
Containerize your
Apps with Docker
and Kubernetes

Dr. Gabriel N. Schenker
www.packt.com

Deploy, scale, orchestrate, and manage containers
with Docker and Kubernetes

We hope you enjoy this preview
of Containerize Your Apps with

Docker and Kubernetes.

The preview features the first
3 chapters of the eBook. To read it in
full, download the complete eBook

for FREE from Microsoft.

Download the complete book
from Microsoft today

http://aka.ms/containerspreview

Containerize your Apps with
Docker and Kubernetes

Deploy, scale, orchestrate, and manage containers
with Docker and Kubernetes

Dr. Gabriel N. Schenker

BIRMINGHAM - MUMBAI

Containerize your Apps with Docker and Kubernetes

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editors: Ronn Kurien
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexers: Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Nilesh Mohite

First published: September 2018
Production reference: 1260918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78961-036-9

www.packtpub.com

Contributors

About the author
Dr. Gabriel N. Schenker has more than 25 years of experience as an independent
consultant, architect, leader, trainer, mentor, and developer. Currently, Gabriel
works as Senior Curriculum Developer at Confluent after coming from a similar
position at Docker. Gabriel has a Ph.D. in Physics, and he is a Docker Captain, a
Certified Docker Associate, and an ASP Insider. When not working, Gabriel enjoys
time with his wonderful wife Veronicah and his children.

About the reviewer
Xijing Zhang is currently a technical curriculum developer at Docker after
graduating from the University of Southern California as an electrical engineer.
Previously, she has interned on the Failure Analysis Team at SanDisk and has held
multiple research positions at USC and Tsinghua University. She has worked on
projects dealing with making air conditioners more efficient, nuclear power safety,
and single photon emission.

Peter McKee is a Software Architect and Senior Software Engineer at Docker,
Inc. He leads the technical team that delivers the Docker Success Center. He's been
leading and mentoring teams for more than 20 years. When not building things with
software, he spends his time with his wife and seven kids in beautiful Austin, TX.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

[i]

Table of Contents
Preface ix
Chapter 1: What Are Containers and Why Should I Use Them? 1

Technical requirements 2
What are containers? 2
Why are containers important? 5

Improving security 5
Simulating production-like environments 6
Standardizing infrastructure 6

What's the benefit for me or for my company? 6
The Moby project 7
Docker products 8

Docker CE 8
Docker EE 9

The container ecosystem 9
Container architecture 10
Summary 11
Questions 12
Further reading 13

Chapter 2: Setting up a Working Environment 15
Technical requirements 16
The Linux command shell 16
PowerShell for Windows 17
Using a package manager 17

Installing Homebrew on a macOS 17
Installing Chocolatey on Windows 18

Choosing a code editor 19
Docker Toolbox 19

Table of Contents

[ii]

Docker for macOS and Docker for Windows 22
Installing Docker for macOS 22
Installing Docker for Windows 24
Using docker-machine on Windows with Hyper-V 24

Minikube 26
Installing Minikube on macOS and Windows 26
Testing Minikube and kubectl 27

Cloning the source code repository 28
Summary 29
Questions 29
Further reading 29

Chapter 3: Working with Containers 31
Technical requirements 32
Running the first container 32
Starting, stopping, and removing containers 33

Running a random quotes container 35
Listing containers 37
Stopping and starting containers 38
Removing containers 39

Inspecting containers 40
Exec into a running container 42
Attaching to a running container 43
Retrieving container logs 45

Logging drivers 46
Using a container-specific logging driver 47
Advanced topic – changing the default logging driver 47

Anatomy of containers 48
Architecture 49
Namespaces 50
Control groups (cgroups) 51
Union filesystem (UnionFS) 52
Container plumbing 52

Runc 52
Containerd 52

Summary 53
Questions 53
Further reading 53

Table of Contents

[iii]

Chapter 4: Creating and Managing Container Images 55
What are images? 56

The layered filesystem 56
The writable container layer 58
Copy-on-write 59
Graph drivers 59

Creating images 60
Interactive image creation 60
Using Dockerfiles 63

The FROM keyword 64
The RUN keyword 65
The COPY and ADD keywords 66
The WORKDIR keyword 67
The CMD and ENTRYPOINT keywords 68
A complex Dockerfile 70
Building an image 71
Multistep builds 75
Dockerfile best practices 77

Saving and loading images 79
Sharing or shipping images 79

Tagging an image 80
Image namespaces 80
Official images 82
Pushing images to a registry 82

Summary 83
Questions 83
Further reading 84

Chapter 5: Data Volumes and System Management 85
Technical requirements 86
Creating and mounting data volumes 86

Modifying the container layer 86
Creating volumes 87
Mounting a volume 89
Removing volumes 90

Sharing data between containers 91
Using host volumes 92
Defining volumes in images 95
Obtaining Docker system information 97
Listing resource consumption 100

Table of Contents

[iv]

Pruning unused resources 101
Pruning containers 101
Pruning images 102
Pruning volumes 103
Pruning networks 104
Pruning everything 104

Consuming Docker system events 104
Summary 106
Questions 106
Further reading 107

Chapter 6: Distributed Application Architecture 109
What is a distributed application architecture? 110

Defining the terminology 110
Patterns and best practices 113

Loosely coupled components 113
Stateful versus stateless 113
Service discovery 114
Routing 116
Load balancing 116
Defensive programming 117

Retries 117
Logging 117
Error handling 117

Redundancy 118
Health checks 118
Circuit breaker pattern 119

Running in production 120
Logging 120
Tracing 120
Monitoring 121
Application updates 121
Rolling updates 121

Blue-green deployments 122
Canary releases 122
Irreversible data changes 123
Rollback 123

Summary 124
Questions 124
Further reading 125

Table of Contents

[v]

Chapter 7: Single-Host Networking 127
Technical requirements 128
The container network model 128
Network firewalling 130
The bridge network 131
The host network 141
The null network 142
Running in an existing network namespace 143
Port management 145
Summary 147
Questions 148
Further reading 148

Chapter 8: Docker Compose 149
Technical requirements 150
Demystifying declarative versus imperative 150
Running a multi-service app 151
Scaling a service 156
Building and pushing an application 159
Summary 160
Questions 160
Further reading 160

Chapter 9: Orchestrators 161
What are orchestrators and why do we need them? 162
The tasks of an orchestrator 163

Reconciling the desired state 163
Replicated and global services 164
Service discovery 165
Routing 166
Load balancing 166
Scaling 167
Self-healing 168
Zero downtime deployments 169
Affinity and location awareness 170
Security 170

Secure communication and cryptographic node identity 171
Secure networks and network policies 171
Role-based access control (RBAC) 172
Secrets 172

Table of Contents

[vi]

Content trust 173
Reverse uptime 174

Introspection 174
Overview of popular orchestrators 175

Kubernetes 175
Docker Swarm 176
Microsoft Azure Kubernetes Service (AKS) 178
Apache Mesos and Marathon 178
Amazon ECS 179

Summary 180
Questions 180
Further reading 180

Chapter 10: Orchestrating Containerized Applications
with Kubernetes 181

Technical requirements 182
Architecture 182
Kubernetes master nodes 185
Cluster nodes 186
Introducing Minikube 188
Kubernetes support in Docker for Desktop 190
Pods 196

Comparing Docker Container and Kubernetes pod networking 197
Sharing the network namespace 198
Pod life cycle 201
Pod specification 202
Pods and volumes 204

Kubernetes ReplicaSet 206
ReplicaSet specification 207
Self-healing 208

Kubernetes deployment 209
Kubernetes service 210
Context-based routing 212
Summary 213
Questions 213
Further reading 214

Chapter 11: Deploying, Updating, and Securing an Application
with Kubernetes 215

Technical requirements 216
Deploying a first application 216

Deploying the web component 216

Table of Contents

[vii]

Deploying the database 220
Streamlining the deployment 225

Zero downtime deployments 226
Rolling updates 227
Blue–green deployment 230

Kubernetes secrets 235
Manually defining secrets 235
Creating secrets with kubectl 237
Using secrets in a pod 237
Secret values in environment variables 240

Summary 241
Questions 241
Further reading 242

Chapter 12: Running a Containerized App in the Cloud 243
Technical requirements 244
Creating a fully managed Kubernetes cluster in Azure 244

Running the Azure CLI 245
Azure resource groups 247
Provisioning the Kubernetes cluster 248

Pushing Docker images to the Azure Container Registry (ACR) 251
Creating an ACR 252
Tagging and pushing Docker images 253
Configuring the service principal 254

Deploying an application into the Kubernetes cluster 255
Scaling the Pets application 257

Scaling the number of app instances 257
Scaling the number of cluster nodes 258

Monitoring the cluster and application 260
Creating a log analytics workspace 261
Monitoring the container health 263
Viewing the logs of Kubernetes masters 264
Viewing the kublet and container logs 267
Upgrading the application with zero downtime 272
Upgrading Kubernetes 273

Debugging the application while it is running in AKS 275
Creating a Kubernetes cluster for development 275
Configuring the environment 277
Deploying and running a service 278
Remote debugging a service using Visual Studio Code 280
Enabling edit-and-continue style development in the cloud 282

Table of Contents

[viii]

Cleaning up 283
Summary 283
Questions 284
Further reading 284

Appendix: Assessment 285
Chapter 1: What Are Containers and Why Should I Use Them? 285
Chapter 2: Setting up a Working Environment 286
Chapter 3: Working with Containers 287
Chapter 4: Creating and Managing Container Images 287
Chapter 5: Data Volumes and System Management 289
Chapter 6: Distributed Application Architecture 290
Chapter 7: Single-Host Networking 291
Chapter 8: Docker Compose 292
Chapter 9: Orchestrators 293
Chapter 10: Orchestrating Containerized Applications
with Kubernetes 294
Chapter 11: Deploying, Updating, and Securing an Application
with Kubernetes 295
Chapter 12: Running a Containerized App in the Cloud 297

Another Book You May Enjoy 299
Index 303

[ix]

Preface
Containerization is said to be the best way to implement DevOps and the main goal of
this book is to provide end-to-end deployment solutions for your Azure environment.

This book will initiate with the implementation of deploying and managing
containers along with getting you up and running with Docker and Kubernetes.
Then, this book will explain operations for container management and orchestration
in Docker using Azure's cloud solutions. You will also learn to deploy and manage
highly scalable applications along with setting-up production ready Kubernetes
cluster on Azure in an intact environment. Lastly, The book will also help you
leverage Microsoft's Docker and Kubernetes tools to build apps that can be quickly
deployed on Azure.

By the end of the book, you will get hands-on with some more advanced topics to
further extend your knowledge about Docker and Kubernetes.

Who this book is for
If you are a developer, system administrator, or DevOps engineer who wants to use
Docker and Kubernetes to run your mission-critical applications scalable, securely,
and highly available on-prem or in the cloud, then this book is for you. In order
to learn from this book, you should have some basic Linux/Unix skills such as
installing packages, editing files, managing services, and so on. If you have some
basic virtualization experience that would be an added advantage.

Preface

[x]

What this book covers
Chapter 1, What Are Containers and Why Should I Use Them?, this chapter focuses on
the software supply chain and the friction within it. It then presents containers as
a means to reduce this friction and add enterprise-grade security on top of it. In
this chapter, we also look into how containers and the ecosystem around them are
assembled. We specifically point out the distinction between the upstream OSS
components (Moby) that form the building blocks of the downstream products of
Docker and other vendors.

Chapter 2, Setting up a Working Environment, in this chapter discussed in detail how to
set up an ideal environment for developers, DevOps and operators that can be used
when working with Docker containers.

Chapter 3, Working with Containers, this chapter teaches how start, stop and remove
containers. The chapter also teaches how to inspect containers to retrieve additional
metadata of it. Furthermore, it introduces how to run additional processes or how to
attach to the main process in an already running container. It is also showing how
to retrieve logging information from a container that is produced by the processes
running inside it. Finally, the chapter introduces the inner workings of a container
including such things as Linux namespaces and cgroups.

Chapter 4, Creating and Managing Container Images, this chapter introduces the
different ways how to create container images that serve as templates for containers.
It introduces the inner structure of an image and how it is built.

Chapter 5, Data Volumes and System Management, this chapter introduces data volumes
that can be used by stateful components running in containers. The chapter also
introduces system level commands that are used to gather information about Docker
and the underlying OS as well as commands to clean the system from orphaned
resources. Finally, it introduces the system events generated by the Docker engine.

Chapter 6, Distributed Application Architecture, this chapter introduces the concept of
a distributed application architecture and discusses the various patterns and best
practices that are required to run a distributed application successfully. Finally,
it discusses the additional requirements that need to be fulfilled to run such an
application in production.

Chapter 7, Single-Host Networking, this chapter introduces the Docker container
networking model and its single host implementation in the form of the bridge
network. The chapter introduces the concept of software-defined networks and
how they are used to secure containerized applications. Finally, it introduces
how container ports can be opened to the public and thus make containerized
components accessible from the outside world.

Preface

[xi]

Chapter 8, Docker Compose, this chapter introduces the concept of an application
consisting of multiple services each running in a container and how Docker
Compose allows us to easily build, run and scale such an application using a
declarative approach.

Chapter 9, Orchestrators, this chapter introduces the concept of orchestrators. It
teaches why orchestrators are needed and how they conceptually work. The chapter
will also provide an overview of the most popular orchestrators and name a few of
their pros and cons.

Chapter 10, Orchestrating Containerized Applications with Kubernetes, this chapter
introduces Kubernetes. Kubernetes is currently the clear leader in the container
orchestration space. It starts with a high-level overview of the architecture of a
Kubernetes cluster and then discusses the main objects used in Kubernetes to define
and run containerized applications.

Chapter 11, Deploying, Updating, and Securing an Application with Kubernetes, this
chapter teaches how to deploy, update and scale applications into a Kubernetes
cluster. It also explains how zero downtime deployments are achieved to enable
disruption free updates and rollbacks of mission-critical applications. This chapter
also introduces Kubernetes secrets as a means to configure services with and protect
sensitive data.

Chapter 12, Running a Containerized App in the Cloud, this chapter shows how to
deploy a complex containerized application into a hosted Kubernetes cluster on
Microsoft Azure using the Azure Kubernetes Service (AKS) offering. First it explains
how to provision a Kubernetes cluster, second it shows how to host the Docker
images in the Azure Container Registry and finally it demonstrates how to deploy,
run, monitor, scale and upgrade the application. The chapter also demonstrates how
to upgrade the version of Kubernetes in the cluster without causing any downtime.

To get the most out of this book
Ideally you have access to a laptop or personal computer with Windows 10
Professional or a recent version of Mac OS X installed. A computer with any popular
Linux OS installed works too. If you're on a Mac you should install Docker for Mac
and if you're on Windows then install Docker for Windows. You can download them
from here: https://www.docker.com/community-edition.

If you are on an older version of Windows or are using Windows 10 Home edition,
then you should install Docker Toolbox. You can find the Docker Toolbox here:
https://docs.docker.com/toolbox/toolbox_install_windows/.

https://www.docker.com/community-edition
https://docs.docker.com/toolbox/toolbox_install_windows/

Preface

[xii]

On the Mac, use the Terminal application, and on Windows, use a PowerShell
console to try out the commands you will be learning. You also need a recent version
of a browser such as Google Chrome, Safari or Internet Explorer. Of course you will
need internet access to download tools and container images that we are going to use
and explore in this book.

To follow Chapter 12, Running a Containerized App in the Cloud, you need access
to Microsoft Azure. If you do not have an existing account on Azure it is possible to
request a trial account here at https://azure.microsoft.com/en-us/free/.

Download the EPUB/mobi and example
code files
An EPUB and mobi version of this book is available free of charge on Github.
You can download them and the code bundle at https://github.com/
PacktPublishing/Containerize-your-Apps-with-Docker-and-Kubernetes.

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

https://azure.microsoft.com/en-us/free/
https://github.com/PacktPublishing/Containerize-your-Apps-with-Docker-and-Kubernetes
https://github.com/PacktPublishing/Containerize-your-Apps-with-Docker-and-Kubernetes
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[xiii]

The code bundle for the book is hosted on GitHub at https://github.com/
appswithdockerandkubernetes/labs.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it from https://www.packtpub.com/sites/
default/files/downloads/9781789610369_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "The content of each layer is mapped to a special folder
on the host system, which is usually a subfolder of /var/lib/docker/."

A block of code is set as follows:

COPY . /app
COPY ./web /app/web
COPY sample.txt /data/my-sample.txt
ADD sample.tar /app/bin/
ADD http://example.com/sample.txt /data/

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

FROM python:2.7
RUN mkdir -p /app
WORKDIR /app
COPY ./requirements.txt /app/
RUN pip install -r requirements.txt
CMD ["python", "main.py"]

https://github.com/appswithdockerandkubernetes/labs
https://github.com/appswithdockerandkubernetes/labs
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789610369_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789610369_ColorImages.pdf

Preface

[xiv]

Any command-line input or output is written as follows:

az group create --name pets-group --location westeurope

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com, and mention the book's
title in the subject of your message. If you have questions about any aspect of this
book, please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[xv]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

[1]

What Are Containers and
Why Should I Use Them?

This first chapter of this book will introduce you to the world of containers and
their orchestration. This book assumes you have no prior knowledge in the area
of containers, and will give you a very practical introduction into the topic.

In this chapter, we are focusing on the software supply chain and the friction within
it. We then present containers as a means to reduce this friction and add enterprise-
grade security on top of it. In this chapter, we also look into how containers and
the ecosystem around them are assembled. We specifically point out the distinction
between the upstream Operations Support System (OSS) components, united under
the code name Moby, that form the building blocks of the downstream products of
Docker and other vendors.

The chapter covers the following topics:

• What are containers?
• Why are containers important?
• What's the benefit for me or for my company?
• The Moby project
• Docker products
• The container ecosystem
• Container architecture

What Are Containers and Why Should I Use Them?

[2]

After completing this module, you will be able to:

• Explain in a few simple sentences to an interested layman what containers
are, using an analogy such as physical containers

• Justify to an interested layman why containers are so important, using an
analogy such as physical containers versus traditional shipping, or apartment
homes versus single family homes, and so on

• Name at least four upstream open source components that are used by the
Docker products, such as Docker for Mac/Windows

• Identify at least three Docker products

Technical requirements
This chapter is a theoretical introduction into the topic. Therefore, there are no
special technical requirements for this chapter.

What are containers?
A software container is a pretty abstract thing and thus it might help if we start
with an analogy that should be pretty familiar to most of the readers. The analogy
is a shipping container in the transportation industry.

We transport huge amounts of goods on trains, ships, and trucks. We unload them
at target locations, which may be another means of transportation. Goods are
often diverse and complex to handle. Before the invention of shipping containers,
this unloading from one means of transportation and loading onto another was a
really complex and tedious process. Take, for example, a farmer bringing a cart full
of apples to a central train station where the apples are then loaded onto a train,
together with all the apples from many other farmers. Or think of a winemaker
bringing his barrels of wine with a truck to the port where they are unloaded, and
then transferred to a ship that will transport the barrels overseas. Every type of good
was packaged in its own way and thus had to be handled in its own way. Any loose
goods risked being stolen or damaged in the process. Then, there came the container,
and it totally revolutionized the transportation industry.

Chapter 1

[3]

The container is just a metallic box with standardized dimensions. The length, width,
and height of each container is the same. This is a very important point. Without the
world agreeing on a standard size, shipping containers would not have become so
successful. Nowadays, companies who want to have their goods transported from
A to B package those goods into these standardized containers. Then, they call a
shipper which comes with a standardized means for transportation. This can be a
truck designed to load a container or a train whose wagons can each transport one or
several containers. Finally, we have ships that are specialized in transporting huge
amounts of containers. The shippers never need to unpack and repackage goods. For
a shipper, a container is a just a black box; they are not interested in what is in it nor
should they care in most cases. It is just a big iron box with standard dimensions. The
packaging of goods into containers is now fully delegated to the parties that want to
have their goods shipped, and they should know best how to handle and package
those goods. Since all containers have the same standardized shape and dimensions,
the shippers can use standardized tools to handle containers, that is, cranes that
unload containers, say from a train or a truck, and load them onto a ship or vice
versa. One type of crane is enough to handle all the containers that come along over
time. Also, the means of transportation can be standardized, such as container ships,
trucks, and trains. Because of all this standardization, all the processes in and around
shipping goods could be standardized, and thus made much more efficient than they
were before the age of containers.

I think by now you should have a good understanding of why shipping containers
are so important and why they revolutionized the whole transportation industry. I
chose this analogy because the software containers that we are going to look at here
fulfill the exact same role in the software supply chain as shipping containers do in
the supply chain of physical goods.

Let's discuss what developers used to do when they developed a new application.
Once an application was completed in the eyes of the developers, they would hand
this application over to the operations engineers that were then supposed to install
it on the production servers and get it running. If the operations engineers were
lucky, they even got an accurate document with installation instructions from the
developers. So far so good, and life was easy. But things got a bit out of hand when
there were many teams of developers in an enterprise that created quite different
types of applications, yet all needed to be installed on the same production servers
and kept running there. Usually, each application has some external dependencies
such as which framework it was built on or what libraries it uses and so on.

What Are Containers and Why Should I Use Them?

[4]

Sometimes, two applications would use the same framework but in different
versions that might or might not be compatible between each other. Our operations
engineer's life became much harder over time. They had to be really creative with
how they could load their servers, or their 'ship', with different applications without
breaking something. Installing a new version of a certain application was a complex
project on its own and often needed months of planning and testing. In other words,
there was a lot of friction in the software supply chain. But these days, companies
rely more and more on software and the release cycles become shorter and
shorter. We cannot afford anymore to just have a new release maybe twice a year.
Applications need to be updated in a matter of weeks or days, or sometimes even
multiple times per day. Companies that do not comply risk going out of business
due to the lack of agility. So, what's the solution?

A first approach was to use virtual machines (VMs). Instead of running multiple
applications all on the same server, companies would package and run a single
application per VM. With it, the compatibility problems were gone and life seemed
good again. Unfortunately, the happiness didn't last for long. VMs are pretty heavy
beasts on their own since they all contain a full-blown OS such as Linux or Windows
Server and all that for just a single application. This is as if in the transportation
industry you would use a gigantic ship just to transport a truck load of bananas.
What a waste. That can never be profitable. The ultimate solution to the problem
was to provide something much more lightweight than VMs but also able to
perfectly encapsulate the goods it needed to transport. Here, the goods are the actual
application written by our developers plus (and this is important) all the external
dependencies of the application, such as framework, libraries, configurations, and
more. This holy grail of a software packaging mechanism was the Docker container.

Developers use Docker containers to package their applications, frameworks, and
libraries, and then they ship those containers to the testers or to the operations
engineers. For the testers and operations engineers, the container is just a black box.
Crucially, it is a standardized black box. All containers, no matter what application
runs inside them, can be treated equally. The engineers know that if any container
runs on their servers, then any other containers should run too. And this is actually
true, apart from some edge cases which always exist. Thus, Docker containers are
a means to package applications and their dependencies in a standardized way.
Docker then coined the phrase—Build, ship and run anywhere.

Chapter 1

[5]

Why are containers important?
These days, the time between new releases of an application becomes shorter and
shorter, yet the software itself doesn't become any simpler. On the contrary, software
projects increase in complexity. Thus, we need a way to tame the beast and simplify
the software supply chain.

Improving security
We also hear every day how much more cyber crimes are on the rise. Many well-
known companies are affected by security breaches. Highly sensitive customer data
gets stolen, such as social security numbers, credit card information, and more. But
not only customer data is compromised, sensitive company secrets are also stolen.

Containers can help in many ways. First of all, Gartner has found in a recent report
that applications running in a container are more secure than their counterparts
not running in a container. Containers use Linux security primitives such as Linux
kernel namespaces to sandbox different applications running on the same computers
and control groups (cgroups), to avoid the noisy neighbor problem where one
bad application is using all available resources of a server and starving all other
applications.

Due to the fact that container images are immutable, it is easy to have them scanned
for known vulnerabilities and exposures, and in doing so, increase the overall
security of our applications.

Another way we can make our software supply chain more secure when using
containers is to use content trust. Content trust basically ensures that the author of
a container image is who they pretend to be and that the consumer of the container
image has a guarantee that the image has not been tampered with in transit. The
latter is known as a man-in-the-middle (MITM) attack.

All that I have just said is of course technically also possible without using
containers, but since containers introduce a globally accepted standard, it makes it so
much easier to implement those best practices and enforce them.

OK, but security is not the only reason why containers are important. There are other
reasons as explained in the next two sections.

What Are Containers and Why Should I Use Them?

[6]

Simulating production-like environments
One of them is the fact that containers make it easy to simulate a production-like
environment, even on a developer's laptop. If we can containerize any application,
then we can also containerize, say, a database such as Oracle or MS SQL Server.
Now, everyone who has ever had to install an Oracle database on a computer
knows that this is not the easiest thing to do and it takes a lot of space away on your
computer. You wouldn't want to do that to your development laptop just to test
whether the application you developed really works end to end. With containers at
hand, I can run a full-blown relational database in a container as easily as saying 1,
2, 3. And when I'm done with testing, I can just stop and delete the container and the
database is gone without leaving a trace on my computer.

Since containers are very lean compared to VMs, it is not uncommon to have many
containers running at the same time on a developer's laptop without overwhelming
the laptop.

Standardizing infrastructure
A third reason why containers are important is that operators can finally concentrate
on what they are really good at, provisioning infrastructure, and running and
monitoring applications in production. When the applications they have to run on a
production system are all containerized, then operators can start to standardize their
infrastructure. Every server becomes just another Docker host. No special libraries of
frameworks need to be installed on those servers, just an OS and a container runtime
such as Docker.

Also, the operators do not have to have any intimate knowledge about the internals
of the applications anymore since those applications run self-contained in containers
that ought to look like black boxes to the operations engineers, similar to how the
shipping containers look to the personnel in the transportation industry.

What's the benefit for me or for my
company?
Somebody once said that today, every company of a certain size has to acknowledge
that they need to be a software company. Software runs all businesses, period. As
every company becomes a software company, there is a need to establish a software
supply chain. For the company to remain competitive, their software supply
chain has to be secure and efficient. Efficiency can be achieved through thorough
automation and standardization. But in all three areas, security, automation, and
standardization, containers have proven their superiority.

Chapter 1

[7]

Large and well-known enterprises have reported that when containerizing existing
legacy applications (many call them traditional applications) and establishing a fully
automated software supply chain based on containers, they can reduce the cost used
for maintenance of those mission-critical applications by a factor of 50 to 60% and
they can reduce the time between new releases of these traditional applications by
up to 90%.

That said, the adoption of container technology saves these companies a lot of
money, and at the same time it speeds up the development process and reduces
the time to market.

The Moby project
Originally, when the company Docker introduced Docker containers, everything
was open source. Docker didn't have any commercial products at this time. The
Docker engine which the company developed was a monolithic piece of software.
It contained many logical parts, such as the container runtime, a network library,
a RESTful API, a command-line interface, and much more.

Other vendors or projects such as Red Hat or Kubernetes were using the Docker
engine in their own products, but most of the time they were only using part of its
functionality. For example, Kubernetes did not use the Docker network library of
the Docker engine but provided its own way of networking. Red Hat in turn did not
update the Docker engine frequently and preferred to apply unofficial patches to
older versions of the Docker engine, yet they still called it the Docker engine.

Out of all these reasons and many more, the idea emerged that Docker had to
do something to clearly separate the Docker open source part from the Docker
commercial part. Furthermore, the company wanted to prevent competitors from
using and abusing the name Docker for their own gains. This was the main reason
why the Moby project was born. It serves as the umbrella for most of the open source
components Docker developed and continues to develop. These open source projects
do not carry the name Docker in them anymore.

The Moby project encompasses components for image management, secret
management, configuration management, and networking and provisioning,
to name just a few. Also, part of the Moby project are special Moby tools that are,
for example, used to assemble components into runnable artifacts.

What Are Containers and Why Should I Use Them?

[8]

Some of the components that technically would belong to the Moby project have
been donated by Docker to the Cloud Native Computing Foundation (CNCF) and
thus do not appear in the list of components anymore. The most prominent ones are
containerd and runc which together form the container runtime.

Docker products
Docker currently separates its product lines into two segments. There is the
Community Edition (CE) which is closed source yet completely free, and then there
is the Enterprise Edition (EE) which is also a closed source and needs to be licensed
on a yearly basis. The enterprise products are backed by 24 x 7 support and are
supported with bug fixes much longer than their CE counterparts.

Docker CE
The Docker community edition includes products such as the Docker Toolbox,
Docker for Mac, and Docker for Windows. All these three products are mainly
targeting developers.

Docker for Mac and Docker for Windows are easy-to-install desktop applications
that can be used to build, debug, and test Dockerized applications or services on
a Mac or on Windows. Docker for Mac and Docker for Windows are complete
development environments which deeply integrated with their respective hypervisor
framework, networking, and filesystem. These tools are the fastest and most reliable
way to run Docker on a Mac or on Windows.

Under the umbrella of the CE, there are also two products that are more geared
towards operations engineers. Those products are Docker for Azure and Docker
for AWS.

For example, with Docker for Azure, which is a native Azure application, you can
set up Docker in a few clicks, optimized for and integrated to the underlying Azure
Infrastructure as a Service (IaaS) services. It helps operations engineers to accelerate
the time it takes to build and run Docker applications in Azure.

Docker for AWS works in a very similar way, but for Amazon's cloud.

Chapter 1

[9]

Docker EE
The Docker EE consists of the two products Universal Control Plane (UCP) and
Docker Trusted Registry (DTR) that both run on top of Docker Swarm. Both are
Swarm applications. Docker EE builds on top of the upstream components of the
Moby project and adds enterprise-grade features such as role-based access control
(RBAC), multi tenancy, mixed clusters of Docker Swarm and Kubernetes, web-based
UI, and content trust, as well as image scanning on top of it.

The container ecosystem
There has never been a new technology introduced in IT that has penetrated the
landscape as quickly and thoroughly as containers. Any company that doesn't want
to be left behind cannot ignore containers. This huge interest in containers from all
sectors of the industry has triggered a lot of innovation in this sector. Numerous
companies have specialized in containers and either provide products that build
on top of this technology or build tools that support it.

Initially, Docker didn't have a solution for container orchestration thus other
companies or projects, open source or not, tried to close this gap. The most
prominent one is Kubernetes which was initiated by Google and then later donated
to the CNCF. Other container orchestration products are Apache Mesos, Rancher,
Red Hat's Open Shift, Docker's own Swarm, and more.

More recently, the trend goes towards a service mesh. This is the new buzz word. As
we containerize more and more applications, and as we refactor those applications
into more microservice-oriented applications, we run into problems that simple
orchestration software cannot solve anymore in a reliable and scalable way. Topics
in this area are service discovery, monitoring, tracing, and log aggregation. Many
new projects have emerged in this area, the most popular one at this time being Istio,
which is also part of the CNCF.

Many say that the next step in the evolution of software is functions, or more
precisely, Functions as a Service (FaaS). Some projects exist that provide exactly
this kind of service and are built on top of containers. One prominent example
is OpenFaaS.

What Are Containers and Why Should I Use Them?

[10]

We have only scratched the surface of the container ecosystem. All big IT companies
such as Google, Microsoft, Intel, Red Hat, IBM, and more are working feverishly on
containers and related technologies. The CNCF which is mainly about containers
and related technologies, has so many registered projects, that they do not all fit on a
poster anymore. It's an exciting time to work in this area. And in my humble opinion,
this is only the beginning.

Container architecture
Now, let's discuss on a high level how a system that can run Docker containers is
designed. The following diagram illustrates what a computer on which Docker has
been installed looks like. By the way, a computer which has Docker installed is often
called a Docker host, because it can run or host Docker containers:

High-level architecture diagram of the Docker engine

In the preceding diagram, we see three essential parts:

• On the bottom, we have the Linux operating system
• In the middle dark gray, we have the container runtime
• On the top, we have the Docker engine

Chapter 1

[11]

Containers are only possible due to the fact that the Linux OS provides some
primitives, such as namespaces, control groups, layer capabilities, and more which
are leveraged in a very specific way by the container runtime and the Docker engine.
Linux kernel namespaces such as process ID (pid) namespaces or network (net)
namespaces allow Docker to encapsulate or sandbox processes that run inside the
container. Control groups make sure that containers cannot suffer from the noisy
neighbor syndrome, where a single application running in a container can consume
most or all of the available resources of the whole Docker host. Control groups allow
Docker to limit the resources, such as CPU time or the amount of RAM that each
container gets maximally allocated.

The container runtime on a Docker host consists of containerd and runc. runc is
the low-level functionality of the container runtime and containerd, which is based
on runc, provides the higher-level functionality. Both are open source and have been
donated by Docker to the CNCF.

The container runtime is responsible for the whole life cycle of a container. It pulls
a container image (which is the template for a container) from a registry if necessary,
creates a container from that image, initializes and runs the container, and eventually
stops and removes the container from the system when asked.

The Docker engine provides additional functionality on top of the container runtime,
such as network libraries or support for plugins. It also provides a REST interface
over which all container operations can be automated. The Docker command-line
interface that we will use frequently in this book is one of the consumers of this
REST interface.

Summary
In this chapter, we looked at how containers can massively reduce the friction in the
software supply chain and on top of that, make the supply chain much more secure.

In the upcoming chapter, we will familiarize ourselves with containers. We will
learn how to run, stop, and remove containers and otherwise manipulate them.
We will also have a pretty good overview over the anatomy of containers. For the
first time, we're really going to get our hands dirty and play with these containers,
so stay tuned.

What Are Containers and Why Should I Use Them?

[12]

Questions
Please solve the following questions to assess your learning progress:

1. Which statements are correct (multiple answers are possible)?
1. A container is kind of a lightweight VM
2. A container only runs on a Linux host
3. A container can only run one process
4. The main process in a container always has PID 1
5. A container is one or more processes encapsulated by Linux

namespaces and restricted by cgroups
2. Explain to an interested layman in your own words, maybe using analogies,

what a container is.
3. Why are containers considered to be a game changer in IT? Name three to

four reasons.
4. What does it mean when we claim: If a container runs on a given platform then it

runs anywhere...? Name two to three reasons why this is true.
5. True or False: Docker containers are only really useful for modern greenfield

applications based on microservices. Please justify your answer.
6. How much does a typical enterprise save when containerizing their legacy

applications?
1. 20%
2. 33%
3. 50%
4. 75%

7. Which two core concepts of Linux are containers based on?

Chapter 1

[13]

Further reading
Here is a list of links that lead to more detailed information regarding topics we have
discussed in this chapter:

• Docker overview at https://docs.docker.com/engine/docker-overview/
• The Moby project at https://mobyproject.org/
• Docker products at https://www.docker.com/get-docker
• Cloud Native Computing Foundation at https://www.cncf.io/
• containerd – industry standard container runtime at https://containerd.io/

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://mobyproject.org/
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.cncf.io/
https://www.cncf.io/
 https://www.cncf.io/
https://containerd.io/
https://containerd.io/

[15]

Setting up a Working
Environment

In the last chapter, we learned what Docker containers are and why they're
important. We learned what kinds of problem containers solve in a modern software
supply chain.

In this chapter, we are going to prepare our personal or working environment to
work efficiently and effectively with Docker. We will discuss in detail how to set up
an ideal environment for developers, DevOps, and operators that can be used when
working with Docker containers.

This chapter covers the following topics:

• The Linux command shell
• PowerShell for Windows
• Using a package manager
• Choosing a code editor
• Docker Toolbox
• Docker for macOS and Docker for Windows
• Minikube
• Cloning the Source Code Repository

Setting up a Working Environment

[16]

After completing this chapter, you will be able to do the following:

• Use an editor on your laptop that is able to edit simple files such as a
Dockerfile or a docker-compose.yml file

• Use a shell such as Bash on macOS and PowerShell on Windows to execute
Docker commands and other simple operations, such as navigating the folder
structure or creating a new folder

• Install Docker for macOS or Docker for Windows on your computer
• Execute simple Docker commands such as docker version or docker

container run on your Docker for macOS or Docker for Windows
• Successfully install Docker Toolbox on your computer
• Use docker-machine to create a Docker host on VirtualBox
• Configure your local Docker CLI to remote access a Docker host running

in VirtualBox

Technical requirements
For this chapter, you will need either macOS or Windows, preferably Windows
10 Professional, installed. You should also have free internet access to download
applications and the permission to install those applications on your laptop.

The Linux command shell
Docker containers were first developed on Linux for Linux. It is thus natural that
the primary command-line tool used to work with Docker, also called a shell, is a
Unix shell; remember, Linux derives from Unix. Most developers use the Bash shell.
On some lightweight Linux distributions, such as Alpine, Bash is not installed and
consequently one has to use the simpler Bourne shell, just called sh. Whenever we
are working in a Linux environment, such as inside a container or on a Linux VM,
we will use either /bin/bash or /bin/sh, depending on their availability.

Although macOS X is not a Linux OS, Linux and OS X are both flavors of Unix and
thus support the same types of tools. Among those tools are the shells. So, when
working on a macOS, you will probably be using the Bash shell.

Chapter 2

[17]

In this book, we expect from the readers a familiarity with the most basic scripting
commands in Bash, and PowerShell if you are working on Windows. If you are an
absolute beginner, then we strongly recommend that you familiarize yourself with
the following cheat sheets:

• Linux Command Line Cheat Sheet by Dave Child at http://bit.ly/2mTQr8l
• PowerShell Basic Cheat Sheet at http://bit.ly/2EPHxze

PowerShell for Windows
On a Windows computer, laptop, or server, we have multiple command-line
tools available. The most familiar is the command shell. It has been available on
any Windows computer for decades. It is a very simple shell. For more advanced
scripting, Microsoft has developed PowerShell. PowerShell is very powerful and
very popular among engineers working on Windows. On Windows 10, finally, we
have the so-called Windows Subsystem for Linux, which allows us to use any Linux
tool, such as the Bash or Bourne shells. Apart from this, there also exist other tools
that install a Bash shell on Windows, for example, the Git Bash shell. In this book, all
commands will use Bash syntax. Most of the commands also run in PowerShell.

Our recommendation for you is thus to either use PowerShell or any other Bash tool
to work with Docker on Windows.

Using a package manager
The easiest way to install software on a macOS or Windows laptop is to use a good
package manager. On a macOS, most people use Homebrew and on Windows,
Chocolatey is a good choice.

Installing Homebrew on a macOS
Installing Homebrew on a macOS is easy; just follow the instructions at
https://brew.sh/.

The following is the command to install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

http://bit.ly/2mTQr8l
http://bit.ly/2EPHxze
https://brew.sh/
https://brew.sh/

Setting up a Working Environment

[18]

Once the installation is finished, test whether Homebrew is working by entering
brew --version in the Terminal. You should see something like this:

$ brew --version
Homebrew 1.4.3
Homebrew/homebrew-core (git revision f4e35; last commit 2018-01-11)

Now, we are ready to use Homebrew to install tools and utilities. If we, for example,
want to install the Vi text editor, we can do so like this:

$ brew install vim

This will then download and install the editor for you.

Installing Chocolatey on Windows
To install the Chocolatey package manager on Windows, please follow the
instructions at https://chocolatey.org/ or just execute the following command in
a PowerShell Terminal that you have run as administrator:

PS> Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.
ps1'))

Once Chocolatey is installed, test it with the command choco without additional
parameters. You should see output similar to the following:

PS> choco
Chocolatey v0.10.3

To install an application such as the Vi editor, use the following command:

PS> choco install -y vim

The -y parameter makes sure that the installation happens without asking for
reconfirmation. Please note that once Chocolatey has installed an application, you
need to open a new PowerShell window to use it.

https://chocolatey.org/

Chapter 2

[19]

Choosing a code editor
Using a good code editor is essential to working productively with Docker. Of
course, which editor is the best is highly controversial and depends on your personal
preference. A lot of people use Vim, or others such as Emacs, Atom, Sublime, or
Visual Studio (VS) Code, to just name a few. If you have not yet decided which
editor is best suited for you, then I highly recommend that you try VS Code. This
is a free and lightweight editor, yet it is very powerful and is available for macOS,
Windows, and Linux. Give it a try. You can download VS Code from https://
code.visualstudio.com/download.

But if you already have a favorite code editor, then please continue using it. As
long as you can edit text files, you're good to go. If your editor supports syntax
highlighting for Dockerfiles and JSON and YAML files, then even better.

Docker Toolbox
Docker Toolbox has been available for developers for a few years. It precedes the
newer tools such as Docker for macOS and Docker for Windows. The toolbox allows
a user to work very elegantly with containers on any macOS or Windows computer.
Containers must run on a Linux host. Neither Windows or macOS can run containers
natively. Thus, we need to run a Linux VM on our laptop, where we can then run
our containers. Docker Toolbox installs VirtualBox on our laptop, which is used to
run the Linux VMs we need.

As a Windows user, you might already be aware that there exists
so-called Windows containers that run natively on Windows. And
you are right. Recently, Microsoft has ported the Docker engine
to Windows and it is now possible to run Windows containers
directly on a Windows Server 2016 without the need for a VM.
So, now we have two flavors of containers, Linux containers and
Windows containers. The former only run on Linux host and
the latter only run on a Windows Server. In this book, we are
exclusively discussing Linux containers, but most of the things we
learn also apply to Windows containers.

https://code.visualstudio.com/download
https://code.visualstudio.com/download

Setting up a Working Environment

[20]

Let's use docker-machine to set up our environment. Firstly, we list all Docker-
ready VMs we have currently defined on our system. If you have just installed
Docker Toolbox, you should see the following output:

List of all Docker-ready VMs

The IP address used might be different in your case, but it will be definitely
in the 192.168.0.0/24 range. We can also see that the VM has Docker version
18.04.0-ce installed.

If, for some reason, you don't have a default VM or you have accidentally deleted it,
you can create it using the following command:

$ docker-machine create --driver virtualbox default

The output you should see looks as follows:

Creating the VM called default in VirtualBox

To see how to connect your Docker client to the Docker Engine running on this
virtual machine, run the following command:

$ docker-machine env default

Chapter 2

[21]

Once we have our VM called default ready, we can try to SSH into it:

$ docker-machine ssh default

When executing the preceding command, we are greeted by a boot2docker welcome
message.

Type docker --version in the Command Prompt as follows:

docker@default:~$ docker --version
Docker version 18.06.1-ce, build e68fc7a

Now, let's try to run a container:

docker@default:~$ docker run hello-world

This will produce the following output:

Running the Docker Hello World container

Setting up a Working Environment

[22]

Docker for macOS and Docker for
Windows
If you are using a macOS or have Windows 10 Professional installed on your laptop,
then we strongly recommend that you install Docker for macOS or Docker for
Windows. These tools give you the best experience when working with containers.
Note, older versions of Windows or Windows 10 Home edition cannot run Docker
for Windows. Docker for Windows uses Hyper-V to run containers transparently in
a VM but Hyper-V is not available on older versions of Windows nor is it available
in the Home edition.

Installing Docker for macOS
Navigate to the following link to download Docker for macOS at https://docs.
docker.com/docker-for-mac/install/.

There is a stable version and a so-called edge version of the tool
available. In this book, we are going to use some newer features
and Kubernetes, which at the time of writing are only available
in the edge version. Thus, please select this version.

To start the installation:

1. Click on the Get Docker for Mac (Edge) button and follow the instructions.
2. Once you have successfully installed Docker for macOS, open a Terminal.

Press command + spacebar to open Spotlight and type terminal, then hit
enter. The Apple Terminal will open as follows:

Apple Terminal window

3. Type docker --version in the Command Prompt and hit enter. If Docker
for macOS is correctly installed, you should get an output similar to the
following:

$ docker –version
Docker version 18.02.0-ce-rc2, build f968a2c

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/

Chapter 2

[23]

4. To see whether you can run containers, enter the following command into
the Terminal and hit enter:

$ docker run hello-world

If all goes well, your output should look something like the following:

Running the Hello World container on Docker for macOS

Congratulations, you are now ready to work with Docker containers.

Setting up a Working Environment

[24]

Installing Docker for Windows
Note, you can only install Docker for Windows on Windows 10 Professional or
Windows Server 2016 since it requires Hyper-V, which is not available on older
Windows versions or on the Home edition of Windows 10. If you are using
Windows 10 Home or an older version of Windows, you will need to stick
with Docker Toolbox.

1. Navigate to the following link to download Docker for Windows at
https://docs.docker.com/docker-for-windows/install/.

There is a stable version and a so-called edge version of the tool
available. In this book, we are going to use some newer features
and Kubernetes, which at the time of writing are only available in
the edge version. Thus, please select this version.

2. To start the installation, click on the Get Docker for Windows (Edge) button
and follow the instructions. With Docker for Windows, you can develop, run,
and test Linux containers and Windows containers. In this book, though, we
are only discussing Linux containers.

3. Once you have successfully installed Docker for Windows. Open a
PowerShell window and type docker --version in the Command Prompt.
You should see something like the following:

PS> docker --version
Docker version 18.04.0-ce, build 3d479c0

Using docker-machine on Windows with
Hyper-V
If you have Docker for Windows installed on your Windows laptop, then you also
have Hyper-V enabled. In this case, you can't use Docker Toolbox since it uses
VirtualBox, and Hyper-V and VirtualBox cannot coexist and run at the same time. In
this case, you can use docker-machine with the Hyper-V driver.

1. Open a PowerShell console as an administrator. Install docker-machine
using Chocolatey as follows:

PS> choco install -y docker-machine

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Chapter 2

[25]

2. Using Window's Hyper-V manager create a new internal switch called DM
Internal Switch, where DM stands for docker-machine.

3. Create a VM called default in Hyper-V with the following command:
PS> docker-machine create --driver hyperv --hyperv-virtual-
switch "DM Internal Switch" default

You must run the preceding command in administrator
mode or it will fail.

You should see the following output generated by the preceding command:

Running pre-create checks...
(boot2docker) Image cache directory does not exist, creating
it at C:\Users\Docker\.docker\machine\cache...
(boot2docker) No default Boot2Docker ISO found locally,
downloading the latest release...
(boot2docker) Latest release for github.com/boot2docker/
boot2docker is v18.06.1-ce
....
....
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine
running on this virtual machine, run: C:\Program Files\Doc
ker\Docker\Resources\bin\docker-machine.exe env default

4. To see how to connect your Docker client to the Docker Engine running on
this virtual machine, run the following:

C:\Program Files\Docker\Docker\Resources\bin\docker-machine.
exe env default

5. Listing all VMs generated by docker-machine gives us the following output:
PS C:\WINDOWS\system32> docker-machine ls
NAME ACTIVE DRIVER STATE URL
SWARM DOCKER ERRORS
default . - hyperv Running tcp://[...]:2376
v18.06.1-ce

6. Now, let's SSH into our boot2docker VM:

PS> docker-machine ssh default

Setting up a Working Environment

[26]

You should be greeted by the welcome screen.
We can test the VM by executing our docker version command, which is
shown as follows:

Version of the Docker client (CLI) and server

This is definitely a Linux VM, as we can see on the OS/Arch entry, and has
Docker 18.06.1-ce installed.

Minikube
If you cannot use Docker for macOS or Windows or, for some reason, you only have
access to an older version of the tool that does not yet support Kubernetes, then it is a
good idea to install Minikube. Minikube provisions a single-node Kubernetes cluster
on your workstation and is accessible through kubectl, which is the command-line
tool used to work with Kubernetes.

Installing Minikube on macOS and Windows
To install Minikube for macOS or Windows, navigate to the following link at
https://kubernetes.io/docs/tasks/tools/install-minikube/.

Follow the instructions carefully. If you have the Docker Toolbox installed, then you
already have a hypervisor on your system since the Docker Toolbox installer also
installed VirtualBox. Otherwise, I recommend that you install VirtualBox first.

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Chapter 2

[27]

If you have Docker for macOS or Windows installed, then you already have kubectl
installed with it, thus you can skip that step too. Otherwise, follow the instructions
on the site.

Finally, select the latest binary for Minikube for macOS or Windows and install it.
For macOS, the latest binary is called minikube-darwin-amd64 and for Windows it
is minikube-windows-amd64.

Testing Minikube and kubectl
Once Minikube is successfully installed on your workstation, open a Terminal and
test the installation.

1. First, we need to start Minikube. Enter minikube start at the command
line. The output should look like the following:

Starting Minikube

2. Now, enter kubectl version and hit enter to see something like the
following screenshot:

Determining the version of the Kubernetes client and server

If the preceding command fails, for example, by timing out, then it could be
that your kubectl is not configured for the right context. kubectl can be
used to work with many different Kubernetes clusters. Each cluster is called
a context.

Setting up a Working Environment

[28]

3. To find out which context kubectl is currently configured for, use the
following command:

$ kubectl config current-context
minikube

The answer should be minikube, as shown in the preceding output.

4. If this is not the case, use kubectl config get-contexts to list all contexts
that are defined on your system and then set the current context to minikube
as follows:

$ kubectl config use-context minikube

The configuration for kubectl, where it stores the contexts, is normally
found in ~/.kube/config, but this can be overridden by defining an
environment variable called KUBECONFIG. You might need to unset this
variable if it is set on your computer.
For more in-depth information about how to configure and use Kubernetes
contexts, consult the link at https://kubernetes.io/docs/concepts/
configuration/organize-cluster-access-kubeconfig/.
Assuming Minikube and kubectl work as expected, we can now use
kubectl to get information about the Kubernetes cluster.

5. Enter the following command:
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready <none> 47d v1.9.0

Evidently, we have a cluster of one node, which in my case has Kubernetes v1.9.0
installed on it.

Cloning the source code repository
This book is accompanied by source code publicly available in a GitHub repository
at https://github.com/appswithdockerandkubernetes/labs. Clone that
repository to your local machine.

First create a new folder for example, in your home folder such as apps-with-
docker-and-kubernetes and navigate to it:

$ mkdir -p ~/apps-with-docker-and-kubernetes \
 cd apps-with-docker-and-kubernetes

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://github.com/appswithdockerandkubernetes/labs
https://github.com/appswithdockerandkubernetes/labs

Chapter 2

[29]

And then clone the repository with the following command:

$ git clone https://github.com/appswithdockerandkubernetes/labs.
git

Summary
In this chapter, we set up and configured our personal or working environment
so that we can productively work with Docker containers. This equally applies for
developers, DevOps, and operations engineers. In that context, we made sure that
we use a good editor, have Docker for macOS or Windows installed, and can also use
docker-machine to create VMs in VirtualBox or Hyper-V which we can use to run
and test containers.

In the next chapter, we're going to learn all the important facts about containers. For
example, we will explore how we can run, stop, list, and delete containers, but more
than that, we will also dive deep into the anatomy of containers.

Questions
On the basis of your reading of this chapter, please answer the following questions:

1. What is docker-machine used for? Name three to four scenarios.
2. True or false? With Docker for Windows, one can develop and run Linux

containers.
3. Why are good scripting skills (such as Bash or PowerShell) essential for a

productive use of containers?
4. Name three to four Linux distributions on which Docker is certified to run.
5. Name all the Windows versions on which you can run Windows containers.

Further reading
Consider the following link for further reading:

• Run Docker on Hyper-V with Docker Machine at http://bit.ly/2HGMPiI

http://bit.ly/2HGMPiI

[31]

Working with Containers
In the previous chapter, you learned how to optimally prepare your working
environment for the productive and frictionless use of Docker. In this chapter,
we are going to get our hands dirty and learn everything that is important to work
with containers. Here are the topics we're going to cover in this chapter:

• Running the first container
• Starting, stopping, and removing containers
• Inspecting containers
• Exec into a running container
• Attaching to a running container
• Retrieving container logs
• Anatomy of containers

After finishing this chapter you will be able to do the following things:

• Run, stop, and delete a container based on an existing image, such as
NGINX, busybox, or alpine

• List all containers on the system
• Inspect the metadata of a running or stopped container
• Retrieve the logs produced by an application running inside a container
• Run a process such as /bin/sh in an already-running container.
• Attach a Terminal to an already-running container
• Explain in your own words to an interested layman the underpinnings

of a container

Working with Containers

[32]

Technical requirements
For this chapter, you should have installed Docker for Mac or Docker for Windows.
If you are on an older version of Windows or are using Windows 10 Home Edition,
then you should have Docker Toolbox installed and ready to use. On macOS, use
the Terminal application, and on Windows, a PowerShell console to try out the
commands you will be learning.

Running the first container
Before we start, we want to make sure that Docker is installed correctly on your
system and ready to accept your commands. Open a new Terminal window
and type in the following command:

$ docker -v

If everything works correctly, you should see the version of Docker installed on your
laptop output in the Terminal. At the time of writing, it looks like this:

Docker version 17.12.0-ce-rc2, build f9cde63

If this doesn't work, then something with your installation is not right. Please make
sure that you have followed the instructions in the previous chapter on how to install
Docker for Mac or Docker for Windows on your system.

So, you're ready to see some action. Please type the following command into your
Terminal window and hit return:

$ docker container run alpine echo "Hello World"

When you run the preceding command the first time, you should see an output in
your Terminal window similar to this:

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
2fdfe1cd78c2: Pull complete
Digest: sha256:ccba511b...
Status: Downloaded newer image for alpine:latest
Hello World

Now that was easy! Let's try to run the very same command again:

$ docker container run alpine echo "Hello World"

Chapter 3

[33]

The second, third, or nth time you run the preceding command, you should see only
this output in your Terminal:

Hello World

Try to work out why the first time you run a command you see a different output
than all the subsequent times. Don't worry if you can't figure it out, we will explain
the reasons in detail in the following sections of the chapter.

Starting, stopping, and removing
containers
You have successfully run a container in the previous section. Now we want
to investigate in detail what exactly happened and why. Let's look again at the
command we used:

$ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word
docker. This is the name of the Docker command-line interface (CLI), which we are
using to interact with the Docker engine that is responsible to run containers. Next,
we have the word container, which indicates the context we are working with. As
we want to run a container, our context is the word container. Next is the actual
command we want to execute in the given context, which is run.

Let me recap—so far, we have docker container run, which means, Hey Docker,
we want to run a container....

Now we also need to tell Docker which container to run. In this case, this is the so-
called alpine container. Finally, we need to define what kind of process or task shall
be executed inside the container when it is running. In our case, this is the last part of
the command, echo "Hello World".

The following figure can help you to get a better approach to the whole thing:

Anatomy of the docker container run expression

Working with Containers

[34]

Now that we have understood the various parts of a command to run a container,
let's try to run another container with a different process running inside it. Type the
following command into your Terminal:

$ docker container run centos ping -c 5 127.0.0.1

You should see output in your Terminal window similar to the following:

Unable to find image 'centos:latest' locally
latest: Pulling from library/centos
85432449fd0f: Pull complete
Digest: sha256:3b1a65e9a05...
Status: Downloaded newer image for centos:latest
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.022 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.019 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.029 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.030 ms
64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.029 ms

--- 127.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4103ms
rtt min/avg/max/mdev = 0.021/0.027/0.029/0.003 ms

What changed is that, this time, the container image we're using is centos and the
process we're executing inside the centos container is ping -c 5 127.0.0.1, which
pings the loopback address five times until it stops.

Let's analyze the output in detail:

• The first line is as follows:
Unable to find image 'centos:latest' locally

This tells us that Docker didn't find an image named centos:latest in the
local cache of the system. So, Docker knows that it has to pull the image from
some registry where container images are stored. By default, your Docker
environment is configured such as that images are pulled from the Docker
Hub at docker.io. This is expressed by the second line, as follows:

latest: Pulling from library/centos

Chapter 3

[35]

• The next three lines of output are as follows:
 85432449fd0f: Pull complete

 Digest: sha256:3b1a65e9a05...

 Status: Downloaded newer image for centos:latest

This tells us that Docker has successfully pulled the image centos:latest from
the Docker Hub.

All the subsequent lines of the output are generated by the process we ran inside the
container, which is the ping tool in this case. If you have been attentive so far, then
you might have noticed the keyword latest occurring a few times. Each image has
a version (also called a tag), and if we don't specify a version explicitly, then Docker
automatically assumes it as latest.

If we run the preceding container again on our system, the first five lines of the
output will be missing since, this time, Docker will find the container image cached
locally and thus won't have to download it first. To verify this, try it out.

Running a random quotes container
For the subsequent sections of this chapter, we need a container that runs
continuously in the background and produces some interesting output. That's
why we have chosen an algorithm that produces random quotes. The API that
produces those free random quotes can be found at https://talaikis.com/
random_quotes_api/.

Now the goal is to have a process running inside a container that produces a new
random quote every five seconds and outputs the quote to STDOUT. The following
script will do exactly that:

while :
do
 wget -qO- https://talaikis.com/api/quotes/random
 printf 'n'
 sleep 5
done

Try it in a Terminal window. Stop the script by pressing Ctrl+ C. The output should
look similar to this:

{"quote":"Martha Stewart is extremely talented. Her designs are
picture perfect. Our philosophy is life is messy, and rather than
being afraid of those messes we design products that work the way we
live.","author":"Kathy Ireland","cat":"design"}

https://talaikis.com/random_quotes_api/
https://talaikis.com/random_quotes_api/

Working with Containers

[36]

{"quote":"We can reach our potential, but to do so, we must
reach within ourselves. We must summon the strength, the will,
and the faith to move forward - to be bold - to invest in our
future.","author":"John Hoeven","cat":"faith"}

Each response is a JSON-formatted string with the quote, its author, and its category.

Now, let's run this in an alpine container as a daemon in the background. For this,
we need to compact the preceding script into a one-liner and execute it using the /
bin/sh -c "..." syntax. Our Docker expression will look as follows :

$ docker container run -d --name quotes alpine \
 /bin/sh -c "while :; do wget -qO- https://talaikis.com/api/quotes/
random; printf '\n'; sleep 5; done"

In the preceding expression, we have used two new command-line parameters,
-d and --name. The -d tells Docker to run the process running in the container as
a Linux daemon. The --name parameter in turn can be used to give the container
an explicit name. In the preceding sample, the name we chose is quotes.

If we don't specify an explicit container name when we run a container, then Docker
will automatically assign the container a random but unique name. This name will be
composed of the name of a famous scientist and and adjective. Such names could be
boring_borg or angry_goldberg. Quite humorous our Docker engineers, isn't it?

One important takeaway is that the container name has to be unique on the system.
Let's make sure that the quotes container is up and running:

$ docker container ls -l

This should give us something like this:

Listing the last run container

The important part of the preceding output is the STATUS column, which in
this case is Up 16 seconds. That is, the container has been up and running
for 16 seconds now.

Don't worry if the last Docker command is not yet familiar to you, we will come back
to it in the next section.

Chapter 3

[37]

Listing containers
As we continue to run containers over time, we get a lot of them in our system.
To find out what is currently-running on our host, we can use the container list
command as follows:

$ docker container ls

This will list all currently-running containers. Such a list might look similar to this:

List of all containers running on the system

By default, Docker outputs seven columns with the following meanings:

Column Description
Container ID The unique ID of the container. It is a SHA-256.

Image The name of the container image from which this container is
instantiated.

Command The command that is used to run the main process in the container.
Created The date and time when the container was created.

Status The status of the container (created, restarting, running, removing,
paused, exited, or dead).

Ports The list of container ports that have been mapped to the host.
Names The name assigned to this container (multiple names are possible).

If we want to list not only the currently running containers but all containers that
are defined on our system, then we can use the command-line parameter -a or --all
as follows:

$ docker container ls -a

This will list containers in any state, such as created, running, or exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the
parameter -q:

$ docker container ls -q

Working with Containers

[38]

You might wonder where this is useful. The following command demonstrates
where it can be very helpful:

$ docker container rm -f $(docker container ls -a -q)

Lean back and take a deep breath. Then, try to find out what the preceding command
does. Don't read any further until you find the answer or give up.

Right: the preceding command deletes all containers that are currently defined on
the system, including the stopped ones. The rm command stands for remove, and it
will be explained further down.

In the previous section, we used the parameter -l in the list command. Try to use
Docker help to find out what the -l parameter stands for. You can invoke help for
the list command as follows:

$ docker container ls -h

Stopping and starting containers
Sometimes, we want to (temporarily) stop a running container. Let's try this
out with the quotes container we used previously. Run the container again
with this command:

$ docker container run -d --name quotes alpine \
 /bin/sh -c "while :; do wget -qO- https://talaikis.com/api/quotes/
random; printf '\n'; sleep 5; done"

Now, if we want to stop this container then we can do so by issuing this command:

$ docker container stop quotes

When you try to stop the quotes container, you will probably note that it takes a
while for this command to be executed. To be precise, it takes about 10 seconds.
Why is this the case?

Docker sends a Linux SIGTERM signal to the main process running inside the
container. If the process doesn't react to this signal and terminate itself, Docker
waits for 10 seconds and then sends SIGKILL, which will kill the process forcefully
and terminate the container.

In the preceding command, we have used the name of the container to specify which
container we want to stop. But we could also have used the container ID instead.

Chapter 3

[39]

How do we get the ID of a container? There are several ways of doing so. The manual
approach is to list all running containers and find the one that we're looking for
in the list. From there, we copy its ID. A more automated way is to use some shell
scripting and environment variables. If, for example, we want to get the ID of the
quotes container, we can use this expression:

$ export CONTAINER_ID=$(docker container ls | grep quotes | awk
'{print $1}')

Now, instead of using the container name, we can use the variable $CONTAINER_ID in
our expression:

$ docker container stop $CONTAINER_ID

Once we have stopped the container, its status changes to Exited.

If a container is stopped, it can be started again using the docker container start
command. Let's do this with our quotes container. It is good to have it running again,
as we'll need it in the subsequent sections of this chapter:

$ docker container start quotes

Removing containers
When we run the docker container ls -a command, we can see quite a few
containers that are in Exited status. If we don't need these containers anymore,
then it is a good thing to remove them from memory, otherwise they unnecessarily
occupy precious resources. The command to remove a container is:

$ docker container rm <container ID>

Another command to remove a container is:

$ docker container rm <container name>

Try to remove one of your exited containers using its ID.

Sometimes, removing a container will not work as it is still running. If we want to
force a removal, no matter what the condition of the container currently is, we can
use the command-line parameter -f or --force.

Working with Containers

[40]

Inspecting containers
Containers are runtime instances of an image and have a lot of associated data that
characterizes their behavior. To get more information about a specific container, we
can use the inspect command. As usual, we have to provide either the container
ID or name to identify the container of which we want to obtain the data. So, let's
inspect our sample container:

$ docker container inspect quotes

The response is a big JSON object full of details. It looks similar to this:

 [
 {
 "Id": "c5c1c68c87...",
 "Created": "2017-12-30T11:55:51.223271182Z",
 "Path": "/bin/sh",
 "Args": [
 "-c",
 "while :; do wget -qO- https://talaikis.com/api/
quotes/random; printf '\n'; sleep 5; done"
],
 "State": {
 "Status": "running",
 "Running": true,
 ...
 },
 "Image": "sha256:e21c333399e0...",
 ...
 "Mounts": [],
 "Config": {
 "Hostname": "c5c1c68c87dd",
 "Domainname": "",
 ...
 },
 "NetworkSettings": {
 "Bridge": "",
 "SandboxID": "2fd6c43b6fe5...",
 ...
 }
 }
]

Chapter 3

[41]

The output has been shortened for readability.

Please take a moment to analyze what you got. You should see information such as:

• The ID of the container
• The creation date and time of the container
• From which image the container is built and so on

Many sections of the output, such as Mounts or NetworkSettings don't make much
sense right now, but we will certainly discuss those in the upcoming chapters of the
book. The data you're seeing here is also named the metadata of a container. We will
be using the inspect command quite often in the remainder of the book as a source
of information.

Sometimes, we need just a tiny bit of the overall information, and to achieve this, we
can either use the grep tool or a filter. The former method does not always result in
the expected answer, so let's look into the latter approach:

$ docker container inspect -f "{{json .State}}" quotes | jq

The -f or --filter parameter is used to define the filter. The filter expression itself
uses the Go template syntax. In this example, we only want to see the state part of
the whole output in the JSON format.

To nicely format the output, we pipe the result into the jq tool:

 {

 "Status": "running",

 "Running": true,

 "Paused": false,

 "Restarting": false,

 "OOMKilled": false,

 "Dead": false,

 "Pid": 6759,

 "ExitCode": 0,

 "Error": "",

 "StartedAt": "2017-12-31T10:31:51.893299997Z",

 "FinishedAt": "0001-01-01T00:00:00Z"

 }

Working with Containers

[42]

Exec into a running container
Sometimes, we want to run another process inside an already-running container. A
typical reason could be to try to debug a misbehaving container. How can we do this?
First, we need to know either the ID or the name of the container, and then we can
define which process we want to run and how we want it to run. Once again, we use
our currently-running quotes container and we run a shell interactively inside it with
the following command:

$ docker container exec -i -t quotes /bin/sh

The flag -i signifies that we want to run the additional process interactively, and
-t tells Docker that we want it to provide us with a TTY (a terminal emulator) for
the command. Finally, the process we run is /bin/sh.

If we execute the preceding command in our Terminal, then we will be presented
with a new prompt. We're now in a shell inside the quotes container. We can easily
prove that by, for example, executing the ps command, which will list all running
processes in the context:

/ ps

The result should look somewhat similar to this:

List of Processes running inside the quotes Container

We can clearly see that the process with PID 1 is the command that we have
defined to run inside the quotes container. The process with PID 1 is also named
the main process.

Leave the container by entering exit at the prompt. We cannot only execute additional
processes interactive in a container. Please consider the following command:

$ docker container exec quotes ps

Chapter 3

[43]

The output evidently looks very similar to the preceding output:

List of Processes running inside the quotes Container

We can even run processes as daemon using the flag -d and define environment
variables using the -e flag variables as follows:

$ docker container exec -it \
 -e MY_VAR="Hello World" \
 quotes /bin/sh
/ echo $MY_VAR
Hello World
/ exit

Attaching to a running container
We can use the attach command to attach our Terminal's standard input, output,
and error (or any combination of the three) to a running container using the ID or
name of the container. Let's do this for our quotes container:

$ docker container attach quotes

In this case, we will see every five seconds or so a new quote appearing in
the output.

To quit the container without stopping or killing it, we can press the key combination
Ctrl + P Ctrl+ Q. This detaches us from the container while leaving it running in the
background. On the other hand, if we want to detach and stop the container at the
same time, we can just press Ctrl + C.

Let's run another container, this time an Nginx web server:

$ docker run -d --name nginx -p 8080:80 nginx:alpine

Working with Containers

[44]

Here, we run the Alpine version of Nginx as a daemon in a container named
nginx. The -p 8080:80 command-line parameter opens port 8080 on the host for
access to the Nginx web server running inside the container. Don't worry about
the syntax here as we will explain this feature in more detail in the Chapter 7,
Single-Host Networking.

Let's see whether we can access Nginx, using the curl tool and running
this command:

$ curl -4 localhost:8080

If all works correctly, you should be greeted by the welcome page of Nginx:

<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Now, let's attach our Terminal to the nginx container to observe what's happening:

$ docker container attach nginx

Chapter 3

[45]

Once you are attached to the container, you first will not see anything. But now open
another Terminal, and in this new Terminal window, repeat the curl command a
few times using the following script:

$ for n in {1..10}; do curl -4 localhost:8080; done

You should see the logging output of Nginx, which looks similar to this:

172.17.0.1 - - [06/Jan/2018:12:20:00 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"
172.17.0.1 - - [06/Jan/2018:12:20:03 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"
172.17.0.1 - - [06/Jan/2018:12:20:05 +0000] "GET / HTTP/1.1" 200 612
"-" "curl/7.54.0" "-"

Quit the container by pressing Ctrl + C. This will detach your Terminal and, at the
same time, stop the nginx container.

To clean up, remove the nginx container with the following command:

$ docker container rm nginx

Retrieving container logs
It is a best practice for any good application to generate some logging information
that developers and operators alike can use to find out what the application is doing
at a given time, and whether there are any problems to help pinpoint the root cause
of the issue.

When running inside a container, the application should preferably output the log
items to STDOUT and STDERR and not into a file. If the logging output is directed
to STDOUT and STDERR, then Docker can collect this information and keep it ready
for consumption by a user or any other external system.

To access the logs of a given container, we can use the docker container logs
command. If, for example, we want to retrieve the logs of our quotes container, we
can use the following expression:

$ docker container logs quotes

This will retrieve the whole log produced by the application from the very beginning
of its existence.

Working with Containers

[46]

Stop, wait a second—this is not quite true, what I just said, that the
full log, from the beginning of the containers existence is available. By
default, Docker uses the so-called json-file logging driver. This driver
stores the logging information in a file. And if there is a file rolling policy
defined, then docker container logs only retrieves what is in the
current active log file and not what is in previous, rolled files that still
might or might not be available on the host though.

If we want to only get a few of the latest entries, we can use the -t or --tail
parameter, as follows:

$ docker container logs --tail 5 quotes

This will retrieve only the last five items the process running inside the
container produced.

Sometimes, we want to follow the log that is produced by a container. This is
possible when using the parameter -f or --follow. The following expression
will output the last five log items and then follow the log as it is produced by
the containerized process:

$ docker container logs --tail 5 --follow quotes

Logging drivers
Docker includes multiple logging mechanisms to help us get information from
running containers. These mechanisms are named logging drivers. Which logging
driver is used can be configured at the Docker daemon level. The default logging
driver is json-file. Some of the drivers that are currently supported natively are:

Driver Description
none No log output for the specific container is produced.

json-file This is the default driver. The logging information is stored in files,
formatted as JSON.

journald If the journals daemon is running on the host machine, we can use this
driver. It forwards logging to the journald daemon.

syslog If the syslog daemon is running on the host machine, we can configure
this driver, which will forward the log messages to the syslog daemon.

gelf
When using this driver, log messages are written to a Graylog Extended
Log Format (GELF) endpoint. Popular examples of such endpoints are
Graylog and Logstash.

fluentd Assuming that the fluentd daemon is installed on the host system, this
driver writes log messages to it.

Chapter 3

[47]

If you change the logging driver, please be aware that the docker
container logs command is only available for the json-file
and journald drivers.

Using a container-specific logging driver
We have seen that the logging driver can be set globally in the Docker daemon
configuration file. But we can also define the logging driver on a container by
container basis. In the following example, we are running a busybox container and
use the --log-driver parameter to configure the none logging driver:

$ docker container run --name test -it \
 --log-driver none \
 busybox sh -c 'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1
Hello 2
Hello 3

Now, let's try to get the logs of the preceding container:

$ docker container logs test

The output is as follows:

Error response from daemon: configured logging driver does not support
reading

This is to be expected, since the none driver does not produce any logging output.
Let's clean up and remove the test container:

$ docker container rm test

Advanced topic – changing the default
logging driver
Let's change the default logging driver of a Linux host. The easiest way to do
this is on a real Linux host. For this purpose, we're going to use Vagrant with
an Ubuntu image:

$ vagrant init bento/ubuntu-17.04
$ vagrant up
$ vagrant ssh

Working with Containers

[48]

Once inside the Ubuntu VM, we want to edit the Docker daemon configuration file.
Navigate to the folder /etc/docker and run vi as follows:

$ vi daemon.json

Enter the following content:

{
 "Log-driver": "json-log",
 "log-opts": {
 "max-size": "10m",
 "max-file": 3
 }
}

Save and exit Vi by first pressing Esc and then typing :w:q and finally hitting the
Enter key.

The preceding definition tells the Docker daemon to use the json-log driver with a
maximum log file size of 10 MB before it is rolled, and the maximum number of log
files that can be present on the system is 3 before the oldest file gets purged.

Now we have to send a SIGHUP signal to the Docker daemon so that it picks up the
changes in the configuration file:

$ sudo kill -SIGHUP $(pidof dockerd)

Note that the preceding command only reloads the config file and does
not restart the daemon.

Anatomy of containers
Many individuals wrongly compare containers to VMs. However, this is a
questionable comparison. Containers are not just lightweight VMs. OK then,
what is the correct description of a container?

Containers are specially encapsulated and secured processes running on the
host system.

Containers leverage a lot of features and primitives available in the Linux OS.
The most important ones are namespaces and cgroups. All processes running in
containers share the same Linux kernel of the underlying host operating system.
This is fundamentally different compared with VMs, as each VM contains its own
full-blown operating system.

Chapter 3

[49]

The startup times of a typical container can be measured in milliseconds, while
a VM normally needs several seconds to minutes to startup. VMs are meant to be
long-living. It is a primary goal of each operations engineer to maximize the uptime
of their VMs. Contrary to that, containers are meant to be ephemeral. They come
and go in a quick cadence.

Let's first get a high-level overview of the architecture that enables us to run containers.

Architecture
Here, we have an architectural diagram on how this all fits together:

High level architecture of Docker

On the lower part of the the preceding figure, we have the Linux operating system
with its cgroups, namespaces, and layer capabilities as well as other functionality
that we do not need to explicitly mention here. Then, there is an intermediary layer
composed of containerd and runc. On top of all that now sits the Docker engine. The
Docker engine offers a RESTful interface to the outside world that can be accessed
by any tool, such as the Docker CLI, Docker for Mac, and Docker for Windows or
Kubernetes to just name a few.

Let's now describe the main building blocks in a bit more detail.

Working with Containers

[50]

Namespaces
Linux namespaces had been around for years before they were leveraged by Docker
for their containers. A namespace is an abstraction of global resources such as
filesystems, network access, process tree (also named PID namespace) or the system
group IDs, and user IDs. A Linux system is initialized with a single instance of each
namespace type. After initialization, additional namespaces can be created or joined.

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel version 3.8,
user namespaces were introduced and with it, namespaces were ready to be used
by containers.

If we wrap a running process, say, in a filesystem namespace, then this process has
the illusion that it owns its own complete filesystem. This of course is not true; it
is only a virtual FS. From the perspective of the host, the contained process gets a
shielded subsection of the overall FS. It is like a filesystem in a filesystem:

The same applies for all the other global resources for which namespaces exist. The
user ID namespace is another example. Having a user namespace, we can now define
a user jdoe many times on the system as long at it is living in its own namespace.

Chapter 3

[51]

The PID namespace is what keeps processes in one container from seeing or
interacting with processes in another container. A process might have the apparent
PID 1 inside a container, but if we examine it from the host system, it would have
an ordinary PID, say 334:

Process tree on a Docker host

In a given namespace, we can run one to many processes. That is important when
we talk about containers, and we have experienced that already when we executed
another process in an already-running container.

Control groups (cgroups)
Linux cgroups are used to limit, manage, and isolate resource usage of collections of
processes running on a system. Resources are CPU time, system memory, network
bandwidth, or combinations of these resources, and so on.

Engineers at Google have originally implemented this feature starting in 2006. The
cgroups functionality was merged into the Linux kernel mainline in kernel version
2.6.24, which was released in January 2008.

Using cgroups, administrators can limit the resources that containers can consume.
With this, one can avoid, for example, the classical noisy neighbor problem, where
a rogue process running in a container consumes all CPU time or reserves massive
amounts of RAM and, as such, starves all the other processes running on the host,
whether they're containerized or not.

Working with Containers

[52]

Union filesystem (UnionFS)
The UnionFS forms the backbone of what is known as container images. We will
discuss container images in detail in the next chapter. At this time, we want to just
understand a bit better what a UnionFS is and how it works. UnionFS is mainly used
on Linux and allows files and directories of distinct filesystems to be overlaid and
with it form a single coherent file system. In this context, the individual filesystems
are called branches. Contents of directories that have the same path within the
merged branches will be seen together in a single merged directory, within the new,
virtual filesystem. When merging branches, the priority between the branches is
specified. In that way, when two branches contain the same file, the one with the
higher priority is seen in the final FS.

Container plumbing
The basement on top of which the Docker engine is built; we can also call it the
container plumbing and is formed by the two component—runc and containerd.

Originally, Docker was built in a monolithic way and contained all the functionality
necessary to run containers. Over time, this became too rigid and Docker started
to break out parts of the functionality into their own components. Two important
components are runc and containerd.

Runc
Runc is a lightweight, portable container runtime. It provides full support for Linux
namespaces as well as native support for all security features available on Linux,
such as SELinux, AppArmor, seccomp, and cgroups.

Runc is a tool for spawning and running containers according to the Open
Container Initiative (OCI) specification. It is a formally specified configuration
format, governed by the Open Container Project (OCP) under the auspices of
the Linux Foundation.

Containerd
Runc is a low-level implementation of a container runtime; containerd builds on top
of it, and adds higher-level features, such as image transfer and storage, container
execution, and supervision, as well as network and storage attachments. With
this, it manages the complete life cycle of containers. Containerd is the reference
implementation of the OCI specifications and is by far the most popular and
widely-used container runtime.

Chapter 3

[53]

Containerd has been donated to and accepted by the CNCF in 2017. There exist
alternative implementations of the OCI specification. Some of them are rkt by
CoreOS, CRI-O by RedHat, and LXD by Linux Containers. However, containerd at
this time is by far the most popular container runtime and is the default runtime of
Kubernetes 1.8 or later and the Docker platform.

Summary
In this chapter, you learned how to work with containers that are based on existing
images. We showed how to run, stop, start, and remove a container. Then, we
inspected the metadata of a container, extracted the logs of it, and learned how to run
an arbitrary process in an already-running container. Last but not least, we dug a bit
deeper and investigated how containers work and what features of the underlying
Linux operating system they leverage.

In the next chapter, you're going to learn what container images are and how we
can build and share our own custom images. We're also discussing the best practices
commonly used when building custom images, such as minimizing their size and
leveraging the image cache. Stay tuned!

Questions
To assess your learning progress please answer the following questions:

1. What are the states of a container?
2. Which command helps us to find out what is currently running on our host?
3. Which command is used to list the IDs of all containers?

http://dockr.ly/2iLBV2I
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmyKdf
http://dockr.ly/2wqN5Nn
https://azure.microsoft.com/auth/unauthorized/?correlation_id=4f7c771d-2aa8-45f6-8558-5319973cdde0

Chapter 3

[54]

Further reading
The following articles give you some more information related to the topics we
discussed in this chapter:

• Docker container at http://dockr.ly/2iLBV2I
• Getting started with containers at http://dockr.ly/2gmxKWB
• Isolate containers with a user namespace at http://dockr.ly/2gmyKdf
• Limit container's resources at http://dockr.ly/2wqN5Nn

We hope you enjoyed this preview of
Containerize Your Apps with Docker and Kubernetes.

To read the remaining 9 chapters, covering everything
from orchestration to cloud deployment and security,

download the complete book for free from Microsoft today.

http://aka.ms/containerspreview

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: What Are Containers and Why Should I Use Them?
	Technical requirements
	What are containers?
	Why are containers important?
	Improving security
	Simulating production-like environments
	Standardizing infrastructure

	What's the benefit for me or for my company?
	The Moby project
	Docker products
	Docker CE
	Docker EE

	The container ecosystem
	Container architecture
	Summary
	Questions
	Further reading

	Chapter 2: Setting up a Working Environment
	Technical requirements
	The Linux command shell
	PowerShell for Windows
	Using a package manager
	Installing Homebrew on a macOS
	Installing Chocolatey on Windows

	Choosing a code editor
	Docker Toolbox
	Docker for macOS and Docker for Windows
	Installing Docker for macOS
	Installing Docker for Windows
	Using docker-machine on Windows with Hyper-V

	Minikube
	Installing Minikube on macOS and Windows
	Testing Minikube and kubectl

	Cloning the source code repository
	Summary
	Questions
	Further reading

	Chapter 3: Working with Containers
	Technical requirements
	Running the first container
	Starting, stopping, and removing containers
	Running a random quotes container
	Listing containers
	Stopping and starting containers
	Removing containers

	Inspecting containers
	Exec into a running container
	Attaching to a running container
	Retrieving container logs
	Logging drivers
	Using a container-specific logging driver
	Advanced topic – changing the default logging driver

	Anatomy of containers
	Architecture
	Namespaces
	Control groups (cgroups)
	Union filesystem (UnionFS)
	Container plumbing
	Runc
	Containerd

	Summary
	Questions
	Further reading

	Chapter 4: Creating and Managing Container Images
	What are images?
	The layered filesystem
	The writable container layer
	Copy-on-write
	Graph drivers

	Creating images
	Interactive image creation
	Using Dockerfiles
	The FROM keyword
	The RUN keyword
	The COPY and ADD keywords
	The WORKDIR keyword
	The CMD and ENTRYPOINT keywords
	A complex Dockerfile
	Building an image
	Multistep builds
	Dockerfile best practices

	Saving and loading images

	Sharing or shipping images
	Tagging an image
	Image namespaces
	Official images
	Pushing images to a registry

	Summary
	Questions
	Further reading

	Chapter 5: Data Volumes and System Management
	Technical requirements
	Creating and mounting data volumes
	Modifying the container layer
	Creating volumes
	Mounting a volume
	Removing volumes

	Sharing data between containers
	Using host volumes
	Defining volumes in images
	Obtaining Docker system information
	Listing resource consumption
	Pruning unused resources
	Pruning containers
	Pruning images
	Pruning volumes
	Pruning networks
	Pruning everything

	Consuming Docker system events
	Summary
	Questions
	Further reading

	Chapter 6: Distributed Application Architecture
	What is a distributed application architecture?
	Defining the terminology

	Patterns and best practices
	Loosely coupled components
	Stateful versus stateless
	Service discovery
	Routing
	Load balancing
	Defensive programming
	Retries
	Logging
	Error handling

	Redundancy
	Health checks
	Circuit breaker pattern

	Running in production
	Logging
	Tracing
	Monitoring
	Application updates
	Rolling updates
	Blue-green deployments
	Canary releases
	Irreversible data changes
	Rollback

	Summary
	Questions
	Further reading

	Chapter 7: Single-Host Networking
	Technical requirements
	The container network model
	Network firewalling
	The bridge network
	The host network
	The null network
	Running in an existing network namespace
	Port management
	Summary
	Questions
	Further reading

	Chapter 8: Docker Compose
	Technical requirements
	Demystifying declarative versus imperative
	Running a multi-service app
	Scaling a service
	Building and pushing an application
	Summary
	Questions
	Further reading

	Chapter 9: Orchestrators
	What are orchestrators and why do we need them?
	The tasks of an orchestrator
	Reconciling the desired state
	Replicated and global services
	Service discovery
	Routing
	Load balancing
	Scaling
	Self-healing
	Zero downtime deployments
	Affinity and location awareness
	Security
	Secure communication and cryptographic node identity
	Secure networks and network policies
	Role-based access control (RBAC)
	Secrets
	Content trust
	Reverse uptime

	Introspection

	Overview of popular orchestrators
	Kubernetes
	Docker Swarm
	Microsoft Azure Kubernetes Service (AKS)
	Apache Mesos and Marathon
	Amazon ECS

	Summary
	Questions
	Further reading

	Chapter 10: Orchestrating Containerized Applications with Kubernetes
	Technical requirements
	Architecture
	Kubernetes master nodes
	Cluster nodes	
	Introducing Minikube	
	Kubernetes support in Docker
for Desktop
	Pods	
	Comparing Docker Container and Kubernetes pod networking
	Sharing the network namespace
	Pod life cycle
	Pod specification
	Pods and volumes

	Kubernetes ReplicaSet
	ReplicaSet specification
	Self-healing

	Kubernetes deployment
	Kubernetes service
	Context-based routing
	Summary
	Questions
	Further reading

	Chapter 11: Deploying, Updating, and Securing an Application with Kubernetes
	Technical requirements
	Deploying a first application
	Deploying the web component
	Deploying the database
	Streamlining the deployment

	Zero downtime deployments
	Rolling updates
	Blue–green deployment

	Kubernetes secrets
	Manually defining secrets
	Creating secrets with kubectl
	Using secrets in a pod
	Secret values in environment variables

	Summary
	Questions
	Further reading

	Chapter 12: Running a Containerized App in the Cloud
	Technical requirements
	Creating a fully managed Kubernetes cluster in Azure
	Running the Azure CLI
	Azure resource groups
	Provisioning the Kubernetes cluster

	Pushing Docker images to the Azure Container Registry (ACR)
	Creating an ACR
	Tagging and pushing Docker images
	Configuring the service principal

	Deploying an application into the Kubernetes cluster
	Scaling the Pets application
	Scaling the number of app instances
	Scaling the number of cluster nodes

	Monitoring the cluster and application
	Creating a log analytics workspace
	Monitoring the container health
	Viewing the logs of Kubernetes masters
	Viewing the kublet and container logs
	Upgrading the application with zero downtime
	Upgrading Kubernetes

	Debugging the application while it is running in AKS
	Creating a Kubernetes cluster for development
	Configuring the environment
	Deploying and running a service
	Remote debugging a service using Visual Studio Code
	Enabling edit-and-continue style development in the cloud

	Cleaning up
	Summary
	Questions
	Further reading

	Assessment
	Chapter 1: What Are Containers and Why Should I Use Them?
	Chapter 2: Setting up a Working Environment
	Chapter 3: Working with Containers
	Chapter 4: Creating and Managing Container Images
	Chapter 5: Data Volumes and System Management
	Chapter 6: Distributed Application Architecture
	Chapter 7: Single-Host Networking
	Chapter 8: Docker Compose
	Chapter 9: Orchestrators
	Chapter 10: Orchestrating Containerized Applications with Kubernetes
	Chapter 11: Deploying, Updating, and Securing an Application with Kubernetes
	Chapter 12: Running a Containerized App in the Cloud

	Another Book You May Enjoy
	Index
	Blank Page

