly, the observation of similar DEI in trout fed

HP/EC and LP/EF diets, despite the difference in adiposity (61 and

111 g kg21, respectively), suggests a low feedback control of

relative body fatness on DEI.

Interestingly, rainbow trout reduced intakes following the iso-

energetic substitution of fat by carbohydrate, irrespective of the

dietary P/E ratio. This might be due to physical constraints as the

volume of feed a fish can eat depends on the stomach capacity and

gut evacuation rate [37,38]. The expansion of starch during feed

extrusion reduces the bulk density of the pellets. As such, the lower

density of diet LP/EC possibly limited the amount of FI during the

first meals, but unlikely affected the long term (weeks) FI, as fish

are known to increase stomach volume when fed high-bulk diets

[39]. In addition, gut evacuation rate and hence the return of

appetite are expected to be enhanced by the relatively high (16uC)

water temperature [40]. Another factor susceptible to reduce FI

following the substitution of fat by carbohydrate is increased

plasma glucose. The glucostatic theory implies that FI is controlled

to maintain glucose homeostasis in blood through a feedback

mechanism signaled by both hypothalamus and liver [41]. Thus,

an increase or decrease in blood glucose level leads respectively to

a down- or up-regulation of FI. Evidence in fish on glucostatic

control of FI is highly ambiguous. For instance, high plasma

glucose was found to either increase [42] or decrease [43,44] FI in

fish. Our data on the relation between FI and plasma glucose also

appear inconsistent as the substitution of fat by carbohydrate

either increased (LP/E-groups) or unmodified (HP/E-groups)

plasma glucose, whereas this led to reduced intakes in both

groups. Moreover, voluntary FI between HP/EC and LP/EF groups

Figure 2. Effect of diet composition on heat production in rainbow trout. Heat production (H; least squares mean 6 SD) in rainbow trout
fed to satiation the iso-energetic diets of different macronutrient composition having contrast in P/E ratio (high, HP/E vs. low, LP/E) and NPE source (fat,
F vs. carbohydrates, C). H was unaffected by P/E ratio, NPE source and their interaction effect (P.0.05).
doi:10.1371/journal.pone.0034743.g002

Figure 3. Effect of diet composition on post-prandial plasma
glucose and triglycerides in rainbow trout. Seven hours post-
prandial plasma levels (least squares mean 6 SD) of glucose and
triglycerides (TAG) of rainbow trout fed diets having contrast in P/E
ratio and NPE source. Glucose was affected by dietary P/E ratio, NPE
source and their interaction (P,0.001). In contrast, TAG levels were
affected only by the NPE source (P = 0.003) and not by P/E ratio and
their interaction effect (P.0.05).
doi:10.1371/journal.pone.0034743.g003
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were not significantly different, despite the differences in

circulating plasma glucose.

Rather than a direct glucostatic or lipostatic feedback control of

FI, some studies in mammals suggest that it is the overall metabolic

utilization of the ingested nutrients which signals satiety and hence

determines FI [45,46,47]. In other words, the degree of nutrient

oxidation rather than the ingested amount of dietary energy per se

would generate satiety [48]. In fish, the question whether and how

dietary energy utilization (energy retention vs. expenditure/heat

production) regulates the amount of DEI has received little

attention. Interestingly, the energy balance of the present trout

revealed no significant difference in heat production (133–

149 kJ kg20.8 d21) between fish of the different treatments,

whereas the amount of energy retained (70–144 kJ kg20.8 d21)

and DEI (211–311 kJ kg20.8 d21) were strongly affected by the

dietary DE source. This confirms previous findings in Nile tilapia

fed to satiation with diets varying in macronutrient supply and

supports the hypothesis that heat production may set a limit to

voluntary FI [16]. This was also suggested in the very early works

of Brobeck [49] in mammalian models, reporting that the

important factor in FI regulation is not the food’s energy value,

but rather the amount of extra heat released during its

assimilation. Further studies with homoeothermic vertebrates

confirmed the relation between heat production and FI, yet

mostly in relation with ambient temperature [50]. Homoeother-

mic animals, when exposed to ambient temperature above the

upper critical temperature, lower FI in order to avoid the excess

heat production caused by the thermic effect of feeding [50]. As

such, the extent to which the animal is able to dissipate heat to the

environment will determine how much it will eat, as shown in pig

[51] and broiler [52]. Since fish do not maintain constant body

temperature, the amount of heat to be dissipated to the

environment is not expected to control FI in fish in the same

way as in homeotherms. Therefore, other more basic metabolic

processes involved in heat production, shared by both homeo- and

ectotherms, such as aspects related with oxygen use, may be

implicated in the dietary control of FI in fish.

Theoretically, the amount of heat production by aerobic

metabolism in animals parallels the amount of oxygen consumed

[53]. In mammals, several studies pointed at the difference

between macronutrients in their contribution to oxidative

metabolism and how these may relate to satiety [46,48]. In this

respect, satiety and hence dietary FI control have been associated

with the degree of hepatic oxidative metabolism [54,55] or the

efficiency of oxygen use [56]. The comparison of the heat

production values observed in the present study (133–149 kJ/

kg0.8/d) with values calculated (i.e., H = MEI-RE) from literature

for rainbow trout fed to satiation (e.g., 107 [57], 77–91 [58], 93–

112 [59], 160 [60] and 103–112 [61] kJ/kg0.8/d), shows our values

to be in the upper range, even after adjusting for the effect of

temperature (positive curvilinear relationship between both

variables, Figure 4). The present finding that heat production

was similar irrespective of dietary composition in trout kept under

normoxic condition, suggests that the DEI control in fish is a

function of heat production. This might reflect a physiological

limit related to oxidative metabolism. Various biological constrains

might cause such a limit in fish even under normoxic water

condition. For instance, the capacity of oxygen uptake by the fish

(e.g. gill surface [16]), the capacity of oxygen transport (e.g. cardiac

performance, hemoglobin affinity for O2) and/or constraints in

oxidative metabolism at cellular level (e.g. mitochondrial respira-

tion, production of reactive oxygen species). Measurements of

oxygen consumption data are needed to further elucidate the role

and possible limits set by heat production/oxidative metabolism

on DEI. Therefore, ongoing studies in our laboratories further

explore the relation between macronutrient-induced changes in

feed/nutrient intake and oxygen consumption as well as the link

with hepatic oxidative metabolism and hypothalamic satiety

markers.

In conclusion, the present study demonstrates that the

macronutrient composition of the diet modifies voluntary DEI in

Figure 4. Relation between water temperature (T, 6C) and heat production in rainbow trout fed to satiation. The heat production
values (H, kJ kg20.8 d21) are calculated for rainbow trout fed to satiation from literature data [57,58,59,60,61] and from the present study. H was
curvilinearly related to temperature, H = 26.66e0.09236T, R2 = 0.73.
doi:10.1371/journal.pone.0034743.g004
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rainbow trout. The observation that the rainbow trout had similar

heat production, together with different DEI, is in line with the

proposed hypothesis that DEI in fish might be controlled as a

function of heat production, which might reflect a physiological

limit related to oxidative metabolism.
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