

#### HKSAR Standing Committee on Concrete Technology Annual Concrete Seminar 2013

(18 April 2013)

# Construction Standard CS3:2013 – Aggregates for Concrete

Ir. Peter W C Leung, SE C/L
Ir. David C P Lo, E/Lab2
Public Works Central Laboratory
Standard & Testing Division
Geotechnical Engineering Office
Civil Engineering and Development Department



| 1 Background               |  |
|----------------------------|--|
| 2 Contents                 |  |
| 3 Scope                    |  |
| 4 Geometrical Requirements |  |
| 5 Physical Requirements    |  |
| 6 Chemical Requirements    |  |
| 7 Quality Control          |  |
| 8 Comparison               |  |



### Reasons

- Migration to Eurocodes (BS 882:1992 replaced by BS EN 12620:2002+A1:2008)
- Aggregates are local products
- Request for a local construction standard for aggregates by industry

### History

- SCCT agreed to form a drafting committee to develop a local construction standard for aggregates used in concrete (CS3) in October 2009.
- The membership of the working group (WG) for drafting of CS3 was confirmed and endorsed by SCCT in April 2010.
- The first WG meeting was held in June 2010 and the drafting works was completed in March 2013.
- SCCT endorsed the final version of CS3 in late March 2013.

#### Membership of WG includes:

- Works Departments (CEDD, HyD, ArchSD, DSD and WSD)
- Housing Department
- Building Department
- Innovation and Technology Commission

The following organizations that have contributed on the drafting of CS3 are:

- The Concrete Producers Association of Hong Kong Ltd.
- The Hong Kong Contract Quarry Association
- The Institute of Quarrying (Hong Kong Branch)
- The Import Aggregates Suppliers Association Ltd.
- The Association of Construction Materials Laboratories Ltd.
- The University of Hong Kong

The Drafting Committee have reviewed the following specification, technical circular and standards:

- Section 16 of General Specification for Civil Engineering Works, 2006 Edition (GS 16)
- WBTC No. 12/2002 Specifications Facilitating the Use of Recycled Aggregates (WBTC 12)

#### • British Standards (BS)

- BS 882: 1992, incorporating amendment no. 1 (BS 882)
- BS 812: Part 2:1995
- BS 812: Part 100:1990
- BS 812: Part 102:1989
- BS 812: Section 103.1:1985
- BS 812: Section 105.1:1989
- BS 812: Section 105.2:1990
- BS 812: Part 109:1990
- BS 812: Part 111:1990
- BS 812: Part 112:1990
- BS 812: Part 117:1988
- BS 812: Part 118:1988
- BS 812: Part 120:1989

• British Standards (BS), cont'

BS 812: Part 121:1989 BS 1881: Part 124:1988 BS 7943:1999

 European Standards adopted as British Standards (BS EN) BS EN 12620: 2002+A1:2008 (BS EN 12620) BS EN 932-5:2000 BS EN 933-9:2009 BS EN 1015-4:1999 BS EN 1015-11:1999 BS EN 1744-1:2009

- National Standard of the People's Republic of China (GB) GB/T 14684-2011
- Réunion Internationale des Laboratoires et Experts des Materiaux, systèmes de construction et ouvrages (RILEM) RILEM AAR-1
- ASTM International Standards
   ASTM C131-96
   ASTM C294-12
   ASTM C295-08
- Building Research Establishment (BRE)

BRE Digest 433

Section 1 – Scope Section 2 – Terms and definitions

Specification Section 3 – Geometrical requirements Section 4 – Physical requirements Section 5 – Chemical requirements Section 6 – Quality control

### **General Testing Requirements**

- Section 7 General requirements for common equipment and calibration
- Section 8 Methods for sampling

### **Petrographic Examination**

Section 9 – Method for petrographic examination of aggregates

### **Tests for Geometrical Properties**

- Section 10 Methods for determination of particle size distribution, sieve tests
- Section 11 Method for determination of flakiness index
- Section 12 Method for determination of elongation index
- Section 13 Method for determination of methylene blue value

#### **Tests for Physical and Chemical Properties**

- Section 14 Method for determination of Los Angeles Value
- Section 15 Methods for determination of aggregate impact value
- Section 16 Methods for determination of ten per cent fines value
- Section 17 Methods for determination of particle density and water absorption
- Section 18 Methods for determination of moisture content
- Section 19 Method for determination of soundness

### Tests for Physical and Chemical Properties, cont'

- Section 20 Method for determination of drying shrinkage
- Section 21 Methods for determination of chemical properties
- Section 22 Method for determination of effect of organic substances by mortar method

# 3. Scope

- Specifies the property requirements, quality control requirements and testing methods of aggregates for use in production of concrete.
- Covers coarse and fine natural aggregates and coarse recycled aggregates having an oven-dried particle density not less than 2,000 kg/m<sup>3</sup>.
- Does not cover lightweight aggregates, heavyweight aggregates and all-in aggregates.
- Coarse recycled aggregate used in concrete in accordance with WBTC No. 12/2002

#### Grading of Coarse Aggregates

| Sieve |                                                                                                                                        | Percentage by mass passing test sieves (%) |          |          |                                             |          |        |                   |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|----------|---------------------------------------------|----------|--------|-------------------|--|--|--|--|
| size  | Nomin                                                                                                                                  | al size of                                 | graded   | Nomir    | Nominal size of single-sized aggregate (mm) |          |        |                   |  |  |  |  |
|       | agg                                                                                                                                    | regates (n                                 | nm)      |          | M                                           | 2000 X   |        |                   |  |  |  |  |
| (mm)  | 40 to 5                                                                                                                                | 20 to 5                                    | 14 to 5  | 40       | 20                                          | 14       | 10     | 5                 |  |  |  |  |
| 50    | 100                                                                                                                                    | 81 <del>7</del> 0                          |          | 100      | ₩.                                          | 5.       | ~      |                   |  |  |  |  |
| 37.5  | 90-100                                                                                                                                 | 100                                        | -        | 85-100   | 100                                         | -        | -      | -                 |  |  |  |  |
| 20    | 35-70                                                                                                                                  | 90-100                                     | 100      | 0-25     | 85-100                                      | 100      | -      | 8 <del>7</del> .3 |  |  |  |  |
| 14    | 25-55                                                                                                                                  | 40-80                                      | 90-100   | e        | 0-70                                        | 85-100   | 100    | 17.               |  |  |  |  |
| 10    | 10-40                                                                                                                                  | 30-60                                      | 50-85    | 0-5      | 0-25                                        | 0-50     | 85-100 | 100               |  |  |  |  |
| 5     | 0-5                                                                                                                                    | 0-10                                       | 0-10     | <u> </u> | 0-5                                         | 0-10     | 0-25   | 45-100            |  |  |  |  |
| 2.36  | <u></u>                                                                                                                                | 22                                         | <u>2</u> | <u>6</u> | <u></u>                                     | <u>1</u> | 0-5    | 0-30              |  |  |  |  |
|       | NOTE: For coarse recycled 20 mm and 10 mm single-sized aggregates, the percentage by mass passing 4 mm test sieve shall not exceed 5%. |                                            |          |          |                                             |          |        |                   |  |  |  |  |

#### Grading of Fine Aggregates

| Sieve size      | Percentage by mass passing test sieves (%) |                                          |            |        |  |  |  |  |
|-----------------|--------------------------------------------|------------------------------------------|------------|--------|--|--|--|--|
|                 | Orvanall limita                            | Overall limits Current Limits for declar |            |        |  |  |  |  |
|                 |                                            | С                                        | М          | F      |  |  |  |  |
| 10 mm           | 100                                        | 33775                                    | 875        |        |  |  |  |  |
| $5 \mathrm{mm}$ | 89-100                                     | 8 <del>14</del>                          | 8 <b>1</b> | (H)    |  |  |  |  |
| 2.36 mm         | 60-100                                     | 60-100                                   | 65-100     | 80-100 |  |  |  |  |
| 1.18 mm         | 30-100                                     | 30-90                                    | 45-100     | 70-100 |  |  |  |  |
| 600 µm          | 15-100                                     | 15-54                                    | 25-80      | 55-100 |  |  |  |  |
| 300 µm          | 5-70                                       | 5-40                                     | 5-48       | 5-70   |  |  |  |  |
| 150 µm          | 0-20                                       | 10.000 k                                 | 5.073      | 1.7    |  |  |  |  |

#### Grading of Fine Aggregates, cont'

- The grading (i.e. C, M or F) of fine aggregates shall be declared and documented by the aggregate producer or supplier.
- The grading shall comply with both the overall limits and the limits for the declared grading in the table.
- Not more than one in ten consecutive samples shall have a grading outside the limit for the declared grading.

#### Shape of Coarse Aggregates

• Flakiness index

of coarse natural aggregate,  $\leq 30$ of coarse recycled aggregate,  $\leq 40$ 

• Elongation index

of coarse natural aggregate,  $\leq 35$ 

Shell Content

• Free of shell

#### **Fines Content**

| Aggregate typ                   | e                                                                                                                  | Maximum percentage by mass passing<br>75 µm test sieve (%) |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Coarse aggregates               |                                                                                                                    | 4                                                          |
| The second second               | Class I                                                                                                            | 10                                                         |
| Fine natural aggregate Class II |                                                                                                                    | >10 and ≤14                                                |
|                                 | I fine natural aggregate should be used.<br>the methylene blue value, determined in accordance with $e \leq 1.4$ . |                                                            |

The aggregate producer or supplier shall declare the class (i.e. Class I or II) of the fine natural aggregate.

#### Foreign Materials in Coarse Recycled Aggregate

| Type of foreign materials                                                                | Maximum percentage by mass (%) |
|------------------------------------------------------------------------------------------|--------------------------------|
| Wood and other material less dense than water                                            | 0.5                            |
| Other foreign materials (e.g. metals, plastics, clay lumps, asphalt and tar, glass etc.) | 1.0                            |

The content of foreign materials shall be determined by manual sorting in accordance with BRE Digest 433.

## **5. Physical Requirements**

#### **Resistance to Fragmentation**

- Los Angeles value of coarse natural aggregate,  $\leq 30\%$  loss
- Ten per cent fines value of coarse aggregates,  $\geq 100 \text{ kN}$
- Aggregate impact value of coarse natural aggregate,  $\leq 30\%$

### **5. Physical Requirements**

Particle Density and Water Absorption

• Oven-dried particle density of aggregates,  $\geq 2,000 \text{ kg/m}^3$ 

• Water absorption

of coarse natural aggregate,  $\leq 0.8\%$ of coarse recycled aggregate,  $\leq 10\%$ 

## 5. Physical Requirements

#### Durability

- Magnesium sulphate soundness value of coarse natural aggregate, ≥ 94%
- Drying shrinkage of natural aggregates, ≤ 0.075%
- Potential alkaline-reactivity of aggregates for mortar bar test, Table 10 of CS1 for concrete prism test, Table 13 of CS1

#### Chlorides

• The chloride ion contents of combined natural aggregates for four categories of concrete

| Type and use of concrete                                                                                                                                                                    | Chloride ion content expressed as<br>percentage by mass of combined natural<br>aggregates (%) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Prestressed concrete and heat-cured concrete containing embedded metal                                                                                                                      | 0.01                                                                                          |
| Concrete containing embedded metal and made with cement complying with BS 4027                                                                                                              | 0.03                                                                                          |
| Concrete containing embedded metal and<br>made with cement complying with BS EN<br>197-1 or combinations with ground<br>granulated blastfurnace slag (GGBS) or<br>pulverized-fuel ash (PFA) | 0.05                                                                                          |
| Other concrete                                                                                                                                                                              | No limit                                                                                      |

#### Chlorides, cont'

- The chloride ion content of natural aggregates and coarse recycled aggregate when combined in use,  $\leq 0.05\%$  by mass
- The water-soluble chloride ion content shall be determined for natural aggregates and the acid-soluble chloride ion content shall be determined for coarse recycled aggregate.

#### Suphur Containing Compounds

- Total sulphur content of natural aggregates,  $\leq 1\%$  by mass

#### **Organic Substances**

- The aggregate producer or supplier shall demonstrate that the supplied aggregate is free of organic substances or alternatively the presence of organic substances does not affect the stiffening or hardening of mortar.
- The presence of humus shall be determined by colour comparison method; if positive, its effect shall be assessed on the following:

(i) the increase in stiffening time of mortar test specimens,  $\leq 120$  min

(ii) the decrease in 28-day compressive strength of mortar test specimens,  $\leq 20\%$ 

#### Quality Control Under ISO 9001

- The aggregate producer and supplier shall establish and maintain a quality assurance system certified to ISO 9001 standard.
- The aggregate producer and supplier shall undertake routine control and laboratory testing to ensure that the aggregate product conforms to CS3 and is traceable throughout the process (production, supply, storage and delivery).
- All tests shall be performed by a HOKLAS accredited laboratory and the test results shall be presented in HOKLAS endorsed test reports.

Quality Control Under ISO 9001, cont'

• When requested, the aggregate producer or supplier shall provide the data including test results/certificates of aggregates.

Quality Control Under A Third Party Product Certification System (Alternative System)

- Quality assurance of the aggregate production and supply may rely on a third party certification of product conformity based on testing and continuous product surveillance and on the quality assurance system of the aggregate producer and supplier.
- A product certification scheme is required to be developed for Hong Kong to cover the production, supply, testing, handling, storage, transportation, etc. of the aggregate.

Quality Control Under A Third Party Product Certification System (Alternative System), cont'

• The certification scheme shall be reviewed by a certification body accredited by HKAS or its MLA partner(s) for product certification.

# 8. Comparison

#### **Geometrical Requirements**

| Geometrical         |              | CS3:201      | 3                | GS 16     |            | WBTC 12         | BS      | 882           |
|---------------------|--------------|--------------|------------------|-----------|------------|-----------------|---------|---------------|
| Requirements        | CNA          | FNA          | CRA              | CNA       | FNA        | CRA             | CNA     | FNA           |
| Grading             | Table 3.1 of | Table 3.2 of | Table 3.1 of CS3 | (Table 3) | Table 4 of | Table 3 of BS   | Table 3 | Table 4       |
|                     | CS3          | CS3          |                  |           | BS 882     | 882:1992        |         |               |
|                     |              |              |                  |           | omitted    |                 |         |               |
|                     |              |              |                  | c         | Note       |                 |         |               |
| Flakiness index     | 30           | -            | 40               | 30        | -          | 40              | 40      | 19 <b>-</b> 0 |
| (max)               |              |              |                  |           |            |                 |         |               |
| Elongation index    | 35           | -            | -1               | 35        | -          | -               | -       |               |
| (max)               |              |              |                  |           |            |                 |         |               |
| Shell content       | Free         | -            | -                | Free      | -          | -               | 20%, 8% | 1.00          |
| Fines content (max) | 4%           | 10% for      | 4%               | (4%)      | (16%)      | 4%              | 4%      | 16%           |
|                     |              | Class I,     |                  |           |            |                 |         |               |
|                     |              | >10% and     |                  |           |            |                 |         |               |
|                     |              | <=14% for    |                  |           |            |                 |         |               |
|                     |              | Class Ⅱ      |                  |           |            |                 |         |               |
| Sand content (max)  | -            | -            | 5% (<4mm)        | -         | -          | 5% (<4mm)       |         |               |
| Foreign materials   | - 1          | -            | 0.5% (< water);  | -         | -          | 0.5% (< water); | -       |               |
| Content (max)       |              |              | 1.0% (> water)   |           |            | 1.0% (> water)  |         |               |

CNA = coarse natural aggregate, FNA = fine natural aggregate, CRA = coarse recycled aggregate

# 8. Comparison

#### **Physical Requirements**

| Physical                                       | sical CS3:2013          |                         | 1                       | GS       | 5 16 | WBTC 12                 | <b>BS 882</b>                                        |                                    |
|------------------------------------------------|-------------------------|-------------------------|-------------------------|----------|------|-------------------------|------------------------------------------------------|------------------------------------|
| Requirements                                   | CNA                     | FNA                     | CRA                     | CNA      | FNA  | CRA                     | CNA                                                  | FNA                                |
| Los Angeles value<br>(max)                     | 30% loss                | -                       | -                       | 30% loss | -    |                         | -                                                    | -                                  |
| Aggregate impact<br>value (max)                | 30%                     | -                       | -                       |          | -    | -                       | 30%                                                  | .= .                               |
| Ten per cent fines<br>value (min)              | 100 kN                  | -                       | 100 kN                  | 100 kN   | -    | 100 kN                  | 100 kN                                               | -                                  |
| Ove-dried Particle<br>density (min)            | 2,000 kg/m <sup>3</sup> | 2,000 kg/m <sup>3</sup> | 2,000 kg/m <sup>3</sup> | -        | -    | 2,000 kg/m <sup>3</sup> |                                                      | the test result<br>ed, no criteria |
| Water absorption<br>(max)                      | 0.8%                    | -                       | 10%                     | 0.8%     | -    | 10%                     |                                                      | 1                                  |
| Magnesium sulphate<br>soundness value<br>(min) | 94%                     |                         |                         | 6% loss  | -    | -                       | 3                                                    | -                                  |
| Drying shrinkage<br>(max)                      | 0.075%                  | 0.075%                  | -                       | -        | -    | -                       | Appendix A, t<br>when requested<br>for time for data | ed, 0.05% set                      |
| Alkali-silica<br>reactivity                    | CS1                     | CS1                     | CS1                     | CS1      | CS1  | -                       | -                                                    | 1.04                               |

CNA = coarse natural aggregate, FNA = fine natural aggregate, CRA = coarse recycled aggregate

<sup>2,000</sup> kg/m<sup>3</sup> and 0.075% from BS EN 12620

# 8. Comparison

#### **Chemical Requirements**

| Chemical              | CS3:2013                                       |           | GS 16           |                      | WBTC 12        | BS 882 |             |               |  |
|-----------------------|------------------------------------------------|-----------|-----------------|----------------------|----------------|--------|-------------|---------------|--|
| Requirements          | CNA                                            | FNA       | CRA             | CNA                  | FNA            | CRA    | CNA         | FNA           |  |
| Chloride ion content  | 0.01%(                                         | PresC),   | ್ಷ              | [0.01%               | [0.01%(PresC), |        | 0.01%(      | 0.01%(PresC), |  |
| (max, combined)*      | 0.03%(S                                        | SulfRC),  |                 | 0.03%(               | SulfRC),       |        | 0.03%(\$    | SulfRC),      |  |
|                       | 0.05%(PC,                                      | GGBS,PFA) |                 | 0.05%(PC, GGBS,PFA)] |                |        | 0.05%(PC,   | GGBS,PFA)     |  |
| Acid-soluble          |                                                | 0.05%     |                 | 2                    | <b>1</b> 3     | 0.05%  | 3           |               |  |
| chloride ion content  |                                                |           |                 |                      |                |        |             |               |  |
| (max, combined)       |                                                |           |                 | -                    |                | 2      | 1.          |               |  |
| Acid-soluble          | 0.8%                                           | 0.8%      | 1%              | -                    | -              | 1%     | Test result |               |  |
| sulphate content      |                                                |           |                 |                      |                |        | when        |               |  |
| (max)                 |                                                |           |                 |                      |                |        | requested,  |               |  |
|                       |                                                |           |                 |                      |                |        | no criteria |               |  |
| Total sulphur content | 1%                                             | 1%        | <del>-</del> -8 | -                    | -              | -      | 120         | -             |  |
| (max)                 |                                                |           |                 |                      |                |        |             |               |  |
| Organic materials     | Free of humus; if not, use mortar test (i)     |           | mortar test (i) |                      | - 1            | -      | 121         | -             |  |
|                       | increase in stiffening time ≤ 120min, (ii)     |           |                 |                      |                |        |             |               |  |
|                       | decrease in 28-day compressive strength $\leq$ |           |                 |                      |                |        |             |               |  |
|                       | 20%                                            |           |                 |                      |                |        |             |               |  |

CNA = coarse natural aggregate, FNA = fine natural aggregate, CRA = coarse recycled aggregate

\* - The water-soluble chloride ion content shall be determined for natural aggregates and the acid-soluble chloride ion content shall be determined for coarse recycled aggregate.

0.8%, 1% and organic materials from BS EN 12620

#### **End of Presentation**

### **Thank You**