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Why do we study P-adic Numbers?

The p-adic numbers is a larger number system containing Q, with
nicer properties.

When the p-adic numbers were introduced they considered as an
exotic part of pure mathematics without any application.

It turns out later to have powerful applications in fields like number
theory, including, for example, in the famous proof of Fermat’s Last

Theorem by Andrew Wiles.

Since 80th p-adic numbers are used in applications to quantum

physics.
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Overview

1 Algebraic Construction

2 Topological Construction

3 Connecting the Two Constructions

Lanqi Fei (UMD) Construction of P-adic Numbers 3 / 29



Algebraic Construction
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P-adic Integer

Given a prime p, for each integer m, we can write it in base p in a unique
way,

m = a

0

+ a

1

p + a

2

p

2 + · · ·+ a

n

p

n, 0  a

i

< p

Example

7 = 1 + 1 · 2 + 1 · 22
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P-adic Integer

Definition (P-adic Integer)

Let p be a prime. The set of p-adic integers is defined as

Z
p

=
�
a

0

+ a

1

p + a

2

p

2 + . . .
 

where 0  a

i

< p

Example

1 + 1 · 2 + 1 · 22 + · · ·+ 1 · 2n + · · · 2 Z
2
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P-adic Integer

a

0

+ a

1

p + a

2

p

2 + . . .

# mod p

n

[a
0

+ a

1

p + · · ·+ a

n�1

p

n�1] 2 Z/pnZ

where 0  a

i

< p

Lanqi Fei (UMD) Construction of P-adic Numbers 7 / 29



P-adic Integer

This defines a map from Z
p

to
Q1

n=1

Z/pnZ

1X

i=0

a

i

p

i 7�! ([a
0

], [a
0

+ a

1

p], . . . , [
n�1X

i=0

a

1

p

i ], [
nX

i=0

a

1

p

i ], . . . )

Moreover, we have

[
nX

i=0

a

1

p

i ]
mod p

n�1

7�������! [
n�1X

i=0

a

1

p

i ]
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Inverse Limit

Definition

lim �Z/pnZ =
�
(x

n

)
n2N 2

1Y

n=1

Z/pnZ | x
n

7! x

n�1

, n = 1, 2, . . .
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Inverse Limit

Theorem

Associating to every p-adic integer a =
P1

i=0

a

i

p

i

the sequence (x
n

)
n2N of

equivalence classes

x

n

=
n�1X

i=0

a

i

p

i mod p

n 2 Z/pnZ,

yields a bijection

Z
p

�! lim �Z/pnZ.

Example

1 + 2 + 22 + · · ·+ 2n + . . .  ! ([1], [1 + 2], [1 + 2 + 22], . . . )

= (1 mod 2, 3 mod 4, . . . )
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P-adic Numbers

Definition

we extend the domain of p-adic integers into that of the formal series

1X

v=�m

a

v

p

v = a�m

p

�m + · · ·+ a

0

+ a

1

p + . . . ,

where m 2 Z and 0  a

v

< p. We call such series p-adic numbers and
denote the set of p-adic numbers as Q

p

.
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Topological Construction
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Motivation

R ⌘ completion of Q with respect to the usual absolute value | |, which
has the following properties

1 |a| = 0, a = 0

2 |ab| = |a||b|
3 |a+ b|  |a|+ |b|

We’ll construct p-adic numbers in a similar way, with a di↵erent absolute
value.
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P-adic Absolute Value

Definition (P-adic Absolute Value)

Let p be a prime. Given a non-zero rational x = m

n

, where m, n 2 Z,we
can write it as follows,

x = p

v

p

(x)

a

0

b

0

such that p 6 | a0 and p 6 | b0.

The p-adic absolute value is defined as follows,

|x |
p

= p

�v

p

(x)

and we define |0|
p

= 0.
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P-adic Absolute Value

Example

125 = 53 3 = 50 ⇥ 3

|125|
5

= 5�3 |3|
5

= 50 = 1

+

|125|
5

< |3|
5

!
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Absolute Values on Q

Theorem (Ostrowski’s)

Every non-trivial absolute value on Q is either | |
p

for some prime p or the

usual absolute value | |.
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Topology

In (Q, d), d(x , y) = |x � y |
p

All triangles are isosceles.

Any point of ball B(a, r) = {x 2 Q : |x � a|
p

 r} is center.

Two balls are either disjoint, or one is contained in the other.
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Completion

Definition

C =
�
Cauchy Sequences in Q w.r.t | |

p

 
= {(c

1

, c
2

, . . . )}
m =

�
Nullsequences in Q

 

= {(x
1

, x
2

, . . . ) | |x
n

|
p

! 0}

Theorem

C forms a ring, and m forms a maximal ideal of C.
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Completion

Definition

We define the field of p-adic numbers to be

Q
p

⌘ C/m

We extend the p-adic absolute value to Q
p

by setting

|x |
p

= |(x
1

, x
2

, . . . ) +m|
p

= lim
n!1

|x
n

|
p
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Completion

Theorem

The field Q
p

of p-adic numbers is complete with respect to the absolute

value | |
p

, i.e., every Cauchy sequence in Q
p

converges with respect to | |
p

.
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P-adic Integers

Definition

The set of p-adic integers is defined as

Z
p

:=
�
x 2 Q

p

| |x |
p

 1
 

is a subring of Q
p

. It is the closure with respect to | |
p

of the ring Z ⇢ Q
p

.
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P-adic Integers

Theorem

The non-zero ideals of the ring Z
p

are the principal ideals

p

nZ
p

=
�
x 2 Q

p

| |x |
p

 1

p

n

 

with n � 0, and we have

Z
p

/pnZ
p

⇠= Z/pnZ
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Isomorphism

Theorem (Cont.)

Z
p

/pnZ
p

⇠= Z/pnZ

[x ]$ [a]

where a 2 Z satisfies |x � a|
p

 1

p

n

, and [a] 2 Z/pnZ is unique.
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Connecting the Two Constructions
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Connecting Two Approaches

For each n, we get a homomorphism

Z
p

�! Z
p

/pnZ
p

⇠= Z/pnZ

x 7�! [x ]  ! [a
n

]

Combine the homomorphisms for all n, we get a homomorphism

Z
p

�!
1Y

n=1

Z/pnZ

In fact, the we get

Z
p

�! lim �Z/pnZ
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Connecting Two Approaches

Theorem

The homomorphism

Z
p

�! lim �Z/pnZ

is an isomorphism (and even homeomorphism).

LHS = Topological definition of p-adic integers

RHS = Algebraic definition of p-adic integers
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Connecting Two Approaches

For the algebraic side, we define Q
p

to be the quotient field of p-adic
integers; for the topological side, we can prove Q

p

= quotient field of Z
p

.

Because the two rings are isomorphic, their quotient fields are isomorphic,
so two definitions of p-adic numbers coincide.
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Thank You
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