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Advanced Electrical Theory 

Topics 
1.0.0 AC Generation 

2.0.0 Inductive Circuit 
3.0.0 Capacitive Circuit 

4.0.0 Reactance and Impedance 
5.0.0 LC and RLC Circuits 

6.0.0 Power in AC Circuits 
7.0.0 Power Factor 

 

Overview 
Your knowledge, understanding, and application of advanced electrical theory are very 
important for the safe conduct and completion of your job as a Construction Electrician. 
Upon completion of this chapter you should have an understanding of electrical theory 
in regards to alternating current circuits and power within those circuits. As a 
Construction Electrician, you need the knowledge of the concepts and principles when 
dealing with alternating and direct current as you apply electrical and electronic theory 
in your everyday duties. 
 

Objectives 
When you have completed this chapter, you will be able to do the following: 

1. Understand Alternating Current (AC) generation. 
2. Understand the principles of an inductive circuit. 
3. Understand the principles of a capacitive circuit. 
4. Understand the principles of a resistive circuit. 
5. Understand the principles of inductive capacitor circuit (LC) and resistor inductor capacitor 

circuit (RLC). 
6. Understand the power in alternating current (AC) circuits. 
7. Understand the meaning of power factor. 
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Prerequisites 

This course map shows all of the chapters in Construction Electrician Advanced. The 
suggested training order begins at the bottom and proceeds up. Skill levels increase as 
you advance on the course map. 

 
 
Features of this Manual 
This manual has several features which make it easy to use online. 

• Figure and table numbers in the text are italicized. The figure or table is either next to or below 
the text that refers to it. 

• The first time a glossary term appears in the text, it is bold and italicized. When your cursor 
crosses over that word or phrase, a popup box displays with the appropriate definition. 

• Audio and video clips are included in the text, with italicized instructions telling you where to 
click to activate it. 

• Review questions that apply to a section are listed under the Test Your Knowledge banner at 
the end of the section. Select the answer you choose. If the answer is correct, you will be taken 
to the next section heading. If the answer is incorrect, you will be taken to the area in the 
chapter where the information is for review. When you have completed your review, select 
anywhere in that area to return to the review question. Try to answer the question again. 

• Review questions are included at the end of this chapter. Select the answer you choose. If the 
answer is correct, you will be taken to the next question. If the answer is incorrect, you will be 
taken to the area in the chapter where the information is for review. When you have 
completed your review, select anywhere in that area to return to the review question. Try to 
answer the question again. 
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1.0.0 ALTERNATING CURRENT (AC) GENERATION 

 
A current-carrying conductor produces a magnetic field around itself. When a conductor is in a 
magnetic field and either the field or the conductor moves, an electromagnetic field (emf) (voltage) is 
induced in the conductor. This effect is called electromagnetic induction. Figures 1-1 and 1-2 show a 
suspended loop of wire (conductor) being rotated (moved) in a clockwise direction through the 
magnetic field between the poles of a permanent magnet. For ease of explanation, the loop has been 
divided into a dark half and light half. Notice in (A) of Figure 1-1, View A that the dark half is moving 
along (is parallel to) the lines of force. Consequently, it is cutting NO lines of force. The same is true of 
the light half, which is moving in the opposite direction. Since the conductors are cutting no lines of 
force, no emf is induced. As the loop rotates toward the position shown in (B), it cuts more and more 
lines of force per second which induces an everincreasing voltage, because it is cutting more directly 
across the field (lines of force). At (B), the conductor is shown completing one-quarter of a complete 
revolution, or 90°, of a complete circle. Because the conductor is now cutting directly across the field, 
the voltage induced in the conductor is maximum. When the value of induced voltage at various points 
during the rotation from (A) to (B) is plotted on a graph and the points connected, a curve appears 
(Figure 1-2). 

 
Figure 1-1 – Simple alternating-current generator. 

 
As the loop continues to be rotated toward the position shown in (C) of Figure 1-2, it cuts fewer and 
fewer lines of force. The induced voltage decreases from its peak value. Eventually, the loop is once 
again moving in a plane parallel to the magnetic field, and no emf is induced in the conductor. The loop 
has now been rotated through half a circle, one alternation or 180°. If the preceding quarter-cycle is 
plotted, it appears as shown in Figure 1-2. 
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Figure 1-2 — Basic alternating-current generator. 

 
When the same procedure is applied to the second half of rotation (180° through 360°), the curve 
appears (Figure 1-2). Notice the only difference is in the polarity of the induced voltage. Where 
previously the polarity was positive, it is now negative. The sine curve shows the value of induced 
voltage at each instant of time during rotation of the loop. Notice that this curve contains 360°, or two 
alternations. Two alternations represent one complete cycle of rotation. 
 
Assuming a closed path is provided across the ends of the conductor loop, you can determine the 
direction of current in the loop by using the left-hand rule for generators (Figure 1-3). The left-hand 
rule is applied as follows: 

• Place your left hand on Figure 1-3 with the fingers in the direction shown in the illustration. 
Your thumb will now point in the direction of rotation (relative movement of the wire to the 
magnetic field) 

• Your forefinger will point in the direction of magnetic flux (north to south) 

• Your middle finger (pointing back toward you) will point in the direction of electron current 
flow. 
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Figure 1-3 – Left-hand rule for generators. 

 
By applying the left-hand rule to the dark half of the loop in (B) of Figure 1-2, you will find that the 
current flows in the direction indicated by the heavy arrow. Similarly, by using the left-hand rule on the 
light half of the loop, you will find that the current flows in the opposite direction. The two induced 
voltages in the loop add together to form one total emf. It is this emf which causes the current in the 
loop. 
 
When the loop rotates to the position shown in (D) of Figure 1-2, the action reverses. The dark half is 
moving up instead of down, and the light half is moving down instead of up. By applying the left-hand 
rule once again, you will see that the total induced emf and its resulting current have reversed 
direction. The voltage builds up to maximum in this new direction, as shown by the sine curve in Figure 
1-2. The loop finally returns to its original position (E), at which point voltage is again zero. The sine 
curve represents one complete cycle of voltage generated by the rotating loop. All of the figures in this 
section show the wire loop moving in a clockwise direction. In actual practice, the loop can be moved 
clockwise or counterclockwise. Regardless of the direction of movement, the left-hand rule applies. 
 
If the loop is rotated through 360° at a steady rate, and if the strength of the magnetic field is uniform, 
the voltage produced is a sine wave of voltage, as indicated in Figure 1- 3. Continuous rotation of the 
loop will produce a series of sine-wave voltage cycles or, in other words, an ac voltage. 
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1.1.0 Sine Wave 
An individual cycle of any sine wave represents a definite amount of time. Notice that Figure 1-4 shows 
2 cycles of a sine wave which has a frequency of 2 hertz (Hz). Since two cycles occur each second, one 
cycle must require one-half second of time. The time required to complete one cycle of a waveform is 
called the period of the wave. In Figure 1-4, the period is one-half second. The relationship between 
time (t) and frequency (f) is indicated by the following formulas: 

 
where t = period in seconds and 

f = frequency in hertz 
 
Each cycle of the sine wave shown in Figure 1-4 consists to two identically shaped variations in voltage. 
The variation which occurs during the time the voltage is positive is called the positive alternation. The 
variation which occurs during the time the voltage is negative is called the negative alternation. In a 
sine wave, the two alternations are identical in size and shape, but opposite in polarity. 
 
The distance from zero to the maximum value of each alternation is called the amplitude. The 
amplitude of the positive alternation and the amplitude of the negative alternation are the same.  
 
The time it takes for a sine wave to complete one 
cycle is defined as the period of the waveform. 
The distance traveled by the sine wave during 
this period is referred to as wavelength. 
Wavelength, indicated by the symbol λ (Greek 
lambda), is the distance along the waveform 
from one point to the same point on the next 
cycle. You can observe this relationship by 
examining Figure 1-5. The point on the waveform 
where measurement of the wavelength begins is 
not important as long as the distance is 
measured to the same point on the next cycle 
(Figure 1-6). 
 
 
 

Figure 1-4 — Period of a sine wave. 
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Figure 1-5 – Wavelength. 

  

Figure 1-6 – Wavelength measurement. 

 
1.2.0 Frequency 
If the loop in the Figure 1-2 (A) makes one complete revolution each second, the generator produces 
one complete cycle of ac during each second (1 Hz). Increasing the number of revolutions to two per 
second will produce two complete cycles of ac per second (2 Hz). The number of complete cycles of 
alternating current or voltage completed each second is referred to as the frequency. Frequency is 
always measured and expressed in hertz. 
 
Alternating-current frequency is an important term to understand since most ac electrical equipments 
require a specific frequency for proper operation. 
 

1.3.0 Peak Value 
Figure 1-7 shows the positive alternation of a sine wave (a half-cycle of ac) and a dc waveform that 
occur simultaneously. Note that the dc starts and stops at the same moment as does the positive 
alternation, and that both waveforms rise to the same maximum value. However, the dc values are 
greater than the corresponding ac values at all points except the point at which the positive alternation 
passes through its maximum value. At this point the dc and ac values are equal. This point on the sine 
wave is referred to as the maximum or peak value. 
 

During each complete cycle of ac there are always two 
maximum or peak values, one for the positive half-cycle 
and the other for the negative half-cycle. The difference  
 
 
 
 
 
 
 
Figure 1-7 – Maximum or peak value. 
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between the peak positive value and the peak negative value is 
called the peak-topeak value of the sine wave. This value is twice 
the maximum or peak value of the sine wave and is sometimes used 
for measurement of ac voltages. Note the difference between peak 
and peak-to-peak values (Figure 1-8). Usually alternating voltage 
and current are expressed in effective values, which will be disussed 
later, rather than in peak-to-peak values.  
 

1.3.1 Instantaneous Value 
The instantaneous value of an alternating voltage or current is the 
value of voltage or current at one particular instant. The value may 
be zero if the particular instant is the time in the cycle at which the 
polarity of the voltage is changing. It may also be the same as the 
peak value if the selected instant is the time in the cycle at which 
the voltage or current stops increasing and starts  decreasing.   Figure 1-8 – Peak and peak- 

topeak values. 
 
There are actually an infinite number of instantaneous  
values between zero and the peak value. 
 

1.4.0 Effective Value 
Emax, Eavg, Imax, and Iavg are values used in ac measurements. Another value used is the effective 
value of ac. This is the value of alternating voltage or current that will have the same effect on a 
resistance as a comparable value of direct voltage or current will have on the same resistance. 
 
Recall that when current flows in a resistance, heat is produced. When direct current flows in a 
resistance, the amount of electrical power converted into heat equals I2R watts. However, since an 
alternating current having a maximum value of one ampere does not maintain a constant value, the 
alternating current will not produce as much heat in the resistance as will a direct current of one 
ampere. 

 
Figure 1-9 – Heating effect of ac and dc. 
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Figure 1-9 compares the heating effect of one ampere of dc to the heating effect of one ampere of ac. 
Examine Views A and B of Figure 1-9 and notice that the head (70.7° C) produced by one ampere of 
alternating current (an ac with a maximum value of one ampere) is only 70.7 percent of the heat (100° 
C) produced by one ampere of direct current. Mathematically that is: 
 

 
 
Therefore, for effective value of ac (I eff) = 0.707 X I max.  
 
The rate at which heat is produced in a resistance forms a convenient basis for establishing an effective 
value of alternating current, and is known as the “heating effect” method. An alternating current is said 
to have an effective value of one ampere when it produces heat in a given resistance at the same rate 
as does one ampere of direct current. 
 
You can compute the effective value of a sine wave of current to a fair degree of accuracy by taking 
equally-spaced instantaneous values of current along the curve and extracting the square root of the 
average sum of the squared values.  For this reason, the effective value is often called the “root-mean-
square” (rms) value. Thus, 

 
 
Stated another way, the effective or rms value (I eff) of a sine wave of current is 0.707 times the 
maximum value of current (I max). Thus, I eff = 0.707 X I max. When I eff is known, you can find I max 
by using the formula I max = 1.414 X I eff. You might wonder where the constant 1.414 comes from. To 
find out, examine Figure 1-9 again and read the following explanation. Assume that the dc in Figure 1-9 
(A) is maintained at one ampere and the resistor temperature at 100° C. Also assume that the ac in 
Figure 1-9 (B) is increased until the temperature of the resistor is 100° C. At this point it is found that a 
maximum ac value of 1.414 amperes is required in order to have the same heating effect as direct 
current. Therefore, in the ac circuit the maximum current required is 1.414 times the effective current. 
It is important for you to remember the above relationship and that the effective value (I eff) of any 
sine wave of current is always 0.707 times the maximum value (I max). 
 
Since alternating current is caused by an alternating voltage, the ratio of the effective value of voltage 
to the maximum value of voltage is the same as the ratio of the effective value of current to the 
maximum value of current. Stated another way, the effective or rms value (E eff) of a sine wave of 
voltage is 0.707 times the maximum value of voltage (E max). Thus, 
 

 or, E eff = 0.707 X E max and, E max = 1.414 X E eff 
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When an alternating current or voltage value is specified in a book or on a diagram, the value is an 
effective value unless there is a definite statement to the contrary. Remember that all meters, unless 
marked to the contrary, are calibrated to indicate effective values of current and voltage. 
 

1.5.0 Average Value 
The average value of an alternating current or voltage is the average of all the instantaneous values 
during one alternation. Since the voltage increases from zero to peak value and decreases back to zero 
during one alternation, the average value must be some value between those two limits. You could 
determine the average value by adding together a series of instantaneous values of the alternation 
(between 0° and 180°), and then dividing the sum by the number of instantaneous values used. The 
computation would show that one alternation of a sine wave has an average value equal to 0.636 
times the peak value. The formula for average voltage is Eavg = 0.636 X E max where E avg is the 
average voltage of one alternation, and E max is the maximum or peak voltage. Similarly, the formula 
for average current is I avg = 0.636 X I max where I avg is the average current in one alternation, and I 
max is the maximum or peak current.  Do not confuse the above definition of an average value with 
that of the average value of a complete cycle. Because the voltage is positive during one alternation 
and negative during the other alternation, the average value of the voltage values occurring during the 
complete cycle is zero. 
 

2.0.0 INDUCTIVE CIRCUIT 
 
The study of inductance presents a very challenging but rewarding segment of electricity. It is 
challenging in the sense that, at first, it will seem that new concepts are being introduced. You will 
realize as this chapter progresses that these “new concepts” are merely extensions and enlargements 
of fundamental principles that were previously introduced in CE Basic. The study of inductance is 
rewarding in the sense that a thorough understanding of it will enable you to acquire a working 
knowledge of electrical circuits more rapidly. 
 

2.1.0 Inductance 
Inductance is the characteristic of an electrical circuit that opposes the starting, stopping, or a change 
in value of current. The symbol for inductance is L and the basic unit of inductance is the Henry (H). 
One henry is equal to the inductance required to induce one volt in an inductor by a change of current 
of one ampere per second. 
 
You do not have to look far to find a physical analogy of inductance. Anyone who has ever had to push 
a heavy load (wheelbarrow, car, etc.) is aware that it takes more work to start the load moving that it 
does to keep it moving. Once the load is moving, it is easier to keep the load moving than to stop it 
again. This is because the load possesses the property of inertia. Inertia is the characteristic of mass 
which opposes a change in velocity. Inductance has the same effect on current in an electrical circuit as 
inertia has on the movement of a mechanical object. It requires more energy to start or stop current 
that it does to keep it flowing.  
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2.2.0 Inductive Reactance 
When the current flowing through an inductor continuously reverses itself, as in the case of an ac 
source, the inertia effect of the counter electromotive force (cemf) is greater than with dc. The greater 
the amount of inductance (L), the greater the opposition from this inertia effect. Also, the faster the 
reversal of current, the greater this inertial opposition. This opposing force which an inductor presents 
to the flow of alternating current cannot be called resistance, since it is not the result of friction within 
a conductor. The name given to it is inductive reactance because it is the “reaction” of the inductor to 
the changing value of alternating current. Inductive reactance is measured in ohms and its symbol is 
XL. 
 
As you learned already in this chapter, the induced voltage in a conductor is proportional to the rate at 
which magnetic lines of force cut the conductor. The greater the rate (the higher the frequency), the 
greater the cemf. Also, the induced voltage increases with an increase in inductance; the more 
ampere-turns, the greater the cemf. Reactance, then, increases with an increase of frequency and with 
an increase of inductance. The formula for inductive reactance is as follows: 
 

 
 
The following example problem illustrates the computation of XL.  
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Figure 1-10 – Voltage and current waveform in an inductive circuit. 
 
When two things are in step, going through a cycle together, falling together and rising together, they 
are in phase. When they are out of phase, the angle of lead or lag – the number of electrical degrees by 
which one of the values leads or lags the other – is a measure of the amount they are out of step. The 
time it takes the current in an inductor to build up to maximum and to fall to zero is important for 
another reason. It helps illustrate a very useful characteristic of inductive circuits - the current through 
the inductor always lags the voltage across the inductor.   
 
A circuit having pure resistance (if such a thing were possible) would have the alternating current 
through it and the voltage across it rising and falling together. This is illustrated in Figure 1-10 (A), 
which shows the sine waves for current and voltage in a purely resistive circuit having an ac source. 
The current and voltage do not have the same amplitude, but they are in phase. 
 
In the case of a circuit having inductance, the opposing force of the counter emf would be enough to 
keep the current from remaining in phase with the applied voltage. In a dc circuit containing pure 
inductance the current takes time to rise to maximum even though the full applied voltage is 
immediately at maximum. Figure 1-10 (B) shows the wave forms for a purely inductive ac circuit in 
steps of quarter-cycles. 
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2.3.0 Voltage and Current 
With an ac voltage, in the first quarter-cycle (0° to 90°) the applied voltage is continually increasing. If 
there was no inductance in the circuit, the current would also increase during this first quarter-cycle. 
You know this circuit does have inductance. Since inductance opposes any change in current flow, no 
current flows during the first quartercycle. In the next quarter-cycle (90° to 180°) the voltage decreases 
back to zero; current begins to flow in the circuit and reaches a maximum value at the same instant the 
voltage reaches zero. The applied voltage now begins to build up to maximum in the other direction, to 
be followed by the resulting current. When the voltage again reaches its maximum at the end of the 
third quarter-cycle (270°) all values are exactly opposite to what they were during the first half-cycle. 
The applied voltage leads the resulting current by one quarter-cycle or 90° degrees. To complete the 
full 360° cycle of the voltage, the voltage again decreases to zero and the current builds to a maximum 
value. 
 
You must not get the idea that any of these values stops cold at a particular instant. Until the applied 
voltage is removed, both current and voltage are always changing in amplitude and direction. 
 
As you know, the sine wave can be compared to a circle. Just as  you mark off a circle into 360 degrees,  
you can mark off the time of one cycle of a sine wave into 360 electrical degrees. This relationship is 
shown in Figure 1- 11. By referring to this figure you can see 
why the current in a purely inductive circuit is said to lag the 
voltage by 90 degrees. Furthermore, by referring to Figures 1-
11 and 1-10 (A) you can see why the current and voltage are 
said to be in phase in a purely resistive circuit. In a circuit 
having both resistance and inductance then, as you would 
expect, the current lags the voltage by an amount somewhere 
between 0 and 90 degrees. 
 
A simple memory aid to help you remember the relationship 
of voltage and current in an inductive circuit is the word ELI. 
Since E is the symbol of voltage, L is the symbol for 
inductance, and I is the symbol for current, the word ELI 
demonstrates that current comes after (Lags) voltage in an 
inductor. 
 
 

 
 
Figure 1-11 — Comparison of sine wave  

and circle in an inductive circuit. 
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3.0.0 CAPACITIVE CIRCUIT 
 
3.1.0 Capacitance 
Capacitance is the property of a circuit which opposes any 
change in the circuit voltage. The effect of capacitance may be 
seen in any circuit where the voltage is changing. Capacitance 
is usually defined as the ability of a circuit to store electrical 
energy. This energy is stored in an electrostatic field. The 
device used in an electrical circuit to store this charge (energy) 
is called a capacitor. The basic unit of measurement of 
capacitance is the farad (F). A one-farad capacitor will store 
one coulomb of charge (energy) when a potential of one volt 
is applied across the capacitor plates. The farad is an 
enormously large unit of capacitance. More practical units are 
the microfarad (μF) or the picofarad (pF).     Figure 1-12 – Example of  

capacitance opposing change  
in circuit voltage. 

3.1.1 Capacitor 
A capacitor is a physical device consisting of two pieces of conducting material separated by an 
insulating material. This insulating material is referred to as the dielectric. Because the dielectric is an 
insulator, no current flows through the capacitor. If the dielectric breaks down and becomes a 
conductor, the capacitor can no longer hold a charge and is useless. The ability of a dielectric to hold a 
charge without breaking down is referred to as the dielectric strength. The measure of the ability of 
the dielectric material to store energy is called the dielectric constant. The dielectric constant is a 
relative value based on 1.0 for a vacuum. 

 
3.2.0 Capacitive Reactance 
So far you have been dealing with the capacitor as a device which passes ac and in which the only 
opposition to the alternating current has been the normal circuit resistance present in any conductor. 
However, capacitors themselves offer a very real opposition to current flow. This opposition arises 
from the fact that, at a given voltage and frequency, the number of electrons which go back and forth 
from plate to plate is limited by the storage ability – that is, the capacitance of the capacitor. As the 
capacitance is increased, a greater number of electrons change plates every cycle, and since current is 
a measure of the number of electrons passing a given point in a given time, the current is increased. 
 
Increasing the frequency will also decrease the opposition offered by a capacitor. This occurs because 
the number of electrons which the capacitor is capable of handling at a given voltage will change plates 
more often. As a result, more electrons will pass a given point in a given time, resulting in greater 
current flow. The opposition which a capacitor offers to ac is therefore inversely proportional to 
frequency and to capacitance. This opposition is called capacitive reactance. You may say that 
capacitive reactance decreases with increasing frequency or, for a given frequency, the capacitive 
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reactance decreases with increasing capacitance. The symbol for capacitive reactance is XC. 
 
Now you can understand why it is said that the XC varies inversely with the product of 
the frequency and capacitance. The formula is: 

 
Where: 
XC is capactive reactance in ohms 
F is frequency in hertz 
C is capacitance in farads 
2π is 6.28 (2 x 3.1416) 
 
The following example problem illustrates the computation of XC 

 
 

3.3.0 Voltage and Current 

The four parts of Figure 1-13 show the variation of the alternating voltage and current in a capacitive 
circuit, for each quarter of one cycle. The solid line represents the voltage across the capacitor, and the 
dotted line represents the current. The line running through the center is the zero, or reference point, 
for both the voltage and the current. The bottom line marks off the time of the cycle in terms of 
electrical degrees. Assume that the ac voltage has been acting on the capacitor for some time before 
the time represented by the starting point of the sine wave in the figure. 
 
At the beginning of the first quarter-cycle (0° to 90°) the voltage has just passed through zero and is 
increasing in the positive direction. Since the zero point is the steepest part of the sine wave, the 
voltage is changing at its greatest rate. The charge on a capacitor varies directly with the voltage, and 
therefore the charge on the capacitor is also changing at its greatest rate at the beginning of the first 
quarter-cycle. In other words, the greatest number of electrons are moving off one plate and onto the 
other plate. Thus, the capacitor current is at it maximum value, as View A of Figure 1-13 illustrates. 
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Figure 1-13 – Phase relationship of voltage and current in a capacitive circuit. 

 
As the voltage proceeds toward maximum at 90 degrees, its rate of change becomes less and less, 
hence the current must decrease toward zero. At 90 degrees the voltage across the capacitor is 
maximum, the capacitor is fully charged, and there is no further movement of electrons from plate to 
plate. That is why the current at 90 degrees is zero. 
 
At the end of this first quarter-cycle the alternating voltage stops increasing in the positive direction 
and starts to decrease. It is still a positive voltage, but to the capacitor the decrease in voltage means 
that the plate which has just accumulated an excess of electrons must lose some electrons. The current 
flow, therefore, must reverse its direction. Figure 1-13, View B shows the current curve to be below the 
zero line (negative current direction) during the second quarter-cycle (90° to 180°). 
 
At 180 degrees the voltage has dropped to zero Figure 1-13, View C. This means that for a brief instant 
the electrons are equally distributed between the two plates; the current is maximum because the rate 
of change of voltage is maximum. Just after 180 degrees the voltage has reversed polarity and starts 
building up its maximum negative peak, which is reached at the end of the third quarter-cycle (180° to 
270°). During this third quarter-cycle the rate of voltage change gradually decreases as the charge 
builds to a maximum at 270 degrees. At this point the capacitor is fully charged and it carries the full 
impressed voltage. Because the capacitor is fully charged there is no further exchange of electrons; 
therefore, the current flow is zero at this point. The conditions are exactly the same as at the end of 
the first quarter-cycle (90°) but the polarity is reversed. 
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Just after 270 degrees the impressed voltage once again starts to decrease, and the capacitor must 
lose electrons from the negative plate. It must discharge, starting at a minimum rate of flow and rising 
to a maximum. This discharging action continues through the last quarter-cycle (270° to 360°) until the 
impressed-voltage has reached zero. At 360 degrees you are back at the beginning of the entire cycle, 
and everything starts over again. 
 

If you examine the complete voltage and current curves in Figure 1-13, View D, you will see that the 
current always arrives at a certain point in the cycle 90 degrees ahead of the voltage because of the 
charging and discharging action. You know that this time and place relationship between the current 
and voltage is called the phase relationship. The voltage-current phase relationship in a capactive 
circuit is exactly opposite to that in an inductive circuit. The current of a capacitor leads the voltage 
across the capacitor by 90 degrees. 
 
You realize that the current and voltage are both going through their individual cycles at the same time 
during the period the ac voltage is impressed. The current does not go through part of its cycle (charging or 
discharging), stop, and wait for the voltage to catch up. The amplitude and polarity of the voltage and the 
amplitude and direction of the current are continually changing. Their positions with respect to each other 
and to the zero line at any electrical instant, any degree between zero and 360 degrees, can be seen by 
reading upwards from the time-degree line. The current swing from the positive peak at zero degrees to 
the negative peak at 180 degrees is not a measure of the number of electrons, or the charge on the plates. 
It is a picture of the direction and strength of the current in relation to the polarity and strength of the 
voltage appearing across the plates. 

 
At times it is convenient to use the word ICE to recall to mind the phase relationship of the current and 
voltage in capacitive circuits. I is the symbol for current, and in the word ICE it leads, or comes before, 
the symbol for voltage, E. C, of course, stands for capacitor. This memory aid is similar to the ELI used 
to remember the current and voltage relationship in an inductor. The phrase ELI the ICE man is helpful 
in remembering the phase relationship in both the inductor and capacitor. 
 
Since the plates of the capacitor are changing polarity at the same rate as the ac voltage, the capacitor 
seems to pass an alternating current. Actually, the electrons do not pass through the dielectric, but 
their rushing back and forth from plate to plate causes a current flow in the circuit. It is convenient, 
however, to say that the alternating current flows “through” the capacitor. You know this is not true, 
but the expression avoids a lot of trouble when speaking of current flow in a circuit containing a 
capacitor. By the same short cut, you may say that the capacitor does not pass a direct current if both 
plates are connected to a dc source; current will flow only long enough to charge the capacitor. With a 
capacitor type of hookup in a circuit containing both ac and dc, only the ac will be “passed” on to 
another circuit. 
 
You have now learned two things to remember about a capacitor, which are that a capacitor will 
appear to conduct an alternating current and a capacitor will not conduct a direct current. 
 

4.0.0 REACTANCE and IMPEDANCE 
 
Up to this point inductance and capacitance have been explained individually in ac circuits. This section 
of the chapter will concern the combination of inductance, capacitance, and resistance in ac circuits.  
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To explain the various properties that exist within ac circuits, the 
series RLC circuit will be used. Figure 1-14 is the schematic 
diagram of the series RLC circuit. The symbol in Figure 1-14 that is 
marked E is the general symbol used to indicate an ac voltage 
source.  
 

4.1.0 Reactance 
The effect of inductive reactance is to cause the current to lag the 
voltage, while that of capacitive reactance is to cause the current 
to lead the voltage. Therefore, since inductive reactance and 
capacitive reactance are exactly opposite in their effects, what 
will be the result when the two are combined? It is not hard to 
see that the net effect is a tendency to cancel each other, with the combined effect then equal to the 
difference between their values. This resultant is called reactance; it is represented by the symbol X, 
and is expressed by the equation X = XL – XC or X = XC – XL. Thus, if a circuit contains 50 ohms of 
inductive reactance and 25 ohms of capacitive reactance in series, the net reactance, or X, is 50 ohms – 
25 ohms of inductive reactance. 
 
For a practical example, suppose you have a circuit containing an inductor of 100 µH in a series with a 
capacitor of .001 µF, and operating at a frequency of 4 MHZ. What is the value of net reactance, or X? 
 

 
  

Figure 1-14 – Series RLC circuit. 
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Now assume you have a circuit containing a 100 - µH inductor in series with a .0002 - 
µF capacitor, and operating at a frequency of 1 MHZ. What is the value of the resultant 
reactance in this case? 

 
 
You will notice that in this case the inductive reactance is smaller than the capacitive reactance and is 
therefore subtracted from the capacitive reactance. These two examples serve to illustrate an 
important point that when capacitive and inductive reactance are combined in series, the smaller is 
always subtracted from the larger and the resultant reactance always takes the characteristics of the 
larger. 
 

4.2.0 Impedance 
From your study of inductance and capacitance you know how inductive reactance and capacitive 
reactance act to oppose the flow of current in an ac circuit. However, there is another factor, the 
resistance, which also opposes the flow of the current. Since in practice ac circuits containing 
reactance also contain resistance, the two combine to oppose the flow of current. This combined 
opposition by the resistance and the reactance is called the impedance, and is represented by the 
symbol Z.  
 
Since the values of resistance and reactance are both given in ohms, it might at first seem possible to 
determine the value of the impedance by simply adding them together. It cannot be done so easily. 
You know that in an ac circuit which contains only resistance, the current and the voltage will be in 
step (that is, in phase), and will reach their maximum values at the same instant. You also know that in 
an ac circuit containing only reactance the current will either lead or lag the voltage by one-quarter of 
a cycle or 90 degrees. Therefore, the voltage in a purely reactive circuit will differ in phase by 90 
degrees from that in a purely resistive circuit, and for this reason reactance and resistance are not 
combined by simply adding them.  
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When reactance and resistance are combined, the value of the impedance will be greater than either. 
It is also true that the current will not be in step with the voltage nor will it differ in phase by exactly 90 
degrees from the voltage, but it will be somewhere between the in-step and the 90 degree out-of-step 
conditions. The larger the reactance compared with the resistance, the more nearly the phase 
difference will approach 90°. The larger the resistance compared to the reactance, the more nearly the 
phase difference will approach zero degrees. 
 
If the value of resistance and reactance cannot simply be 
added together to find the impedance, or Z, how is it 
determined? Because the current through a resistor is in step 
with the voltage across it and the current in a reactance 
differs by 90 degrees from the voltage across it, the two are at 
right angles to each other. They can therefore be combined by 
means of the same method used in the construction of a right-
angle triangle. 
 
Assume you want to find the impedance of a series 
combination of 8 ohms resistance and 5 ohms inductive 
reactance. Start by drawing a horizontal line, R, representing 8 
ohms resistance, as the base of the triangle. Then, since the     Figure 1-15 – Vector diagram. 
effect of the reactance is always at right angles, or 90 degrees, to  
that of the resistance, draw the line XL, representing 5 ohms inductive reactance, as the altitude of the 
triangle. The vector diagram shown in Figure 1-15 represents the relationship of resistance, inductive 
reactance, and impedance in a series circuit. Now, complete the hypotenuse (longest side) of the 
triangle. Then the hypotenuse represents the impedance of the circuit. 
 
One of the properties of a right triangle is: 
 

 
 
Now suppose you apply this equation to check your results in the example given above. 
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When you have a capacitive reactance to deal with instead of 
inductive reactance as in the previous example, it is customary 
to draw the line representing the capacitive reactance in a 
downward direction. Figure 1- 16 is a vector diagram showing 
relationship of resistance, capacitive reactance, and impedance 
in a series. The line is drawn downward for capacitive reactance 
to indicate that it acts in a direction opposite to inductive 
reactance which is drawn upward. In a series circuit containing 
capacitive reactance the equation for finding the impedance 
becomes:             Figure 1-16 – Vector diagram. 
 

 
In many series circuits you will find resistance combined with both inductive reactance and capacitive 
reactance. Since you know that the value of the reactance, X, is equal to the difference between the 
values of the inductive reactance, XL, and the capacitive reactance, XC, the equation for the impedance 
in a series circuit containing R, XL, and XC then becomes: 

 
or, 

 
In Figure 1-17 you will see a vector diagram showing relationship of resistance, reactance (capacitive 
and inductive), and impedance in a series circuit. This method, which may be used to determine the 
impedance in a series, consists of resistance, inductance, and capacitance. 
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Assume that 10 ohms inductive reactance and 20 ohms 
capacitive reactance are connected in series with 40 ohms 
resistance. Let the horizontal line represent the resistance R. 
The line drawn upward from the end of R represents the 
inductive reactance, XL. Represent the capacitive reactance by a 
line drawn downward at right angles from the same end of R. 
The resultant of XL and XC is found by subtracting XL from XC. This 
resultant represents the value of X.  
Thus: 
 
 

Figure 1-17 – Vector diagram 
 
The line, Z, will then represent the resultant of R and X. The value of Z can be calculated as follows: 
 

 
 

4.3.0 OHMS Law for AC 
In general, Ohm’s law cannot be applied to alternating-current circuits since it does not consider the 
reactance which is always present in such circuits. However, by a modification of Ohm’s law which 
does take into consideration the effect of reactance we obtain a general law which is applicable to ac 
circuits. Because the impedance, Z, represents the combined opposition of all the reactances and 
resistances, this general law for ac is I=E/Z  this general modification applies to alternating current 
flowing in any circuit, and any one of the values may be found from the equation if the others are 
known. 
.  
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For example, suppose a series circuit contains an inductor having 5 ohms resistance and 25 ohms 
inductive reactance in series with a capacitor having 15 ohms capacitive reactance. If the voltage is 50 
volts, what is the current? This circuit can be drawn as shown in Figure 1-18.  
 

 
 
Now suppose the circuit contains an inductor having 5 ohms resistance and 15 ohms inductive 
reactance in series with a capacitor having 10 ohms capacitive reactance. If the current is 5 amperes, 
what is the voltage? 

 
  

Figure 1-18 – Series LC Circuit 
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5.0.0 LC and RLC CIRCUITS 
 

5.1.0 Series Circuit  
The principles and formulas that have been presented in this chapter are use in all ac circuits. The 
examples given have been series circuits. 
 
This section of the chapter will not present any new material, but will be an example of using all the 
principles presented so far. You should follow each example problem step by step to see how each 
formula used depends upon the information determined in earlier steps. When an example calls for 
solving for square root, you can practice using the square-root table by looking up the values given. 
 
The example series RLC circuit shown in Figure 1-19 will be used to solve for XL, XC, X, Z, IT, true power, 
reactive power, apparent power, and power factor. The values solved for will be rounded off to the 
nearest whole number.  
 
First solve for XL and XC. 
 

 
Figure 1-19 – Example series RLC circuit. 
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Now solve for X 

 
Use the value of X to solve for Z. 

 
This value of Z can be used to solve for total current (IT). 

 
Since current is equal in all parts of a series circuit, the value of IT can be used to solve for the various 
values of power. 
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The power factor can now be found using either apparent power and true power or resistance and 
impedance. The mathematics in this example is easier if you use impedance and resistance. 

 
 

5.2.0 Parallel Circuit 
When dealing with a parallel ac circuit, you will find that the concepts presented in this chapter for 
series ac circuits still apply. There is one major difference between a series circuit and a parallel circuit 
that must be considered. The difference is that current is the same in all parts of a series circuit, 
whereas voltage is the same across all branches of a parallel circuit. Because of this difference, the 
total impedance of a parallel circuit must be computed on the basis of the current in the circuit. 
 
You should remember that in the series RLC circuit the following three formulas were used to find 
reactance, impedance, and power factor: 

 
When working with a parallel circuit you must use the following formulas instead:  

 

 
  



27 
 

FDA, Inc. 

 
 
The impedance of a parallel circuit is found by the formula Z= E/I2 
 

NOTE 
If no value for E is given in a circuit, any value of E can be assumed to find the values of IL, IC, IX, IR, and 
IZ. The same value of voltage is then used to find impedance. For example, find the value of Z in the 
circuit shown in Figure 1-20. 
 

 
 
The first step in solving for Z is to calculate the individual branch currents. 

 
 
Using the values for IR, IL, and IC, solve for IX and IZ.  
 
 
 
 
 
 
Figure 1-20 – Parallel RLC circuit.  
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Using this value of IZ, solve for Z. 

 
 
If the value for E were not given and you were asked to solve for Z, any value of E could be assumed. If, 
in the example problem above, you assume a value of 50 volts for E, the solution would be: 

 
 
First solve for the values of current in the same manner as before. 
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Solve for IX and IZ. 

 
 
Solve for Z. 

 
 
 
When the voltage is given, you can use the values of currents IR, IX, and IZ, to calculate for the true 
power, reactive power, apparent power, and power factor. For the circuit shown in Figure 1-20, the 
calculations would be as follows. To find true power, 
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To find apparent power, 

 
 
The power factor in a parallel circuit is found by either of the following methods. 
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5.3.0 Series - Parallel Combination 
Now that you have seen how series and parallel ac circuit analysis is not fundamentally different than 
dc circuit analysis, it should come as not surprise that series-parallel analysis would be the same as 
well, just using complex numbers instead of scalar to 
represent voltage, current, and impedance. Figure 1-
21 is an example of a series parallel circuit.  
 
The first order of business, as usual, is to determine 
values of impedance (Z) for all components based on 
the frequency of the ac power source. To do this, you 
need to first determine values of reactance (X) for all 
inductors and capacitors, then convert reactance (X) 
and resistance (R) figures into proper impedance (Z) 
form (Table 1-1):  

Figure 1-21 — Example series-parallel R, L, and C circuit. 
 

Table 1-1–Reactances and Resistances. 
 

𝑿𝑪𝟏 =  
𝟏

𝟐𝝅𝒇𝑪𝟏
 

 

𝑿𝑪𝟏 =  
𝟏

(𝟐)(𝝅)(𝟔𝟎𝑯𝒛. )(𝟒. 𝟕µ𝑭)
 

 
𝑿𝑪𝟏 = 𝟓𝟔𝟓Ω 

 

𝑿𝑳 = 𝟐𝝅𝒇𝑳 
 

𝑿𝑳 = (𝟐)(𝝅)(𝟔𝟎𝑯𝒛)(𝟔𝟓𝟎𝒎𝑯) 
 

𝑿𝑳 = 𝟐𝟒𝟓Ω 

𝑿𝑪𝟐 =  
𝟏

𝟐𝝅𝒇𝑪𝟐
 

 

𝑿𝑪𝟐 =  
𝟏

(𝟐)(𝝅)(𝟔𝟎𝑯𝒛. )(𝟏. 𝟓µ𝑭)
 

 
𝑿𝑪𝟐 = 𝟏𝟕𝟔𝟖Ω 

 

𝑹 = 𝟒𝟕𝟎 Ω 
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ZC1 = 0 − j564.38  or 564.38   − 90 

ZL = 0 +  j245.04  or 245.04   90 

ZC 2 = 0 − j1.7684k  or 1.7684 k  − 90 

ZR = 470 + j0  or 470   0 

 
Now you can set up the initial values in Table 1-2:  
 

Table 1-2–Initial Values. 
 C1 L C2 R Total  

E     120 + j0 

120 ∠ 0° 

Volts 

I      Amps 

Z 0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684L 

1.7684L ∠-90 ° 

470 + j0 

470 ∠0 ° 

 Ohms 

 
Because it is a series-parallel combination circuit, you must reduce it to a total impedance in more than 
one step. The first step is to combine L and C2 as a series combination of impedances by adding their 
impedances together. Then, that impedance will be combined in parallel with the impedance of the 
resistor to arrive at another combination of impedances. Finally, that quantity will be added to the 
impedance of C1 to arrive at the total impedance. 
 

Table 1-3–Reciprocal Formula. 
   Total  

 L − −C2 R||(L − −C2 ) C1 − −[R||( L − −C2 )]  

E   
120 + j0 

120 ∠ 0 
Volts 

I    Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
−−represents series 
|| represents parallel 
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In order that your table may follow all these steps, it will be necessary to add additional columns to it 
so that each step may be represented. Adding more columns horizontally to Table 1-2 would be 
impractical for formatting reasons, so a new row of columns has been placed underneath each column 
designated by its respective component combination in Table 1-3. Calculating these new (combination) 
impedances will require complex addition for series combinations, and the “reciprocal” formula for 
complex impedances in parallel. This time, there is no avoidance of the reciprocal formula; the 
required figures can be arrived at no other way. 
 
Because Table 1-3 contains a column for “Total,” we can safely discard that column from Table 1-2. 
This gives you one table with four columns and another table with three columns. Now that you know 
the total impedance (818.34 Ω ∠ − 58.371°) and the total voltage (120 volts ∠0°), you can apply Ohm’s 
Law (I = E / Z ) vertically in the “Total” column to arrive at a figure for total current: 
 

Table 1-3–Reciprocal Formula 
   Total  

 L − −C2 R||(L − −C2 ) C1 − −[R||( L − −C2 )]  

E   
120 + j0 

120 ∠ 0 
Volts 

I   
76.899m + j124.86m 

146.64m∠ 58.371° 
Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
 

Ohm’s Law 

1 =  
𝐸

𝑍
 

At this point you ask yourself the question: are there any components or component combinations 
which share either the total voltage or the total current? In this case, both C1 and the parallel 
combination R //(L − − C2 )share the same (total) current, since the total impedance is composed of the 
two sets of impedances in series. Thus, you can transfer the figure for total current into both columns 
(Tables 1-4 and 1-5):  
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Table 1-4–Rule of Series Circuits. 
 C1 L C2 R  

E     Volts 

I 76.899m + j124.86m 

146.64m∠ 58.371° 

   Amps 

Z 0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90° 

470 + j0 

470 ∠0 ° 

Ohms 

 
Rules of series circuits: 
𝐼𝑡𝑜𝑡𝑎𝑙 =  𝐼𝐶1 =  𝐼𝑅||(𝐿−𝐶2) 

 
Table 1-5–Reciprocal Formula Updated. 

   Total  

 L − −C2 R||(L − −C2 ) C1 − −[R||( L − −C2 )]  

E   
120 + j0 

120 ∠ 0 
Volts 

I  
76.899m + j124.86m 

146.64m∠ 58.371° 

76.899m + j124.86m 

146.64m∠ 58.371° 
Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
Rules of series circuits: 
𝐼𝑡𝑜𝑡𝑎𝑙 =  𝐼𝐶1 =  𝐼𝑅||(𝐿−𝐶2) 

 
Now, you can calculate voltage drops across C1 and the series-parallel combination of 
R||( L − −C2 ) using Ohm’s Law (E = IZ ) vertically in those table columns (Figures 1-6 
and 1-7). 
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Table 1-6–Rule of Series Circuits Updated. 
 C1 L C2 R  

E 70.467 – j43.400 

82.760∠ - 31.629° 

   Volts 

I 76.899m + j124.86m 

146.64m∠ 58.371° 

   Amps 

Z 0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90 ° 

470 + j0 

470 ∠0 ° 

Ohms 

 
 
Ohm’s Law 

E = IZ 
 

Table 1-7–Reciprocal Formula Updated. 
   Total  

 L − −C2 R||(L − −C2 ) C1 − −[R||( L − −C2 )]  

E  
49.533 + j43.400 

65.857∠41.225° 

120 + j0 

120 ∠ 0 
Volts 

I  
76.899m + j124.86m 

146.64m∠ 58.371° 

76.899m + j124.86m 

146.64m∠ 58.371° 
Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
 

Ohm’s Law 
E = IZ 

 
A quick double-check of your work at this point would be to see whether or not the 
voltage drops across C1 and the series-parallel combination of R||(L − −C2 ) indeed add 
up to the total. According to Kirchhoff’s Voltage Law, they should be correct. 
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That last step was merely a precaution. In a problem with as many steps as this one has, there is much 
opportunity for error. Occasional cross-checks like the one above can save you a lot of work and 
unnecessary frustration by identifying problems prior to the final step of the problem. 
 
After having solved for voltage drops across C1 and the combination R //(L − −C2 ), you can again ask 
yourself the question: what other components share the same voltage or current? In this case, the 
resistor (R) and the combination of the inductor and the second capacitor (L − −C2 ) share the same 
voltage because those sets of impedances are in parallel with each other. Therefore, you can transfer 
the voltage figure just solved for into the columns for R and L − −C2 (Tables 1-8 and 1-9). 
 

Table 1-8–Rule of Series Circuits Updated. 
 C1 L C2 R  

E 70.467 – j43.400 

82.760∠ - 31.629° 
  

49.533 + j43.400 

65.857∠41.225° 

Volts 

I 76.899m + j124.86m 

146.64m∠ 58.371° 
   

Amps 

Z 0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90 ° 

470 + j0 

470 ∠0 ° 

Ohms 

 
Rule of parallel circuits 

𝐸𝑅||(𝐿−𝐶2) =  𝐸𝑅 =  𝐸𝐿−𝐶2 

 
Table 1-9–Reciprocal Formula Updated. 

   Total  

 L − −C2 R||(L − −C2 ) C1 − −[R||( L − −C2 )]  

E 
49.533 + j43.400 

65.857∠41.225° 

49.533 + j43.400 

65.857∠41.225° 

120 + j0 

120 ∠ 0 
Volts 

I  
76.899m + j124.86m 

146.64m∠ 58.371° 

76.899m + j124.86m 

146.64m∠ 58.371° 
Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
Rule of parallel circuits 
𝐸𝑅||(𝐿−𝐶2) =  𝐸𝑅 =  𝐸𝐿−𝐶2 
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Now you are all set for calculating current through the resistor and through the series combination L--
C2. All you need to do is apply Ohm’s Law (I=E/Z) vertically in both of those columns (Tables 1-10 and 1-
11). 
 

Table 1-10–Rule of Series Circuits Updated. 
 C1 L C2 R  

E 70.467 – j43.400 

82.760∠ - 31.629° 
  

49.533 + j43.400 

65.857∠41.225° 

Volts 

I 76.899m + j124.86m 

146.64m∠ 58.371° 
  

105.39m + j92.341m 

140.12m∠41.225° 

Amps 

Z 0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90 ° 

470 + j0 

470 ∠0 ° 

Ohms 

 
 

Ohm’s Law 
I = EZ 

 
Table 1-11–Reciprocal Formula Updated. 

   Total  

 L − −C2 R||(L − −C2 ) 
C1 − −[R||( L − −C2 

)] 
 

E 
49.533 + j43.400 

65.857∠41.225° 

49.533 + j43.400 

65.857∠41.225° 

120 + j0 

120 ∠ 0 
Volts 

I 
-28.490m + j32.516m 

43.232m∠ 131.22° 

76.899m + j124.86m 

146.64m∠ 58.371° 

76.899m + j124.86m 

146.64m∠ 58.371° 
Amps 

Z 
0 – j1.5233k 

1.5233k∠- 90° 

429.15 – j132.41 

449.11 ∠- 17.147° 

429.15 – j696.79 

818.34 ∠ - 58.371° 
Ohms 

 
 

Ohm’s Law 
I = EZ 

 
Another quick double-check of your work at this point would be to see if the current figures for L -- C2 
and R add up to the total current. According to Kirchhoff’s Current Law, they should be correct. 
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Since the L and C2 are connected in series, and since you know the current through their series 
combination impedance, you can distribute that current figure to the L and C2 columns following the 
rule of series circuits whereby series components share the same current (Table 1-12). 
 
Table 1-12–Rule of Series Circuits Updated. 
 C1 L C2 R  

E 
70.467 – j43.400 

82.760∠ - 31.629° 
  

49.533 + j43.400 

65.857∠41.225° 

Volts 

I 

76.899m + 

j124.86m 

146.64m∠ 58.371
° 

-28.490m + 32.516m 

43.232m∠ 131.22° 

-28.490m + 

j32.516m 

43.232m∠ 131.22° 

105.39m + 

j92.341m 

140.12m∠41.225
° 

Amps 

Z 

0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90 ° 

470 + j0 

470 ∠0 ° 

Ohms 

 
Rules of series circuits: 

𝐼𝐿−𝐶2 =  𝐼𝐿 =  𝐼𝐶2 
 
With one last step (actually, two calculations), you can complete your analysis table for this circuit. 
With impedance and current figures in place for L and C2, all you have to do is apply Ohm’s Law (E=IZ) 
vertically in those two columns to calculate voltage drops (Table 1-13). 
 

Table 1-13–Rule of Series Circuits Updated. 
 C1 L C2 R  

E 
70.467 – j43.400 

82.760∠ - 31.629° 

-7.968 – j6.981 

10.594∠221.22° 

57.501 + j50.382 

76.451∠41.225° 

49.533 + j43.400 

65.857∠41.225° 

Volts 

I 
76.899m + j124.86m 

146.64m∠ 58.371° 

-28.490m + 32.516m 

43.232m∠ 131.22° 

-28.490m + j32.516m 

43.232m∠ 131.22° 

105.39m + j92.341m 

140.12m∠41.225° 

Amps 

Z 

0 - j564.38 

564.38 ∠-90 ° 

0 + j245.04 

245.04 ∠90 ° 

0 - j1.7684k 

1.7684k ∠-90 ° 

470 + j0 

470 ∠0 ° 

Ohms 

 
 

Ohm’s Law 
E = IZ 
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6.0.0 POWER IN AC CIRCUITS 
 

6.1.0 Impedance  
In a purely resistive circuit all of the power is 
consumed and none is returned to the source; in a 
purely reactive circuit no power is consumed and 
all of the power is returned to the source. It follows 
that in a circuit which contains both resistance and 
reactance there must be some power dissipated in 
the resistance as well as some returned to the 
source by the reactance. In Figure 1-22 you can see 
the relationship between the voltage, the current, 
and the power in such a circuit. The part of the 
power curve which is shown below the horizontal 
reference line is the result of multiplying a positive   Figure 1-22 — Instantaneous power when 
instantaneous value of current by a negative   current and voltage are out of phase. 
instantaneous value of the voltage, or vice versa.  
As you know, the product obtained by multiplying a  
positive value by a negative value will be negative.  
Therefore the power at that instant must be considered  
as negative power. In other words, during this time the  
reactance was returning power to the source. 
 
The instantaneous power in the circuit is equal to the product of the applied voltage and current 
through the circuit. When the voltage and current are of the same polarity they are acting together 
and taking power from the source. When the polarities are unlike, they are acting in opposition and 
power is being returned to the source. Briefly then, in an ac circuit which contains reactance as well as 
resistance, the apparent power is reduced by the power returned to the source, so that in such a 
circuit the net power, or true power, is always less than the apparent power. 
 

6.2.0 Total Current 
You know that in a direct current circuit the power is equal to the voltage times the current, or P = E x I. 
If a voltage of 100 volts applied to a circuit produces a current of 10 amperes, the power is 1000 watts. 
This is also true in an ac circuit when the current and voltage are in phase, that is, when the circuit is 
effectively resistive. But, if the ac circuit contains reactance, the current will lead or lag the voltage by a 
certain amount (the phase angle). When the current is out of phase with the voltage, the power 
indicated by the product of the applied voltage and the total current gives only what is known as the 
apparent power. The true power depends upon the phase angle between the current and voltage. The 
symbol for phase angle is θ (theta). 
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6.3.0 Voltage 
When an alternating voltage is impressed across a capacitor, power is taken from the source and 
stored in the capacitor as the voltage increases from zero to its maximum value. Then, as the 
impressed voltage decreases from its maximum value to zero, the capacitor discharges and returns the 
power to the source. Likewise, as the current through an inductor increases from its zero value to its 
maximum value, the field around the inductor builds up to a maximum, and when the current 
decreases from maximum to zero, the field collapses and returns the power to the source. You can see, 
therefore, that no power is used up in either case, since the power alternately flows to and from the 
source. This power that is returned to the source by the reactive components in the circuit is called 
reactive power. 
 

6.4.0 True Power 
As mentioned before, the true power of a circuit is the power 
actually used in the circuit. This power, measured in watts, is the 
power associated with the total resistance in the circuit. To 
calculate true power, the voltage and current associated with the 
resistance must be used. Since the voltage drop across the 
resistance is equal to the resistance multiplied by the current 
through the resistance, true power can be calculated by the 
formula: True power = (IR)2R 
 
Where:  True power is measured in watts IR is resistive   Figure 1-23 – Example circuit  

current in amperes R is resistance in ohms    for determining power. 
 

 
For example, find the true power of the circuit in Figure 1-23.  
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Since the current in a series circuit is the same in all parts of the circuit: 

True power = (IR)2R  
True power = (5A)2 × 60 Ω 
True power = 1500 watts 

 

6.5.0 Reactive Power 
The reactive power is the power returned to the source by the reactive components of the circuit. This 
type of power is measured in Volt-Amperes-Reactive, abbreviated (var). Reactive power is calculated 
by using the voltage and current associated with the circuit reactance. Since the voltage of the 
reactance is equal to the reactance multiplied by the reactive current, reactive power can be calculated 
by the formula: 

 
 
Another way to calculate reactive power is to calculate the inductive power and capacitive power and 

subtract the smaller from the larger. 
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6.6.0 Apparent Power 
Apparent power is the power that appears to the source because of the circuit impedance. Since the 
impedance is the total opposition to ac, the apparent power is that power the voltage source “sees.” 
Apparent power is the combination of true power and reactive power. Apparent power is not found by 
simply adding true power and reactive power just as impedance is not found by adding resistance and 
reactance. To calculate apparent power, you may use either of the following formulas: 
 

 
 
For example, find the apparent power for the circuit shown in Figure 1-23. 

 
 

Recall that current in a series circuit is the same in all parts of the circuit. 
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Either one of these formulas will work. The formula you use depends upon the values you are given in 
a circuit. For example, find the reactive power of the circuit shown in Figure 1-23. 

Given:  X L = 30  

X C = 110  

X = 80  

I = 5 A 

 
Since this is a series circuit, current (I ) is the same in all parts of the circuit. 

Solution:  Reactive power = (I ) 2 
X 

Reactive power = (5A)2  
 80  

Reactive power = 2,000 var 

 
You can see by the following that the second formula also works. 

Reactive power = (I C ) 2 
X C − (I L) 

2 
X L 

Reactive power = (5A)2  
110  − (5A)2  

 30  
 

Reactive power = 2,750 var − 750 var 

Reactive power = 2,000 var 

 

7.0.0 POWER FACTOR 
 
The power factor is a number (represented as a decimal or a percentage) that represents the portion 
of the apparent power dissipated in a circuit. If you are familiar with trigonometry, the easiest way to 
find the power factor is to find the cosine of the phase angle (θ). The cosine of the phase angle is equal 
to the power factor. You do not need to use trigonometry to find the power factor. Since the power 
dissipated in a circuit is true power, then: 

 
 
If true power and apparent power are known, you can use this formula. Going one step further, 
another formula for power factor can be developed. By substituting the equations for true power and 
apparent power in the formula for power factor, you get: 
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Since current in a series circuit is the same in all parts of the circuit, I R equals I Z 

Therefore, in a series circuit,  

 
For example, to compute the power factor for the series circuit shown in Figure 1-23, any of the above 
methods may be used. 

 
Another method: 

 
 
NOTE 
As stated earlier the power factor can be expressed as a decimal or percentage. In the examples above 
the decimal number .6 could be expressed as 60%. 
 

7.1.0 Power Factor Correction 
The apparent power in an ac circuit has been described as the power the source “sees.” As far as the 
source is concerned, the apparent power is the power that must be provided to the current. You also 
know that the true power is the power actually used in the circuit. The difference between apparent 
power and true power is wasted because, in reality, only true power is consumed. The ideal situation 
would be for apparent power and true power to be equal. If this were the case, the power factor 
would be 1 (unity) or 100 percent. There are two ways in which this condition can exist: (1) if the circuit 
is purely resistive or (2) if the circuit “appears” purely resistive to the source. To make the circuit 
appear purely resistive, there must be no reactance. To have no reactance in the circuit, the inductive 
reactance (XL) and capacitive reactance (XC) must be equal. Remember: L C X = X − X , therefore when 
X = X X = 0 L C . The expression “correcting the power factor” refers to reducing the reactance in a 
circuit. The ideal situation is to have no reactance in the circuit. This is accomplished by adding 
capacitive reactance to a circuit which is inductive and inductive reactance to a circuit which is 
capacitive. For example, the circuit shown in Figure 1-23 has a total reactance of 80 ohms capacitive 
and the power factor was .6 or 60 percent. If 80 ohms of inductive reactance were  
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added to this circuit (by adding another inductor), the circuit would have a total reactance of zero 
ohms and a power factor of 1 or 100 percent. The apparent and true power of this circuit would then 
be equal.  
 

Summary 
Your knowledge, understanding, and application of advanced electrical theory are very important for 
the safe conduct and completion of your job as a Construction Electrician. As a Construction 
Electrician, you need the knowledge of the concepts and principles when dealing with alternating and 
direct current. During you career as a Construction Electrician, you will apply this and other electrical 
and electronic theory in your everyday conduct. 
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Review Questions (Select the Correct Response) 

1. What rule can be used to determine the direction of the current assuming a closed 
path is provided across the ends of a conductor loop? 

 
A. Sine wave 
B. Left-hand 
C. Polarity 
D. Loop 

2. (True or False) An individual cycle of any sine wave represents a definite 

amount of time. 
 

A. True 
B. False 

 

3. What is the correct definition of the time it takes for a sine wave to complete one 
cycle? 

 

A. Distance travelled 
B. Cycle length 
C. Period of the waveform 
D. Distance of the waveform 

 

4. Which symbol represents wavelength? 
 

A. θ 
B. π 
C. Ω 
D. λ 

 

5. What term is referred to as the number of complete cycles of alternating current or 
voltage completed each second? 

 

A. Frequency 
B. Voltage time 
C. Current time 
D. Sine wave 

 

6. How many maximum or peaks values occur during each complete cycle of 
alternating current? 
A. One 
B. Two 
C. Three 
D. Four  
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7. All meters are calibrated to indicate what values of current and voltage unless 
marked to the contrary? 

 
A. Peak 
B. Average 
C. Effective 
D. Instantaneous 

 
8. (True or False) The average value of an alternating current or voltage is the 

average of all the instantaneous values during on alteration. 
 

A. True 
B. False 

 
9. (True or False) It requires more energy to keep current flowing than it does to stop 

or start. 
 

A. True 
B. False 

 
10. Inductive reactance is measured in ohms and its symbol is . 

 
A. XM 

B. XL 

C. LX 

D. LM 

 

11. How many electrical degrees can you mark off the time of one cycle of a sine 
wave? 

 
A. 90° 
B. 180° 
C. 270° 
D. 360° 

 
12. What does the word ELI stand for in the relationship of voltage and current in an 

inductive circuit? 
 

A. Voltage 
B. Inductance 
C. Current 
D. All of the above 

 
13. (True or False) Capacitance is the property of a circuit which opposes any 

change in the circuit voltage. 
 

A. True 
B. False 



48 
 

FDA, Inc. 

14. What is the name of the insulating material in a capacitor? 
 

A. Dielectric 
B. Farad 
C. Microfarad 
D. Picofarad 

 
15. (True or False) Concerning capacitive reactance, when the frequency is 

increased it will also increase the opposition offered by a capacitor. 
 

A. True 
B. False 

 
16. What is the symbol for capacitive reactance? 

 
A. XM 

B. XC 

C. XL 

D. XF 

 
17. Which of the following statements concerning capacitors is correct? 

 
A. A capacitor will appear to conduct an alternating current 
B. A capacitor will not conduct a direct current 
C. A capacitor will appear to conduct a direct current 
D. Both A and B 

 

18. Concerning reactance, if a circuit contains 50 ohms of inductive reactance and 25 
ohms of capacitive reactance in series, what is the net reactance? 

 
A. 50 ohms – 25 ohms of inductive reactance 
B. 25 ohms + 50 ohms of inductive reactance 
C. 25 ohms – 50 ohms of inductive reactance 
D. None of the above 

 
19. (True or False) When capacitive and inductive reactance are combined in series, 

the smaller is always subtracted from the larger and the resultant reactance 
always takes the characteristics of the larger. 

 
A. True 
B. False 

 
20. What is the symbol for impedance? 

 

A. I 
B. C 
C. E 
D. Z 
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21. (True or False) Since the values of resistance and reactance are both given in ohms it 
is possible to determine the value of impedance by simply adding them together. 

 
A. True 
B. False 

 
22. What is the equation for finding the impedance in a series circuit containing 

capacitive reactance? 
 

A. Z = √𝑅 + 𝑋𝐶 

B. Z =√𝑅2 + 𝑋𝐶2 

C. R =√𝑍2 + 𝑋𝐶2 

D. None of the above 

 

23. (True or False) In general, Ohm’s Law cannot be applied to alternating current circuits. 
 

A. A. True 
B. False 

 

24. What is the one major difference that must be considered between a series circuit 
and a parallel circuit? 

 
A. Current is the same in all parts of a series circuit 
B. Voltage is the same across all branches of a parallel circuit 
C. Voltage is different across all branches of a parallel circuit 
D. Both A and B 

 
25. What is the formula for finding the impedance of a parallel circuit? 

 

A. 𝑍 =  
𝐼

𝐸2 

B. 𝑍 =  
𝐸

𝐼𝑍
 

C. 𝐼 =  
𝑍2

𝐸
 

D. 𝐼 =  
𝐸

𝑍2 

 

26.  (True or False) In a purely resistive circuit all of the power is consumed and none 
is returned to the source. 

 
A. True 
B. False 
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27. What is the symbol for phase angle? 
 

A. Ω 
B. π 
C. λ 
D. θ 

 
28. True power of a circuit is the power actually used in the circuit and is measured in . 

 
A. amperes 
B. volts 
C. ohms 
D. watts 

 
29. What is the definition of reactive power? 

 
A. Power used and not returned to the source by the reactive components of the 

circuit. 
B. Power returned to the source by the reactive components of the circuit. 
C. Power actually used in the circuit. 
D. None of the above 

 

30. Which formula(s) can be used to calculate apparent power? 
 

A. Apparent power = (I Z) ) + 
2 
Z 

B. Apparent power = (I Z) 
2 
Z 

C. Apparent power =√(𝑇𝑟𝑢𝑒 𝑃𝑜𝑤𝑒𝑟)2 + (𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟)2 

D. Both B and C 
 

31. (True or False) The power factor is a number than can only be represented with a 
decimal. 

 
A. True 
B. False 
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Trade Terms Introduced in this Chapter 
 
Sine curve The sine curve shows the value of induced voltage at each instant of time during 

rotation of the loop. 
Left-hand rule This is a method that can be used to determine the direction of current in the 

loop. 
Farad The basic unit of measurement of capacitance. 
Dielectric The insulating material used for capacitors. 
Inertia The property of matter by which it retains its state of rest or its velocity along a 

straight line so long as it is not acted upon by an external force. 
Scalar Representable by position on a scale or line. 

 


