Contemporary Business Mathematics

for Colleges

Deitz \& Southam

Contemporary Business Mathematics

for Colleges

This page intentionally left blank

Contemporary Business Mathematics

for Colleges

James E. Deitz, Ed.D.
Past President of Heald Colleges

James L. Southam, Ph.D.
San Francisco State University

[^0]

Contemporary Business Mathematics for Colleges, Fourteenth Edition James E. Deitz, Ed.D. and James L. Southam, Ph.D.

VP/Editorial Director:
Jack W. Calhoun

VP/Editor-in-Chief:
Alex von Rosenberg

Senior Acquisitions Editor:

Charles McCormick

Senior Developmental Editor:
Alice Denny

Marketing Manager:
Larry Qualls

Production Project Manager:
Magaret M. Bril

Manager of Technology, Editorial:
 Vicky True

Technology Project Editor:

Chris Wittmer

Web Coordinator:

Scott Cook

Manufacturing Coordinator:
Diane Lohman

Production House:

Pre-Press Company

Printer:
Quebecor World
Versailles, Kentucky

Art Director:

Stacy Jenkins Shirey
Internal Designer:
Grannan Graphic Design, Ltd.

Cover Designer:

Grannan Graphic Design, Ltd.

Cover Photo Images:

© Getty Images

Photography Manager:

John Hill

Photo Researcher:
Rose Alcorn

Library of Congress Control Number: 2005923768

For more information about our products, contact us at:

Thomson Learning Academic
Resource Center
1-800-423-0563

Thomson Higher Education

5191 Natorp Boulevard
Mason, OH 45040
USA

To the Student

Contemporary Business Mathematics for Colleges presents an arithmetic-based, basic approach to business mathematics. It emphasizes a practical, skill-building approach to prepare students for future careers in business through step-by-step development of concepts, numerous practice exercises, and a focus on real-world application of techniques. The text progresses from the most basic to more complex business mathematics topics.

During its previous editions, Contemporary Business Mathematics for Colleges has sold more copies than any other business mathematics textbook. The goal of this new fourteenth edition is to make a successful book even better. This edition is shorter and more focused, yet still maintains its coverage of practical, real-world, business math problems, and offers step-by-step solutions to help your students solve these problems. The new edition content is focused entirely on business mathematics with an eye toward the needs of today's business students as well as the requirements of shorter regular and online courses. Contemporary Business Mathematics for Colleges presents the basic principles of mathematics and immediately applies them in a series of practical business problems. This new edition is designed to provide a balance among conceptual understanding, skill development, and business applications.

In the business world, everyone (employees and managers alike) needs knowledge of and skill in business mathematics. While computers and calculators are used for many calculations, it is important to understand the concepts behind mechanical computations. The purpose of the business mathematics course is to increase your mathematics knowledge and skill as it applies to many aspects of business, and to help make you a more valuable employee and a more confident consumer.

KEY FEATURES

Contemporary Business Mathematics for Colleges uses special features to aid you in your reading and your studying for exams.
Integrated Learning Objectives: These icons call out the locations throughout the chapter where each Learning Objective is addressed, and will help you to assimilate key topics from the very beginning.

Concept Checks: Following each major chapter section, concept checks provide you the opportunity to immediately assess your understanding and your ability to apply the material you've just learned.
Step-by-Step Problem-Solving Approach: Short, concise text sections are followed by examples with step-by-step solutions. You will learn mathematical concepts by immediately applying practical solutions to common business problems and will gain confidence in your own problem-solving skills by studying the way example problems are worked out.
Real-World Examples and Problems: Abundant practical business problems and business examples from a variety of real companies will help you relate to the material better as you see how it is applied to everyday life.

Bottom Line: These end-of-chapter features tie each learning objective to self-test problems (with answers). You have the opportunity to check whether you have mastered the chapter's key skills before moving on to the assignments.
Self-Check Review Problems: Located at the end of each chapter, they provide yet another opportunity for you to test yourself before completing the end-of-chapter assignments. Answers are provided at the end of the text.
Video Icons: Video icons are placed where appropriate throughout the text to direct students to the video clips. The clips cover 12 major mathematical concepts and apply them to a series of practical business problems. A digital version of the video segments is included on the Student CD-ROM for easier access.

Microsoft® Excel Templates: Spreadsheet templates give students practice with both mathematics and spreadsheet software where relevant. The Excel templates were prepared by text authors Deitz and Southam as well as by Adele Stock of Normandale Community College, and are available on the Student CD-ROM.
Student Resource CD-ROM: The Student CD-ROM is packaged with every new text, and includes the Excel templates digitized Topic Review Video, and the Math in Employment Tests supplementary material for use in class or for review by the individual student.
Product Web Site: The text Web site at http://deitz.swlearning.com provides online quizzes, Internet links for the text, and more. The online quizzes may be completed as homework and submitted to your instructor for credit or grading, or used as practice before assignments or exams.

SUGGESTIONS TO IMPROVE YOUR STUDY

The special features in Contemporary Business Mathematics for Colleges are meant to help you focus your study. Keeping up with the coursework and making consistent use of the features will improve your performance on homework assignments and exams.

1. Read the text and study the step-by-step illustrations and examples carefully.
2. Work the Concept Check and the Bottom Line problems. These features will give you a comprehensive review of the problems in each chapter, before you get to the assignments.
3. Read the instructions carefully for each assignment before solving the problems.
4. Do your own work. You will learn only by doing the calculations yourself. Ask your instructor for help if you have difficulty understanding what you are asked to do, or how to do it.
5. Before working a problem, try to estimate your answer. The early chapters present methods for doing this.
6. Use shortcuts in your calculations to increase your confidence. Shortcuts are presented in several chapters.
7. Write numbers neatly and clearly and align them in columns to help avoid errors.
8. Space is provided on the assignment sheets to compute most problems. Show each step in the solution so that if you make an error, your instructor can help you locate the cause.
9. Record your scores for each assignment on the Progressive Record at the end of the book.

ACKNOWLEDGEMENTS

We would like to acknowledge the work of reviewers who provided suggestions about this edition's reorganization and comments about other ways to continue to improve our text.

Joseph Amico, Utica School of Commerce
William Barkemeyer, American Commercial College
Karen Bean, Blinn College
Yvonne Block, College of Lake County
Sharon Brown, Randolph Community College
Randy Burns, Cochise College
Veronica Cook, Austin Community College
Sandra Copa, Anoka-Ramsey Community College
Brian Fink, Danville Area Community College
Amanda Hardin, Mississippi Delta Community College
Steve Hixenbaugh, Mendocino College
Thomas Howlin, Germanna Community College
Jeffrey Kroll, Brazosport College
Anne Leonard, San Jose Valley Community College
Paul Martin, Aims Community College
Rodney Murray, Compton Community College
Cheri Nelson, Northeast Iowa Community College
S. Owens, Blinn College

John Palafox, Ventura College
Charles Shatzer, Solano Community College
Dawn Stevens, Northwest Mississippi Community College-Desoto Center
Philip Walsh, Berks Technical Institute
Theresa Wickstrom, Minneapolis Community and Technical College
Michael Wissen, Northcentral Technical College
We continue to owe a debt to many colleagues for their helpful comments and suggestions in the development of earlier editions of our text. Among them are:

Jimmy Anderson, College of the Albemarle
Ann Aron, Aims Community College
Dale Dean, Athens Technical College
Nellie Edmundson, Miami Dade College
Zona Elkins, Blue Ridge Community College
John Falls, North Central State College
Kay Finlay, Indiana Vocational Technical College
William Foster, Fontbonne University
William Harrison, DeVry Institute of Technology
Dianne Hendrickson, Becker College
Linda Johnson, Northern Illinois University
Elizabeth King, Heald Business College
Estelle Kochis, Suffolk County Community College
Kenneth Larson, LDS Business College
Cheryl Macon, Butler County Community College
Fran March, Chattanooga State Technical Community College

Alan Moggio, Illinois Central College Russ Nail, Pasco-Hernando Community College John Northrup, Bismarck State College Karen O'Rourke, Lane Community College Carol Perry, Marshall Community and Technical College Allan Sheets, Indiana Business College Steven Teeter, Utah Valley State College Charles Trester, Northeast Wisconsin Technical College LaVerne Vertrees, St. Louis Community College Queen Young, DeKalb Technical Institute

We want to recognize Professor Pam Perry of Hinds Community College, who provided great insight into the needs of instructors who teach business mathematics as an online distance learning course, and Jean Hunting, Heald College, Hayward, California, who provided practical insight and current classroom experience in developing text to meet the needs of contemporary students. Our appreciation also goes to verifier Sheila Feeney Viel, who is a CPA and a Lecturer at the University of Wisconsin, Milwaukee. She checked the text, test bank, and materials for the WebTutor product. We also thank the staff at Thomson/South-Western who worked to make this new edition the best business mathematics text possible: production editor Marge Bril, senior acquisitions editor Charles McCormick, Jr., senior marketing manager Larry Qualls, and senior developmental editor Alice Denny.

James E. Deitz
James L. Southam

About the Authors

JAMES E. DEITZ

PAST PRESIDENT OF HEALD COLLEGES

Author James E. Deitz brings both a thorough understanding of effective education today and a practical business knowledge to the latest edition of this leading text. Dr. Deitz earned his bachelor's degree in accounting from Memphis State University and doctorate of education from UCLA. Dr. Deitz has been an educator for more than 35 years, including professorships with UCLA and Los Angeles State College and a long-standing position as President of Heald Colleges. An active member of the business community, Dr. Deitz is a recognized international speaker and has served on regional educational accrediting commissions. He has authored several texts in addition to this best-selling Contemporary Business Mathematics for Colleges.

JAMES L. SOUTHAM

SAN FRANCISCO STATE UNIVERSITY

Author James L. Southam provides a wealth of first-hand knowledge about business throughout the world as well as a strong background in mathematics. With a diversity of business and teaching experience, Dr. Southam holds bachelor's and master's degrees in mathematics education from Southern Oregon College, a doctorate in mathematics from Oregon State University, a master's of business administration in finance from University of California, Berkeley, and a law degree from University of California College of Law. Dr. Southam's 40 years of teaching experience include Southern Oregon College, California State University, Stanislaus, and San Francisco State University. Dr. Southam has led several international business ventures and has served as an international business consultant as well as a successful author. He is also a member of the San Francisco State University Athletics Hall of Fame.
Part 1: Fundamental Review 2
1 Fundamental Processes 3
2 Fractions 29
3 Decimals 47
4 Word Problems and Equations 69
Part 2: Percentage Applications 86
5 Percents 87
6 Commissions 107
7 Discounts 121
8 Markup 139
Part 3: Accounting Applications 156
9 Banking 157
10 Payroll Records 175
11 Taxes 201
12 Insurance 229
Part 4: Interest Applications 250
13 Simple Interest 25114 Installment Purchases 269
15 Promissory Notes andDiscounting 295
16 Compound Interest and
Present Value 315
Part 5: Business Applications 342
17 Inventory and Turnover 343
18 Depreciation 363
19 Financial Statements 383
20 International Business 405
Part 6: Corporate and Special Applications 424
21 Corporate Stocks 425
22 Corporate and Government Bonds 445
23 Annuities 461
24 Business Statistics 495
Appendix A Assignment Answers to Odd-Numbered Problems 519
Appendix B Answers to Self-CheckReview Problems520
Glossary 532
Index 538
Progress Report 543

CONTENTS

Part 1: Fundamental Review 2
1 Fundamental Processes 3
Addition 4
Number Combinations 4
Repeated Digits 5
Adding From Left To Right
(Columns of Two-DigitNumbers)5
Checking Addition 5
Horizontal Addition 6
Subtraction 7
Checking Subtraction 7
Horizontal Subtraction 7
Multiplication 8
Checking Multiplication 9
Multiplying Numbers Ending in Zero 9
Multiplying When the
Multiplier contains ZeroNot On the End 9
Multiplying the Product of two Factors 10
Division 11
Checking Division 12
Dividing by 10 12
Dividing by 100 13
Dividing When the Divisor and Dividend End with Zeros 13
Estimating 14
Estimating when Multiplying 14
Estimating when Dividing 14
2 Fractions 29
Vocabulary of Fractions 30
Changing Improper Fractions and Mixed Numbers 30
Changing Fractions to Lower and Higher Terms 32
Adding Fractions and Mixed Numbers 33
Subtracting Fractions and Mixed Numbers 34
Borrowing 1 34
Multiplying Fractions, Mixed Numbers, and Whole Numbers 36
Canceling Common Factors in
Numerators and Denominators 37
Dividing Fractions, Mixed
Numbers, and Whole Numbers 38
3 Decimals 47
Fractions Versus Decimal Numbers 48
Decimal Numbers and Electronic Displays 48
Reading Decimal Numbers 49
Reading Long Decimal Numbers 49
Rounding Decimal Numbers 50
Rounding Up 50
Whole Numbers, Decimal
Numbers, and Arithmetic 51
Adding Decimal Numbers 51
Subtracting Decimal Numbers 52
Multiplying Decimal Numbers 53
Dividing Decimal Numbers 54
Using Multipliers and Divisors that End with Zeros 57
Approximating Products and Quotients 58
4 Word Problems and Equations 69
Mental Computations 70
Solving World Problems 70
Solving Rate, Time, and Distance Problems 72
Solving Simple Numeric Equations 74
Numerical Relationships in a Series 76
Making Quick Calculations by Rounding Numbers 77
Part 2: Percentage Applications 86
5 Percents 87
Changing Percents to Decimals 88
Changing Decimals andFractions to Percents89
Finding Base, Rate, and
Percentage 90
Using Percents in Business 92
Using Percents to Measure Increase and Decrease 92
Computing Amounts of Increase and Decrease with a Calculator 94
Using Percents to Allocate Overhead Expenses 94
6 Commissions 107
Computing Sales Commissions and Gross Pay 108
Computing Graduated Sales
Commissions 109
Computing Sales and Purchases for Principles 111
7 Discounts 121
Computing Trade Discounts 122
Computing a Series of Trade Discounts 123
Complement Method Shortcut 124
Computing the Equivalent
Single Discount Rate 125
Computing Cash Discounts for Fully Paid Invoices 126
Returned Merchandise and Freight Charges 127
Computing Cash Discounts for Partially Paid Invoices 129
8 Markup 139
Computing Markup Variables 140
Computing Markup Based on
Cost 141
Computing Selling Price Directly from Cost 141
Computing Cost from Selling Price 142
Computing Markup Percent Based on Cost 143
Computing Markup Based on
Selling Price 144
Computing Cost Directly 144
Computing Selling Price from Cost 145
Computing Markup Percent Based on Selling Price 146
Part 3: Accounting Applications 156
9 Banking 157
Using Deposit Slips and Bank Checks 158
Using Checkbooks and Check Registers 160
Reconciling Bank Statements 161
10 Payroll Records 175
Preparing a Payroll Register 176
Computing Federal IncomeTax Withholding Amounts178
Computing Social Security, Medicare, and Other Withholdings 184
Completing an Employee's Earnings Record 186
Computing an Employer's
Quarterly Federal Tax Return 187
Computing an Employer's
Federal and State Unemployment Tax Liability 189
11 Taxes 201
Computing Sales Taxes 202
Sales Tax as a Percent of 202
Sales Tax as an Amount Per Unit 203
Excise Tax as an Amount Per Unit 203
Computing Assessed Valuations and Property Taxes 204
Computing Tax Rates in Percents and Mills 205
Percents 205
Mills 206
Computing Special Assessments,
Prorations, and Exemptions 207
Determining Taxable Income, Using Standard Form 1040 209
Computing Taxable Income 213
Determining Taxes Due, Using Standard Form 1040 213
Tax Credits and Net Tax 215
12 Insurance 229
Computing Auto Insurance Costs 230
Computing Low-Risk and
High-Risk Rates 231
Computing Short Rates 232
Computing Coinsurance on Property Losses 233
Computing Life Insurance
Premiums 235
Computing Cash Surrender and Loan Values 236
Computing Medical Insurance Contributions and
Reimbursements 237
Part 4: Interest Applications 250
13 Simple Interest 251
Computing Simple Interest 252
Using Calculators 253
Computing Ordinary Interest 254
Computing Exact Interest 254
Comparing Ordinary Interest and Exact Interest 255
Estimating Exact Simple Interest 256
Combinations of Time and Interest that Yield 1\% 256
Other Rates and Times 256
Estimating Exact Interest 256
Computing the Interest Variables 257
Finding the Interest Amount,
Principal, Rate, or Time 258
14 Installment Purchases 269
Converting Interest Rates 270
Computing Simple Interest
on a Monthly Basis 271
Computing Finance Charges 271
Computing Costs of Installment Purchases 273
Computing Effective Interest
Rates 275
Increasing the Effective Rate 276
Amortizing a Loan 278
Computing the Monthly Payment 278
Loan Payment Schedule 280
Finding the Monthly Payment of a Home Mortgage 281
Amortization Schedule for a Mortgage 282
15 Promissory Notes and Discounting 295
Promissory Notes 296
Computing the Number of Interest Days of a Note 297
Determining the Due Date of a Note 298
Computing the Maturity Value of a Note 300
Discounting Promissory Notes 300
Non-Interest-Bearing Promissory Notes 302
Bank Discounting 303
Comparing a Discount Rate to an Interest Rate 304
Borrowing Money to Take a Cash Discount 305
16 Compound Interest and Present Value 315
Computing Future Values and
Compound Interest 316
Future Value Formula 317
Various Compounding Periods 318
Calculators and Exponents 319
Effective Rates 320
Daily Compounding 321
Computing Present Values 322
Using Present Value Tables and/or Formulas 323
Present Value Formula 324
Notes About the Future Value and Present Value Tables 325
Part 5: Business Applications 342
17 Inventory and Turnover 343
Accounting for Inventory 344
Inventory Sheets 344
Perpetual Inventory Systems 344
Computing Inventory, Using the Average Cost, FIFO, and LIFO Methods 346
The Average Cost Method 346
The FIFO Method 346
The LIFO Method 347
Computing Inventory at the Lower of Cost or Market Value 347
Estimating Inventory Value 349
Computing Inventory
Turnover 350
18 Depreciation 363
Computing Depreciation with the Straight-Line Method 364
Computing Depreciation with the Units-of-Production Method 365
Computing Depreciation with the Declining-Balance Method 366
Computing Depreciation with the Sum-of-the-Years-Digits Method 368
Computing Depreciation with the Modified Accelerated CostRecovery System369
Computing Partial-Year Depreciation 371
19 Financial Statements 383
Analyzing Balance Sheets 384
Analyzing Income Statements 386
Computing Business
Operating Ratios 389
Working Capital Ratio 389
Acid Test Ratio 390
Ratio of Accounts
Receivable to Net Sales 390
Inventory Turnover 391
Relationship of Net Income to Net Sales 391
Rate of Return Investment 391
20 International Business 405
Computing Currency Exchange Rates 406
Computing the Effects of Exchange Rate Changes 408
Computing Duties on Imports 409
Converting Between U.S.Weights and Measures andMetric Weights and Measures411
Part 6: Corporate and Special Applications 424
21 Corporate Stocks 425
Computing the Costs and Proceeds of Stock Transactions 426
Computing the Costs and
Proceeds of Round and Odd Lots 429
Computing the Rate of
Yield and Gains or Losses 430
The Rate of Yield 430
Gain or Loss on Sale of Stock 430
Computing Comparative Earning Potential 431
22 Corporate and Government Bonds 445
Computing Gains and Losses on Corporate Bonds 446
Computing Annual Interest on Corporate and Government Bonds 447
Newspaper Information on Bonds 448
Commissions for Buying and Selling Bonds 449
Computing Accrued Interest on Bond Transactions 449
Computing the Rate of Yield for Bonds 450
Computing the Rate of
Yield to Maturity 451
23 Annuities 461
Computing the Future Value of an Annuity 462
Annuity Tables 463
Future Value of an Annuity Formula 464
Various Payment Periods 464
Using a Calculator to
Compute Annuity Factors (Optional) 465
Computing Regular Payments of an Annuity from the Future Value 466
Sinking Funds 467
Computing the Present Value of an Annuity 468
Present Value of an
Annuity Formula 469
Using a Calculator to
Compute the Present Value of an Annuity 470
Computing Regular Payments of an Annuity from the Present Value 471
Computing the Payment toAmortize a Loan473
Creating a Loan Amortization
Schedule 474
Using the Texas Instruments BA II Plus Business Calculator for Annuity Calculations (Optional) 475
The Basic Annuity Keys 475
Additional Annuity Keys 476
24 Business Statistics 495
Statistical Averages:
Computing the Mean 496
Determining the Median 497
Determining the Mode 498
Constructing Frequency Tables 498
Computing the Mean of Large Data Sets 499
Charts and Graphs:
Constructing Histograms 500
Constructing Bar Graphs 501
Comparative Bar Graph 502
Component Bar Graph 503
Constructing Line Graphs 504
Constructing Pie Charts 507
Appendix A Assignment Answers to Odd-Numbered Problems 519
Appendix B Answers to Self-Check Review Problems 528
Glossary 532
Index 538
Progress Report 543

Contemporary Business Mathematics

for Colleges

Part
 Fundamental Review

1 Fundamental Processes
2 Fractions
3 Decimals
4 Word Problems and Equations

Fundamental Processes

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective

Learning Objective

2
1

Use shortcuts and simplifications to perform the fundamental process of addition rapidly and accurately.

Use shortcuts and simplifications to perform subtraction rapidly and accurately.

Use simplifications to perform the fundamental process of multiplication.

Use shortcuts and simplifications to perform division rapidly and accurately.

Estimate answers before performing operations.

Learning Objective 1

Use shortcuts and simplifications to perform the fundamental process of addition rapidly and accurately.

About half of all computations used in business involve addition. The more skilled you become in adding, the more rapidly you will get accurate answers. Addition is the process of finding the sum (total) of two or more addends (any of a set of numbers to be added).

NUMBER COMBINATIONS

Certain aids can help you add more accurately and rapidly. One of the most helpful is to combine any two numbers that total 10. The following combinations total 10. Practice the combinations until you can identify them instantly.

1	2	3	4	5	9	8	7	6	5
$\underline{9}$	$\underline{8}$	$\underline{7}$	$\underline{6}$	$\underline{5}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$

When these combinations are found sequentially in any column of numbers, you should add them as 10 . In example A, by using the combinations of 10 , you can simply add down the column by saying " 9 plus 10 is 19 , plus 10 is 29 , plus 8 is 37 " (or " 9,19 , 29, 37").

The number 3 is carried over to the top of the next column and written in a small figure above the number 7 . The combinations of 10 are used in adding the center column by simply saying " $10,20,30$."

In adding the left-hand column, you carry over the number 3 from the center column total. You can simply say " $8,18,28,32$."

EXAMPLE A

| 3 3
 5 7 9
 4 2 4
 6 8 6 |
| :--- | :--- | :--- | :--- |
| 9 0 3
 1 5 7
 4 5 8
 4 5 8
 3,2 0 7 |

Also learn to recognize the combinations of three numbers that total 10.
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 2 & 2 & 2 & 3\end{array}$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 2 & 3 & 4 & 3\end{array}$
$\begin{array}{llllllll}\underline{8} & \underline{7} & \underline{6} & \underline{5} & \underline{6} & \underline{5} & \underline{4} & \underline{4}\end{array}$
When three numbers totaling 10 appear in sequence in a column, you should combine them and add them as 10 . In example B, you might add the numbers in the ones column as you add down the column, " $10,18,28,38,41$." Write the number 4 , which is carried over as a small figure above the 1 in the tens column. Then use the combinations of 10 in adding the tens column by saying " $5,15,25,35,43$."

EXAMPLE B

REPEATED DIGITS

When you're adding a column in which many of the digits are the same, it is often quicker to count the number of repeated digits and then multiply the digit by that number. In example C, the ones column totals $33: 10+10+13$. The tens column shows five 4 s , equaling 20: $5 \times 4=20$. The 3 that was carried over and the 5 are then added to the 20 for a total of 28 in the tens column. The total for the problem is 283.

EXAMPLEC

ADDING FROM LEFT TO RIGHT (COLUMNS OF TWO-DIGIT NUMBERS)

When adding columns of two-digit numbers, you can easily count by tens and add the ones column to your total.

```
EXAMPLE D
Count:
    12 12
    24 22, 32+4=36
    51 46, 56, 66,76,86 +1=87
    43 97, 107, 117, 127 + 3 = 130
    32 140, 150, 160 + 2 = 162
162
```


CHECKING ADDITION

You should always check the accuracy of your addition. To do so, add the columns again in the opposite direction-that is, if you added down, add up for the check.

HORIZONTAL ADDITION

When using business records, you may need to add numbers horizontally. You may check several horizontal additions by adding the columns vertically and then adding these totals horizontally. This method is called cross-checking. The sums obtained by adding the totals horizontally and vertically should be the same.

EXAMPLE E										
282	+	346	$+$	723	$+$	409	$+$	716	$=$	2,476
113	$+$	806	$+$	629	$+$	916	$+$	620	$=$	3,084
240	$+$	318	$+$	718	$+$	312	$+$	309	$=$	1,897
716	$+$	501	$+$	423	$+$	716	$+$	114	$=$	2,470
872	$+$	417	$+$	909	$+$	704	$+$	472	$=$	3,374
2,223	$+$	2,388	$+$	3,402	$+$	3,057	$+$	2,231	$=$	13,301

CONCEPT CHECK 1.1

Add horizontally and vertically; compare horizontal and vertical totals to verify accuracy. Use combinations to simplify addition.

1		1		1				
24	$+$	76	+	63	$=$	163	$(4+6)$	
36	$+$	24	+	25	$=$	85	$(6+4)$	(Note horizontal combinations)
$\underline{27}$	$+$	43	$+$	12	$=$	82	$(7+3)$	
87	$+$	143	$+$	100	$=$	330		
COMPLETE ASSIGNMENT 1.1.								

Subtraction

Subtraction is the process of finding the difference between the minuend (number from which subtraction is being made) and the subtrahend (number being subtracted); the result is the difference. When the subtrahend is greater than the minuend, the result is a negative difference. In business, a negative difference may be called a credit balance. A credit balance is frequently shown in parentheses.

Learning Objective

Use shortcuts and simplifications to perform subtraction rapidly and accurately.

EXAMPLE F

Positive Difference	Minuend	Negative Difference (Credit Balance)
$\$ 18.88$ M $\frac{-3.63}{\$ 15.25}$ Difference	$\frac{-13.50}{(\$ 1.50)}$	

CHECKING SUBTRACTION

To check subtraction, use addition. If 209 is subtracted from 317, the difference is 108. You can check this result by adding the difference (108) to the subtrahend (209). The sum is 317 . You can use the same procedure to check subtraction with a negative difference (credit balance).

EXAMPLE H

$\frac{\text { Subtract: }}{317}$	$\frac{\text { Check: }}{\rightarrow 108}$	$\frac{\text { Subtract: }}{\$ 21.10}$	$\frac{\text { Check: }}{(\$ 3.40)}$
$\frac{-209}{108}$	+209	$\frac{-24.50}{(\$ 3.40)}$	
317	+24.50		
21.10			

HORIZONTAL SUBTRACTION

When using certain business forms, you may have to subtract numbers horizontally. You can check a number of horizontal subtractions by adding the columns vertically and then subtracting these totals horizontally. This answer should equal the total of the differences in the column at the right.

EXAMPLE I

Minuend		Subtrahend		Difference
\$ 120	-	\$ 20	$=$	\$100
283	-	10	=	273
440	-	110	$=$	330
\$ 269	-	\$149	=	\$120
\$1,112	-	\$289	$=$	\$823

CONCEPT CHECK 1.2

Multiplication

Learning Objective
 3

Use simplifications to perform the fundamental process of multiplication.

Multiplication, stated simply, is repeated addition. When two numbers (called factors) are multiplied, one number is repeated as many times as there are units in the other. The factor that is multiplied is called the multiplicand. The factor that indicates how many times to multiply is the multiplier. The result is the product.

1. Make the smaller factor the multiplier.
2. Multiply from right to left.
3. Add the products to get the final product.

EXAMPLE J

	456	(multiplicand)	In other words:
STEP 1	$\underline{\times 237}$	(multiplier)	$7 \times 456=3,192$
STEP 2	3192	(product)	$30 \times 456=13,680$
STEP 2	13680	(product)	$\underline{200} \times 456=\underline{91,200}$
STEP 2	$\underline{91200}$	(product)	$237 \times 456=\underline{108,072}$
STEP 3	108,072	(final product)	

CHECKING MULTIPLICATION

The best method of checking multiplication is to divide the product by the multiplier to obtain the multiplicand. Example K shows the relationship between multiplication and division.

EXAMPLE K

Multiplicand

22	22
$\times 6$	$6 \longdiv { 1 3 2 }$
132	

MULTIPLYING NUMBERS ENDING IN ZERO

To multiply a number by 10 , simply add a zero to the end of the number. To multiply a number by 100 , add two zeros to the end: $10 \times 46=460 ; 7,689 \times 100=768,900$.

S T E P S to Multiply Numbers with Zeros

1. Make the multiplier the factor with the smaller number of digits after ignoring zeros at the right-hand side of the number.
2. Ignore the right-hand zeros and multiply the remaining numbers.
3. Insert the zeros ignored in Step 2 to the right-hand side of the product.

EXAMPLE L

MULTIPLYING WHEN THE MULTIPLIER CONTAINS ZERO NOT ON THE END

Often a zero appears in the center of the multiplier rather than at the end. To multiply 42,674 by 401 , first multiply the multiplicand by 1 and write down the product. Then multiply by 4 (which is really 400) and write the result two places, instead of one, to the left. In other words, one extra place is left for each zero in the multiplier.

EXAMPLE N

42,674
$\begin{array}{r}\times 401 \\ \hline\end{array}$
$\overline{42674}$
$\frac{170696}{17,112274} \quad$ (2 places)
17,112,274

Whenever more than one zero appears in the multiplier, the multiplication process is similar. To multiply 33,222 by 2,004 , as in Example O, first multiply 33,222 by 4 . Then multiply 33,222 by 2 , writing the answer three places to the left. Remember, extra places must be left for the two zeros (1 place +2 extra places $=3$ places).

```
EXAMPLE O
    33,222
    \times2,004
    132888
66444
```


MULTIPLYING THE PRODUCT OF TWO FACTORS

Sometimes in business you will need to multiply two factors and then multiply the product of those factors by a third factor. As shown in example P , you begin by multiplying the first two factors and then multiply that product by the third factor.

EXAMPLE P

$21 \times 30 \times 15=9,450$	21	630
	$\times 30$	$\times 15$
	630	3150
		630
		9,450

MULTIPLYING BY 25

A shortcut for multiplying by 25 is to multiply by 100 (increase by two zeros) and divide by 4 .

EXAMPLE Q

321×25
$32,100 \div 4=8,025$

EXAMPLE R

828×25
$82,800 \div 4=20,700$

MULTIPLYING BY 50

A shortcut for multiplying by 50 is to multiply by 100 (increase by two zeros) and divide by 2 .

EXAMPLES

732×50
$73,200 \div 2=36,600$

CONCEPT CHECK 1.3

```
To multiply by 10, add one zero to the
end of the number:
36\times10=360
To multiply by 100,add two zeros to the
end of the number:
36 < 100 = 3,600
\begin{tabular}{|c|c|c|}
\hline Multiply: & & Check: \\
\hline 214 & multiplicand & \(\rightarrow 214\) \\
\hline 102 & multiplier & \(1 0 2 \longdiv { 2 1 , 8 2 8 }\) \\
\hline 428 & & \\
\hline 214 & (two places) & \\
\hline 21, 828 & product & \\
\hline
\end{tabular}
```

COMPLETE ASSIGNMENT 1.3.

Division

Division is the process of finding how many times one number (the divisor) is contained in another (the dividend). The result is called the quotient. If anything remains after the division is completed, it is called the remainder. In example T, $47 \div 2=23$ (with 1 left over), 47 is the dividend, 2 is the divisor, 1 is the remainder, and 23 with a remainder of (1) is the quotient.

Learning Objective

Use shortcuts and simplifications to perform division rapidly and accurately.

EXAMPLE T

23 (1)
2 47
4
7
6
$\overline{1}$

STEPS in Long Division

1. Write the divisor in front of and the dividend inside of a division bracket () .
2. As the first partial dividend, use only as many digits at the left of the dividend as you need in order to have a number that is equal to or larger than the divisor.
3. Write the number of times the divisor will go into the partial dividend selected in Step 2.
4. Multiply the divisor by this answer, write the product under the partial dividend, and subtract.
5. Next to the remainder thus obtained, bring down the next digit of the dividend to form the second partial dividend.
6. Divide as before, and repeat the process until all the digits of the dividend have been used.

EXAMPLE U

When the partial dividend is smaller than the divisor, a zero must be placed in the quotient above that digit. This process is continued until the partial dividend is at least as large as the divisor. Then continue the long division steps, as shown in example V.

EXAMPLE V

20,108
$3 4 \longdiv { 6 8 3 , 6 7 2 }$
$\frac{68}{36}$
$\frac{34}{272}$
$\underline{272}$
0

CHECKING DIVISION

To check division, simply multiply the quotient by the divisor and add any remainder to the product. The result will equal the original dividend. (Examples W and X provide checks for examples U and V.)

EXAMPLE W

174
$\begin{array}{r}\times 164 \\ \hline 696\end{array}$
1044
$\frac{174}{28,536}$

EXAMPLEX
20,108
$\begin{array}{r}\times 34 \\ \hline 80432\end{array}$
60324
683,672

Note: Division is the reverse process of multiplication.

DIVIDING BY 10

To divide by 10, drop the digit at the extreme right of the dividend; the dropped digit will be the remainder.

EXAMPLE Y

$790 \div 10=79(0$ remainder $)$

EXAMPLE Z

$3,652 \div 10=365(2$ remainder $)$

DIVIDING BY 100

To divide by 100, drop the two right-hand digits of the dividend-they will be the remainder.

EXAMPLEAA

$81,400 \div 100=814(0$ remainder $)$

EXAMPLE BB

$257,948 \div 100=2,579(48$ remainder $)$

DIVIDING WHEN THE DIVISOR AND DIVIDEND END WITH ZEROS

When a divisor and dividend both end with zeros, a division shortcut is to delete
 the ending zeros common to both and then divide.

EXAMPLECC

Both Divisor
and Dividend
End with Zeros
$8,400 \div 200$
$46,000 \div 2,300$
$42,000 \div 100$
$20,000,000 \div 4,000$
$2,760 \div 270$
$3,200 \div 1,000$

Zeros Common to

Divisor and Dividend
Have Been Dropped
$84 \div 2$
$460 \div 23$
$420 \div 1$
$20,000 \div 4$
$276 \div 27$
$32 \div 10$

20

420
$\frac{\text { Answer }}{42}$
20
420
5,000
10 (6 remainder)
3 (2 remainder)
0 (6 remainder)
3 (2 remainder)

CONCEPT CHECK 1.4

Divide:

21
divisor
$\frac{22}{683}$
\longleftarrow
:---:
dividend

$\frac{32}{11} \longleftarrow$ remainder

Check:

Dividing by $10: \quad 860 \div 10=86$

$$
863 \div 10=86(3 \text { remainder })
$$

Dividing by $100: \quad 19,300 \div 100=193$
$19,346 \div 100=193$ (46 remainder)

COMPLETE ASSIGNMENT 1.4.

Estimating

Learning Objective

Estimate answers before performing operations.

Estimating Answers

ESTIMATING WHEN MULTIPLYING

Is estimating important? Yes, it is! In using a calculator to make computations, you may possibly omit keystrokes, accidentally repeat keystrokes, or incorrectly shift/omit decimal points. There is a great deal of difference between 3 times $\$ 14.87$ and 3 times $\$ 1,487$. When working with calculations in any manner-such as entering items into a spreadsheet, a cash register, or a calculator-you should always have a mental estimate of the final product.

Mentally estimating an answer provides a good method for checking whether your product is a reasonable answer.

STEPS to Estimate a Multiplication Answer

1. Round both the multiplicand and multiplier to the nearest 10 for twodigit numbers, the nearest 100 for three-digit numbers, the nearest 1,000 for four-digit numbers, etc.
2. Drop the zeros to the right of the nonzero numbers.
3. Mentally multiply the nonzero numbers to determine the base product.
4. Reinsert all zeros dropped in Step 2.

EXAMPLEDD

Problem	Round to	Drop Zeros	Reinsert Zeros		
			Base	Estimated	Real
			Product	Answer	Answer
68×21	70×20	7×2	14	1,400	1,428
$693 \times 1,957$	$700 \times 2,000$	7×2	14	1,400,000	1,356,201
7,869 $\times 43,242$	$8,000 \times 40,000$	8×4	32	320,000,000	340,271,298
$9 \times 511,739$	$9 \times 500,000$	9×5	45	4,500,000	4,605,651
$891 \times 39 \times 104$	$900 \times 40 \times 100$	$9 \times 4 \times 1$	36	3,600,000	3,613,896

ESTIMATING WHEN DIVIDING

Before doing long division problems, estimate a whole-number answer. The process of mentally estimating whole-number answers helps to avoid major and embarrassing errors.

S T E P S to Estimate a Long Division Answer

1. Round both the divisor and dividend to the nearest 10 for two-digit numbers, the nearest 100 for three-digit numbers, the nearest 1,000 for four-digit numbers, etc.
2. Drop the number of zeros common to both.
3. Mentally divide the remaining divisor into the remaining dividend.

EXAMPLE EE

Problem	Round to	Drop Zeros	Estimated Answer	Real Answer
$77 \div 39$	$80 \div 40$	$8 \div 4$	2	1.97
$196 \div 63$	$200 \div 60$	$20 \div 6$	3*	3.11*
2,891 $\div 114$	$3,000 \div 100$	$30 \div 1$	30	25.36
$592 \div 29$	$600 \div 30$	$60 \div 3$	20	20.41
$18,476 \div 384$	$20,000 \div 400$	$200 \div 4$	50	48.11
$917 \div 186$	$900 \div 200$	$9 \div 2$	4*	4.93*
$21,716,412 \div 40,796$	$20,000,000 \div 40,000$	$2,000 \div 4$	500	532.32
$99,624 \div 476$	$100,000 \div 500$	1,000 $\div 5$	200	209.29
$29,200 \div 316$	$30,000 \div 300$	$300 \div 3$	100	92.41

${ }^{*}$ Because $20 \div 6$ and $9 \div 2$ would result in remainders we can reasonably assume that the real number will be larger.

CONCEPT CHECK 1.5

Reinsert Zeros					
		Drop	Base	Estimated	Real
Problem	Round to	Zeros	Product	Answer	Answer
47×31	50×30	5×3	15	1,500	1,457
498×221	500×200	5×2	10	100,000	110,058
ESTIMATING DIVISION ANSWERS					
				Estimated	Real
Problem	Round to		Drop Zeros	Answer	Answer
$88 \div 29$	$90 \div 30$		$9 \div 3$	3	3.03
$9,811 \div 394$	$10,000 \div 400$		$100 \div 4$	25	24.90

COMPLETE ASSIGNMENT 1.5.

Chapter Terms for Review

addend	dividend	multiplicand	remainder
credit balance	divisor	multiplier	subtrahend
cross-checking	factors	product	sum
difference	minuend	quotient	

Try Microsoft ${ }^{\circledR}$ Excel

Using the Student CD found in your textbook, read the Introduction file in the folder Excel Templates and try the Problems for Chapter 1.

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example		
1.1	Add the following, usi	ng the technique ind	
Use shortcuts and simplifications to perform the fundamental process of addition rapidly and accurately	Numbercombinationscoll 1. 8 2. 2 18 3 62 2 43 2 27 +5 +80 Add and then check by 5. $\begin{aligned} & 22+54+63+ \\ & 27+82+44+ \\ & 83+39+72+ \\ & \underline{91}+\underline{71}+\underline{21}+ \\ & \underline{-}++ \end{aligned}$		Counting by tens 4. 23 $\begin{array}{r} 41 \\ 37 \\ 56 \\ +\quad 42 \\ \hline \end{array}$ and horizontally.
1.2	Subtract the following and then check by addition.		
Use shortcuts and simplifications to perform subtraction rapidly and accurately	6. $\begin{array}{rr}228 & \\ -134 & \underline{+134} \\ - & -\end{array}$ Subtract horizontally and check. 8. $\begin{aligned} & 245-130= \\ & 432-212= \\ & 381-270= \\ & 183-111= \\ & --Z= \end{aligned}$ \qquad \square \qquad \qquad \qquad	7. 335 \qquad Subtract by changing nu 9. 53 -18	$\overline{+217}$
1.3	Multiply. Multiplying by numbers ending in zero		
	10. 227	11. 437	12. 879
Use simplifications to perform the fundamental process of multiplication	$\times 143$	$\times 100$	$\times 10$
	Multiplying by $\mathbf{2 5}$ Multiplying by $\mathbf{5 0}$ 13. $\quad 354$ 14. 846 $\times 25$ $\times 50$		

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective
1.4
Use shortcuts and simplifications to perform division
rapidly and accurately

1.5

Estimate answers before performing operations

Example

Divide and check the answer by multiplication.
15. $2 7 \longdiv { 1 , 5 1 2 }$ 27
\times \qquad
\qquad
17. $127,400 \div 100=$ \qquad

Dividing when both divisor and dividend end with zeros
18. $7,400 \div 200=$ \qquad
19. $53,200 \div 400=$ \qquad
20. $140,000 \div 2,000=$ \qquad

Estimate these multiplication answers. Show your rounding, dropping of zeros with base product, estimated answer, and real answer.

	Dropped Round Zoros	Zerd Base Product	Estimated Answer	Real Answer
Problem	-	-	-	-
21. 47×31	-	-	-	-

Estimate these division answers. Show your rounding, dropping of zeros, estimated answer, and real answer.

Problem	Round to	Drop Zeros	Estimated Answer	Real Answer
$23 . \quad 88 \div 29$	-	-	-	-
24. $9,811 \div 394$	-	-	-	-

SELF-CHECK

Review Problems for Chapter 1

(1) $8+9+3+12+6=$ \qquad
(2) $32+47+36+12=$ \qquad
$17+22+17+11=$ \qquad
$14+98+47+81=$ \qquad
$77+62+21+44=$ \qquad
\qquad $=$ \qquad
(3) 9,078
$-6,382$
(4) $717 \div 14=$ \qquad
(5) $98 \times 13=$ \qquad
(6) $789 \div 36=$ \qquad
(7) $842 \times 200=$ \qquad
(8) $974 \div 12=$ \qquad
(9) $2 7 \longdiv { 8 7 6 }$
$102,006 \times 304$
$11395 \div 79$

Estimate answers for each of the following.

$$
\begin{array}{ll}
21 & 78 \times 29= \\
22 & 103 \times 19= \\
23 & 397 \times 200= \\
24 & 3,982 \times 99= \\
25 & 1,503 \times 600=
\end{array}
$$

$26396 \div 79=$ \qquad
$27892 \div 29=$ \qquad
28 9,891 $\div 480=$ \qquad
$293,111 \div 59=$ \qquad
$306,219 \div 3,114=$ \qquad

Assignment 1.1: Addition

Name

Date
Score

A (10 points) Add the following. Where possible, use combinations of 10. (1 point for each correct answer)

1. | 18 |
| ---: |
| 52 |
| 35 |
| 42 |
| 43 |
| 16 |
| 22 |
| 58 |
| 14 |
2. 41

52	29
35	17
42	36
43	44
16	15
22	56
58	62
14	66

3. | 19 |
| ---: |
| 54 |
| 14 |
| 81 |
| 28 |
| 11 |
| 43 |
| 51 |
| 76 |
4. 34
5. 97
6. 50
7. 72
8. 82
9. 38
10. 92
39
22 51
33
54

99
99
89
47
63
40
62
68

43
47
93
58
34
22
46
73

45
47
47
24
25
21
13
19
29
25
79
Score for A (10)

B (10 points) Add the following. (1 point for each correct answer)
11. 209
12. 782
301
13. 127
14. 920
15. 347
16. 852
17. 251
18. 885
19. 275
20. 438

342
412
115
200
342
415 315

Score for B (10)
C (10 points) Add the following. (1 point for each correct answer)
21. 248.28
22. 201.22
23. 234.81
371.60
271.37
408.55
24. 238.69
25. 326.52
117.38
267.34
$\underline{118.66}$
26. 703.91
422.38
721.05
446.21
27. 126.92
28. 442.71
71.93
416.90
236.19
29. 535.13
44.78
208.17
6,481.29
30. 233.48
607.22
211.25
211.25

D (10 points) Add the following. Use the count-by-10s-and-add-the-1s method. (1 point for each correct answer)
31. 10.76
32. 20.43

31.43	82.76
88.33	30.42
33.08	64.22
12.33	56.03

33. 33.79
$\begin{array}{r}45.86 \\ 22.18 \\ 33.81 \\ 10.04 \\ 80.31 \\ \hline\end{array}$
34. 33.27
98.21
90.01
11.33
33.04
35. 11.43
3
88.71
56.32
83.70
44.12
23.51
36. 94.32
37. 55.93
38. 22.79

74.23
21.44
63.01
34.20

10.70
30.46
47.05
80.11

40. 22.79
43.28
12.48
12.48
53.20
30.22

Score for D (10)
E (30 points) Business Application. The following is the first part of a weekly sales summary-the Weekly Sales Report for the computer department. Complete the totals, both horizontal and vertical, and verify your addition by comparing the vertical and horizontal grand totals. (2 points for each column/row; 4 points for grand total)

DEPARTMENT SALES REPORT
Week of December 11-17, 20XX
Department: COMPUTERS

SALESPERSON	SUN	MON	TUE	WED	THU	FRI	SAT	TOTAL
Whalen	3,443	-	-	8,643	3,176	7,885	9,378	
Tsao	-	8,772	-	9,483	7,339	8,113	9,771	
Culver	8,722	2,443	3,114	5,729	6,193	-	-	
Hernandez	6,117	8,783	-	-	5,685	9,473	11,492	
Ingake	-	3,114	8,492	7,652	3,994	14,119	12,378	
Greenberg	-	-	5,141	2,739	8,941	2,836	10,242	

Total

Score for E (30)
F (30 points) Business Application. The following is the second part of the weekly sales summary-the Consolidated Sales Report for the entire store. Fill in the figures from the Department Sales Report and complete the totals, both horizontal and vertical. Verify your addition by comparing the horizontal and vertical grand totals. (2 points for each column/row; 2 points for grand total)

STORE SALES REPORT
Week of December 11-17, 20XX

DEPARTMENT	SUN	MON	TUE	WED	THU	FRI	SAT	TOTAL
Home Audio	3,465	1,147	1,523	2,403	1,773	2,873	3,432	
Auto Audio	1,278	1,785	1,713	2,117	2,563	3,499	9,971	
Video/TV	15,230	12,377	10,429	9,384	8,773	11,245	13,486	
Computers	18,282	23,112	16,747	34,246	35,328	42,426	53,261	
Telecomm	849	722	531	733	1,012	1,239	1,375	
Games	882	248	379	287	415	978	1,015	
Repairs	732	892	384	658	981	1,043	1,774	

Total

Assignment 1.2: Subtraction

Name

Date
Score

A (18 points) Subtract the following. (One point for each correct answer)

1. $\begin{array}{r}77 \\ -16\end{array}$
2. 90
3. 72
4. 63
5. 84
6. 38
7. 92
8. 83
9. 80
-25
-48
-49
-16
-65
-20
10. | 39 | 11. 20 |
| ---: | ---: |
| -36 | |
| - | -13 |
11. 13
12. 73
13. 63
14. 68
15. 99
16. 57
17. 96
$\underline{-19} \quad \underline{-39}$
-27
-43
-39

Score for A (18)
B (12 points) Subtract the following. Then check your subtraction by adding the subtrahend and the difference and comparing your total to the minuend. (2 points for each correct answer)
19. 584
20. 963
$\begin{array}{r}-173 \\ - \\ \hline\end{array}$
21. 103
$\begin{array}{r}-310 \\ - \\ \hline\end{array}$
22. 714
\qquad
23. 616
-333
\qquad
24. 9003
24.
-3116
Score for B (12)

C (6 points) Subtract the following. (1 point for each correct answer)
25. $\begin{array}{r}\$ 97.17 \\ -23.19\end{array}$
26. $\$ 15.67$
27. $\$ 71.69$
28. $\$ 43.21$
29. $\$ 80.41$
30. $\$ 99.32$
$\begin{array}{r}-23.19 \\ \hline\end{array}$
-0.88
-10.87
-41.80
-18.66

Score for C (6)
D (9 points) Subtract the following. ($1 \frac{1}{2}$ points for each correct answer)
31. $\$ 8,042.88$
$-3,400.07$
32. $\$ 964.38$
33. $\$ 9,011.09$
34. $\$ 7,430.29$
-795.08
35. $\$ 3,385.03$
-233.42
36. $\$ 1,029.27$
-89.27
Score for D (9)

E (15 points) Sometimes a double subtraction is necessary. The following problems are of this type.
(3 points for each correct final answer)
37. $\$ 7,672.18$

-564.27

-124.13
38. $\$ 11,739.93$
39. $\$ 734.12$
$-3,142.18$
-672.18
40. $\$ 745.89$
$-1,694.25$
-13.14
-250.15
-224.13
41. $\$ 1,837,042.03$
-6,218.18
$-39,917.16$

F (20 points) Business Application. In many cases, multiple subtractions are required to complete a business transaction. (1 point for each intermediate answer; $\mathbf{2}$ points for each final answer)

WINTER CATALOG CLEARANCE SALE ON SOFTWARE AND GAMES
10\% REDUCTIONS ON CATALOG ORDERS
10\% PREFERRED CUSTOMER DISCOUNTS
MAIL-IN REBATE OFFERS

Item	Sierra Half-Life	The Sims 2	Grand Theft Auto	Street Legal	Zoo Tycoon
List price	$\$ 43.95$	$\$ 45.70$	$\$ 42.25$	$\$ 49.95$	$\$ 53.75$
Less 10% catalog rate	-4.40	-4.57	-4.23	-5.00	-5.38
Less 10% preferred customer rate	-3.96	-4.11	-3.80	-4.50	-4.84
	-7.50	-6.25	-7.50	-6.75	-5.75
Mail-in rebate					
Your price					

Score for F (20)
G (20 points) Business Application. Maintaining a budget involves both addition and subtraction. Keeping a budget sometimes involves a continuous record of cash income and expenses. Study the example and then complete the balances. (2 points for each balance)

Date 2/1/98	To	Subtract Expenses	Add Income	Balance
				$\$ 1,475.38$
$2 / 2 / 98$	Salary income		$\$ 700.00$	$2,175.38$
$2 / 3 / 98$	Hinson Real Estate	$\$ 550.00$		$1,625.38$
$2 / 5 / 98$	PG\&E	23.22		
$2 / 6 / 98$	Pacific Bell	18.76		
$2 / 6 / 98$	Macy's	43.22		
$2 / 10 / 98$	Chevron	15.75		
$2 / 16 / 98$	Salary income		$\$ 700.00$	
$2 / 17 / 98$	Fitness USA	25.00		
$2 / 18 / 98$	John Simms, D.D.S.	30.00		
$2 / 23 / 98$	Prudential Insurance	17.73		
$2 / 25 / 98$	Visa	85.42		
$2 / 27 / 98$	General Motors Finance	257.87		

Score for G (20)

Assignment 1.3: Multiplication

Name

Date
Score

A (12 points) Multiply the following. ($\frac{1}{2}$ point for each correct answer)

1. $2 \times 12=$ \qquad 2. $8 \times 16=$ \qquad 3. $13 \times 40=$ \qquad 4. $14 \times 48=$ \qquad
2. $9 \times 10=$ \qquad 6. $5 \times 15=$ \qquad 7. $15 \times 16=$ \qquad 8. $60 \times 7=$ \qquad
3. $8 \times 9=$ \qquad 10. $6 \times 12=$ \qquad 11. $12 \times 12=$ \qquad 12. $55 \times 9=$ \qquad
4. $6 \times 8=$ \qquad
5. $8 \times 12=$ \qquad
6. $4 \times 20=$ \qquad 16. $62 \times 70=$ \qquad
7. $6 \times 6=$ \qquad
8. $7 \times 22=$ \qquad
9. $8 \times 11=$ \qquad 20. $14 \times 700=$ \qquad
10. $2 \times 14=$ \qquad
11. $9 \times 22=$ \qquad
12. $8 \times 17=$ \qquad
13. $70 \times 70=$ \qquad
$\overline{\text { Score for A (12) }}$

B (24 points) Find the products. (2 points for each correct answer)
26.
3,026
27.
38,246
28.
$\begin{array}{r}5,017 \\ \times 201 \\ \hline\end{array}$
29. 3,600
30. 8,179
$\times 372$
$\times 8,297$
25.

1,728
$\times 42$

$\times 42$
31.
8,222
32.

67,406
$\times 3,006$

33.

1,236
34.
$\begin{array}{r}27,000 \\ \times 420 \\ \hline\end{array}$
35. 8,125
36. 3,716
$\times 279$
$\times 418$

Score for B (24)
C (10 points) Multiply by using shortcuts. (2 points for each correct answer)
37. 3,684
38. 4,999
39. 6,642
40. 3,212
41. 1,500
$\begin{array}{r}\times 50 \\ \hline\end{array}$
$\begin{array}{r}\times 50 \\ \hline\end{array}$
$\times 25$
$\times 50$
$\begin{array}{r}\times 25 \\ \hline\end{array}$

Score for C (10)
D (18 points) Multiply the three factors. (2 points for each final product)
42. $23 \times 22 \times 21=$
45. $14 \times 100 \times 7=$ \qquad
43. $47 \times 16 \times 70=$ \qquad 44. $44 \times 44 \times 44=$ \qquad
48. $30 \times 30 \times 30=$ \qquad
46. $915 \times 40 \times 20=$ \qquad 47. $10 \times 10 \times 10=$ \qquad
50. $1,500 \times 9 \times 3=$ \qquad

Assignment 1.3 Continued

E (12 points) Complete the five multiplication problems and then add the five products. (1 point for each correct answer)
51. $12 \times 12.00=$ \qquad
52. $27 \times 8.16=$ \qquad
53. $104 \times 3.52=$ \qquad
54. $6 \times 92.92=$ \qquad
55. $55 \times 32.50=$ \qquad
56. Total = \qquad
57. $21 \times 7 \times 16=$ \qquad
58. $13 \times 101 \times 22=$ \qquad
59. $33 \times 14 \times 7=$ \qquad
60. $99 \times 11 \times 100=$ \qquad
61. $3 \times 88 \times 100=$ \qquad
62. Total = \qquad

Score for E (12)
F (24 points) Business Application. Complete the merchandise inventory TOTAL column. (1 point for each correct total; 8 points for correct grand total)

MERCHANDISE INVENTORY
JUNE 30, 20xx

Stock Number	Description	Price	\# in Stock	Total
G473-2	Linspire 4.5	$\$ 39.99$	58	
G763-4	Spysweeper	$\$ 39.99$	172	
G865-A	Encarta	$\$ 49.95$	98	
G2238-1	Turbo Tax	$\$ 34.99$	225	
G873-2	Ever Quest 2	$\$ 42.75$	88	
S876-3	Microsoft Word	$\$ 98.77$	178	
S4433	Uninstaller 4	$\$ 32.59$	85	
S887-32	Doom 3	$\$ 45.79$	110	
S4536	Netscape Navigator	$\$ 38.79$	100	
S1322	Norton Utilities 7.0	$\$ 67.85$	68	
S458-2	Quicken	$\$ 27.75$	205	
S5382	City of Heros	$\$ 95.69$	80	
E5673-E	Typing Tutor	$\$ 26.59$	108	
E82-18	Atari Atar	$\$ 52.49$	25	
E2442	Adobe 6	$\$ 45.29$	307	
E3578-1	Perfect Spanish	$\$ 44.79$	80	
			TOTAL	

Assignment 1.4: Division

Name

A (10 points) Divide the following problems mentally. ($\frac{1}{2}$ point for each correct quotient)

1. $72 \div 6=$ \qquad
2. $90 \div 6=$ \qquad
3. $126 \div 3=$ \qquad
4. $144 \div 12=$ \qquad
5. $990 \div 33=$ \qquad
6. $900 \div 15=$ \qquad
7. $104 \div 2=$ \qquad
8. $225 \div 15=$ \qquad
9. $66 \div 22=$ \qquad
10. $188 \div 21=$ \qquad
11. $360 \div 20=$ \qquad
12. $361 \div 19=$ \qquad
13. $1,782 \div 18=$ \qquad
14. $561 \div 17=$ \qquad
15. $84 \div 12=$ \qquad

Score for A (10)
B (10 points) Divide by shortcut methods. Express remainders in parentheses. (1 point for each correct answer)
21. $1,818 \div 333=$
24. $2,200 \div 100=$ \qquad
22. $107,300 \div 100=$ \qquad 23. $97,600 \div 100=$ \qquad
27. $9,005 \div 100=$ \qquad
25. $7,800 \div 20=$ \qquad
28. $387 \div 10=$ \qquad
26. $6,450 \div 320=$ \qquad
29. $7,600 \div 1,000=$ \qquad
30. $3,250,000 \div 10,000=$ \qquad

C (50 points) Divide. Show the remainder in parentheses after the whole number in the quotient. (2 points for each correct answer)
31. $2 1 \longdiv { 4 7 8 }$
32. $1 3 \longdiv { 2 , 7 9 5 }$
33. $2 3 \longdiv { 1 4 , 0 7 6 }$
34. $7 \longdiv { 4 , 9 1 9 }$
35. $3 6 \longdiv { 6 , 4 3 6 }$
36. $2 3 \longdiv { 4 7 8 }$
37. $2 7 1 \longdiv { 5 0 , 0 0 1 }$
38. $3 3 \longdiv { 9 7 , 3 8 2 }$
39. $9 2 6 \longdiv { 9 2 6 , 0 0 7 }$
40. $7 7 \longdiv { 1 2 , 7 7 0 }$
41. $5 0 6 \longdiv { 1 0 , 2 3 8 }$
42. $9 \longdiv { 8 1 8 , 1 7 3 }$
43. $7 0 0 \longdiv { 3 6 2 , 4 9 7 }$
44. $1 1 1 \longdiv { 3 4 , 1 7 3 }$
45. $8 8 \longdiv { 9 7 , 8 1 7 }$
46. $1 3 \longdiv { \$ 6 7 , 2 0 9 }$
47. $6 \longdiv { \$ 1 3 . 2 0 }$
48. $5 4 \longdiv { 7 8 , 5 4 0 }$
49. $5 1 \longdiv { 1 0 0 }$
50. $2 6 \longdiv { 1 1 1 , 0 1 3 }$
51. $6 6 \longdiv { 7 3 , 4 2 8 }$
52. $1,0 1 4 \longdiv { 2 0 , 0 1 6 }$
53. $6 6 \longdiv { 1 7 , 2 0 9 }$
54. $6 5 \longdiv { 3 7 2 , 0 0 0 }$
55. $2 9 \longdiv { 5 8 , 0 0 4 , 3 1 6 }$

Score for C (50)

Assignment 1.4 Continued

D (10 points) Divide and check the following problems. (2 points for each correct answer)
56. $2 2 \longdiv { 1 , 3 \overline { 6 4 } }$
57. $3 1 \longdiv { 1 , 3 9 5 }$
58. $9 2 \longdiv { 7 , 2 8 4 }$
59. $2 1 \longdiv { 2 , 2 1 4 }$
60. $3 1 \longdiv { 6 4 2 }$

Check: \qquad
\times \qquad
\times \qquad
\times \qquad
\qquad
\times \qquad
\times \qquad
$=$ \qquad
\qquad

Score for D (10)
E (20 points) Business Applications. As an estimator for a printing company, you must estimate the paper costs for printing jobs. Paper is priced by the ream, which is $\mathbf{5 0 0}$ pages. Compute the paper costs of the jobs. (1 point for each correct computation)

No. of Booklets	No. of Pages	Total Pages	Reams of Paper	Cost per Ream	Total Paper Cost
250	66			$\$ 2.00$	
120	150			$\$ 4.25$	
75	220			$\$ 4.83$	
110	250			$\$ 3.75$	
25	280			$\$ 3.15$	
30	250			$\$ 4.10$	
		Total reams		Total paper cost	

Assignment 1.5: Estimating

Name

A (60 points) Estimate an answer for each of the following problems. Show your rounding, dropping of zeros with base product, and final estimate. (1 point for each correct answer)

Assignment 1.5 Continued

B (20 points) Estimate an answer for each of the following problems. Show your rounding, dropping of zeros with base product, estimated answer, and real answer. (1 point for each correct answer)

Problem	Round to	Dropped Zeros and Base Product	Estimated Answer	Real Answer
21. 883×294				
22. $42,100 \times 412$				
23. $19,965 \times 492$				
24. 89×33				
25. 793×199				

C (20 points) Estimate an answer for each of the following division problems. Show your rounding, dropping of zeros, estimated answer, and real answer. Round to two decimal places. (1 point for each correct answer)

Problem	Round to	Drop Zeros	Estimated Answer	Real Answer
26. $123 \div 41$	-	-	-	-
27. $612 \div 12$	-	-	-	-
28. $4,836 \div 78$	-	-	-	-
29. $19,760 \div 95$	-	-	-	
30. $21,033 \div 690$	-			

Fractions

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Change improper fractions and mixed numbers.

Learning Objective $\mathbf{2}$ Change fractions to lower and higher terms.

Learning Objective 3 Add fractions and mixed numbers.

Learning Objective 4 Subtract fractions and mixed numbers.

Learning Objective 5
Multiply fractions, mixed numbers, and whole numbers.

Learning Objective 6 Divide fractions, mixed numbers, and whole numbers.

Fractions are a natural part of cultures around the world. Very young children who cannot yet read learn simple fractions such as one half and one third when their parents teach them about sharing a candy bar or a pizza. Before the development of inexpensive handheld calculators, fractions were more important than today because they permitted shortcuts in arithmetic. However, fractions are still important in some industries. Moreover, the rules of fractions will always remain very important in algebra and higher mathematics.

Vocabulary of Fractions

A restaurant cuts its medium-sized pizzas into six pieces. Each piece is "one sixth" of the pizza. If you take two pieces of pizza, you have "two sixths" of the pizza. With numbers, two sixths is written as $\frac{2}{6}$. The 2 is called the numerator, and the six is called the denominator. $\frac{2}{6}$ is called a proper fraction because its numerator (2) is smaller than its denominator (6). If you buy two medium-sized pizzas and cut each into six pieces, you will have twelve pieces, or twelve sixths, written as $\frac{12}{6} \cdot \frac{12}{6}$ is called an improper fraction because its numerator (12) is larger than its denominator (6). If you eat one of the twelve slices of pizza, eleven pieces remain, or $\frac{11}{6}$, or one whole pizza and $\frac{5}{6}$ of the other pizza. We can write this result as $1 \frac{5}{6}$, which is called a mixed number. $1 \frac{5}{6}$ is simply another way to write $\frac{11}{6}$. Figure 2-1 illustrates these concepts.

a. 1 whole pizza $=\frac{6}{6}$

b. 2 pieces $=\frac{2}{6}$

c. 2 whole pizzas $=\frac{12}{6}$

d. 1 piece missing $=\frac{11}{6}=1 \frac{5}{6}$

Changing Improper Fractions and Mixed Numbers

Learning Objective
With simple arithmetic, we can change improper fractions to mixed numbers and mixed numbers to improper fractions.

Change improper fractions and mixed numbers.

STEPS to Change an Improper Fraction to a Mixed Number

1. Divide the numerator by the denominator.
2. The quotient is the whole-number part of the mixed number.
3. The remainder is the numerator of the fraction part.
4. The original denominator is the denominator of the fraction part.

EXAMPLE A

Change $\frac{11}{8}$ to a mixed number.

Note: Refer to Point A in Figure 2-2 to see where this mixed number appears on a ruler.

Figure 2-2

$$
\begin{array}{cc}
\frac{11}{8}=1 \frac{3}{8} & 3 \frac{1}{2}=\frac{7}{2} \\
\text { A } & \text { B }
\end{array}
$$

$$
\frac{12}{16}=\frac{6}{8}=\frac{3}{4} \quad 2 \frac{12}{16}=2 \frac{6}{8}=2 \frac{3}{4}
$$

S T E P S to Change a Mixed Number to an Improper Fraction

1. Multiply the denominator of the fraction by the whole number.
2. Add the numerator of the fraction to the product of Step 1 . The sum is the numerator of the improper fraction.
3. The denominator of the fraction of the mixed number is the denominator of the improper fraction.

EXAMPLE B

Change $3 \frac{1}{2}$ to an improper fraction.

See Point B in Figure 2-2.

Changing Fractions to Lower and Higher Terms

Learning Objective

Change fractions to lower and higher terms.

Video

Reducing and Raising Fractions

Read Point C on the measuring tape shown in Figure 2-2. Point C marks the distance $\frac{12}{16}$ of an inch, but it could also be read as $\frac{6}{8}$ or $\frac{3}{4}$ of an inch. Thus $\frac{12}{16}, \frac{6}{8}$, and $\frac{3}{4}$ are three ways to write the same value. We say that $\frac{6}{8}$ is in lower terms and $\frac{12}{16}$ is in higher terms because 8 is a smaller denominator than 16 . We also say that $\frac{3}{4}$ is in lowest terms because it cannot be changed to any lower terms. When we change a fraction to lower terms, we say that we are reducing the fraction to lower terms. If we change a mixed number such as $2 \frac{12}{16}$ to $2 \frac{3}{4}$, we say that we have reduced the mixed number to its lowest terms. When we change a fraction to higher terms, we say that we are raising the fraction to higher terms.

STEPS to Reduce a Fraction to Lowest Terms

1. Divide both the numerator and the denominator by a common divisor greater than 1 to arrive at a reduced fraction.
2. If necessary, repeat Step 1 until the fraction cannot be reduced any further.

Note: If a fraction's numerator and denominator have no common divisor greater than 1 , the fraction is already in lowest terms.

EXAMPLEC

Reduce $\frac{12}{16}$ to lowest terms.
$\frac{12}{16}=\frac{12 \div 2}{16 \div 2}=\frac{6}{8}=\frac{6 \div 2}{8 \div 2}=\frac{3}{4} \quad$ or $\quad \frac{12}{16}=\frac{12 \div 4}{16 \div 4}=\frac{3}{4}$
Note that dividing by 4 once is faster than dividing by 2 twice. Always try to use the greatest common divisor that you can find.

STEPS to Raise a Fraction to Higher Terms

1. Divide the new denominator by the old denominator. The quotient is the common multiplier.
2. Multiply the old numerator by the common multiplier.
3. Multiply the old denominator by the common multiplier.

EXAMPLED

Raise $\frac{3}{4}$ to twenty-fourths.

> STEP 1 $\frac{3}{4}=\frac{?}{24} \quad 24 \div 4=6$ STEPS $2 \& 3$ So, $\frac{3}{4}=$ $\frac{3 \times 6}{4 \times 6}=\frac{18}{24}$

Adding Fractions and Mixed Numbers

Fractions and mixed numbers are all numbers-they can be added and subtracted just like whole numbers. However, fractions and mixed numbers cannot be added or subtracted until they have the same denominators called a common denominator.

When you add fractions and/or mixed numbers, you must first find a common denominator, which is a denominator shared by all of the fractions and it will be the denominator of the fraction part of the answer. The smallest common denominator possible is called the least common denominator. However, if the least common denominator is not easily apparent, it may be quicker to use the first common denominator that you can discover and then reduce the answer to lowest terms. The product of all of the denominators will always be a common denominator, but very often there will be a smaller common denominator.

S T E P S to Add Two or More Fractions and/or Mixed Numbers

1. If necessary, change the fraction parts to fractions with common denominators. The common denominator is the denominator in the fraction part of the answer.
2. Add the numerators to make the numerator of the fraction part of the answer. If there are any whole-number parts, add them to make the whole-number part of the answer.
3. If necessary, reduce the fraction part to a mixed number in lowest terms and mentally combine any whole-number parts to make a final mixednumber answer.

Learning Objectives
3

Add fractions and mixed numbers.

Adding and
Subtracting Fractions and Mixed Numbers
umbers

EXAMPLE E

Add $2 \frac{7}{8}$ and $2 \frac{5}{8}$.
The fractions already have a common denominator of 8 .
$2 \frac{7}{8}$
$+2 \frac{5}{8}$
$4 \frac{12}{8}=4+1 \frac{4}{8}=5 \frac{1}{2}$

EXAMPLE F

Add $\frac{5}{6}$ and $\frac{3}{4}$.
A common denominator is $6 \times 4=24$.

$$
\begin{array}{r}
\frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24} \\
+\frac{3}{4}=\frac{3 \times 6}{4 \times 6}=\frac{18}{24} \\
\frac{38}{24}=1 \frac{14}{24}=1 \frac{7}{12}
\end{array}
$$

EXAMPLE G

Add $3 \frac{3}{8}, 7 \frac{5}{6}$, and $\frac{1}{4}$.
The least common denominator is 24 .

$$
\begin{array}{rlll}
3 \frac{5}{8} & =3 \frac{15}{24} & \text { STEP 1 } & \text { STEP 2 } \\
3 \frac{5}{6} & =10 \frac{41}{24} & 10+1 \frac{17}{24}=11 \frac{17}{24} \\
+\frac{5}{4} & =+\frac{20}{24} &
\end{array}
$$

CONCEPT CHECK 2.1

a. $\operatorname{Add} \frac{3}{5}, \frac{2}{3}$, and $\frac{7}{9}$.

The least common denominator is 45 .
$\frac{3}{5}=\frac{3 \times 9}{5 \times 9}=\frac{27}{45}$
$\frac{2}{3}=\frac{2 \times 15}{3 \times 15}=\frac{30}{45}$
$+\frac{7}{9}=\frac{7 \times 5}{9 \times 5}=+\frac{35}{45}$
$\frac{92}{45}=2 \frac{2}{45}$
b. Add $1 \frac{5}{6}$ and $2 \frac{5}{9}$.

A common denominator is $6 \times 9=54$.

$$
\begin{aligned}
& 1 \frac{5}{6}=1 \frac{45}{54} \\
&+2 \frac{5}{9}=+2 \frac{30}{54} \\
& \hline 3 \frac{75}{54}=4 \frac{21}{54}=4 \frac{7}{18}
\end{aligned}
$$

Subtracting Fractions and Mixed Numbers

Learning Objective

Subtract fractions and mixed numbers.

The procedure for subtracting one fraction from another is essentially the same as the procedure for adding one fraction to another. When you calculate the difference $3 \frac{1}{4}-\frac{3}{4}$, $3 \frac{1}{4}$ is called the minuend and $\frac{3}{4}$ is called the subtrahend, as in the subtraction of whole numbers.

BORROWING 1

Sometimes, as with $3 \frac{1}{4}-\frac{3}{4}$, the fraction part of the minuend is smaller than the fraction part of the subtrahend. To make the fraction part of the minuend larger than the fraction part of the subtrahend, you have to "borrow 1 " from the whole-number part of the minuend. Actually, you're just rewriting the minuend. Remember that $3 \frac{1}{4}$ means $3+\frac{1}{4}$, or the same as $2+1+\frac{1}{4}, 2+\frac{4}{4}+\frac{1}{4}$, or $2 \frac{5}{4}$. These are simply four different ways to express the same quantity. Figure 2-3 is useful in understanding borrowing.

Video

Adding and Subtracting Fractions and Mixed Numbers

STEP S to Subtract One Fraction or Mixed Number from Another

1. If necessary, change the fractions so that all fractions have a common denominator. The common denominator is the denominator in the fraction part of the answer.
2. If necessary,"borrow 1 "from the whole-number part of the minuend so that the fraction part of the minuend is at least as large as the fraction part of the subtrahend.
3. Subtract the numerators in the fractions to make the numerator in the fraction part of the answer.
4. If there are any whole-number parts, subtract them to make the wholenumber part of the answer.
5. If necessary, reduce the fraction in the answer to lowest terms.

EXAMPLE H

STEP 3 STEP 5
 $\frac{7}{8}-\frac{3}{8}=\frac{7-3}{8}=\frac{4}{8}=\frac{1}{2}$

EXAMPLE J

EXAMPLE I

STEP 1

STEP 3
$\frac{3}{4}-\frac{1}{5}=\frac{3 \times 5}{4 \times 5}-\frac{1 \times 4}{5 \times 4}=\frac{15}{20}-\frac{4}{20}=\frac{11}{20}$

EXAMPLE K

STEP 1

STEP 2

$$
\begin{array}{r}
4 \frac{4}{9}=4 \frac{8}{18}=3 \frac{18}{18}+\frac{8}{18}=3 \frac{26}{18} \\
-1 \frac{5}{6}=-1 \frac{15}{18}=-1 \frac{15}{18}=-1 \frac{15}{18} \\
\hline \text { STEPS } 3 \& 4
\end{array} 2 \frac{11}{18}
$$

CONCEPT CHECK 2.2

a. Subtract $\frac{5}{6}$ from $\frac{7}{8}$.

The least common denominator is 24 .

$$
\begin{array}{r}
\frac{7}{8}=\frac{21}{24} \\
-\frac{5}{6}=-\frac{20}{\frac{24}{\frac{1}{24}}}
\end{array}
$$

b. Subtract $2 \frac{7}{10}$ from $5 \frac{4}{15}$.

The least common denominator is 30 .

$$
\begin{aligned}
& 5 \frac{7}{15}=5 \frac{14}{30} \\
&=-2 \frac{44}{30} \\
&-2 \frac{7}{10}=-2 \frac{21}{30}
\end{aligned}=\frac{-2 \frac{21}{30}}{2 \frac{23}{30}} 8
$$

Multiplying Fractions, Mixed Numbers, and Whole Numbers

Learning Objective 5

Multiply fractions, mixed numbers, and whole numbers.

Video

Multiplication and Division of Mixed Numbers

In fractions, multiplication is the simplest operation and division is the next simplest. The reason is that multiplication and division do not require common denominators like addition and subtraction do. Recall that any mixed number can be changed to an improper fraction. Also, a whole number can be written as an improper fraction by writing the number in the numerator with a denominator of 1 . For example, the whole number 5 can be written as the fraction $\frac{5}{1}$.

S T E P S to Multiply Fractions, Mixed Numbers, and Whole Numbers

1. If necessary, change any mixed or whole numbers to improper fractions.
2. Multiply all the numerators to get the numerator of the product.
3. Multiply all the denominators to get the denominator of the product.
4. Write the product as a fraction or mixed number in lowest terms.

EXAMPLE M

STEPS $2 \& 3$ STEP 4
$1 \frac{2}{3} \times \frac{4}{5}=\frac{5}{3} \times \frac{4}{5}=\frac{5 \times 4}{3 \times 5}=\frac{20}{15}=1 \frac{5}{15}=1 \frac{1}{3} \quad \frac{2}{3} \times \frac{4}{5} \times \frac{5}{6}=\frac{2 \times 4 \times 5}{3 \times 5 \times 6}=\frac{40}{90}=\frac{4}{9}$

Note: The word of often means multiply when it is used with fractions. For example, you know that " $\frac{1}{2}$ of 6 bottles" is 3 bottles. And $\frac{1}{2}$ of $6=\frac{1}{2} \times \frac{6}{1}=\frac{6}{2}=3$. For this reason, in this age of calculators, multiplication may be the most important arithmetic operation with fractions. In verbal communication, we will always be using expressions like " $\frac{1}{2}$ of 6 ."

Canceling Common Factors in Numerators and Denominators

As the last step in example M, we reduced the fraction $\frac{40}{90}$ to its lowest terms, $\frac{4}{9}$. Recall that reducing this fraction means that we divide both the numerator and the denominator by 10. As an option, we can do the division in advance, before doing any multiplication. Examining the three numerators and three denominators we discover that they have common factors of 2 and $5(2 \times 5=10)$. Divide out, or cancel, both common factors in the numerators and denominators as shown in example N . This division of the common factors is often called cancellation. Canceling common factors is an option; it is not required to calculate the correct product.

EXAMPLE N

Multiply the three fractions, using cancellation.
$\frac{2}{3} \times \frac{4}{5} \times \frac{5}{6}=\frac{2}{3} \times \frac{4}{5} \times \frac{1}{6}=\frac{2}{3} \times \frac{2}{5} \frac{4}{5} \times \frac{5}{6}=\frac{2 \times 2 \times 1}{3 \times 1 \times 3}=\frac{4}{9}$

EXAMPLE O

Multiply the fraction and the whole number, using cancellation.
$12 \times \frac{3}{4}=\frac{12}{1} \times \frac{3}{4}=\frac{{ }^{3} 2}{1} \times \frac{3}{4}=\frac{3 \times 3}{1 \times 1}=\frac{9}{1}=9$

EXAMPLE P

Multiply the fraction and the mixed number, using cancellation.
STEP 1
$\frac{2}{5} \times 2 \frac{3}{4}=\frac{2}{5} \times \frac{11}{4}=\frac{2}{5} \times \frac{11}{4}=\frac{1 \times 4}{5 \times 2}=\frac{11}{10}=1 \frac{1}{10}$

CONCEPTCHECK 2.3

Multiply the fraction, whole number, and mixed number, using cancellation.

Dividing Fractions, Mixed Numbers, and Whole Numbers

Learning Objective 6

Divide fractions, mixed numbers, and whole numbers.

Recall that with whole numbers, division is the inverse of multiplication. You can check a multiplication problem by division. With fractions, you actually perform a division problem by doing multiplication. That is, you invert the divisor and multiply.

STEPS to Divide Fractions, Mixed Numbers, and Whole Numbers

1. If necessary, change the dividend and/or the divisor from mixed or whole numbers to improper fractions.
2. Invert the divisor (that is, exchange the numerator and denominator).
3. Change the division symbol to a multiplication symbol.
4. Multiply the two factors (canceling where possible, if desired).
5. Write the quotient as a proper fraction or mixed number in lowest terms.

EXAMPLE Q

$$
\frac{3}{10} \div \frac{2}{5}=\frac{3}{10} \times \frac{5}{2}=\frac{3}{10} \times \frac{5}{2}=\frac{3 \times 1}{2 \times 2}=\frac{3}{4}
$$

EXAMPLER

| STEP 1 | STEPS $2 \& 3$ | STEP 4 |
| :--- | :--- | :--- | STEP 5

$6 \div 1 \frac{3}{5}=\frac{6}{1} \div \frac{8}{5}=\frac{6}{1} \times \frac{5}{8}=\frac{3}{1} \times \frac{5}{8}=\frac{3 \times 5}{1 \times 4}=\frac{15}{4}=3 \frac{3}{4}$

CONCEPT CHECK 2.4

Divide $3 \frac{3}{4}$ by $1 \frac{1}{2}$.

Change both mixed numbers to improper fractions: $\frac{15}{4} \div \frac{3}{2}$.
Invert the divisor $\frac{3}{2}$ to $\frac{2}{3}$ and multiply:
$\frac{15}{4} \times \frac{2}{3}=\frac{{ }^{5}}{4} \times \frac{1}{2} \frac{5 \times 1}{3}=\frac{5}{2 \times 1}=2 \frac{1}{2}$

COMPLETE ASSIGNMENT 2.2.

Chapter Terms for Review

cancel	higher terms	lowest terms
cancellation	improper fraction	mixed number
common denominator	least common denominator	numerator
denominator	lower terms	proper fraction
fractions		

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
2.1 Change improper fractions and mixed numbers	1(a). Change $\frac{18}{5}$ to a mixed number. 1(b). Change $3 \frac{2}{5}$ to an improper fraction.
2.2 Change fractions to lower and higher terms	2(a). Reduce $\frac{24}{60}$ to lowest terms. 2(b). Raise $\frac{7}{12}$ to sixtieths; that is, $\frac{7}{12}=\frac{?}{60}$.
2.3 Add fractions and mixed numbers	3. $\operatorname{Add} \frac{7}{8}, \frac{5}{6}$, and $2 \frac{3}{4}$.
2.4 Subtract fractions and mixed numbers	4. Subtract $1 \frac{3}{4}$ from $4 \frac{2}{5}$.
2.5 Multiply fractions, mixed numbers, and whole n	5. Multiply: $\frac{2}{9} \times \frac{6}{7}$.
2.6 Divide fractions, mixed numbers, and whole nu	6. Divide: $1 \frac{4}{5} \div \frac{3}{4}$.

SELF-CHECK

Review Problems for Chapter 2

Write all answers as proper fractions or mixed numbers in lowest terms.

(1) Change $2 \frac{5}{6}$ to an improper fraction \qquad
(2) Change $\frac{90}{12}$ to a mixed number \qquad
(3) Reduce $\frac{54}{63}$ to lowest terms \qquad
(4) Raise $\frac{10}{14}$ to 56 ths \qquad
(5) Add $\frac{2}{3}, \frac{3}{5}$, and $\frac{3}{10}$ \qquad
(6) Add $\frac{5}{8}$ and $1 \frac{1}{6}$ \qquad
(7) Add $\frac{3}{4}, 2 \frac{4}{5}$, and 4 \qquad
8 Subtract $\frac{1}{3}$ from $\frac{4}{5}$ \qquad
(9) Subtract $\frac{8}{9}$ from $2 \frac{5}{6}$

10 Subtract $2 \frac{4}{9}$ from $4 \frac{1}{5}$
11 Multiply $\frac{5}{6}$ by $\frac{9}{25}$
12 Multiply $\frac{9}{16}$ by $1 \frac{13}{15}$ \qquad
13 Multiply $2 \frac{1}{10}, \frac{8}{15}$, and $2 \frac{1}{12}$
14 Divide $\frac{15}{16}$ by $\frac{5}{12}$ \qquad
15 Divide $1 \frac{11}{25}$ by $\frac{24}{35}$ \qquad
16 Divide $1 \frac{5}{7}$ by $1 \frac{13}{14}$ \qquad

17 JoAnn Brandt decided to use an expensive, but effective, herbicide to kill weeds and brush on a client's land. For one part of the land, she needed $3 \frac{2}{3}$ quarts of herbicide; for a second part, she needed $2 \frac{3}{4}$ quarts; and for the third part, she needed $1 \frac{5}{6}$ quarts. In total, how many quarts of herbicide did JoAnn need for this client?
18 Cabinetmaker Dave Smith needs to make a cabinet door. The cabinet drawing shows an opening $24 \frac{1}{16}$ inches wide. Dave wants a space of $\frac{1}{8}$ inch on each side of the cabinet door. How wide should he make the door? \qquad
19 The Central Hotel just hired a new chef. This chef makes a hot sauce that uses $1 \frac{3}{4}$ tablespoons of chili powder, but he needs to increase the recipe by $3 \frac{1}{2}$ times. How many tablespoons of chili powder should he use? \qquad
20 How many whole pieces of copper $2 \frac{5}{8}$ inches long can be cut out of one piece that is $24 \frac{1}{2}$ inches long? \qquad How long is the shorter piece that is left over? \qquad

Assignment 2.1: Addition and Subtraction of Fractions

Name

Date
Score

A (12 points) Change the improper fractions to whole numbers or to mixed numbers. Change the mixed numbers to improper fractions. (1 point for each correct answer)

1. $\frac{13}{6}$
2. $\frac{32}{10}$
3. $\frac{18}{6}$
4. $\frac{25}{15}$
5. $\frac{11}{7}$
6. $\frac{25}{8}$
7. $3 \frac{7}{10}$
8. $2 \frac{11}{12}$
9. $2 \frac{5}{8}$
10. $3 \frac{3}{4}$
11. $6 \frac{3}{5}$
12. $1 \frac{3}{5}$

Score for A (12)
B (15 points) In problems 13-20, reduce each fraction to lowest terms. In problems 21-27, raise each fraction to higher terms, as indicated. (1 point for each correct answer)
13. $\frac{10}{25}$
14. $\frac{9}{24}$
15. $\frac{10}{12}$
16. $\frac{12}{20}$
17. $\frac{32}{48}$
18. $\frac{24}{42}$
19. $\frac{42}{60}$
20. $\frac{16}{32}$
21. $\frac{1}{6}=\frac{}{18}$
22. $\frac{3}{4}=\frac{}{20}$
23. $\frac{5}{8}=\frac{}{24}$
24. $\frac{7}{12}=\frac{}{36}$
25. $\frac{11}{6}=\frac{}{48}$
26. $\frac{2}{3}=\frac{}{15}$
27. $\frac{4}{5}=\frac{}{45}$

Score for B (15)
C (24 points) Add the following fractions and mixed numbers. Write the answers as fractions or mixed numbers, with fractions in lowest terms. (3 points for each correct answer)
28. $\frac{5}{8}$
$+\frac{3}{8}$
29. $\frac{3}{10}$
$+\frac{3}{10}$
30. $\frac{9}{16}$
$+2 \frac{11}{16}$
31. $1 \frac{2}{3}=$
$+2 \frac{3}{4}=$
32. $1 \frac{1}{4}=$
33. $4 \frac{1}{2}=$
$3 \frac{2}{3}=$
34. $\frac{4}{5}=$
$3 \frac{5}{6}=$
35. $2 \frac{5}{9}=$
$3 \frac{8}{15}=$
$+5 \frac{1}{3}=$
$+1 \frac{1}{5}=$

D (24 points) Subtract the following fractions and mixed numbers. Write the answers as proper fractions or mixed numbers, with fractions in lowest terms. (3 points for each correct answer)
36. $\frac{5}{8}$
$-\frac{3}{8}$
37. $2 \frac{7}{12}$
$-1 \frac{1}{12}$
38. $\frac{3}{4}=$
$-\frac{5}{16}=$
39. $2 \frac{3}{4}=$

$$
-1 \frac{1}{12}=
$$

40. $3 \frac{2}{3}=\quad=$
$-2 \frac{5}{6}=\quad=$
41. $3 \frac{3}{5}=$
$=$
$-1 \frac{3}{4}=\quad=$
42. $6 \frac{7}{8}=$
$-2 \frac{2}{3}=$
43. $4 \frac{2}{5}=\quad=$

$$
-1 \frac{5}{6}=\quad=
$$

E (25 points) Business Applications and Critical Thinking. Solve the following. Write your answers as fractions or mixed numbers in lowest terms. (5 points for each correct answer)

44. A restaurant sells three different hamburgers, based on the amount of meat used: "The $\frac{1}{4}$ Pounder," "The $\frac{1}{3}$ Pounder," and a giant-"The $\frac{1}{2}$ Pounder." Students bought one of each to compare them. What was the total amount of meat used in the three hamburgers? \qquad
45. Judy Mihalyi specialized in custom painting, but for the first coat she could combine leftover paints when the colors were relatively the same. She had three containers of different shades of white: $2 \frac{2}{3}$ gallons, $2 \frac{2}{5}$ gallons, and $2 \frac{1}{2}$ gallons. If Judy combined the contents of all the containers, how much paint did she have? \qquad
46. Contractor Don Fleming has a top board that is $\frac{13}{16}$ inch thick. Don wants to use wood screws to attach it to a bottom board. If a wood screw is $1 \frac{1}{2}$ inches long, how much of the screw will be left over to go into the bottom board? \qquad
47. Robert Landles is planning to attach a plywood panel to the wall with nails that are $1 \frac{3}{4}$ inches long. The panel is $\frac{3}{8}$ inch thick. Beneath the panel will be a layer of sheetrock that is $\frac{1}{2}$ inch thick. How many inches of the nail will go into the wood frame that is underneath the sheetrock? \qquad
48. Paris Fabric Center sold four pieces of wool fabric to a tailor. The pieces measure $3 \frac{1}{4}$ yards, $2 \frac{1}{3}$ yards, $1 \frac{3}{4}$ yards, and $4 \frac{1}{2}$ yards. How many yards of wool did the tailor purchase? \qquad

Assignment 2.2: Multiplication and Division of Fractions

Name

Date
Score

A (32 points) Change whole or mixed numbers to improper fractions and multiply. Cancel if possible. Where the word of appears, replace it by the multiplication symbol. Write the answers as mixed numbers or proper fractions in lowest terms. (4 points for each correct answer)

1. $\frac{5}{6} \times \frac{8}{15}=$ \qquad 2. $\frac{3}{10} \times \frac{6}{7} \times \frac{5}{6}=$ \qquad
2. $\frac{3}{4}$ of $\frac{5}{6}=$ \qquad
3. $\frac{5}{18} \times \frac{4}{9} \times \frac{3}{10}=$ \qquad
4. $4 \frac{1}{2} \times 1 \frac{5}{9}=$ \qquad
5. $\frac{5}{8}$ of $10=$ \qquad
6. $1 \frac{7}{8} \times 12 \times \frac{3}{10}=$ \qquad 8. $1 \frac{1}{3} \times 1 \frac{7}{8} \times 1 \frac{4}{5}=$ \qquad

B (32 points) Change the mixed numbers to improper fractions and divide. Cancel where possible. Write the quotients as mixed numbers or proper fractions in lowest terms. (4 points for each correct answer)
9. $\frac{7}{8} \div \frac{3}{4}=$ \qquad
11. $\frac{3}{4} \div \frac{7}{8}$ \qquad 12. $\frac{7}{10} \div 2 \frac{4}{5}=$ \qquad
13. $6 \frac{1}{4} \div 4 \frac{3}{8}=$ \qquad 14. $3 \frac{5}{6} \div 1 \frac{7}{12}=$ \qquad
15. $3 \frac{1}{3} \div \frac{4}{5}=$ \qquad 16. $2 \frac{1}{3} \div 1 \frac{3}{4}=$ \qquad

C (36 points) Business Applications and Critical Thinking. Use fractions and mixed numbers to solve each of the following. State the answers as whole numbers, proper fractions, or mixed numbers in lowest terms. (6 points for each correct answer)

17. Last week, East Shore Concrete Co. built a small driveway that required $5 \frac{1}{3}$ cubic yards of concrete. This week, the company must build another one that is $2 \frac{1}{2}$ times larger. How much concrete will be required? \qquad
18. Athena Nguyen bought eight pieces of copper tubing that were each $6 \frac{3}{4}$ inches long. What was the total length of tubing that Athena bought? (Give the answer in inches.) \qquad
19. Linda Johanssen had $2 \frac{1}{4}$ quarts of liquid fertilizer in a container. Her supervisor asked her to mix $\frac{2}{3}$ of the fertilizer with water and save the remainder. How many quarts of fertilizer did Linda mix with water? \qquad
20. Landscaper Ron Benoit needs several pieces of PVC irrigation pipe, each 6 feet 8 inches long. PVC pipe comes in 20-foot lengths. How many pieces can Ron cut out of one length of pipe? (Hint: 8 inches equals $\frac{2}{3}$ foot.) \qquad
21. Robert Burke has a diesel-powered generator on his ranch. The generator has a tank that holds $3 \frac{3}{4}$ gallons of diesel fuel. He stores the diesel fuel in 55-gallon drums (barrels). How many times can Robert refill his generator from one drum of fuel? \qquad
22. Home builders Bill and John Walter are planning a narrow stairway to an attic. The stairs will each be 2 feet 4 inches long. They will cut the stairs from boards that are 8 feet long. How many whole stairs can they cut from one 8 -foot board? (Hint: 4 inches is $\frac{1}{3}$ foot.) \qquad

Score for C (36)

Decimals

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Read decimal numbers.

Learning Objective
Round decimal numbers.

Learning Objective 3 Add two or more decimal numbers.

Learning Objective 4 Subtract one decimal number from another.

Learning Objective
Multiply two decimal numbers.

Learning Objective 6 Divide one decimal number by another decimal number.

Approximate products and quotients.

Fractions Versus Decimal Numbers

McDonald's restaurant sells a hamburger sandwich called the Quarter Pounder. The sandwich is named for the amount of meat: one-quarter pound of ground beef. McDonald's-or anyone-can describe the same amount of meat in four different ways: 4 ounces, $\frac{1}{4}$ pound, 0.25 pound, or 25% of a pound. To express less than 1 pound, McDonald's could use smaller units, fractions, decimals, or percents.

All four expressions are useful, but which one is best? It depends on what you're doing: whether you're buying or selling, whether you're speaking or writing, whether you're just estimating or making accurate financial records, or whether you're working with large volumes of something cheap or small quantities of something very expensive. For McDonald's, a Four Ouncer wouldn't sell as well as a Quarter Pounder, but Bloomingdale's sells perfume by the (fluid) ounce rather than by the gallon, quart, pint, or even cup.

Verbal expressions such as "half of a candy bar" or "a third of the pizza" are so common that children learn them before they can even read. We reviewed fractions in Chapter 2. Because of calculators, most calculations are now performed using decimal numbers. We review decimals here in Chapter 3. Percents are a combination of decimal numbers and a few common fractions. Percents are as easy to use as decimals and also allow simple verbal expressions. We review percents in Chapter 5.

Chapter 3 has three main concepts: vocabulary, calculating, and estimating. Calculating with decimals is the same as with whole numbers except that there is a decimal point. Thus, calculating with decimals is actually "managing the decimal point," which your calculator does automatically. Estimating, which is important to check your calculator, still requires that you must "manage the decimal point."

Decimal Numbers and Electronic Displays

A customer in a delicatessen might ask for "a quarter of a pound of salami, please" or perhaps "four ounces of salami." However, the food scale in the delicatessen probably has an electronic display and is calibrated only in pounds. It will likely display " 0.25 " or 0.250." As a fraction, a quarter of a pound is written as $\frac{1}{4}$ pound; three quarters of a pound is $\frac{3}{4}$ pound. In the U.S. monetary system, a quarter is the name of the coin whose value is twenty-five cents. And three quarters are worth seventy-five cents. When we write these monetary amounts we write either whole numbers or decimals: Either 25\$ and $75 \$$, or $\$ 0.25$ and $\$ 0.75$. It is highly unlikely that anyone would ever write $\$ \frac{1}{4}$ or $\$ \frac{3}{4}$.

Almost all business transactions and record keeping are best done in decimals rather than fractions. The calculations are usually more straightforward and more accurate. Today, specialized calculators, computers, and measurement instruments have electronic displays that are calibrated in decimals, not fractions.

Modern gasoline pumps used in the United States are calibrated in gallons and typically measure the volume of gasoline sold accurate to three decimal places. Suppose that an automobile owner buys gasoline and the display shows 12.761 gallons. 12.761 is a number; it is called a mixed decimal. The 12 is the whole number part of the number; the 761 is the pure decimal part. The period (or dot) that separates the 12 from the 761
is the decimal point. We say that the number 12.761 has three decimal places because there are three digits to the right of the decimal point.

Most calculators and computer spreadsheets permit you to change the number of decimal places that are displayed. A new calculator will often be preset to display exactly two decimal places because that is how the money system is designed. Divide 1 by 3 with your calculator. The correct answer is $0.3333333333 \ldots$, a repeating number that never stops. Count the number of 3 s that appear in the calculator. That is the number of decimal places your calculator is set to display. Read the instruction manual. Perhaps you can change the display to show more or fewer decimal places. Note: Your calculator also displays a zero (0) to the left of the decimal point. We will follow that same convention in this book. Every pure decimal number will be preceded by a zero (0).

Reading Decimal Numbers

Reading decimal numbers, both mixed and pure, is like reading whole numbers: Each "place," or column, represents a different value. Starting at the decimal point and reading to left, the places represents ones, tens, hundreds, thousands, and so on. Starting at the decimal point and reading to the right, the vocabulary is new: The places represent

Learning Objectives

Read decimal numbers.

READING LONG DECIMAL NUMBERS

The entire number in Figure 3-1—607,194.35824—is read as "six hundred seven thousand one hundred ninety-four and thirty-five thousand eight hundred twenty-four hundred-thousandths." For a long number, reciting it orally is inefficient and might be confusing to the listener. For such a number, it may be better simply to read the digits and commas, from left to right. The word point is used for the decimal point.

EXAMPLE A

Recite orally the number 607,194.35824.

Number

Oral Recitation
607,194.35824
"six zero seven comma one nine four point three five eight two four"

CONCEPT CHECK 3.1

a. Write 37.062 using words: Thirty-seven and sixty-two thousandths
b. Write fifteen and seven hundredths using digits: 15.07

Rounding Decimal Numbers

Learning Objective

In the preceding section, you reviewed how to read and write decimal numbers such as 148.65392. However, in many business situations, if the whole number part is as large as 148, the digits on the extreme right may not be very important. Maybe only the digit in the tenths or hundredths column is significant. Rounding off such a number to make it simpler is common. You rounded off whole numbers in Chapter 1. The procedure is the same with decimal numbers.

STEPS to Round Decimal Numbers

1. Find the last place, or digit, to be retained.
2. Examine the digit to the right of the last digit to be retained.
3. a. If it is equal to or greater than 5 , increase the digit to be retained by 1 . Drop all digits to the right of the ones retained.
b. If it is less than 5 , leave the digit to be retained unchanged. Drop all digits to the right of the ones retained.

EXAMPLE B

Round 7.3951 and 148.65392 to one decimal place, to two decimal places, and to three decimal places.

Round to the nearest tenth
Round to the nearest hundredth
Round to the nearest thousandth

$7.3951 \longrightarrow 7.4$	$148.65392 \longrightarrow 148.7$
$7 . \overline{3} 951 \longrightarrow 7.40$	$148.65392 \longrightarrow 148.65$
$7.3951 \longrightarrow 7.395$	$148.65392 \longrightarrow 148.654$

ROUNDING UP

Retail businesses, such as grocery stores, often use a different method of rounding to a whole number of cents. Suppose that a grocery store has lemons priced at 3 for $\$ 1.00$. Usually the store will charge $\$ 0.34$ for one lemon, even though $\$ 1.00$ divided by 3 is $\$ 0.3333$ (to four places). The store has rounded up to the next larger whole cent. To round up monetary amounts, always increase any partial cent to the next whole cent. For example, $\$ 27.842$ would round up to $\$ 27.85$.

Round 3.4681 to the nearest hundredth (that is, to two decimal places).

| STEP 1 | Find the hundredths digit. | 3.4681 | (The 6) |
| :--- | :--- | :--- | :--- | :--- |
| STEP 2 | Examine the digit to the right of the 6. | 3.4681 | (It is greater than 5.) |
| STEP 3a | Increase the 6 to a 7 and drop the digits | 3.47 | (The answer) |
| | 81 at the right. | | |

Round up 8.5014 to the nearest tenth (that is, to one decimal place).

STEP 1	Find the tenths digit.	8.5014	(The 5)
STEP 2	Increase the 5 to a 6 and drop the	8.6	(The answer)
	digits 014 at the right.		

Whole Numbers, Decimal Numbers, and Arithmetic

In Chapter 1, we reviewed arithmetic with whole numbers. There were also some problems involving money in which the numbers contained decimal points. A whole number is simply a mixed decimal where the pure decimal part is zero. For simplicity, the zeros and the decimal point are omitted. In the examples that follow, when you see a whole number, you may need to place a decimal point at the right end and maybe even write one or more zeros after it. As you calculate, "manage the decimal point" as described in the following sections.

Adding Decimal Numbers

To add two or more decimal numbers, follow these steps.
Learning Objectives

Add two or more decimal numbers.

STEPS to Add Decimal Numbers

1. Arrange the numbers in columns, with the decimal points in a vertical line.
2. Add each column, from right to left, as with whole numbers. Insert the decimal point.
Option: You may want to write zeros in some of the right-hand columns of decimal numbers so that each number has the same number of decimal places.

EXAMPLEC
Add 4.326, 218.6004, 7.09, 15, and 0.87782.

STEP 1	STEP 2	STEP 2 WITH OPTION	
4.326	4.326		4.32600
218.6004	218.6004		218.60040
7.09	7.09	or	7.09000
15.	15.	15.00000	
0.87782	+0.87782		$+\quad 0.87782$
	245.89422		245.89422

CONCEPT CHECK 3.3

Add these decimal numbers: $8.95,13.791$, and 0.6 .

First align:	Then add:	Or, write zeros and add:
8.95	8.95	8.950
13.791	13.791	13.791
0.6	$\frac{+0.6}{23.341}$	$\frac{+0.600}{23.341}$

Subtracting Decimal Numbers

Learning Objective

Subtract one decimal number from another.

Subtracting one decimal number from another is similar to subtracting whole numbers. When you aren't using a calculator, you should write enough zeros so that both numbers have the same number of places. To subtract one decimal number from another, follow these steps.

STEPS to Subtract Decimal Numbers

1. Arrange the numbers in columns, with the decimal points in a vertical line.
2. If necessary, write enough extra zeros so that both numbers have the same number of decimal places.
3. Subtract each column, from right to left, as with whole numbers. Insert the decimal point.

EXAMPLE D

Subtract 4.935 from 12.8 .

STEP 1	STEPS 2 \& 3
12.8	12.800
-4.935	
-	$\frac{-4.935}{7.865}$

EXAMPLE E

Subtract 9.4 from 82.113.

STEP 1	STEPS 2 \& 3
82.113	82.113
-9.4	$\frac{-9.400}{72.713}$

CONCEPT CHECK 3.4

Subtract 53.784 from 207.6.

Align:	Write zeros and subtract:
207.6	207.600
53.784	-53.784
	153.816

COMPLETE ASSIGNMENT 3.1.

Multiplying Decimal Numbers

To multiply one decimal number by another, follow these steps.

S T E P S to Multiply Decimal Numbers

1. Multiply the two numbers as if they were whole numbers.
2. Count the total number of decimal places in the two original numbers.
3. a. In the product, place the decimal point so that the number of decimal places is the same as the number in Step 2. (Count from right to left.)
b. If necessary, insert zeros in front of the left-hand digit to provide enough decimal places. (See example G.)

EXAMPLE F

3.764×21

	3.764 $\times 2.1$ 3764 (3 places) STEP 1	
	$\frac{7528}{7.9044}$	$\frac{\text { STEP } 2}{(3+1=4 \text { place })}$
STEP 3		

In business applications, zeros that come at the right end of the decimal part of the product are often omitted (example H). Do not omit zeros that come at the end of the whole-number part (example I). When the product is written in dollars and cents, two decimal places are written, including zeros at the end (example J). Please be aware that some calculators may not display any zeros at the right end.

EXAMPLE H
$0.76 \times 0.5=0.380 \quad$ (3 places)
May be written as 0.38

EXAMPLE I
$12.5 \times 1.6=20.00 \quad$ (2 places)
May be written as 20

EXAMPLE J

$\$ 8.40 \times 6.5=\$ 54.600 \quad(3$ places $)$
Should be written as $\$ 54.60$

CONCEPT CHECK 3.5

a. Multiply 2.36×3.4
2.36 (2 places)
$\begin{array}{r}\times 3.4 \\ \hline 944 \\ \hline\end{array}$
708
8.024 (3 places)
b. Multiply 0.236×0.34
0.236 (3 places)

$\times 0.34$
944
(2 places)

708
0.08024 (5 places; insert 1 zero)

Dividing Decimal Numbers

Learning Objective

Divide one decimal number by another decimal number.

When dividing decimal numbers, remember that a whole number will have its decimal point immediately to the right of the units digit.

To divide one decimal number by another, follow these steps.

STEPS to Divide one Decimal Number by Another

1. Arrange the divisor, dividend, and division bracket (\square) as in wholenumber long division.
2. Move the decimal point in the divisor to the right until the divisor is a whole number. (You won't have to move it if the divisor is already a whole number.)
3. Move the decimal point in the dividend to the right exactly the same number of decimal places as you did in Step 2. If necessary, add more zeros to the right end of the dividend. (See example K.)
4. Write the decimal point in the quotient directly above the new decimal point in the dividend.
5. If necessary, write zeros in the quotient between the decimal point and the first nonzero digit. (See example L.)
6. Divide as you would for whole numbers.

EXAMPLE K
STEP 1
STEP 2 STEP 3
STEP 4
STEP 6
$2.7 \div 0.15$ is $0 . 1 5 \longdiv { 2 . 7 } = 0 . 1 5 . \sqrt { 2 . 7 0 } = 1 5 . \sqrt { 2 7 0 } = 1 5 . \sqrt { 2 7 0 . }$
$-\frac{15}{120}$
$-\frac{120}{0}$

EXAMPLEL

$$
\begin{aligned}
& \begin{array}{lll}
\text { STEP } 1 & \text { STEPS } 2,3, \& 4 & \text { STEPS } 5 \& 6
\end{array} \\
& 0.096 \div 4 \text { is } 4 \longdiv { 0 . 0 9 6 } = 4 . \longdiv { 0 . 0 9 6 } = 4 . \longdiv { 0 . 0 2 4 } \\
& -\frac{8}{16} \\
& -\frac{16}{0}
\end{aligned}
$$

Recall from Chapter 1 that, in long division with two whole numbers, you write a remainder when the division doesn't come out evenly, for example, $17 \div 8=2$ with a remainder of 1 . In division with decimals, you don't write remainders. You simply keep dividing until you have some required number of decimal places. To get the required number of decimal places, you may have to keep adding zeros to the right end of the dividend. (See example M.)

EXAMPLEM

Calculate $17 \div 8$ to three decimal places.

STEP 1	STEPS 2, 3, \& 4

$17 \div 8$ is $8 \longdiv { 1 7 } = 8 . \longdiv { 1 7 . } = 8 . \longdiv { 2 . } = 8 . \longdiv { 2 . 1 2 5 }$
$-\frac{16}{10}$
-8
20

- 16

40
$\frac{40}{0}$

CONCEPT CHECK 3.6

Divide 1.026 by 15 .

$$
\begin{array}{rr}
\text { STEPS } 1 \& 4 \\
\dot{.} & \text { STEPS } 5 \& 6 \\
1 5 \longdiv { 1 . 0 2 6 } = & 1 5 \longdiv { 1 . 0 6 8 4 } \\
& -\frac{90}{126} \\
& -\frac{120}{60} \\
& -\frac{60}{0}
\end{array}
$$

Divide 0.009 by 0.4 .

STEPS $1,2,3, \& 4$	STEPS $5 \& 6$
$0.4 . \sqrt{0.0 .09}$	$= 4 \longdiv { 0 . 0 9 0 0 }$
	$-\frac{8}{10}$
	$-\frac{8}{20}$
	$-\frac{20}{0}$

In example $\mathrm{M}, 17 \div 8=2.125$. But recall that $17 \div 8$ can also be written as the fraction $\frac{17}{8} .2 .125$ is called the decimal equivalent of $\frac{17}{8}$. Decimal equivalents can be useful when you are working with fractions and have a calculator available. Even with simple fractions, and no calculator, it is often simpler to use decimal equivalents because you don't need a common denominator.

EXAMPLE N

Compute $\frac{1}{2}+\frac{3}{4}-\frac{2}{5}$. This requires that all fractions have a common denominator of 20 . But $\frac{1}{2}=0.5, \frac{3}{4}=0.75$, and $\frac{2}{5}=0.4$. Therefore, we have $\frac{1}{2}+\frac{3}{4}-\frac{2}{5}=0.05+0.75-0.4$ $=0.85$.

For difficult fractions, use a calculator to convert the fractions to their decimal equivalents. Then use the calculator to perform the required operation. (If possible, you should use the memory of your calculator to store the intermediate answers.)

EXAMPLE O

$\begin{array}{lll}\text { Compute } \frac{8}{15}+\frac{7}{12}-\frac{3}{7} . & {[8][\div][15][=] \text { gives }} & 0.53333333 \\ & {[7][\div][12][=] \text { gives }} & 0.58333333 \\ & {[3][\div][7][=] \text { gives }} & \underline{0.42857143} \\ & & \mathbf{1 . 5 4 5 2 3 8 0 9}\end{array}$

The preceeding example assumes that your calculator is displaying eight decimal places. Also, if you use the memory to store the intermediate answers, your calculator may round off the intermediate answers and give you a final answer of 1.54523810 or 1.5452381. Some calculators make it even easier to compute fractions using decimal equivalents. A few have an "algebraic operating system" that automatically does multiplication and division before addition and subtraction. For those calculators, you might use keystrokes like these:

$$
[8][\div][15][+][7][\div][12][-][3][\div][7][=] 1.5452380, \text { or possibly } 1.5452381
$$

Many calculators that do not have an "algebraic operating system" will have parentheses, permitting this type of calculation:
$[(][8][\div][15][)][+][(][7][\div][12][)][-][(][3][\div][7][)][=] 1.5452380$, or possibly 1.5452381

Using Multipliers and Divisors that End with Zeros

In Chapter 1, we showed simple multiplication and division shortcuts when the multiplier or the divisor is a whole number ending in zeros (e.g., 30,200 , or 1,000). The same shortcuts may be used with decimal numbers. We just "manage the decimal point."

If the multiplier is $10,100,1,000$, and so on, there is just one step.
Step 1 Move the decimal point in the multiplicand to the right the same number of places as the number of zeros in the multiplier. (See example P.) If necessary, add zeros to the right end of the multiplicand before multiplying. (See example Q.)

EXAMPLE P

$$
\begin{gathered}
0.56 \times 10=0.5 .6=5.6 \\
(1 \text { place })
\end{gathered}
$$

EXAMPLE Q

$$
4.73 \times 1,000-\underset{(3 \text { places })}{4.730}=4,730
$$

If the multiplier ends in zeros but has a first digit that is not 1 (for example, 300 or 2,000), there are two steps.

Step 1 Multiply the multiplicand by the nonzero part of the multiplier.
Step 2 Move the decimal point in the product from Step 1 to the right the same number of places as the number of zeros in the multiplier.

EXAMPLER

Multiply 3.431 by 2,000
Multiply by 2: $3.431 \times 2=6.862$
Move the decimal point three places to the right: $6.862 . \longrightarrow 6,862$.
If the divisor is $10,100,1000$, and so on, there is just one step.
Step 1 Move the decimal point in the dividend to the left the same number of places as the number of zeros in the divisor. (See example S.) If necessary, add zeros to the left end of the dividend. (See example T.)

$$
\begin{aligned}
& \text { EXAMPLE S } \\
& \begin{array}{c}
735.1 \div 100 \\
735.1 \div 100=7.35 .1=7.351 \\
\\
\quad(2 \text { places })
\end{array}
\end{aligned}
$$

EXAMPLE T

$9.64 \div 1,000$
$9.64 \div 1,000=.009 .64=0.00964$
(3 places)

Learning Objectives 7

Multiply and divide by decimal numbers that end with zeros.

If the divisor ends in zeros (for example, 300 or 2,000) but has a first digit that is not 1 , there are two steps.

Step 1 Divide the dividend by the nonzero part of the divisor.
Step 2 Move the decimal point in the quotient from Step 1 to the left the same number of places as the number of zeros in the divisor.

EXAMPLE U

Divide 615.24 by 300
Divide by 3: $\quad 615.24 \div 3=205.08$
Move the decimal point two places to the left: $2.05 .08 \longrightarrow 2.0508$

CONCEPT CHECK 3.7

a. Multiply 0.413 by 300
$0.413 \times 3=1.239$
Move the decimal point two places to the right:
1.23.9 $\longrightarrow 123.9$
b. Divide 4.375 by 10

Move the decimal point one place to the left:
$4.375 \div 10=.4 .375 \longrightarrow 0.4375$

COMPLETE ASSIGNMENT 3.2

Approximating Products and Quotients

Learning Objective

Approximate products and quotients.

Business people today almost always use calculators or computers to do important computations. But calculators are perfect only if every single key is pressed correctly. Often, you can discover a calculator error by doing some simple mental approximations. The objective is to determine whether the answer is approximately the right size-that is, whether the decimal point is in the correct position. To do so, we round each decimal number to only one nonzero digit and all the rest to zeros. Follow these steps:

S T E P S to Approximate a Multiplication Problem

1. In each factor, round the first nonzero digit from the left end. (How does the digit to its right compare to 5 ?)
2. Change all the digits to the right of the first nonzero digit to zero.
3. Multiply the two new factors.
4. Place the decimal point in the product.

EXAMPLE V

Approximate 3.764×7.1

EXAMPLE W

Approximate 0.089×61.18

	STEP 1	STEPS 2 \& 3

The actual answers are 26.7244 and 5.44502.
In division, the mental approximation will be easier if you change the decimal numbers so that the division will end evenly after one step. To do this, first round the divisor to one nonzero digit and then round the dividend to two nonzero digits, evenly divisible by the new divisor.

S T E P S to Approximate a Division Problem

1. Round the divisor to a single nonzero digit at the left, followed by all zeros.
2. Round the dividend to a two-digit number at the left, followed by all zeros. Select the two-digit number so that it is evenly divisible by the new divisor.
3. Divide the new dividend by the new divisor.
4. Place the decimal point correctly in the quotient.

EXAMPLEX

Approximate $4.764 \div 8.1$

EXAMPLE Y

Approximate $61.18 \div 0.089$

The actual answers are 0.5882 and 687.4157 (to four decimal places).

CONCEPT CHECK 3.8

a. Approximate 6.891×0.614
$6.891 \longrightarrow 7.000$
$0.614 \longrightarrow 0.600$
0.6 (1 place)
$\times 7$ (0 places)
4.2 (1 place)

Compare with $6.891 \times 0.614=4.231074$
b. Approximate $0.0738 \div 92.65$

Remember to round off the divisor first.
$92.65 \longrightarrow 90.00$
$0.0738 \longrightarrow 0.0720$

$$
\begin{array}{r}
\stackrel { . } { 0 . 0 7 2 } \longrightarrow 9 0 \longdiv { 0 . 0 0 0 8 } \\
\frac{720}{0}
\end{array}
$$

Compare with $0.0738 \div 92.65=0.000796546$

COMPLETE ASSIGNMENT 3.3

Chapter Terms for Review

decimal equivalent
decimal places
decimal point
mixed decimal pure decimal rounding off

Try Microsoft ${ }^{\circledR}$ Excel

1. Set up and complete the following tables using the appropriate Excel formulas. Refer to your Student CD template for solutions.

Date	Auto Sales		Part Sales		Total Sales
$6 / 4 / 04$	$\$$	$36,628.14$	$\$$	$1,782.28$	
$6 / 5 / 04$	$\$$	$42,789.40$	$\$$	$2,047.33$	
$6 / 6 / 04$	$\$$	$58,334.98$	$\$$	$1,132.48$	
$6 / 7 / 04$	$\$$	$96,782.04$	$\$$	$3,006.04$	
$6 / 8 / 04$	$\$$	$29,765.55$	$\$$	$2,333.33$	
Total					

Date	Units Sold	Price Per Unit		Total Sales
$5 / 24 / 04$	47	$\$$	107.16	
$5 / 25 / 04$	63	$\$$	107.16	
$5 / 26 / 04$	72	$\$$	107.16	
$5 / 27 / 04$	39	$\$$	107.16	
Total				

Date	Total Sale		Price Per Unit	Units Sold
$5 / 24 / 04$	$\$$	$5,036.52$	107.16	
$5 / 25 / 04$	$\$$	$6,751.08$	107.16	
$5 / 26 / 04$	$\$$	$7,715.52$	107.16	
$5 / 27 / 04$	$\$$	$4,179.24$	107.16	
Total				

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
	1. Write 8.427 , using words. 2. Write forty-one and eleven ten-thousandths, using digits.
Read decimal numbers	
3.2	3. Round 0.506489 to the nearest thousandth (that is, to three decimal places).
Round decimal numbers	4. Round up 13.26012 to the next hundredth (that is, to two decimal places).
3.3	5. Add 82.9, 14.872, and 2.09.
Add two or more decimal numbers	
3.4	6. Subtract 14.5977 from 19.34.
Subtract one decimal number from another	
3.5	7. Multiply: 4.68×3.5
Multiply two decimal numbers	
	8. Divide: $0.084 \div 4$ \qquad 9. Divide: $0.064 \div 2.5$ \qquad
Divide one decimal number by another decimal number	
3.7 Multiply and divide by decimals that end with zeros	10. Multiply: 0.069782×1000 \qquad 11. Divide: 9.462 by 100 \qquad 12. Multiply: 0.0623×20 \qquad 13. Divide: 84.6 by 300 \qquad

3.8

Approximate products and quotients
14. Approximate 48.79×0.47
15. Approximate $0.2688 \div 0.713$ \qquad

Review Problems for Chapter 3

1 Write "one hundred sixteen and fourteen ten-thousandths" as a number \qquad
2 Write 6,431.719, using words \qquad
(3) Round 3.475 feet to the nearest tenth \qquad 4 Round $\$ 12.667$ to the nearest cent \qquad
(5) Add 3.79475 and 739.85 \qquad 6 Add $12.42,0.087$, and 8.3 \qquad
(7) Subtract 8.693 from 11.41 \qquad (8) Subtract 162.78 from 341.2494 \qquad
(9) Multiply 3.722 by 0.483 (do not round off) \qquad nearest cent)

In problems 11 and 12, divide to three places and round to the nearest hundredth.
11 Divide 45.88 by 14.2 \qquad 12 Divide $\$ 6.25$ by 8.41 \qquad

In problems 13 and 14, use shortcuts to solve each problem and round to the nearest hundredth.
13 Multiply 86.493 by 100 \qquad 14 Divide $\$ 2,762.35$ by 1,000 \qquad

In problems 15 and 16, pick the best approximate answers from the possible answers.
15 Multiply 48.98 by 11.2
$\begin{array}{ll}\text { (a) } 0.5 & \text { (b) } 5\end{array}$
(c) 50
(d) 500
(e) 5,000

16 Divide $\$ 6.65$ by 8.21 \qquad $\begin{array}{lll}\text { (a) } \$ 0.008 & \text { (b) } \$ 0.08 & \text { (c) } \$ 0.80\end{array}$
(d) $\$ 8.00$
(e) $\$ 80.0$

17 DeLois McBryde owns a chain of very large, upscale bookstores. She decides to start selling coffee drinks such as espresso and cappuccino at one of her stores. During the first day, the store has total sales of $\$ 4,188.25$. Of the total, $\$ 362.50$ was from coffee drinks. How much of the total was from books and other items? \qquad
18 Gary Gehlert operates tennis and golf shops at a desert resort. Last year, he started selling on the Internet as well. He had the following profits last year: Tennis (shop), $\$ 52,418.12$; Golf (shop), $\$ 168,078.51$; Tennis (Internet), $\$ 8,993.84$; and Golf (Internet), $\$ 18,745.49$. What were the total profits from these sources? \qquad
19 Dean Treggas, a landscape contractor, needed to plant 226 1-gallon plants and 1645 -gallon plants. Dean uses about 0.8 cubic foot of planting soil for each 1 -gallon plant and 2.5 cubic feet of soil for each 5 -gallon plant. How many cubic feet of planting soil will Dean need for all these plants? \qquad
20 Planting soil is sold by the cubic yard. How many cubic yards of planting soil will Dean Treggas need to do his planting in question 19 ? (Round the answer to two decimal places.) \qquad

Assignment 3.1: Addition and Subtraction of Decimal Numbers

Name

A (13 points) Use digits to write each number that is expressed in words. Use words to write each number that is expressed in digits. (1 point for each correct answer)

1. Six hundred thirteen ten-thousandths \qquad
2. Nineteen thousandths \qquad
3. Sixty-four hundredths \qquad
4. Seventy-six and seventy-one ten-thousandths \qquad
5. Eight hundred sixty and ninety-eight hundred-thousandths \qquad
6. Eighteen and six thousandths \qquad
7. 26.085 \qquad
8. 0.0004 \qquad
9. 492.3 \qquad
10. 0.081 \qquad
11. 42.0481 \qquad
12. 6.018 \qquad
13. $1,007.4$ \qquad

B (24 points) Round as indicated. (1 point for each correct answer)

Nearest Tenth
14. 6.3517 qt
15. 48.77 mi
16. 3.824 gal
17. 374.29 lb
18. 7.35 ft
19. 6.375 oz

Nearest Thousandth
26. 5.37575 pt
27. 0.00549 gal
\qquad
28. 14.6445 oz
29. 5.040603 ft \qquad
30. 8.9989 mi
31. 0.200499 lb
\qquad

Nearest Cent
20. $\$ 6.425$
21. $\$ 0.098$
22. $\$ 942.3449$
23. $\$ 8.1047$
24. $\$ 0.0449$
25. $\$ 51.375$ \qquad

UP to the Next Cent
32. $\$ 9.681$
33. $\$ 0.159$
34. $\$ 72.535$
35. $\$ 2.0917$ \qquad
36. $\$ 11.4485$
37. $\$ 0.6545$ \qquad

Assignment 3.1 Continued

C (27 points) Write the following numbers in columns, and then add. (3 points for each correct answer)
38. $3.84,42.81,747.114$
41. $24.78,71.402,8.3176$
44. $337.51,6.1761,16.078$
39. $0.7323,4.084,17.42$
42. $6.084,107.4,48.2007$
45. $36.7,208.51,3.992$
40. $15.4,32.574,9.51,74.0822$
43. $6.4,3.211,12.6,7.07$
46. $0.592,1.82,0.774,6.5$

D (36 points) Subtract the following. (3 points for each correct answer)
47. 0.734
-0.37
50. 0.7212
-0.034
53. 3.2525
-2.843
56. 4.37
-1.9055
48. 0.04264
-0.00497
51. 12 .
-4.37
54. 708.932
-419.058
55. 0.365
-0.189
58. 1.0045
-1.003

Score for D (36)

Assignment 3.2: Multiplication and Division of Decimal Numbers

Name
Date Score

Learning Objectives

A (32 points) Multiply the following. Round monetary products to the nearest cent. Do not round nonmonetary products. (4 points for each correct answer)

1. $\$ 16.75$
2. $\$ 24.60$
64
\times
$\times 4.5$
3. $\$ 420.00$
$\times 0.806$
4. $\$ 57.80$
$\begin{array}{r} \\ \times 0.35 \\ \hline\end{array}$
5. 107.21
$\times 0.74$
6. 52.93
$\times 0.45$
7. 285.70326
$\times 0.28$
8. 816.04
$\begin{array}{r}\times 0.403 \\ \hline\end{array}$

Score for A (32)
B (24 points) Divide the following. Round monetary quotients to the nearest cent. Round nonmonetary quotients to two decimal places. (4 points for each correct answer)
9. $7 \longdiv { \$ 1 2 . 9 5 }$
10. $0 . 3 6 \longdiv { \$ 6 . 7 5 }$
11. $1 . 2 \longdiv { \$ 5 4 . 3 0 }$
12. $1 . 5 \longdiv { 2 . 5 7 }$
13. $0 . 1 1 \longdiv { 0 . 6 7 3 5 }$
14. $0 . 0 9 \longdiv { 0 . 7 8 8 8 }$

Score for B (24)
C (12 points) Multiply and/or divide by just moving the decimal point or by doing some simple multiplication/division and moving the decimal point. Round monetary answers to the nearest cent. Do not round nonmonetary answers. (1 point for each correct answer)
15. $0.0625 \times 1,000=$
16. $50.708 \times 100=$
17. $0.047 \times 10,000=$
18. $763 \div 100=$
19. $6.32 \div 10=$
20. $27.469 \div 1,000=$ \qquad
21. $\$ 72.41 \times 300=$
22. $\$ 32.25 \times 20=$
23. $\$ 0.07 \times 4,000=$
24. $\$ 2.50 \times 40=$
25. $\$ 86.50 \div 200=$
26. $\$ 9,612 \div 40=$ \qquad

D (32 points) For each of the following problems, underline the estimate that is most nearly correct. (2 points for each correct answer)
27. 0.077×0.52
28. 76.7×0.8477
29. 0.38×71.918
30. $\quad 0.00907 \times 6.12$
31. 0.0782×0.5503
32. 0.0417×0.0957
33. 268.25×0.9175
34. 0.00487×0.0059
35. $\quad 19.1 \times 6104$
36. $7.958 \div 0.514$
37. $3.575 \div 893.12$
38. $0.0614 \div 0.00398$
39. $0.8397 \div 6.12$
40. $0.5379 \div 0.591$
41. $5.112 \div 0.0692$
42. $2.671 \div 0.0926$
(a) 4.0
(a) 0.064
(b) 0.4
(c) 0.04
(d) 0.004
(a) 0.28
0.64
(b) 2.8
(c) 6.4
(d) 64
(a) 0.054
(b) 0.54
(b) 0.048
(c) 28
(d) 280
(a) 0.0048
(b) 0.004
(c)
(d) 54
(a) 0.04
(b) 2,700
(c) 0.0004
(d) 4.8
(a) 27,000
(b) 0.00003
(c) 270
(d) 0.00004
(a) 0.000003
(b) 1,200
(c) 0.0003
(d) 27
(a) 120
(b) 160
(c) 12,000
(d) 0.003
(a) 16
(b) 0.04
(c) 1,600
(d) 120,000
(a) 0.004
(b) 1.5
(c) 0.4
(d) 16,000
(a) 0.15
(b) 1.4
(c) 15
(d) 4
(a) 0.14
(b) 90
(b) 7
(b) 30
(a) 70
(a) 300
(b)

$$
\text { (c) } 14
$$

(d) 150
(c) 9
(d) 140
(c) 0.7
(d) 0.9
(d) 0.07
$\begin{array}{ll}\text { (c) } 3 & \text { (d) } 0.3\end{array}$

Assignment 3.3: Decimal Numbers in Business

Name
Date Score

A (36 points) Business Applications and Critical Thinking. Solve the following. Do not round your final answers. (6 points for each correct answer)

1. Gary Floyd had 21.5 feet of rope. He cut off a piece 14.75 feet long. How much did he have left?
\qquad
2. Judy Taylor reads meters for the gas and electric company. She walked 3.6 miles on Monday; 3.7 miles on Tuesday, 2.9 miles on Wednesday, 3.25 miles on Thursday, and 3.4 miles on Friday. What was her total distance for the week?
3. A retail customer owes a total of $\$ 226.54$ on her department store account. She visits the store to return an item that cost $\$ 47.79$. While there, she buys two items that cost $\$ 55.88$ and $\$ 67.50$, respectively. What is her new account balance at the store?
4. Cho Jewelers had only 12.7 ounces of gold on hand, so Mr. Cho bought 22.5 ounces more to make Christmas items. He used 18.7 ounces for gold rings. How much gold did he have left?
\qquad
5. Four messenger service drivers need gasoline for their cars. Individually, they buy $12.4,8.9$, 13.8 , and 13.9 gallons. How much did they purchase all together?
\qquad
6. Parker Paving Co. delivered 6.2 tons of asphalt. It used 4.7 tons for a driveway and 1.2 tons for a walkway. How much asphalt was left?

B (64 points) Business Applications and Critical Thinking. Solve the following business problems. Use shortcuts where possible. If necessary, round answers to two decimal places. (8 points for each correct answer)

7. Bill Wells Hardware sells a large-diameter plastic pipe for $\$ 0.07$ per foot and copper pipe for $\$ 1.02$ per foot. How much will Katy Cruz save by using plastic pipe if she needs 300 feet of pipe? \qquad
8. Wholesale, 1,000 2-ounce plastic bottles cost 3.5 cents each, and 2,000 4 -ounce bottles cost 4.5 cents each. What is the total cost of all 3,000 bottles? \qquad
9. Electrician Tom Stewart paid $\$ 95.50$ for 500 feet of multistrand electrical wire. What was the cost per foot for this particular wire?
10. Paint thinner costs $\$ 1.29$ per gallon. How many gallons can a painting contractor buy for $\$ 10$? (Round to the nearest tenth.) \qquad
11. Benoit Landscaping sent three truckloads of topsoil to a job. The soil cost $\$ 21.50$ per cubic yard. Two trucks carried 7.25 cubic yards each; the third carried 6.75 cubic yards. What was the total cost of all the topsoil? \qquad
12. Evelyn Haynes uses her car as a delivery vehicle. On Monday, she bought 14.62 gallons of regular gasoline at $\$ 2.179$ per gallon. On Thursday, she bought 15.52 gallons at $\$ 2.239$. How much did she pay for gasoline that week?
\qquad
13. A pizza chef has 24 pounds of flour on hand. He needs 3.75 pounds of flour for one large recipe of pizza dough. How many recipes can he make with the flour on hand? (Round to the nearest tenth.) \qquad
14. Jackie Barner earns $\$ 22.60$ per hour. How many hours did she work during a partial day for which her pay was $\$ 152.55$? \qquad

Word Problems and Equations

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1

Learning Objective 2

Learning Objective 3

Apply formulas to solve rate, time, and distance problems.

Solve simple numerical equations.

Recognize numerical relationships in a series.
Use mental computations in simple addition, subtraction, multiplication, and division.

Use a systematic approach to solve word problems.

Do quick mental calculations through a process of rounding numbers.

Mental Computations

Learning Objective

Use mental computations in simple addition, subtraction, multiplication, and division.

Simple computations need to be made quickly in business. Practicing mental computation drills will improve your speed and accuracy in using the four fundamental math processes.

In example A you should be able to obtain the ten answers without using pencil, paper, or an electronic calculator. Mentally compute each problem. Each computation is done from left to right. In these problems, addition, subtraction, multiplication, and division are done in the sequence in which they appear.

EXAMPLEA

$7+3+8+4$	$=22$
$27-2-5+8+2$	$=30$
$60 \div 2 \div 3 \div 5$	$=2$
$3+4+2+10-4$	$=$
$3 \times 4 \times 2 \times 10$	240
$28 \div 4 \times 5 \times 2$	70
$26 \div 2+2 \times 2 \times 2 \div 6+10$	$=20$
$180 \times 2 \div 6-20 \div 8 \times 5$	$=25$
$100 \times 5-20-80-40 \div 6$	$=$
$4,000 \div 2+100 \div 7-299$	$=$

CONCEPT CHECK 4.1

Practice computations until you can do them mentally without extra copying or writing. Use the simplification techniques in Chapter 1 whenever possible: number combinations, repeated digits, counting by 10 s and adding 1 s , subtraction by changing numbers, multiplying numbers ending in zeros, and dividing numbers ending in zeros. Do the following computations mentally.

Solving Word Problems

Learning Objective

Use a systematic approach to solve word problems.

You might have little difficulty with computations expressed in numbers only. In example B you would quickly answer 350 .

EXAMPLE B

$$
15+15+10 \times 10-50=350
$$

However, you might not answer $\$ 350$ as quickly when the business problem in example C appears, even though it uses the same numerical elements as example B.

EXAMPLE C

A company orders carpeting for three offices measuring 15 square yards, 15 square yards, and 10 square yards, respectively. A carpet dealer sells the carpet for $\$ 10$ a square yard and gives a $\$ 50$ discount when the sale is for three or more offices. How much would the company pay to have the three offices carpeted?

15 sq yd +15 sq yd +10 sq yd $=40$ sq yd
40 sq yd $\times \$ 10=\$ 400$ gross price
$\$ 400-\$ 50$ discount $=\$ 350$ net price

Business problems involving computations simply require addition, subtraction, multiplication, and division.

STEPS to Solve Word Problems

Read the entire problem carefully and then:

1. Determine exactly what is being requested.
2. Determine the processes you will use to solve the problem.

We use these steps to solve the word problem in example C.
STEP 1 What is requested: How much money would the company pay?
STEP 2 What process will be used:
Add square yards in the 3 offices: $15+15+10=40$.
Multiply the $\$ 10$ per square yard cost by total square yards: $40 \times \$ 10=\$ 400$.
Subtract the $\$ 50$ discount: $\$ 400-\$ 50=\$ 350$.
Some word problems will involve all four fundamental processes: addition, subtraction, multiplication, and division.

EXAMPLE D

Phoebe Elias owns half of a small bakery. Last week she baked 6 cakes on Monday, 9 on Tuesday, 11 on Wednesday, 8 on Thursday, and 6 on Friday. She sold all cakes for $\$ 9$ each. It cost Phoebe $\$ 5$ to make each cake; the rest was her profit on each cake. Phoebe split her profit evenly with her partner. How much did her partner receive from last week's cakes?

STEP 1 What is requested: How much money did Phoebe's partner receive?
STEP 2 What process will be used:
Add the cakes baked: $6+9+11+8+6=40$.
Subtract the cost from the sales price: $\$ 9-\$ 5=\$ 4$ profit per cake.
Multiply the $\$ 4$ profit per cake by the number of cakes sold: $40 \times \$ 4=\$ 160$.
Divide the total profit by $2: \$ 160 \div 2=\$ 80$ received by the partner.

CONCEPT CHECK 4.2

Summary of steps for solving word problems:

1. Determine what is being requested.
2. Determine the processes you will use to solve the problem.

Problem: Maria wants to upholster three chairs. Two chairs will require 4 yards of material each; the third will require 3 yards. One material costs $\$ 32$ per yard; the other is $\$ 24$ per yard. What is the difference between the costs of the two materials for upholstering the chairs?

STEP 1 What is requested: Difference in cost between the two materials.
STEP 2 The process to be used:
Add amount of material needed: $4 \mathrm{yd}+4 \mathrm{yd}+3 \mathrm{yd}=11 \mathrm{yd}$.
Cost of material for three chairs, first material: $11 \mathrm{yd} \times \$ 32$ per yd $=\$ 352$.
Cost of material for three chairs, second material: $11 \mathrm{yd} \times \$ 24$ per yd $=\$ 264$.
Difference in cost between the two materials: $\$ 352-\$ 264=\$ 88$ difference in cost.

Solving Rate, Time, and Distance Problems

Learning Objective

Apply formulas to solve rate, time, and distance problems.

In some business word problems, you must compute how much is done in a given amount of time at a specific speed. These rate, time, and distance problems are solved with a simple formula: Rate (speed) \times Time $=$ Distance (amount done). If you are given any two factors, it is easy, by formula, to find the third.

$$
\begin{aligned}
& \text { Rate } \times \text { Time }=\text { Distance } \\
& \text { Distance } \div \text { Time }=\text { Rate } \\
& \text { Distance } \div \text { Rate }=\text { Time }
\end{aligned}
$$

EXAMPLE E

Jan traveled at 35 miles per hour for 5 hours. How far did Jan travel?
$35 \mathrm{mph} \times 5 \mathrm{hr}=175 \mathrm{mi}$
$($ Rate \times Time $=$ Distance $)$

EXAMPLE F

Jan traveled 175 miles in 5 hours. How fast was Jan traveling?
$175 \mathrm{mi} \div 5 \mathrm{hr}=35 \mathrm{mph}$
$($ Distance \div Time $=$ Rate $)$

EXAMPLE G

At 35 miles per hour, how long would it take Jan to travel a total of 175 miles?
$175 \mathrm{mi} \div 35 \mathrm{mph}=5 \mathrm{hr}$
(Distance \div Rate $=$ Time $)$

EXAMPLE H

Jan and Ahmed start traveling toward each other from 300 miles apart. Jan is traveling at 35 miles per hour; Ahmed is traveling at 40 miles per hour. How much time will elapse before they meet?
Distance $=300 \mathrm{mi}$
Total rate $=35 \mathrm{mph}(\mathrm{Jan})+40 \mathrm{mph}($ Ahmed $)=75 \mathrm{mph}$
$300 \mathrm{mi} \div 75 \mathrm{mph}=4 \mathrm{hr}$
(Distance \div Rate $=$ Time $)$

EXAMPLE I

Jan and Ahmed start traveling toward each other from 300 miles apart. Jan is traveling at 35 miles per hour; Ahmed is traveling at 40 miles per hour. How much distance will Jan travel before they meet?
Total rate $=35 \mathrm{mph}(\mathrm{Jan})+40 \mathrm{mph}($ Ahmed $)=75 \mathrm{mph}$
Time $=300 \mathrm{mi} \div 75 \mathrm{mph}=4 \mathrm{hr}$
Jan's distance $=35 \mathrm{mph}($ Jan's Rate $) \times 4 \mathrm{hr}($ Time $)=140 \mathrm{mi}$

EXAMPLE J

Mary needs to type a term paper that will be 30 pages long. Each page contains about 200 words. If Mary can type 40 words per minute, how many minutes will it take her to complete the paper?
Choose a formula: We know distance (amount done) and speed (rate). Therefore, we choose the formula for time.
Distance (amount done) \div Rate $($ speed $)=$ Time
30 pages $\times 200$ words $=6,000$ words $\div 40 \mathrm{wpm}=150 \mathrm{~min}$

EXAMPLE K

Flora also had a paper to type, but hers was 9,000 words in length. She was able to type it in 150 minutes. How fast did she type?
Choose a formula: We know distance (amount done) and time. Therefore, we choose the formula for rate.
Distance (amount done) \div Time $=$ Rate $($ speed $)$
9,000 words $\div 150 \mathrm{~min}=60 \mathrm{wpm}$

EXAMPLE L

It is approximately 400 miles from San Francisco to Los Angeles. Roy's friends tell him that he can make the trip in 6 hours if he averages 60 miles per hour. Is this true?
Choose a formula: We know the rate and the time, so we choose the formula for distance.
Rate $($ speed $) \times$ Time $=$ Distance $($ amount done $)$
$60 \mathrm{mph} \times 6 \mathrm{hr}=360 \mathrm{mi}$
Can he get there in 6 hours? No.

CONCEPT CHECK 4.3

The basic formulas:
a. Rate (speed) \times Time $=$ Distance (amount done) If you know any two factors, you can find the third.
b. Distance (amount done) \div Time $=$ Rate (speed)
c. Distance (amount done) \div Rate (speed) $=$ Time

Apply the appropriate formula to answer the following question: A machine that produces tortillas at the Baja Restaurant can produce 200 tortillas per hour, or 1,600 tortillas in an 8 -hour day. A new machine can produce 3,000 tortillas in 6 hours. How many more tortillas per hour can the new machine produce than the old one?
Distance (amount done) \div Time $=$ Rate
1,600 tortillas $\div 8 \mathrm{hr} \quad=200$ per hr
3,000 tortillas $\div 6 \mathrm{hr} \quad=500$ per hr
Difference: $500-200=300$ more tortillas per hr

Solving Simple Numerical Equations

Learning Objective

Solve simple numerical equations.

A numerical sentence in which both sides of an equal sign contain calculations is called an equation. For example, five plus five equals twelve minus two $(5+5=12-2)$ is an equation, as is seven minus one equals thirty divided by five $(7-1=30 \div 5)$.

For an equation to be true, the numbers on the left of the equal sign must always compute to the same answer as the numbers on the right of the equal sign. Moving a number from one side of the equation to the other changes its sign. A plus sign will change to minus; a minus sign will change to plus. A multiplication sign will change to division; a division sign will change to multiplication.

EXAMPLE M Addition-Subtraction

$6+4+5=17-2$
Change only the -2 : Change the +5 and the -2 :
$6+4+5+2=17$
Change only the +5 :
$6+4=17-2-5$
$6+4+2=17-5$
Check: $6+4+2=12$

$$
17-5=12
$$

$6+4=10$ and $17-2-5=10$

EXAMPLE N Multiplication—Division

$3 \times 8=48 \div 2$
Change only the $\div 2$: Change the $\times 8$ and $\div 2$:
$3 \times 8 \times 2=48$
$3 \times 2=48 \div 8$
Change only the $\times 8$:
Check: $3 \times 2=6$
$3=48 \div 2 \div 8$

A numerical equation may be incomplete, with one factor missing, but provide enough information to be completed.

EXAMPLE O

$6+2=5+?$
$6+2=8 \quad$ so $\quad 5+?=8$
Therefore, $\quad ?=3$
Or change a number
$6+2-\quad ?=5$
Therefore, ? $=3$

EXAMPLE Q

$7+3+6=4+4+$?
$7+3+6=16$ so $4+4+?=16$
Therefore, $\quad ?=8$
Or change a number
$7+3+6-?=4+4$
Therefore, ? $=8$

EXAMPLEP

$15-3=2+$?
$15-3=12$ so $2+?=12$
Therefore, $\quad ?=10$
Or change a number
$15-3-?=7$
Therefore, $?=5$

EXAMPLER

$20 \div 5=2 \times ?$
$20 \div 5=4 \quad$ so $2 \times ?=4$
Therefore, $\quad ?=2$
Or change a number
$20 \div 5 \div ?=2$
Therefore, $?=2$

In business, numerical sentences with equations frequently compare items. Note the following examples:

EXAMPLES

4 items at $\$ 0.50$ each $=10$ items at $?$ each
4 items at $\$ 0.50$ each $=\$ 2.00$
10 items at $?$ each $=\$ 2.00$
$\$ 2.00 \div 10$ items $=\$ 0.20$
Therefore, $\quad ?=\$ 0.20$
Or change a number
$4 \times 0.50 \div ?=10$
Therefore, $?=0.20$

EXAMPLET

6 tickets at $\$ 5$ each $=15$ tickets at $?$ each
6 tickets at $\$ 5$ each $=\$ 30$
15 tickets at $?$ each $=\$ 30$
$\$ 30 \div 15$ tickets $=\$ 2$
Therefore, $\quad ?=\$ 2$
Or change a number
$6 \times 5 \div ?=15$
Therefore, ? $=\$ 2$

EXAMPLE U

A company had sales of $\$ 25,000$ and $\$ 20,000$ for January and February of last year, respectively. If January sales this year were $\$ 30,000$, what is the amount needed for February in order to equal last year's sales for the two months?

January LY $\$ 25,000+$ February LY $\$ 20,000=\$ 45,000$
January \$30,000 + February (?)

$$
=\$ 45,000
$$

$\$ 45,000-\$ 30,000=\$ 15,000$
Therefore, $\quad ?=\$ 15,000$

CONCEPT CHECK 4.4

Both sides of a true equation are equal. Each side may contain calculations.
$7+5=14-2$
$2 \times 9=36 \div 2$
A number may be moved from one side of an equation to the other by reversing its sign.
$8=6+2$
$8-2=6$
$7+3=10$
$7=10-3$
$12=4 \times 3$
$12 \div 3=4$
$24 \div 12=2 \quad 24=2 \times 12$

Numerical Relationships in a Series

Learning Objective

Recognize numerical relationships in a series.

Relationships in a series of numbers may be found by comparing the first three or four terms in a series and then extrapolating the numbers that would most logically come next. For example, examining the series $320,160,80,40$ indicates that each term is found by dividing the preceding number by 2 . The next two numbers in the series would logically be 20 and 10 -that is, $40 \div 2=20$ and $20 \div 2=10$.

Examining the series $7,14,21,28$ suggests the addition of 7 to each preceding number. The next two numbers in this series would logically be 35 and $42(28+7=35$ and $35+7=42$).

In the series $5,15,35,75,155$, seeing a relationship is difficult; however, a relationship does exist. Each number results from multiplying the preceding number by 2 and then adding 5. In this series, the next number would logically be $315(155 \times 2+5=315)$.

Recognizing numerical and series relationships can be important in analyzing, communicating, and computing numbers. These relationship series are also used frequently in initial employment tests.

CONCEPTCHECK 4.5

In studying relationships in a numerical series, look for patterns. Patterns most commonly fall into categories:

Addition	$2,7,12,17,22,27$	$(+5$, or 32$)$
Alternating addition/subtraction	$12,24,18,30,24,36,30$	$(+12,-6$, or 42,36$)$
Subtraction	$39,32,25,18,11,4$	$(-7$, or -3$)$
Alternating subtraction/addition	$64,59,61,56,58,53,55$	$(-5,+2$, or 50,52$)$
Multiplication	$4,12,36,108,324,972$	$(\times 3$, or 2,916$)$
Division	$384,192,96,48,24$	$(\div 2$, or 12$)$

You can also devise patterns such as multiplication with addition or subtraction, division with addition or subtraction, and many other combinations.

Making Quick Calculations by Rounding Numbers

Quick calculations are beneficial when working in business situations. Rounding odd and difficult-to-compute amounts to even whole numbers that are easier to compute is a technique often used in business. By rounding, you will be able to get quick and accurate answers without having to write out the computations.

EXAMPLE V

How much would 5 items at $\$ 2.99$ each cost?
To make this computation easily, think " $\$ 2.99$ is $\$ 0.01$ less than $\$ 3.00$." Then think " 5 times $\$ 3$ equals $\$ 15$." Finally, think " $\$ 15.00$ less $\$ 0.05(5 \times \$ 0.01)$ is $\$ 14.95$," which is the correct answer.

EXAMPLE W

The total cost of 3 equally priced dresses is $\$ 119.85$. How much does each dress cost?
To figure out this problem easily, think " $\$ 119.85$ is $\$ 0.15$ less than $\$ 120.00$." Then think " $\$ 120$ divided by $3=\$ 40$, and $\$ 40.00$ less $\$ 0.05(\$ 0.15 \div 3)$ is $\$ 39.95$," the correct answer.

EXAMPLEX

At 19 miles per gallon, how many miles would a car go on 9 gallons of gas?
To figure out this problem easily, think " 19 is just 1 mile less than 20 ." Then think " 9 times $20=180$, and 180 minus $9(9 \times 1)$ is 171 ," the correct answer.

Learning Objective

Do quick mental calculations through a process of rounding numbers.

CONCEPT CHECK 4.6

You may have noticed that making quick calculations is quite similar to making estimations, which you did in Chapter 1. In fact, quick calculation is only an additional step. After estimating an answer, you determine the degree to which the estimated, or rounded, answer differs from the actual answer by mentally correcting for the amount of the estimation or rounding.

COMPLETE ASSIGNMENTS 4.1 AND 4.2

Chapter Terms for Review
equation

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective Example

4.1

Use mental computations in simple addition, subtraction, multiplication, and division

4.2

Use a systematic approach to solve word problems involving basic math processes

Use mental computations.

1. Add:
2. Add by combining numbers:
3. Subtract:
4. Subtract and add:
5. Multiply and divide:
6. Multiply and divide:
$4+3+8+11+9+2+3=$ \qquad

$$
4+6+8+8+8+30+10=
$$

\qquad
$84-7-12-23=$
$9+4-2-8+4=$
$4+4 \times 2 \div 4+14=$
$18 \div 3+10-5 \times 3=$
\qquad
\qquad
\qquad

Use the two-step process to solve the word problem.
7. Martha is preparing to make two dresses. One will require 3 yards of material; the other will require 4 yards of material. The material for the first dress costs $\$ 12.00$ per yard; the material for the second costs $\$ 15.00$ per yard. Buttons and trimming will cost $\$ 8.00$ for each dress. What will be the total cost?
Determine what is being requested.
Determine the processes to be used to solve the problem.
Answer: \qquad
8. At an average rate of 50 miles per hour, how long would it take to drive 650 miles? \qquad
9. At an average rate of 60 miles per hour, how far could you drive in 6 hours? \qquad
10. If you drove 70 miles per hour and covered 280 miles, how much time did it take? \qquad
11. $7+8-2=5+9-1$
12. $5 \times 12=120 \div 2$

Change the 12 to the opposite side and test the equation.

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

4.5

Recognize numeric relationships in a series

Example

Insert the next two numbers.
13. $4,7,6,9,8,11$, \qquad ,

Pattern: \qquad
14. $12,48,24,96,48$, \qquad _, \qquad Pattern: \qquad

4.6

Do quick mental calculations through a process of rounding numbers
15. What is the cost of 8 items at $\$ 3.99$ each?
16. At 59 miles per hour, how far would a car go in 20 hours?

Review Problems for Chapter 4

(1) Add: $7+9+4+8+2=$ \qquad 2 Subtract: $70-7-4-8-3-6=$ \qquad
(3) Multiply: $4 \times 2 \times 3 \times 2 \times 2=$ \qquad (4) Divide: $120 \div 2 \div 3 \div 5 \div 2=$ \qquad
5 In the first four months of the year, a corporation had monthly earnings of $\$ 12,493, \$ 6,007, \$ 3,028$, and $\$ 9,728$. What was its total earnings in the four months? \qquad
6 If the corporation in question 5 had earnings of $\$ 74,500$ at the end of the year, how much did it earn in the last eight months of the year? \qquad
(7) If a tour bus gets 7 miles per gallon of gas and used 61 gallons in a week, how many miles did it travel in the week? \qquad
8 An employer earned $\$ 4,000$. Half the earnings went into an employee bonus pool. The pool was split among 5 employees. How much did each employee receive? \qquad
9 A delivery firm bought 21 gallons of gas on Monday, 15 on Tuesday, 24 on Wednesday, 34 on Thursday, and 11 on Friday. If gas cost $\$ 2.15$ per gallon, how much did the delivery firm pay for the week's gas?
\qquad
10 A store owner planned to give away $\$ 1,200$ at Christmas. The owner gave $\$ 150$ to each of 5 full-time employees and $\$ 50$ to each of 4 part-time employees. The remainder was given to a local charity. How much did the charity receive? \qquad
11 How long would it take to travel 1,265 miles at 55 miles per hour? \qquad
12 Bob and Mary start traveling toward each other from 1,330 miles apart. Bob is traveling at 30 miles per hour, Mary at 40 miles per hour. How many hours elapse before they meet? \qquad
13 Bob and Mary start traveling toward each other from 960 miles apart. Bob is traveling at 25 miles per hour, Mary at 55 miles per hour. How many hours elapse before they meet? \qquad
14 $41-6=27+$ \qquad
$1572+72=300-$ \qquad
$1610 \times 3=90 \div$ \qquad
17 Four items at $\$ 9$ each $=$ \qquad items at $\$ 12$ each

18 What is the next number in the series $3,7,8,12$? ? \qquad
19 What is the next number in the series $5,20,10,40$, ? \qquad
20 To find the price of 7 items at $\$ 1.99$ you would think: 7 times $\$$ \qquad less 7 times \$ \qquad $=$ $\$ 13.93$

A (20 points) Do the steps in the order in which they occur. Do not use scratch paper or an electronic calculator. (1 point for each correct answer)

1. $14+5+3+6=$ \qquad
2. $12-3-2-5=$ \qquad
3. $40 \div 4 \div 2 \div 5=$ \qquad
4. $3 \times 2 \times 5 \times 2=$ \qquad
5. $25 \div 5 \times 3+1+11+2-6=$ \qquad
6. $100 \times 5-50 \div 9+5 \div 11 \times 3=$ \qquad
7. $(15 \div 3 \times 2+8-3+12) \div 3=$ \qquad
8. $9 \div 3 \times 7+4+5 \times 4-6=$ \qquad
9. $32 \times 2 \div 8 \times 100+200 \div 4+3=$ \qquad
10. $1,000 \times 4 \times 2-5,000 \div 3=$ \qquad
11. $6 \times 6-4 \div 8 \times 2=$ \qquad
12. $14 \div 2 \times 5 \times 2+5=$ \qquad
13. $9 \times 2+2 \times 6-20 \div 4=$
14. $(4-3) \times 5 \times 5 \times 5-3=$ \qquad
15. $(12+12+12+14) \div 5 \times 3+8=$ \qquad
16. $(36 \div 3 \div 4+10+5-3) \times 5=$
17. $(5 \times 8)+(20 \times 3 \div 6 \div 5)+4=$
\qquad
\qquad
18. $680 \div 2 \div 2+10 \div 6 \times 2+8=$
19. $12+10+3+26+29 \div 4 \times 3=$ \qquad
20. $3+4+5+6+7 \div 5 \times 800=$ \qquad

Score for A (20)

B (10 points) Do these problems without using scratch paper or an electronic calculator. ($\mathbf{2}$ points for each correct answer)

21. How much would you pay for 8 gallons of gasoline selling at $\$ 2.05$ per gallon? \qquad
22. How many items would you have if you had 3 books, 7 cards, and 21 pencils? \qquad
23. If six people divided three pizzas so that each person got one piece, how many slices would each pizza have? \qquad
24. How much would you have if you received $\$ 7.00$ from one person, $\$ 23.00$ from a second, $\$ 12.00$ from a third, and $\$ 4.00$ from a fourth? \qquad .
25. If 27 people were divided into three equal groups and each group added 2 additional members, how many members would be in each group? \qquad
Score for B (10)

C (10 points) Do the steps in the order in which they occur. Do these problems without using scratch paper or an electronic calculator. (1 point for each correct answer)

26. 12 items at $\$ 3$ each plus $\$ 2$ tax $=$ \qquad
27. 15 watches at $\$ 30$ each less a $\$ 50$ discount $=$ \qquad
28. 3 lamps at $\$ 22$ each plus 7 bulbs at $\$ 2$ each $=$ \qquad
29. 100 belts at $\$ 4$ each less discounts of $\$ 60$ and $\$ 30=$ \qquad
30. 3 dozen scissors at $\$ 11.20$ per dozen plus a $\$ 4$ shipping charge $=$ \qquad
31. 8 pounds of pears at $\$ 3$ per pound plus $50 \$$ per pound for packaging $=$ \qquad

Assignment 4.1 Continued

32. $\$ 38$ sale price plus $\$ 3$ tax less a $\$ 11$ discount plus a $\$ 5$ delivery charge $=$ \qquad
33. 6 bath towels at $\$ 8$ each and 4 hand towels at $\$ 3$ each plus $\$ 2.50$ tax $=$ \qquad
34. 4 dozen brushes at $\$ 25$ per dozen plus $\$ 5$ tax plus $\$ 7$ shipping charge $=$ \qquad
35. 2 shirts at $\$ 30$ each, 4 ties at $\$ 10$ each, and 7 pairs of socks at $\$ 2$ each $=$ \qquad
Score for C (10)
D (40 points) Complete the following equations by supplying the missing items. (2 points for each correct answer)
36. $27+3=$ \qquad $+8$
37. $13+$ \qquad $=7+28$
38. $+4=4+16$
39. $400=17-2+$ \qquad
40. $22-9=$ \qquad -6
41. 36 - \qquad $=17+8$
42. $9+17-3=4 \times$ \qquad -5
43. $160 \div 4+2=7 \times 7-$
44. \qquad $\times 3 \times 3=9 \div 3 \times 9$
45. $13-11 \times$ \qquad $=8 \times 8+16$
46. \qquad $\div 2=9-1$
47. $4 \times 20=$ \qquad $+4$
48. $15-9-2=25-$ \qquad
49. $64 \div 32=900 \div$ \qquad
50. \qquad $+6=43-12$
51. $15 \times 2 \times 2=$ \qquad
52. $(7 \times 8)-6=$
53. $13 \times$ \qquad $=77-12$
54. \qquad $\times 9=99-9$
55. $6 \times$ \qquad $=10 \times 9$

E (20 points) In each of the following problems, a definite relationship exists among the numbers in each series. Extend each series two items by following the correct process. (8 points for each problem; 1 point for each correct line)
56. Extend each series below through addition.
a. $4,8,12,16$, \qquad c. $2,4,7,11,13$, \qquad
b. $1,4,5,8$, \qquad
57. Extend each series below through subtraction.
a. $50,45,40,35$, \qquad
b. $50,45,43,38$, \qquad
c. $100,90,81,73$, \qquad
58. Extend each series below through multiplication.
a. $4,8,16,32$, \qquad
b. $5,25,125$, \qquad
c. $2,4,20,40$, \qquad
59. Extend each series below through division.
a. $15,625,3,125,625,125$, \qquad c. $10,000,2,000,1,000,200$, \qquad
b. $729,243,81,27$, \qquad
60. Extend each series below through combinations of the four processes above.
a. $72,75,69,72$, \qquad e. $7,4,8,5$, \qquad
b. $200,100,300,150$, \qquad f. $30,10,60,20$,
c. $6,9,18,21,42$, \qquad g. $10,40,20,80$,
\qquad
d. $240,120,600,300,1,500$
h. $100,50,40,20$,
\qquad
d. $240,120,600,300,1,500$, \qquad
\qquad

Assignment 4.2: Word Problems, Formulas, and Equations

Name
Date Score

A (40 points) Solve the following word problems. (5 points for each correct answer)

1. A store regularly sold 2 cans of soup for $\$ 1.28$. It advertised a special sale of 6 cans for $\$ 3.12$. A customer bought 12 cans at the sale. How much did the customer save over the regular price? \qquad
2. A sales representative's car gets 18 miles to a gallon of gas. It was driven 120 miles each day for 30 days. Gas cost an average of $\$ 2.27$ per gallon. What was the sales representative's total 30-day cost for gas? \qquad
3. A store clerk sold a customer a ruler for $\$ 1.67$, three pencils for $\$ 0.29$ each, notebook paper for $\$ 0.99$, and an eraser for $\$ 0.35$ and was given $\$ 10.00$ in payment. How much change did the clerk give the customer from the $\$ 10.00$? (All prices include tax.) \qquad
4. A college student worked at a local store for $\$ 9.00$ per hour, as his class schedule permitted. The student worked 3 hours each Monday, Tuesday, Wednesday, and Thursday. He also worked 2 hours each Friday and 8 hours each Saturday. How many weeks did the student have to work to earn $\$ 792$ for a new bicycle?
\qquad
5. A box, a crate, and a trunk weigh a total of 370 pounds. The crate weighs 160 pounds. The trunk weighs 4 pounds more than the box. What does the box weigh? \qquad
6. A hotel has 12 floors. Each floor has 30 single-person rooms and 40 two-person rooms. What is the total guest capacity of the hotel? \qquad
7. A department store offers its customers socks for $\$ 1.50$ per pair or $\$ 15.00$ per dozen. If two customers buy 1 dozen together and each pays half the cost, how much will each customer save by paying the quantity price? \qquad
8. Supply Clerk A ordered 5 staplers for $\$ 27.50$ total and 2 large boxes of staples for $\$ 1.75$ each. Supply Clerk B ordered a box of computer disks for $\$ 8.50$ and a box of computer paper for $\$ 39.95$. How much more did Clerk B spend than Clerk A? (All prices include tax.) \qquad

B (10 points) Solve the following time, rate, distance problems. (5 points for each correct answer)
9. Wendy leaves St. Paul to travel the 2,000 miles to Los Angeles, driving at a speed of 55 miles per hour. Mark leaves Los Angeles to travel the same 2,000-mile route to St. Paul, driving at a speed of 45 miles per hour. How many miles will Mark have traveled when they meet? \qquad
10. Car A traveled to a destination 840 miles away at 60 miles per hour. Car B traveled to a destination 660 miles away at 55 miles per hour. How much longer did Car A travel than Car B? \qquad

Score for B (10)
C (40 points) Solve each of the problems without writing any computations on paper and without using a calculator or a computer. (2 points for each correct answer)
11. 5 items at $\$ 1.99=$ \qquad 12. 2 items at $\$ 7.98=$ \qquad
13. 4 items at $\$ 19.98=$ \qquad 14. 2 items at $\$ 49.96=$ \qquad
15. 15 items at $\$ 0.99=$ \qquad 16. 10 items at $\$ 9.99=$ \qquad
17. 6 items at $\$ 3.95=$ \qquad 18. 5 items at $\$ 1.02=$ \qquad
19. 19 items at $\$ 40=$ \qquad 20. 3 items at $\$ 19.99=$
22. 30 items at $\$ 1.99=$ \qquad
24. 2 items at $\$ 5.99=$ \qquad
23. 20 items at $\$ 39.98=$ \qquad
26. 5 items at $\$ 1.97=$ \qquad
27. 7 items at $\$ 7.97=$ \qquad 28. 2 items at $\$ 99.98=$ \qquad
29. 30 items at $\$ 2.98=$ \qquad 30. 99 items at $\$ 1.90=$ \qquad
Score for C (40)
D (10 points) In each of the following equations, rewrite the equation by moving the last number on each side of the equal sign to the other side and making appropriate sign changes so that the equation is still true. (Example: Given $13+7+2=10+12$; Answer $13+7$ - 12 = 10-2) (1 point for each correct equation)
31. $6+4+5=17-2$
33. $9-3-3=2+1$
35. $20+1-7=16-2$
37. $12+3-5=7+3$
39. $64-32-16=8+8$
32. $6 \times 2 \div 3=8 \div 4 \times 2$
34. $8 \div 2 \times 4=24 \div 3 \times 2$
36. $3 \times 3 \times 3=18 \div 2 \times 3$
38. $7 \times 4 \div 2=28 \times 2 \div 4$
40. $63 \div 7 \times 2=3 \times 2 \times 3$

Percentage Applications
 5 Percents
 6 Commissions
 7 Discounts
 8 Markup

Percents

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Change percents to decimals.

Learning Objective 2 Change fractions and decimals to percents.

Learning Objective 3 Find Base, Rate, and Percentage.

Learning Objective 4 Use percents to measure increase and decrease.

Learning Objective 5 Use percents to allocate overhead expenses.

Percents and percentages are used extensively in various business and nonbusiness applications. Airlines are required to publish the "on time percentage" for each of their flights. Every bank publishes its loan rates as percents. The Food and Drug Administration (FDA) says that packaged foods must contain labels with nutritional information, much of which is written in percents. Colleges and universities often describe the ethnic diversity of their student bodies and faculty using percents.

Changing Percents to Decimals

Learning Objective

Change percents to decimals.

We use percents because the word percent makes verbal and written communication easier. Suppose that we have a 5% sales tax. Which of these phrases sounds better:
(a) "five percent," (b) "five-hundredths," (c) "one-twentieth," or even (d) "point zero five"? Imagine how complicated the latter three phrases would be if the sales tax rate were 5.25%. But by using the word percent, we can just say "five point two five percent."

Percents themselves are actually not used in arithmetic. Before you can do any calculation with a percent, you must change the percent to a decimal. If you use a calculator with a percent key \%, the calculator will first convert the percent to a decimal. Take a calculator with a percent key and observe the display closely. Enter 75\%; that is, press these three keys: 75 \%. After pressing the \% key, the display shows 0.75 . There is no percent symbol and the decimal point has moved two places to the left. The calculator will use the 0.75 in all of its calculations that involve 75%.

Sometimes a percent has a fractional part. For example, we might have a tax rate that is stated as $5 \frac{1}{2} \%$. Even using a calculator, first we must write the fraction as a decimal to get 5.5%. Using the calculator, press these keys: 5 5 \%. After pressing \%, the display shows $\mathbf{0 . 0 5 5}$. Notice that to move two places to the left, the calculator had to insert an extra zero.

STEP S to Change a Percent to a Decimal

1. If the percent has a fractional part, convert the fraction to its decimal equivalent.
2. Remove the percent symbol.
3. Move the decimal point two places to the left (insert zeros if needed).

EXAMPLE B

$\begin{array}{cc} & \text { STEP 2 }\end{array} \begin{gathered}\text { STEP 3 } \\ 175 \%\end{gathered}>175 \longrightarrow 1.75 .=1.75$

EXAMPLE D

(Note: Check the answers to these examples with the percent key on your calculator.)

CONCEPT CHECK 5.1

a. Change 250% to a decimal.
$250 \% \longrightarrow 250 \longrightarrow 2.50 .=2.50$ or 2.5
b. Change $\frac{1}{4} \%$ to a decimal.
$\frac{1}{4} \%=0.25 \% \longrightarrow 0.25 \longrightarrow .00 .25=0.0025$

Changing Decimals and Fractions to Percents

Changing a decimal to a percent is exactly the opposite from changing a percent to a decimal: Move the decimal point two places to the right, and then write a percent symbol. If you have a fraction or a mixed number, first change it to a decimal as you did in Chapter 3. Then change the decimal to a percent. (A decimal point at the extreme right end of the percent is omitted. Examine example E below.)

Learning Objective

Change fractions and decimals to percents.

STEPS to change a Fraction or a Decimal to a Percent

1. If the number is a fraction, or a mixed number, convert it to its decimal equivalent.
2. Move the decimal point two places to the right (insert zeros if needed).
3. Write a percent symbol at the right end of the new number.

EXAMPLE E

$\begin{array}{ccc}\text { STEP } 1 & \text { STEP 2 } & \text { STEP 3 } \\ \frac{4}{5}=0.8 \longrightarrow 0.80 .\end{array}>80 \%$ or 80%

EXAMPLE F

$$
\begin{array}{ll}
\text { STEP } 1 & \text { STEP } 2
\end{array} \begin{aligned}
& \text { STEP 3 } \\
& 1 \frac{3}{8}=1.375 \longrightarrow 1.37 .5 \longrightarrow 137.5 \%
\end{aligned}
$$

EXAMPLE H

EXAMPLE J

(Note: To check these examples with your calculator, you can multiply the decimal number by 100 and write the percent symbol at the right end of the answer.)

CONCEPT CHECK 5.2

a. Change $2 \frac{7}{10}$ to a percent.

$$
2 \frac{7}{10}=2.7 \longrightarrow 2 . \underbrace{70} \longrightarrow 270 \%
$$

b. Change 0.075 to a percent.
$0.075 \longrightarrow 0.07 .5 \longrightarrow 7.5 \%$

Finding Base, Rate, and Percentage

Learning Objective

Find Base, Rate, and Percentage.

Suppose that you have $\$ 5$ and spend $\$ 4$ for breakfast. Example E showed that the fraction $\frac{4}{5}$ equals 80%. You can say that "you spent 80% of your money ($\$ 5$) for your breakfast (\$4)." Without the context of your breakfast, you have simply " 80% of $\$ 5=\$ 4$." In this book we call 80% the Rate $(\boldsymbol{R}), \$ 5$ the Base (B) amount, and $\$ 4$ the Percentage (\boldsymbol{P}) amount. The Base and the Percentage amounts will always have the same units (e.g., dollars, feet, or pounds). The Rate is the percent. (The word rate comes from the word ratio-in this case, $\frac{4}{5}$.) It may make sense for you to think of the Base amount as the denominator in the rate (that is, ratio $=\frac{4}{5}$) because the denominator is the "base" (i.e., bottom) of the fraction.

Note: In practice, the terms percent and percentage are often used interchangeably. Sometimes, you will see the word percentage used to mean a rate and the word percent used to mean an amount. You will even see the two words percentage rate to mean the rate. In this book, however, we use only the one meaning for each word.

EXAMPLEK
80% of $\$ 5=\$ 4$
80% is the Rate
$\$ 5$ is the Base
$\$ 4$ is the Percentage

EXAMPLE L
25% of $20 \mathrm{ft}=5 \mathrm{ft}$
25% is the Rate
20 ft is the Base
5 ft is the Percentage

EXAMPLE M
50% of $60 \mathrm{gal}=30 \mathrm{gal}$
50% is the Rate
60 gal is the Base
30 gal is the Percentage

```
Figure 5-1
```


50% of 60 gal is 30 gal

25% of 20 ft is 5 ft

Figure 5-1 shows three diagrams, one each for examples K, L, and M. In each diagram, the Rate (or percent) is shown in the left-hand column. Each Percentage is represented by the shaded portion of the right-hand column. Each Base is represented by the entire height of the right-hand column.

The word of often appears in problems that involve percents. Recall from Chapter 2 that with fractions of means multiply. We just showed that $80 \%=\frac{\$ 4}{\$ 5}$. Also recall that you can "check" a division problem by multiplication. We would get $80 \% \times \$ 5=\$ 4$. In words, we say that " 80% of $\$ 5$ is $\$ 4$."

Rule: The number that follows the word of is the Base (and is the denominator in the fraction); the number that follows the word is is the Percentage amount.

The preceding examples illustrate the basic relationship among the Rate, Base, and Percentage: Rate \times Base $=$ Percentage. As a formula, it is written as $R \times B=P$ or as $P=R \times B$.

When you know any two of these three numbers, you can calculate the third by changing the formula:

If you want to find B, the formula becomes $B=P \div R$ or $P \div R=B$.
If you want to find R, the formula becomes $R=P \div B$ or $P \div B=R$.

EXAMPLE N

Find P when
$R=50 \%$ and $B=300 \mathrm{yd}$

EXAMPLEO

Find R when
$B=30 \mathrm{lb}$ and $P=6 \mathrm{lb}$

EXAMPLE P

Find B when
$P=\$ 45$ and $R=75 \%$

Figure 5-2

Figure 5.2 illustrates these relationships, which are calculated as follows.

$$
\begin{array}{lll}
P=R \times B & R=P \div B & B=P \div R \\
P=50 \% \times 300 \mathrm{yd} & R=6 \mathrm{lb} \div 30 \mathrm{lb} & B=\$ 45 \div 75 \% \\
P=0.50 \times 300 \mathrm{yd} & R=0.20 & B=\$ 45 \div 0.75 \\
P=150 \mathrm{yd} & R=20 \% & B=\$ 60 \\
50 & 6 & 0
\end{array}
$$

Note that in example O, the calculator cannot automatically "move" the decimal point two places to the right. If you want the calculator to do it, you "multiply by 100 ." It is faster to just move the decimal point places without a calculator.

USING PERCENTS IN BUSINESS

Percent problems occur frequently in business. Examples Q and R are typical fundamental applications, in which we solve for the Base (B) amount and the Rate (R), respectively.

EXAMPLE Q

Lena Hoover is a financial analyst. In December, she received a $\$ 600$ bonus, which equaled 15% of her monthly salary. What was her monthly salary?
$P=$ amount of bonus $=\$ 600$
$R=$ rate of bonus $=15 \%$
$B=$ monthly salary $=$?
As $P \div R=B$,
$P \div R=\$ 600 \div 15 \%=\$ 600 \div 0.15=\$ 4,000$ monthly salary

EXAMPLER

Last year Bayside Coffee Shop had total expenses of $\$ 300,000$. Of that total, $\$ 210,000$ was the expense for employee salaries. At Bayside, employee salary expense is what percent of total expenses?
$P=$ employee salaries $=\$ 210,000$
$R=$?
$B=$ total expenses $=\$ 300,000$
Since $P \div B=R$,
$P \div B=\$ 210,000 \div \$ 300,000=0.70=70 \%$

CONCEPT CHECK 5.3

a. Find the Base when the Rate is 40% and the Percentage amount is 50 ft . $B=P \div R=50 \mathrm{ft} \div 40 \%=50 \mathrm{ft} \div 0.40=125 \mathrm{ft}$
b. Find the Rate when the Base is 12 oz and the Percentage amount 3 oz .
$R=P \div B=3 \mathrm{oz} \div 12 \mathrm{oz}=0.25=25 \%$

COMPLETE ASSIGNMENT 5.1.

Using Percents to Measure Increase and Decrease

Learning Objective

Use percents to measure increase and decrease.

In business, percents are used to measure change from one year to the next or from one month to the next. Real estate firms compare the number of homes sold this year with the number of homes sold last year. Read and carefully compare the following four statements about home sales last year and this year:

Joslin Realty sold 40\% more homes this year than it did last year, when it sold 135 homes.

Rossi \& Shanley Real Estate sold 25 more homes this year than last year, which represents 20% more homes this year than last year.
Real estate agent Nancy Lo sold 5 fewer homes this year than she did last year, when she sold 40 homes.

Charles Peterson, a real estate broker, sold 30 homes last year; this year he sold 36 homes.
The number of homes sold last year is the Base (B) amount (last year is called the base year). The change in homes sold can be reported as a number, which would be the Percentage amount (P), or as a percent, which would be the Rate (R). If any two of the three values are given, the third can be determined using one of the three formulas in this chapter.

EXAMPLE S

Find the number of additional homes (P) that Joslin Realty sold this year.
$B=135$ and $R=40 \%$. Since $P=R \times B$,
$P=40 \% \times 135=0.40 \times 135=54$ more homes this year

EXAMPLE T

Find the number of homes that Rossi \& Shanley Real Estate sold last year (B).
$P=25$ and $R=20 \%$. Since $B=P \div R$,
$B=25 \div 20 \%=25 \div 0.20=125$ homes sold last year

EXAMPLE U

Find Nancy Lo's rate of decrease (R) from last year's sales.
$P=5$ and $B=40$. Since $R=P \div B$,
$R=5 \div 40=0.125=12.5 \%$ decrease

To find the percent change when the only numbers reported are the amounts (B) for last year and this year, the first step is to find the amount of increase or the amount of decrease. P is the difference between the amounts for the two years. Then use $R=P \div B$ to find the rate of increase or the rate of decrease.

Value Change
3,006.62 38.97 A 2.649.71 33.35 807.90 2.93 $10,744.54$ 96.03 $1.367 .40 \quad 13.28$ A 626.42 $4.70 \wedge$

EXAMPLE V

Find Charles Peterson's rate of change (R).
Charles sold 30 homes last year (B) and 36 this year. The amount of change is
$P=36-30=6$ more homes this year
The rate of change is
$R=P \div B=6 \div 30=0.20=20 \%$ increase

COMPUTING AMOUNTS OF INCREASE AND DECREASE WITH A CALCULATOR

Review example S. Now consider a variation of example S that says, "Find the total number of homes that Joslin Realty sold this year." Last year it sold 135 homes. There was a 40% increase, which means 54 more homes were sold this year. The total number of homes sold this year was $135+54=189$ homes. Many calculators allow you to calculate 189 with the following keystrokes: 1

If you need to know the actual amount of the increase, it will usually show in the calculator display immediately after you press the \%) key, but before you press the Ξ key.

Similarly, suppose the original example had said, "The real estate agency sold 40% fewer homes this year than it did last year, when it sold 135 homes. Find the total number of homes that it sold this year." The amount of the decrease is 54 homes. Therefore, the total number sold this year is $135-54=81$ homes. On the calculator, you would use the following keystrokes: 1450 . 5

CONCEPT CHECK 5.4

A company had sales of $\$ 200,000$ this month and $\$ 160,000$ last month (B). Find both the amount of increase (P) and the rate of increase (R).

The amount of increase is
$P=\$ 200,000-\$ 160,000=\$ 40,000$
The rate of increase is
$R=P \div B=\$ 40,000 \div \$ 160,000=0.25=25 \%$

COMPLETE ASSIGNMENTS 5.2 AND 5.3.

Using Percents to Allocate Overhead Expenses

Learning Objective 5

Use percents to allocate overhead expenses.

Many businesses are organized into divisions or departments. Suppose Cotton's Clothing is a retailer of sportswear. It has three departments: women's clothes, men's clothes, and children's clothes. Management and owners of Cotton's need to measure the profitability of each department. Cotton's also knows the amounts it paid for the merchandise sold and the salaries of employees in each department. Cotton's can subtract these departmental costs from the departmental revenues.

But what about rent and other general costs such as electricity? These costs that are not directly related to the types of merchandise sold are called overhead costs. For example, Cotton's monthly rental expense might be $\$ 12,000$ for the entire building. How should that single amount be divided among the three departments? Should each department be assigned $\frac{1}{3}$, or $\$ 4,000$, of the total rent?

Businesses can allocate, or distribute, the rent based on a measurement related to the total cost. Rent is a cost of using the building; it could be allocated on the basis of floor space, since each department occupies some of that space.

S T E P S to Allocate an Overhead Cost Based on Total Floor Space (or Some Other Measurement)

1. Find the total square feet of floor space.
2. Divide the floor space of each department by the total floor space and change to percents.
3. Multiply each percent (in fractional or decimal form) by the total rent (or other overhead value).

EXAMPLE W

Determine the amount of rent to allocate to the respective departments of Cotton's.

STEP 1

Department

Women's
Children's
Men's

Floor Space
$100 \mathrm{ft} \times 50 \mathrm{ft}=5,000 \mathrm{sq} \mathrm{ft}$
$50 \mathrm{ft} \times 60 \mathrm{ft}=3,000 \mathrm{sq} \mathrm{ft}$
$40 \mathrm{ft} \times 50 \mathrm{ft}=\frac{2,000 \mathrm{sq} \mathrm{ft}}{10,000 \mathrm{sq} \mathrm{ft}}$

STEP 2

Percent of Total

$$
5,000 \div 10,000=50 \%
$$

$$
3,000 \div 10,000=30 \%
$$

$$
2,000 \div 10,000=20 \%
$$

STEP 3

Distribution of Rent

$$
0.5 \times \$ 15,000=\$ 7,500
$$

$0.3 \times \$ 15,000=\$ 4,500$
$0.2 \times \$ 15,000=\frac{\$ 3,000}{\$ 15,000}$

This same method is used for many other business expenses, such as utilities, fire insurance, and salaries of office personnel. Examples of other bases that might be used for allocation are number of employees, hours worked, and units produced.

CONCEPT CHECK 5.5

A landscape maintenance company has two different divisions: commercial and residential. Employees spend 1,125 hours working on commercial landscapes and 375 hours working on residential landscapes. The company has a utility expense of $\$ 8,000$ that it wants to allocate between the two divisions, based on the percent of employee hours used by each division.

Total hours worked: $1,125+375=1,500$
Commercial: $1,125 \div 1,500=0.75$, or 75% of employee hours
75% of $\$ 8,000=0.75 \times \$ 8,000=\$ 6,000$ of office expense
Residential: $375 \div 1,500=0.25$ or 25% of employee hours
25% of $\$ 8,000=0.25 \times \$ 8,000=\$ 2,000$ of office expense

COMPLETE ASSIGNMENT 5.4.

Chapter Terms for Review

amount of decrease	percent
amount of increase	Percentage (P)
Base (B)	Rate (R)
"of"	rate of decrease
overhead costs	rate of increase

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
5.1 Change percents to decimals	1. Change 4.25% to a decimal.
5.2 Change fractions and decimals to percents	2. Change 0.45 to a percent. 3. Change $\frac{7}{8}$ to a percent.
5.3 Find Base, Rate, and Percentage	4. Find the Percentage: 35% of $40=P$ 5. Find the Rate: $R \%$ of $140=28$ 6. Find the Base: 80% of $B=220$
5.4 Use percents to measure increase and decrease	7. Increase a $\$ 4,000$ salary by 15%. 8. From 300 to 240 is a decrease of what percent?
5.5 Use percents to allocate overhead expenses	9. A company has three stores, A, B and C, with 4,6 , and 10 employees, respectively. Based on the number of employees, allocate a $\$ 3,000$ expense among the stores.

Review Problems for Chapter 5

(1) Change 17.1% to a decimal \qquad
2 Change 0.625 to a percent \qquad
(3) Change 150% to a decimal \qquad
4 Change 0.0075 to a percent \qquad
(5) Change 0.06% to a decimal \qquad
(6) Change $\frac{2}{5}$ to a percent \qquad
13 Sales were $\$ 100,000$ two months ago and increased by 20% last month. How much were sales last month?

14 Sales were $\$ 120,000$ last month and decreased by 20% this month. How much were sales this month?
\qquad
15 Expenses were $\$ 200,000$ two years ago and $\$ 400,000$ last year. What was the percent increase last year?
\qquad
16 Expenses were $\$ 400,000$ last year and $\$ 200,000$ this year. What was the percent decrease this year?

17 Peggy Covey owns a nursery. This year she sold 195 more rose bushes than she did last year. This represents a 12% increase over the previous year. How many rose bushes did Peggy's nursery sell last year?
18 Jim Dukes manages Internet sales for a company that started selling its product over the Internet two years ago. Last year, company sales over the Internet were only about $\$ 500,000$. This year, sales were $\$ 1,625,000$. Calculate the company's percent increase in Internet sales this year. \qquad
19 Ken Chard is a bank teller. When he started this morning, his cash drawer had coins worth $\$ 86$. The coins represented only 2.5% of all the money that Ken had in his cash drawer. What was the total value of all this money? \qquad
20 Nancy McGraw is an orthopedic surgeon. Last winter, Dr. McGraw performed 50 emergency surgeries. Thirty-two of those surgeries were the result of ski injuries. What percent of Dr. McGraw's emergency surgeries were the result of ski injuries? \qquad

Assignment 5.1: Base, Rate, and Percentage

Name

Date
Score

A (20 points) Change the percents to decimals. Change the nonpercents to percents. (1 point for each correct answer)

1. $31 \%=$ \qquad
2. $100 \%=$ \qquad
3. $3 \frac{1}{3} \%=$ \qquad
4. $0.875=$ \qquad
5. $3=$ \qquad
6. $33 \frac{2}{3} \%=$ \qquad
7. $0.15=$ \qquad
8. $0.3=$ \qquad
9. $1 \frac{3}{4}=$ \qquad
10. $5.2 \%=$ \qquad
11. $224.5 \%=$ \qquad
12. $0.0003 \%=$
\qquad
13. $0.52=$ \qquad
14. $350 \%=$ \qquad
15. $0.08 \frac{1}{4}=$
\qquad
16. $\frac{1}{2}=$ \qquad
17. $4.0=$ \qquad
18. $0.000025=$ \qquad
19. $0.1 \%=$ \qquad
20. $1,000 \%=$
\qquad

B (30 points) In the following problems, find each Percentage amount. (2 points for each correct answer)
21. 0.375% of $56=$ \qquad
22. 0.25% of $1,600=$
\qquad
24. 62.5% of $24=$ \qquad
27. 25% of $\$ 1.16=$ \qquad
28. 120% of $\$ 45=$ \qquad
30. 50% of $\$ 162=$ \qquad 31. 8% of $200=$ \qquad 32. 15% of $0.08=$ \qquad
33. 187.5% of $40=$ \qquad 34. 1.5% of $\$ 86=$ \qquad
23. 100% of $11.17=$ \qquad
26. 250% of $\$ 66=$ \qquad
29. 2.5% of $\$ 66=$ \qquad
35. 0.2% of $480=$ \qquad

C (50 points) In each of the following problems, find the Percentage amount, the Rate, or the Base amount. Write rates as percents. Round dollars to the nearest cent. (2 points for each correct answer)
36. 35% of \qquad $=\$ 14$
38. \qquad of $0.12=0.24$
40. \qquad of $400=14$
42. 1.25% of \qquad $=1.6$
44. \qquad of $0.056=0.014$
46. 2.5% of $\$ 2,820=$ \qquad
48. 250% of \qquad $=24.4$
50. 0.025% of $\$ 16,400=$ \qquad
52. 120% of \qquad $=\$ 51$
54. \qquad of $\$ 2,340=\$ 46,800$
56. 180% of $\$ 90=$ \qquad
58. 125% of \qquad $=\$ 520$
60. \qquad of $2.1=0.336$
43. \qquad of $80=120$
37. \qquad of $\$ 35=\$ 7$
39. \qquad of $14.2=28.4$
41. 80% of \qquad $=\$ 0.96$
45. 175% of \qquad $=\$ 84$
47. 0.25% of \qquad $=\$ 20$
49. 62.5% of \qquad $=35$
51. 140% of \qquad $=672$
53. \qquad of $5.4=2.16$
55. 15% of $\$ 140=$ \qquad
57. \qquad of $85=136$
59. 12% of \qquad $=3$

Assignment 5.2: Rate of Increase and Rate of Decrease

Name
Date Score

A (40 points) Calculate the missing values. ($2 \frac{1}{2}$ points for each correct answer)

1. Decreasing the base value of 280 by 25% gives the new value \qquad .
2. Start with 75 , decrease it by 60%, and end up with \qquad .
3. Sales were $\$ 8,000$ last month and increased by 4% this month. Sales were \qquad this month.
4. Base value $=272$; increase $=100 \%$; new (final) value $=$ \qquad
5. A $\$ 17$ increase is 10% of the base value of \qquad .
6. The price decreased from $\$ 450$ to $\$ 378$; the percent decrease was \qquad .
7. $\$ 300$ is what percent less than $\$ 400$?
\qquad
8. Sales were $\$ 500,000$ in June but only $\$ 400,000$ in July. The rate of decrease was \qquad .
9. Increasing the base value of 240 by 40% gives the new value \qquad .
10. Start with 80 , increase it by 14%, and end up with \qquad .
11. Profits were $\$ 44,000$ last month, but decreased by 2% this month. Profits were \qquad this month.
12. Base value $=250$; decrease $=100 \%$; new (final) value $=$ \qquad
13. A decrease of 45 units is 15% of the base value of \qquad units.
14. Production increased from 8,000 units to 10,000 units; the percent increase was \qquad .
15. 320 is what percent greater than 160 ? \qquad
16. Profits were $\$ 11,000$ last month and $\$ 10,000$ the previous month. The rate of increase was
\qquad -

B (30 points) The following table shows the volumes of various items sold by Thrift's Speed Shop during the past two years. Compute the amount of change and the rate of change between this year and last year. Compute the rates to the nearest tenth of a percent. If the amount and rate are increases, write a + in front of them; if they are decreases, enclose them in parentheses (). (1 point for each correct amount; $\mathbf{2}$ points for each correct rate)

Thrift's Speed Shop
 Volume Sold (number of units)

Description of Item	This Year	Last Year	Amount of Change	Rate of Change
17. Batteries	516	541		
18. Brake fluid (pints)	1,781	1,602		
19. Coolant (gallons)	2,045	1,815		
20. Headlight lamps	4,907	4,084		
21. Oil (quarts)	13,428	14,746		
22. Mufflers	639	585		
23. Shock absorbers	895	1,084		
24. Tires, auto	6,742	5,866		
25. Tires, truck	2,115	1,805		
26. Wiper blades	1,927	2,342		

C (30 points) During May and June, Hillman's Paint Store had sales in the amounts shown in the following table. Compute the amount of change and the rate of change between May and June. Compute the rates of change to the nearest tenth of a percent. If the amount and rate are increases, write a + in front of them; if they are decreases, then enclose them in parentheses (). (1 point for each correct amount; 2 points for each correct rate)

Hillman's Paint Store
Volume Sold (in dollars)

Description of Item	June	May	Amount of Change	Rate of Change
27. Brush, $2^{\prime \prime}$ wide	\$611.14	\$674.67		
28. Brush, $3^{\prime \prime}$ wide	564.20	512.51		
29. Brush, $4^{\prime \prime}$ wide	429.87	374.27		
30. Drop cloth, 9×12	143.50	175.66		
31. Drop cloth, 12×15	174.29	151.55		
32. Paint, latex (gal)	38,506.24	36,382.13		
33. Paint, latex (qt)	5,072.35	4,878.96		
34. Paint, oil (gal)	7,308.44	7,564.27		
35. Paint, oil (qt)	4,358.35	4,574.96		
36. Paint scraper	274.10	238.82		

Assignment 5.3: Business Applications

Name
Date Score

A (50 points) Solve the following problems. Round dollar amounts to the nearest cent. Round other amounts to the nearest tenth. Write rates as percents to the nearest tenth of a percent. (5 points for each correct answer)

1. Walter Electric shipped 5,500 capacitors in May. Clients eventually returned 4% of the capacitors. How many of the May capacitors were eventually returned? \qquad
2. Jim Walter, CEO of Walter Electric, wants the company to reduce the percent of capacitors that customers return. In June, the company shipped 5,000 capacitors, and 150 were eventually returned. What percent of the June shipment was eventually returned? \qquad
3. By July of the following year, Walter Electric had reduced the percent of capacitors returned to 2% of the number shipped. If 130 capacitors were returned from that month's shipment, how many had been shipped? \qquad
4. A food importer, Fontaine's Food Expo, imports 60% of its vinegars from France, 30% from Italy, and 10% from Spain. The total value of all the vinegars that it imports is $\$ 920,000$. What is the value of the vinegars that are not imported from France? \qquad
5. Next year, Fontaine's is planning to import $\$ 640,000$ worth of vinegars from France, $\$ 300,000$ worth of vinegars from Italy, and $\$ 260,000$ worth of vinegars from Spain. If next year's imports occur as currently being planned, what percent of the total imports will be from Italy? \qquad
6. Rigik Parka Products, Inc., manufactures only parkas for adults and children. Last year, Rigik manufactured all its children's parkas in Asia. Those children's parkas represented 35\% of all the Rigik production. If the company made a total of 240,000 parkas, how many children's parkas did it produce? \qquad
7. This year, Rigik again plans to manufacture all its children's parkas in Asia, and Rigik will expand the children's product line to 40% of the total number of parkas produced. If Rigik plans to produce 112,000 children's parkas, how many parkas does the company plan to produce in total? \qquad
8. Next year, Rigik plans to keep the percent of children's parkas at 40% but increase the number of children's parkas produced to 125,000 . How many parkas does the company plan to produce for adults? (Hint: First you need to calculate the total number of all parkas to be produced next year.)
9. Manuel Sosa is a single father. He tries to save 15% of his monthly salary for his son's education. In August, Manuel's salary was $\$ 4,800$. How much should he save to meet his objective? \qquad
10. In September, Manuel Sosa got a promotion and a raise. Because his monthly expenses did not increase very much, Manuel was able to save more dollars. He saved $\$ 1,350$, which was 25% of his new salary. How much was Manuel's new salary? \qquad

B (50 points) Solve the following problems. Round dollar amounts to the nearest cent. Round other amounts to the nearest tenth. Write rates as percents to the nearest tenth of a percent. (5 points for each correct answer)

11. Norman Brewer, a paralegal, will receive a 4% salary increase this month. Hence he will receive $\$ 130$ more salary this month than he received last month. What was Norman's salary last month? \qquad
12. Roberta Coke works in the marketing research department of a soft-drink company. Yesterday Roberta received a raise of $\$ 375$ per month. Roberta now earns 6% more than she did before the raise. How much does she earn now? \qquad
13. A farmers' market is held downtown every Saturday. The volume has been increasing by about 3% every week. If the volume was $\$ 51,400$ this week, what should the volume be next week? \qquad
14. Marcia Almeida works as a sales analyst for a toy manufacturer. She predicts that toy sales will decrease by 5% between May and June. If the amount of the sales decrease is $\$ 175,000$, what level of sales is she predicting for June? \qquad
15. Last month, Fred Gerhardt started working as an apprentice machinist. One of his first projects was to reduce the diameter of a metal shaft from 0.180 inch to 0.162 inch. By what percent did he reduce the diameter of the shaft? \qquad
16. Judy Gregory, a mechanical engineer, was able to increase the efficiency of a manufacturing facility. By doing so, she decreased the cost to manufacture a commercial quality lawn mower by $\$ 18$, which was 15% of the former cost. What will be the new reduced cost to manufacture the lawn mower? \qquad
17. Richard Phipps is the purchasing manager for a janitorial service. He orders all the supplies used by his company. Because of new contracts to clean three new office buildings, Richard ordered an additional $\$ 5,000$ worth of supplies this month. This was an 8% increase from last month. What was the value of the supplies that Richard ordered last month? \qquad
18. Nancy Yamamoto owns a gift shop that had sales of $\$ 175,000$ in November. Because of the Christmas holiday season, Nancy predicts that the shop will have a 200% increase in sales in December. What total sales is Nancy predicting for December?
19. Suppose that Yamamoto's Gift Shop had sales of $\$ 175,000$ in November and then doubled its sales in December. What would be the percent increase for December over November? \qquad
20. Because of Father's Day, Martin's Men's Store had sales of $\$ 350,000$ in June. Sales decreased by 50% in July. What were Martin's sales in July? \qquad

Assignment 5.4: Allocation of Overhead

Name
Date Score

A (20 points) Complete the square feet, percent, and distribution columns below. Round percents to the nearest whole number. (1 point for each correct answer in column 1; $\mathbf{2}$ points for each correct answer in columns 2 and 3)

1. Maye Chau owns small restaurants in four different towns: (a) Alleghany, (b) Delwood, (c) Bangor, and (d) Lakeside. She manages all four restaurants from central office that she maintains at the Alleghany restaurant. Monthly office expenses are distributed among the four restaurants based on the floor space of each. In the following table, complete the distribution table for monthly expenses of $\$ 16,000$.

Store	Space Occupied	Square Feet	Percent of Total	Distribution of Expense
(a) Alleghany	$60 \mathrm{ft} \times 40 \mathrm{ft}$			
(b) Delwood	$40 \mathrm{ft} \times 45 \mathrm{ft}$			
(c) Bangor	$70 \mathrm{ft} \times 30 \mathrm{ft}$			
(d) Lakeside	$30 \mathrm{ft} \times 40 \mathrm{ft}$			
Total		7,500	100\%	\$16,000

B (16 points) Complete the percent and distribution columns in the following table. Before computing the distribution, round each percent to the nearest whole number. (2 points for each correct answer)
2. Diane Kingsley owns a temporary services company. She employs four types of employees whom she places into temporary positions: (a) bookkeepers, (b) secretaries, (c) food service people, and (d) hotel service people. Diane rents office space for $\$ 5,200$ per month. She distributes the rent among the four labor groups, according to the number of people employed in each group. Calculate the percents and the resulting distributions.
(a) Bookkeepers
(b) Secretaries
(c) Food Service
(d) Hotel Service

Total

Number of Employees	Percent of Total	Distribution of Rent
18	-	-
36	-	-
42	$\underline{100 \%}$	$\overline{\$ 5,200}$
24		

C (64 points) The following situations provide practice in distributing monthly overhead expenses at a central office. From the information given in the following table, complete the distributions indicated in problems 3 through 6. Remember: Answers for each problem should sum to the total monthly overhead expense. (4 points for each correct answer)

Monthly Overhead		Location					
Expense		Basis of Distribution	East	West	North	South	TOTAL
Insurance	$\$ 20,000$	Square feet	19,200	9,600	14,400	16,800	60,000
Utilities	15,000	Machine hours worked	18,000	14,400	10,800	28,800	72,000
Rent	26,000	Units produced	10,200	7,800	5,700	6,300	30,000
Maintenance	12,000	Number of employees	30	75	105	90	300

3. Distribute insurance expense based on the number of square feet at each location.
\qquad
4. Distribute utilities expense based on the number of machine hours worked in each location. East \qquad ; West \qquad ; North \qquad ; South \qquad Check.
5. Distribute rent expense based on the units produced at each location.

East \qquad ; West \qquad ; North \qquad ; South \qquad Check.
6. Distribute maintenance expense based on the number of employees at each location.

East \qquad ; West \qquad ; North \qquad ; South \qquad Check.

Commissions

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1
 Compute sales commissions and gross pay.

Learning Objective 2
Compute graduated sales commissions.

Learning Objective 3 Compute sales and purchases for principals.

A commission is a payment to an employee or to an agent for performing a business transaction or service. The most familiar type of commission is that received by a salesperson. Many companies have employees who are paid either totally or partially on a commission basis. People who sell insurance, real estate, and automobiles typically are in this category.

For a business owner, one advantage of using the commission method to pay employees is that the commission is an incentive. Employees are paid on the basis of the volume of business they produce for the company. They can earn more by being more productive.

Besides typical salespeople, other businesspeople provide selling and buying services. These include commission merchants, agents, and brokers, all of whom are paid a commission for their services. The person for whom the services are provided is called the principal. A commission merchant will normally take actual possession of the merchandise and make the sales transaction in his or her name. A broker, however, will usually make the transaction in the principal's name and does not take possession of the merchandise.

Computing Sales Commissions and Gross Pay

Learning Objective

Compute sales commissions and gross pay.

A sales commission paid to a salesperson is usually a stated percent of the dollar value of the goods or services sold. Whether the commission is based on the wholesale or retail value of the goods will depend on the type of business and merchandise sold. The rate used to calculate the commission also will vary among different businesses. In some companies, the salesperson receives both a salary and a commission.

STEP S to Compute Commission and Total Pay

1. Multiply the commission rate by the amount sold to get the commission amount.
2. If there is a salary, add it to the commission amount to get the total gross pay.

EXAMPLE A

Kay Schiff sells yachts and marine equipment for Delta Marine Sales. She receives a base salary of $\$ 3,000$ per month and earns a commission that is 2% of the value of all boating equipment that she sells during the month. Find her commission and total pay during September, a month in which she sold $\$ 132,000$ worth of equipment.

$$
\begin{array}{ll}
\text { STEP } 1 & 2 \% \times \$ 132,000=0.02 \times \$ 132,000=\$ 2,640 \text { commission } \\
\text { STEP 2 } & \$ 2,640 \text { commission }+\$ 3,000 \text { base salary }=\$ 5,640 \text { total pay }
\end{array}
$$

Commissions normally are paid only on actual sales. Thus goods that are returned or orders that are canceled are not subject to commission. The reason for this policy is to protect the business owner. Suppose that Delta Marine Sales in example A pays the 2% commission whether or not the goods are returned. When Kay Schiff got an order for $\$ 20,000$, her commission would be $2 \% \times \$ 2,000=\$ 400$. If the goods were all returned but the commission were still paid, the owner would have to pay her $\$ 400$. Because no goods were sold, the owner actually would lose $\$ 400$ on this transaction.

S T EP S to Compute Commission When a Sale Involves Returned Goods

1. Subtract the value of the returned goods from the total ordered to determine the amount sold.
2. Multiply the commission rate by the amount sold to get the commission amount.

EXAMPLE B

Hobart Hamilton is a salesperson for Aggie Office Supply. He works on commissiononly basis-he receives a commission of 2.5% on his monthly sales, but no base salary. What are his commission and total pay during a month when he sells $\$ 166,000$ worth of office products, but one of his customers cancels an order for $\$ 25,000$ and returns the merchandise that had already been delivered?

$$
\begin{array}{ll}
\hline \text { STEP } 1 & \$ 168,000-\$ 25,000=\$ 141,000 \\
\text { STEP 2 } & 2.5 \% \times \$ 141,500=0.025 \times \$ 141,000=\$ 3,525 \text { commission } \\
& \text { Total Pay }=\$ 3,525, \text { as he is paid on a commission-only basis }
\end{array}
$$

CONCEPT CHECK 6.1

Compute the commission and gross pay for a salesperson who is paid a $\$ 1,800$ salary and earns a 4% commission. Total sales were $\$ 88,000$, but there were returns of $\$ 6,000$.
$\$ 88,000-\$ 6,000=\$ 82,000$ net sales
$4 \% \times \$ 82,000=0.04 \times \$ 82,000=\$ 3,280 \quad$ commission

$$
\begin{aligned}
+1,800 & \text { salary } \\
\$ 5,080 & \text { gross pay }
\end{aligned}
$$

Computing Graduated Sales Commissions

Commission plans provide incentives for employees because they can earn more money by selling more products. A company can provide additional incentives for even greater productivity by using graduated commission rates. As the level of sales increases, so does the commission rate.

S T E P S to Compute Commission Under a Graduated Rates Plan

1. Compute the dollar amount at each rate level by using subtraction.
2. Multiply each level's commission rate by the level's sales dollars.
3. Add the products computed in Step 2 to determine the total commission.

Learning Objectives

Compute graduated sales commissions.

EXAMPLEC

Donna Chin has a monthly commission plan under which she receives 2% on the first $\$ 40,000$ of sales during the month and 3% on sales above $\$ 40,000$ for the month. If Donna has sales of $\$ 75,000$ during a month, compute her commission for that month.

STEP 1

| $\$ 75,000$ total sales \quad STEP 2 | $\$ 40,000 \times 0.02$ |
| ---: | :--- |$=\$ 800$

EXAMPLE D

Assume that Donna has a monthly commission plan under which she receives 2% on the first $\$ 40,000$ of sales during the month, 3% on sales from $\$ 40,000$ to $\$ 80,000$, and 4% on all sales over $\$ 80,000$. If Donna has sales of $\$ 126,000$ during a month, compute her commission for that month.

STEP 1

The same graduated incentive plan can be defined in terms of bonus rates. The calculations are similar.

EXAMPLE E

Dale Crist has a monthly commission plan under which he receives 2% on all sales during the month. If Dale has sales over $\$ 40,000$, he receives a bonus of 1% of everything over $\$ 40,000$. If he sells more than $\$ 80,000$, he receives a "super bonus" of an additional 1% of everything over $\$ 80,000$. What is Dale's commission for a month during which he sold \$112,000?

© JACK STAR/PHOTOLINK/PHOTODISC/GETTY
IMAGES

CONCEPT CHECK 6.2

Compute the total commission on sales of $\$ 184,000$. The commission is graduated: 1% on sales to $\$ 50,000,2 \%$ on sales from $\$ 50,000$ to $\$ 100,000$, and 3% on sales above $\$ 100,000$.

```
1% }\times$50,000=0.01\times$50,000=$ = 500
2% 
3% }\times$84,400=0.03\times$84,000= = 2,52
Total commission = $4,020
```


Computing Sales and Purchases for Principals

A producer may send goods to an agent, often called a commission merchant, for sale at the best possible price. Such a shipment is a consignment. The party who sends the shipment is the consignor; the party to whom it is sent-that is, the commission merchant-is the consignee.

Whatever amount the commission merchant gets for the consignment is the gross proceeds. The commission is generally a certain percent of the gross proceeds. Sometimes it is a certain amount per unit of weight or measure of the goods sold. The commission and any other sales expenses (e.g., transportation, advertising, storage, and insurance) are the charges. The charges are deducted from the gross proceeds. The resulting amount, which is sent to the consignor, is the net proceeds.

EXAMPLE F

Jack Phelps, owner of Willowbrook Farms, has been trying to sell a used livestock truck and a used tractor. Unsuccessful after 3 months, Phelps consigns the items to Acme Equipment Brokers. They agree on commission rates of 6% on the gross proceeds from the truck and 9% on the gross proceeds from the tractor. Acme sells the truck for $\$ 42,500$ and the tractor for $\$ 78,600$. Acme also pays $\$ 610$ to deliver the truck and $\$ 835$ to deliver the tractor. What are the net proceeds due Willowbrook Farms from the sale of the equipment?

Truck:	Commission: $0.06 \times \$ 42,500=$	$\$ 2,550$	Gross proceeds:	$\$ 42,500$
	Freight:	+610	less charges	$\underline{-3,160}$
Total charges	$\$ 3,160$	Net Proceeds:	$\$ 39,340$	
Tractor:	Commission: $0.09 \times \$ 78,600=\$ 7,074$	Gross proceeds:	$\$ 78,600$	
	Freight:	$\underline{+835}$	less charges	$\frac{-7,909}{}$
Total charges	$\$ 7,909$	Net proceeds:	$\$ 70,691$	

$\$ 39,340+\$ 70,691=\$ 110,031$ Total Net Proceeds

Along with the net proceeds, the commission merchant sends the consignor a form known as an account sales. It is a detailed statement of the amount of the sales and the various deductions. Figure 6-1 shows a typical account sales.

Compute sales and purchases for principals.

ACME EQUIPMENT BROKERS

NAME Willowbrook Farms ADDRESS 127 N . Kaye Albany, GA 31704-5606

August 16, 20-- NO. 67324
309 Sule Road, Wilbraham, MA 01095-2073
BELOW ARE ACCOUNT SALES OF Consignment No. 76 RECEIVED August 1, 20-and sold for account of Same

DATE	CHARGES	AMOUNT	DATE	SALES	AMOUNT
$\text { Aug. } 1$	Freight (truck) 6\% Commission (truck) Net proceeds (truck) Freight (tractor) 9\% Commission (tractor) Net proceeds (tractor) Total	$\begin{array}{r} 610 \\ 2,550 \\ 39,340 \\ \\ 835 \\ 7,074 \\ 70,691 \\ \hline \$ 121,100 \end{array}$	Aug. 10 13	Truck Tractor Gross proceeds	$\begin{array}{r} \$ 42,500 \\ \frac{78,600}{\$ 121,100} \end{array}$

When commission merchants purchase goods for their principals, the price they pay for the merchandise is the prime cost. The prime cost and all charges are the gross cost, or the cost the principal pays.

EXAMPLE G

Asia-Pacific Tours commissioned Specialty Marketing Group to purchase 10,000 vinyl travel bags that will be labeled with Asia-Pacific's logo and used as promotional items. For this size order, Specialty Marketing purchased the bags for $\$ 4.29$ each. Charges include the commission, which is 6% of the prime cost; storage, $\$ 125$; and freight, $\$ 168$. What is the gross cost that Asia-Pacific should pay to Specialty Marketing?
$\$ \quad 4.29 \quad \$ 42,900$ prime cost

$\times 10,000$	units	$\times 0.06$	
$\$ 42,900$	prime cost	$\$ 2,574$	
commission			

$\$ 2,574$ commission $+\$ 125$ storage $+\$ 168$ freight $=\$ 2,867$ charges
$\$ 42,900$ prime cost $+\$ 2,867$ charges $=\$ 45,767$ gross cost
An account purchase is a detailed statement from the commission merchant to the principal. It shows the cost of goods purchased, including charges. Figure 6-2 shows a typical account purchase, for the transaction in example G.

CONCEPT CHECK 6.3

a. Compute the commission and the net proceeds on a consignment sale of $\$ 6,500$. The commission rate is 5%, local delivery charges are $\$ 328.16$, and storage charges are $\$ 125$.
$5 \% \times \$ 6,500=0.05 \times \$ 6,500=\$ 325$ commission
$\$ 6,500-\$ 325-\$ 328.16-\$ 125=\$ 5,721.84$ net proceeds
b. Compute the commission and gross cost on a $\$ 12,500$ purchase for a principal. The commission rate is 7%, air freight is $\$ 138.70$, and local delivery charges are $\$ 64.60$.
$7 \% \times \$ 12,500=0.07 \times \$ 12,500=\$ 875$ commission
$\$ 12,500+\$ 875+\$ 138.70+\$ 64.60=\$ 13,578.30$ gross cost

COMPLETE ASSIGNMENTS 6.1 AND 6.2.

Chapter Terms for Review

account purchase

account sales
broker
charges
commission
commission merchant
consignee
consignment

consignor

graduated commission rates
gross cost
gross proceeds
net proceeds
prime cost
principal

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
6.1	1. A salesperson gets a $\$ 2,240$ salary and a 2% commission. Find the commission and the gross pay when sales are $\$ 58,200$ Compute returns are
Comes commissions and gross pay	

6.2

Compute graduated sales commissions

6.3

Compute sales and purchases for principals
2. A salesperson has a graduated commission rate: 1% on sales up to $\$ 100,000 ; 2 \%$ on sales from $\$ 100,000$ to $\$ 200,000$; and 2.5% on sales above $\$ 200,000$. Find the commission when sales are $\$ 255,000$.
3. A broker sells a principal's merchandise at a gross sales price of $\$ 15,600$ and a commission rate of 3.5%. There are sales costs of $\$ 300$ for storage and $\$ 119$ for delivery. Find the commission and net proceeds.
4. A commission merchant purchases merchandise for a principal at a prime cost of $\$ 8,400$. The commission rate is 8%, air freight is $\$ 139$, and local delivery is $\$ 75$. Find the commission and gross cost.

Review Problems for Chapter 6

In problems 1-4, compute both the commission and the total pay based on the information given.

1 Salary, $\$ 3,000$; commission rate, 6%; total sales, $\$ 58,000$; returns, $\$ 0$
a. Commission \qquad b. Total pay \qquad

2 Salary, \$2,500; commission rate, 5%; total sales, \$91,000; returns, \$5,000
a. Commission \qquad b. Total pay \qquad

3 Salary, $\$ 4,500$; commission rate, 4%; total sales, $\$ 74,000$; returns, $\$ 8,975$
a. Commission \qquad b. Total pay \qquad
4 Salary, \$0; commission rate, 8%; total sales, $\$ 98,000$; returns, $\$ 11,425$
a. Commission \qquad b. Total pay \qquad
5 Compute the total commission on sales of $\$ 160,000$ if the commission rates are 3% on the first $\$ 100,000$ and 5% on everything above $\$ 100,000$. \qquad
6 Compute the total commission on sales of $\$ 85,000$ if the commission rates are 3% on the first $\$ 100,000$ and 5% on everything above $\$ 100,000$. \qquad
7 Compute the total commission on sales of $\$ 250,000$ if the commission rates are 2% on the first $\$ 75,000$; then 3% on the next $\$ 75,000$; and 4% on everything above $\$ 150,000$.

8 Compute the total commission on sales of $\$ 135,000$ if the commission rates are 2% on the first $\$ 75,000$; then 3% on the next $\$ 75,000$; and 4% on everything above $\$ 150,000$. \qquad
9 Compute the total commission on sales of $\$ 70,000$ if the commission rates are 2% on the first $\$ 75,000$; then 3% on the next $\$ 75,000$; and 4% on everything above $\$ 150,000$. \qquad
10 Compute the total commission on sales of $\$ 115,000$ if the commission rates are 4% on the first $\$ 35,000$; then 6% on the next $\$ 45,000$; and 8% on everything above $\$ 80,000$. \qquad
11 Larry Leong is paid 3% on all sales. He is also paid a bonus of an additional 1% on any sales above $\$ 75,000$. Calculate Larry's total commission on sales of $\$ 125,000$. \qquad
12 Gloria Alvares is paid 4% on all sales. She is also paid a bonus of an additional 2% on any sales above $\$ 40,000$. Calculate Gloria's total commission on sales of $\$ 105,000$. \qquad
13 Charles White sells used logging equipment on consignment. He charges 20% plus expenses. Calculate Charles's commission on a log truck he sold for $\$ 42,750$. \qquad
14 For the sale in problem 13, Charles also paid an additional $\$ 290$ to deliver the truck to the new owner. Calculate the net proceeds that Charles's principal should receive. \qquad
15 Sue Lyon is a designer who purchases furniture for clients. She charges 15% of the price, plus expenses. Calculate Sue's commission on furniture priced at $\$ 21,400$. \qquad
16 For the sale in problem 15, calculate the gross cost to the client if Sue also had expenses of $\$ 646$. \qquad

Assignment 6.1: Commission

Name
Date Score

A (24 points) Find the commission and the total gross pay. (2 points for each correct answer)

Employee	Monthly Salary	Commission Rate	Monthly Sales	Commission	Gross Pay
1. Li, Walter	$\$ 10$	8%	$\$ 45,000$	-	-
2. Starr, Karen	2,000	3%	36,000	-	-
3. Aguire, Luis	1,500	5%	42,000		-
4. Gupta, Rajeev	3,000	2%	40,000	-	
5. Rogerro, George	1,800	6.5%	64,000	-	

B (36 points) Compute the total commission for the following commission payment plans. (6 points for each correct answer)

Graduated Commission Rates	Sales	Commission
7. 2% on sales to $\$ 60,000$	$\$ 106,000$	-
4% on sales above $\$ 60,000$		
8. 1% on sales to $\$ 150,000$		
2% on sales above $\$ 150,000$	$\$ 188,000$	
9. 3% on sales to $\$ 50,000$		
5% on sales above $\$ 50,000$	$\$ 94,400$	
10. 1% on sales to $\$ 75,000$		
2% on sales from $\$ 75,000$ to $\$ 150,000$	$\$ 240,000$	
3% on sales above $\$ 150,000$		
11. 3% on sales to $\$ 50,000$		
4% on sales from $\$ 50,000$ to $\$ 100,000$		
5% on sales above $\$ 100,000$		

12. 2% on sales to $\$ 65,000$
\$124,800
3% on sales from $\$ 65,000$ to $\$ 130,000$
4% on sales above $\$ 150,000$
Score for B (36)
C (20 points) Janet Cronin is a commission merchant. She charges different commission rates to sell different types of merchandise. During May, she completed the following consignment sales for consignors. Find Janet's commission on each sale and the net proceeds sent to each consignor. (2 points for each correct answer)

Gross Sales	Comm. Rate	Commission	Local Delivery	Storage	Air Freight	Net Proceeds
13. $\$ 38,400$	3\%		\$68.75	\$ 0	\$183.50	
14. 1,600	4.5\%		88.50	65.00	0	
15. 8,400	6\%		284.00	0	0	
16. 12,880	5\%		0	0	148.00	
17. 5,600	3.5\%		0	85.00	112.00	
						ore for C (20)

D (20 points) Alvin Guiterez, a commission merchant in Dallas, buys merchandise exclusively for principals. Listed below are five recent transactions. Compute Alvin's commission on each purchase and the gross cost. (2 points for each correct answer)
\(\left.$$
\begin{array}{lllllll}\begin{array}{l}\text { Prime } \\
\text { Cost }\end{array} & \begin{array}{l}\text { Comm. } \\
\text { Rate }\end{array} & \text { Commission } & \begin{array}{l}\text { Local } \\
\text { Delivery }\end{array} & \begin{array}{l}\text { Storage }\end{array} & \begin{array}{l}\text { Air } \\
\text { Freight }\end{array} & \begin{array}{l}\text { Gross } \\
\text { Cost }\end{array}
$$

\hline 18. \$ 16,600 \& 5 \% \& - \& \$ 89.50 \& \$ 88.00 \& \$ \& 0\end{array}\right]\)| - |
| :--- |
| 19. 4,900 |

Assignment 6.2: Applications with Commission

Name
Date Score

A (56 points) Solve each of the following business application problems involving salespeople who are paid partly or entirely on a commission basis. Solve the problems in order, because some of the questions are sequential. (8 points for each correct answer)

1. Pat Endicot sells memberships to an athletic club. He receives a monthly salary of $\$ 1,200$ plus a commission of 12% on new membership fees. What was Pat's monthly pay for May, when he sold new memberships valued at $\$ 34,500$? \qquad
2. Roberta Reavis sells commercial restaurant supplies and equipment. She is paid on a commission-only basis. She receives 2% for her sales up to $\$ 60,000$. For the next $\$ 90,000$ of sales, she is paid 3%, and for any sales above $\$ 150,000$ she is paid 4%. How much commission would Roberta earn in a month when her sales were $\$ 175,000$? \qquad
3. Roberta Reavis (problem 2) is not paid commission on any restaurant supplies or equipment that are later returned. If an item is returned, its price is deducted from Roberta's total sales to get her net sales. The com-mission-only rate is applied to her net sales. Suppose that Roberta sold merchandise worth $\$ 175,000$ but that $\$ 40,000$ of that was later returned. What would be Roberta's commission on net sales? \qquad
4. Dana Kline works for Southwest Appliance Depot. She receives a monthly salary of $\$ 2,500$ for which she must sell $\$ 20,000$ worth of appliances. She also receives a commission of 4% on net sales above $\$ 20,000$. What will be Dana's pay for October when her net appliance sales were $\$ 42,000$? \qquad
5. Southwest Appliance Depot (problem 4) offers service contracts with all appliance sales. To encourage salespeople such as Dana to sell more service contracts, the company pays a commission of 20% on all service contracts. What will be her total pay for a month if she sells $\$ 42,000$ worth of appliances and $\$ 1,500$ worth of service contracts? \qquad
6. Stockbrokers for companies such as PaineWebber are normally paid a commission on the stocks that they buy and sell for their clients. Suppose that the commission rate is 0.5% of the value of the stock. What will the commission be on 5,000 shares of General Motors stock that is selling for $\$ 67.31$ per share?
7. Joni Lopez works in telemarketing. Her job is to make telephone calls from a computerized list of names and try to convince people to make an appointment with a life insurance salesperson. Joni receives $30 ¢$ for each completed telephone call, $\$ 6.00$ for each appointment made and kept, and 0.75% of any initial revenue that results from the appointment. How much would Joni earn if she completed 868 calls, 137 persons made and kept appointments, and $\$ 28,500$ in revenue resulted from the appointments? \qquad

B ($\mathbf{2 4}$ points) Solve each of the following business applications about consignment sales and commission merchants. (8 points for each correct answer)
8. Teresa Fowler is a commission merchant who charges a 15% commission to sell antique furniture from her showroom. Henry Marshal owns antique furniture, which he transports to the showroom where Theresa sells it for $\$ 9,600$. Henry agrees to pay Theresa $\$ 488$ to have the furniture delivered to the buyer from the showroom. What will be Henry's net proceeds from the sale? \qquad
9. Suppose, in problem 8 , that payment of the $\$ 488$ delivery expense was Theresa's responsibility instead of Henry's. Then what would be Theresa's net earnings from the sale? \qquad
10. Sandy McCulloch makes artistic weavings that are used as wall hangings. She sells her weavings primarily at open-air art shows and street fairs through her agent, Ruth Danielson. Ruth charges 20% on all sales, plus the fees to operate a sales booth and transportation expenses. What will be Sandy's net proceeds if Ruth sold weavings worth $\$ 32,400$ at four different art shows? Each art show charged a booth fee of $\$ 500$, and Ruth's total transportation expenses were $\$ 425$.

C (20 points) The following problems involve the purchase of a home. (10 points for each correct answer)
11. JoAnn Ednie has a house that she would like to sell and she asks real estate broker Gene Jenkins to sell it. Gene owns Jenkins/Weekly Real Estate, which advises JoAnn that she should be able to sell her house for $\$ 180,000$. The commission rate for selling a house is 6%. If the house sells for the expected price, what will be the total commission amount that JoAnn pays? \qquad
12. See problem 11. To sell her home, JoAnn Ednie must pay some additional fees for three home inspections and title insurance, as well as fees to the county to record the transaction. These fees total $\$ 3,500$ and are added to the 6% commission. What will JoAnn's net proceeds be from the sale of her $\$ 180,000$ home? \qquad

Discounts

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute trade discounts.

Learning Objective 2

Compute a series of trade discounts.

Learning Objective

Compute the equivalent single discount rate for a series of trade discounts.

Learning Objective 4

Learning Objective
Compute cash discounts and remittance amounts for fully paid invoices.

Compute cash discounts and remittance amounts for partially paid invoices.

When one business sells merchandise to another business, the seller often offers two types of discounts: trade discounts and cash discounts. Trade discounts affect the agreedupon selling price before the sale happens. Cash discounts affect the amount actually paid after the transaction.

Computing Trade Discounts

Learning Objective

Compute trade discounts.

Businesses that sell products want to attract and keep customers who make repeated, large-volume purchases. Manufacturers, distributors, and wholesalers frequently offer trade discounts to buyers "in the trade," generally based on the quantity purchased. For example, Eastern Restaurant Supply gives a 40% discount to Regal Meals, a local chain of 34 sidewalk sandwich carts that sell hot dogs and sausage sandwiches. Another Eastern customer is Suzi Wilson, founder and owner of Suzi's Muffins. Suzi's business is still small. She bakes her muffins between 11 P.M. and 2 A.M. in oven space that she leases from a bakery. Eastern gives Suzi only a 25% discount because she doesn't do as much business with Eastern as Regal Meals does. Eastern also sells to people who are not "in the trade." These retail customers pay the regular list price, or full price without a discount.

Large restaurant chains such as McDonald's or Burger King can go directly to the manufacturer for most items or even do their own manufacturing. They can have items manufactured to their exact specifications for a contracted price. They reduce their costs by eliminating the distributors (the "middle men").

The two traditional methods for computing trade discounts are the discount method and the complement method. You can use both to find the net price that a distributor will charge a customer after the discount. The discount method is useful when you want to know both the net price and the actual amount of the trade discount. The complement method is used to find only the net price. It gets its name because you use the complement rate, which is 100% minus the discount rate. Each method has only two steps.

STEPS to Compute Net Price with the Discount Method

1. Multiply the discount rate by the list price to get the discount amount: Discount $=$ Trade discount rate \times List price
2. Subtract the discount from the list price to get the net price: Net price $=$ List price - Discount

EXAMPLE A

Eastern Restaurant Supply sells a set of stainless steel trays to Suzi's Muffins. The list price is $\$ 120$, and Suzi qualifies for a 25% trade discount. Compute the net price using the discount method.

STEP 1

$$
\text { Discount }=0.25 \times \$ 120=\$ 30
$$

STEP 2

$$
\text { Net price }=\$ 120-\$ 30=\$ 90
$$

STEPS to Compute Net Price with the Complement Method

1. Subtract the discount rate from 100% to get the complement rate: Complement rate $=100 \%$ - Trade discount rate
2. Multiply the complement rate by the list price to get the net price: Net price $=$ Complement rate \times List price

EXAMPLE B

Using the data in example A, compute the net price, using the complement method.

$$
\begin{array}{ll}
\text { STEP 1 } & \text { Complement rate }=100 \%-25 \%=75 \% \\
\text { STEP 2 } & \text { Net price } \\
=0.75 \times \$ 240=\$ 180
\end{array}
$$

CONCEPT CHECK 7.1

a. Compute the trade discount amount and the net price, using the discount method.

List price $=\$ 240$ Trade discount $=30 \%$
Discount amount $=0.30 \times \$ 240=\$ 72$
Net price $=\$ 240-\$ 72=\$ 168$
b. Compute the complement rate and the net price, using the complement method.

List price $=\$ 240 \quad$ Trade discount $=30 \%$
Complement rate $=100 \%-30 \%=70 \%$
Net price $=0.70 \times \$ 240=\$ 168$

Computing a Series of Trade Discounts

A distributor or manufacturer may give additional discounts to customers who actually buy the largest volumes. Suppose that Eastern Restaurant Supply gives all food preparation businesses a 25% discount for being in the trade. However, if one business buys twice as much from Eastern, it may be rewarded with additional discounts. For example,

Learning Objectives

Compute a series of trade discounts. Suzi's Muffins may receive its first discount of 25% automatically. Then, Suzi's gets an additional 20% discount if its accumulated purchases were between $\$ 10,000$ and $\$ 25,000$ during the previous year and another 10% if accumulated purchases were more than $\$ 25,000$ during the previous year. Therefore, Suzi's Muffins could have discounts of 25\%, 20%, and 10%, called a series of discounts.

Both the discount method and the complement method can be used to compute the net price for a series of discounts. The two methods are the same as shown previously, except that the steps are repeated for each discount in the series. For example, if there are three discounts, repeat the steps three times. Apply the first discount rate to the list price. For the second and third discounts, compute intermediate prices and then apply the discount rates to them.

EXAMPLEC

Eastern Restaurant Supply sells a set of mixing bowls with a list price of $\$ 200$. Suzi's Muffins qualifies for the series of discounts: $25 \%, 20 \%, 10 \%$. Compute the net price using the discount method.

	$\frac{\text { 1st discount }}{0.25 \times \$ 200}=\$ 50$	$\frac{\text { 2nd discount }}{0.20 \times \$ 150}=\$ 30$	$\underline{\text { 3rd discount }}$
STEP 1 $\$ 200-\$ 50=\$ 150$	$\$ 150-\$ 30=\$ 120$	$\$ 120-\$ 12=\$ 108$	

EXAMPLE D

Using the data in example C, calculate the net price using the complement method.

	$\frac{\text { 1st discount }}{100 \%-25 \%}=75 \%$	$\frac{\text { 2nd discount }}{100 \%-20 \%}=80 \%$	$\frac{\text { 3rd discount }}{100 \%-10 \%}=90 \%$
STEP 1	$0.75 \times \$ 200=\$ 150$	$0.80 \times \$ 150=\$ 120$	$0.90 \times \$ 120=\$ 108$

COMPLEMENT METHOD SHORTCUT

When you use complement rates, you may not need to write all of the intermediate prices. If not, an efficient shortcut is

Multiply the list price by all of the complement rates successively.

EXAMPLE E

Repeat example D, using the shortcut. The list price is $\$ 200$, and the discounts are 25%, 20%, and 10%. The complement rates are $75 \%, 80 \%$, and 90%.
Net price $=\$ 200 \times 0.75 \times 0.80 \times 0.90=\$ 108$
Note: Remember that there should be no rounding until you reach the final net price. Then round it to the nearest cent.

CONCEPT CHECK 7.2

a. A wholesaler offers a series of trade discounts: $30 \%, 25 \%$, and 10%. Find each of the discount amounts and the final net price on a $\$ 1,500$ purchase.
First discount amount:
$\$ 1,500 \times 0.30=\$ 450$
Second discount amount:
$\$ 1,500-\$ 450=\$ 1,050 ; \$ 1,050 \times 0.25=\$ 262.50$
Third discount amount:
$\$ 1,050-\$ 262.50=\$ 787.50 ; \$ 787.50 \times 0.10=\$ 78.75$
Net price:
$\$ 787.50-\$ 78.75=\$ 708.75$
b. A series of trade discounts is $30 \%, 25 \%$, and 10%. Find each of the complement rates, and use the shortcut to calculate the final net price on a purchase of $\$ 1,500$.
First complement rate: $\quad 100 \%-30 \%=70 \%$
Second complement rate: $\quad 100 \%-25 \%=75 \%$
Third complement rate: $\quad 100 \%-10 \%=90 \%$
Net price: $\quad \$ 1,500 \times 0.70 \times 0.75 \times 0.90=\$ 708.75$

Computing the Equivalent Single Discount Rate

Suppose that an Eastern competitor, United Food Services, offers a single discount of 45% to Suzi's Muffins. How does that rate compare to the series of discounts from Eastern, $25 \%, 20 \%$, and 10% ? Suzi or her accountant could check by calculating the equivalent single discount rate, which is the single discount rate that can be used in place of two or more trade discount rates to determine the same discount amount.

The most efficient way to find the single discount rate that is equivalent to a series of discounts is similar to the shortcut used in example E .

Learning Objectives

Compute the equivalent single discount rate for a series of trade discounts.

STEPS to Compute the Equivalent Single Discount Rate

1. Compute the complement of each rate.
2. Multiply all the complement rates (as decimals), and then write the product as a percent.
3. Subtract the product (Step 2) from 100% to get the equivalent single discount rate.

EXAMPLE F

Find the equivalent single discount rate for Eastern's series of discounts: $25 \%, 20 \%$, and 10%.

STEP 1	1st complement rate 2nd complement rate 3rd complement rate	$=100 \%-25 \%=75 \%$
	STEP 2	Product of complements

CONCEPTCHECK 7.3

A series of trade discounts is $50 \%, 30 \%$, and 10%. Find the three complement rates and then find the equivalent single trade discount rate.

Complement rates:
Product of the complement rates:
Equivalent single discount rate:
$100 \%-50 \%=50 \%, 100 \%-30 \%=70 \%, 100 \%-10 \%=90 \%$
$0.50 \times 0.70 \times 0.90=0.315$, or 31.5%
$100 \%-31.5 \%=68.5 \%$

COMPLETE ASSIGNMENT 7.1.

Computing Cash Discounts for Fully Paid Invoices

Compute cash discounts and remittance amounts for fully paid invoices.

When a seller sends merchandise to a buyer, the seller usually wants to get its payment quickly and some buyers often try to delay payment as long as possible. Sellers can encourage early payment by offering a cash discount; they can discourage late payment by assessing an extra interest payment; or they can do both. These stipulations are called the terms of payment, or simply the terms. The terms describe details about cash discounts and/or penalty periods.

After shipping merchandise to a buyer, the seller usually sends a document called an invoice, requesting payment. An invoice lists each item, its cost (including packaging and freight), and the total cost. The invoice also states the terms of payment. The amount the buyer pays is called the remittance. The net purchase amount is the price of the merchandise actually purchased, including allowances for returns and excluding handling and other costs.

STEPS to Compute the Remittance

1. Multiply the discount rate (expressed as a decimal) by the net purchase amount to get the cash discount:
Cash discount $=$ Discount rate \times Net purchase amount
2. Subtract the cash discount from the net purchase amount to get the remittance:
Remittance $=$ Net purchase amount - Cash discount

Figure 7-1 shows an invoice from National Automotive Supply, which sold car wax to Broadway Motors for $\$ 528$. The wax will be shipped via UPS, and National will pay for the shipping. The invoice lists terms of $2 / 10, \mathrm{n} / 30$. The invoice date, or the beginning of the discount period, is May 23.

Figure 7-1 \quad Sales Invoice

INVOICE NO. 782535

SOLD TO Broadway Motors DATE May 23, 200730 w. Columbia Dr. TERMS 2/10, n/30 Peoria, IL 62170-1184 SHIP VIA UPS

QUANTITY	DESCRIPTION	UNIT PRICE	GROSS AMOUNT	NET AMOUNT
24 gals.	Car wax	$\$ 22.00$	$\$ 528.00$	$\$ 528.00$

The expression 2/10, $\mathrm{n} / 30$ means that Broadway Motors can get a 2% discount if it pays the full invoice within 10 days of the invoice date. Ten days after May 23 is June 2, which is called the discount date. The 10-day period between May 23 and June 2 is called the discount period. The $\mathrm{n} / 30$ is short for net 30 , which means that if Broadway Motors does not pay within 30 days, National will charge an interest penalty. Thirty days after May 23 is June 22, which is called the due date. (See Figure 7-2)

Figure 7-2 Cash Discount Time Line

EXAMPLE G

Compute the remittance due if Broadway Motors pays National within the 10-day discount period.

$$
\begin{array}{ll}
\text { STEP 1 } & \text { Cash discount }=2 \% \text { of } \$ 528=0.02 \times \$ 528=\$ 10.56 \\
\text { STEP 2 } & \text { Remittance }=\$ 528-\$ 10.56=\$ 517.44
\end{array}
$$

All companies do not use exactly the same notation for writing their terms; $2 / 10$, $\mathrm{n} / 30$ is also written as $2 / 10$, net 30 or as $2-10, \mathrm{n}-30$. Likewise, there can be more than one discount rate and discount period. For example $2 / 5,1 / 15, n / 30$ means that the seller gets a 2% discount by paying within 5 days, gets a 1% discount by paying between 6 and 15 days, and must pay a penalty after 30 days.

RETURNED MERCHANDISE AND FREIGHT CHARGES

The seller gives a discount only on merchandise that is actually purchased-the net purchases. For example, there is no discount on returned items. Likewise, there is no discount on charges from a third party, such as freight.

S T E P S to Compute the Remittance When There Are Merchandise Returns and/or Freight Charges

1. Net purchase $=$ Invoice amount - Merchandise returns - Freight
2. Cash discount $=$ Discount rate \times Net purchase
3. Cost of merchandise $=$ Net purchase - Cash discount
4. Remittance $=$ Cost of merchandise + Freight, if any

EXAMPLE H

National Automotive Supply sells merchandise to Broadway Motors. The invoice amount is $\$ 510$, which includes $\$ 30$ in freight charges. The invoice date is August 13, and the terms are $2 / 10, \mathrm{n} / 30$. Broadway Motors returns $\$ 200$ worth of merchandise and pays the rest of the invoice before the discount date. Compute the cash discount and the remittance. Also, determine the discount date and due date.
STEP 1
Net purchase $=\$ 510-\$ 200-\$ 30=\$ 280$
STEP 2
Cash discount $=0.02 \times \$ 280=\$ 5.60$
STEP 3
Cost of merchandise $=\$ 280-\$ 5.60=\$ 274.40$
STEP 4

$$
\text { Remittance }=\$ 274.40+\$ 30=\$ 304.40
$$

Discount date $=$ August $13+10$ days $=$ August 23
Due date $=$ August $13+30$ days $=$ September 12

If you don't need to know the actual cost of the merchandise, you can eliminate Step 3 and calculate the remittance directly:

$$
\text { Remittance }=\$ 280.00-\$ 5.60+\$ 30.00=\$ 304.40
$$

There is also a complement method for cash discounts. However, it isn't used as often as the discount method because most businesses want to know the amount of the cash discount before deciding whether to pay the invoice early. In the complement method for cash discounts, only Steps 2 and 3 change.

STEPS to Compute the Remittance with the Complement Method

1. Net purchase $=$ Invoice amount - Merchandise returns - Freight
2. Complement rate $=100 \%$ - Cash discount rate
3. Cost of merchandise $=$ Net purchase \times Complement rate
4. Remittance $=$ Cost of merchandise + Freight, if any

EXAMPLE I

Solve example H by using the complement method for cash discounts. The invoice amount is $\$ 510$, merchandise returns are $\$ 200$, and freight is $\$ 30$.

STEP 1	Net purchase $=\$ 510-\$ 200-\$ 30=\$ 280$
STEP 2	Complement rate $=100 \%-2 \%=98 \%$
STEP 3	Cost of merchandise $=0.98 \times \$ 280=\$ 274.40$
STEP 4	Remittance $=\$ 274.40+\$ 30=\$ 304.40$

CONCEPT CHECK 7.4

a. Use the given information to calculate the discount date, due date, cash discount, and remittance.

Terms:	$1 / 10, \mathrm{n} / 60$	Discount date $=$ August $24+10$ days $=$ September 3
Invoice date:	August 24	Due date $=$ August $24+60$ days $=$ October 23
Invoice amount:	$\$ 852.43$	
Returned goods:	$\$ 187.23$	Net purchases $=\$ 852.43-\$ 187.23-\$ 47.20=\$ 618.00$
Freight:	$\$ 47.20$	Cash discount $=0.01 \times \$ 618=\$ 6.18$
		Remittance $=\$ 618-\$ 6.18+\$ 47.20=\$ 659.02$

b. Calculate the remittance for the problem in part (a), using the complement method.

Net purchases $=\$ 852.43-\$ 187.23-\$ 47.20=\$ 618.00$
Complement rate $=100 \%-1 \%=99 \%$
Cost of merchandise $=0.99 \times \$ 618=\$ 611.82$
Remittance $=\$ 611.82+\$ 47.20=\$ 659.02$

Computing Cash Discounts for Partially Paid Invoices

Sometimes a buyer wants to take advantage of a cash discount but can afford to pay only part of the invoice within the discount period. The invoice will be reduced by the amount paid (remittance) plus the amount of the discount. The total of the amount paid plus the amount of cash discount is called the amount credited to the buyer's account. To compute the amount credited, you need to know the complement rate: 100\% - Discount rate.

Compute cash discounts and remittance amounts for partially paid invoices.

STEPS to Compute the Unpaid Balance

1. Compute the complement of the discount rate (100% - Discount rate).
2. Compute the amount credited by dividing the amount paid (remittance) by the complement rate.
3. Compute the unpaid balance by subtracting the amount credited (Step 2) from the invoice amount.

EXAMPLE J

Larry Eickworth operates a shop called Space Savers, a do-it-yourself center for closets and storage. Larry buys shelving materials with an invoice price of $\$ 484$ and terms of $2 / 10$, net 60 . Within the 10 -day discount period, he sends in a check for $\$ 300$. How much credit should Larry receive, and what is his unpaid balance?

$$
\begin{array}{ll}
\text { STEP 1 } & \text { Complement rate }=100 \%-2 \%=98 \% \\
\text { STEP 2 } & \text { Amount credited }=\$ 300 \div 0.98=\$ 306.1224, \text { or } \$ 306.12 \\
\text { STEP 3 } & \text { Unpaid balance }=\$ 484.00-\$ 306.12=\$ 177.88
\end{array}
$$

Note that, in example J, Larry receives $\$ 1.00$ credit for every $\$ 0.98$ paid. In other words, the $\$ 300$ actually remitted is 98% of the total amount credited. We check this result with multiplication:

Cash discount $=0.02 \times \$ 306.12=\$ 6.1224$, or $\$ 6.12$
Remittance $=\$ 306.12-\$ 6.12=\$ 300.00$

A slightly different situation, which arises less frequently, is when a buyer decides in advance the total amount that he or she wants to have credited to the account. This problem is exactly like the original cash discount problems.

EXAMPLE K

Larry Eickworth buys $\$ 484$ worth of shelving materials for use in his closet and storage shop. The terms are $2 / 10$, net 60 . Larry wants to pay enough within the 10 -day discount period to reduce his unpaid balance by exactly $\$ 300$. What amount should he remit to the seller? What will be his unpaid balance?

STEP 1	Cash discount $=2 \% \times \$ 300=\$ 6$
STEP 2	Remittance $=\$ 300-\$ 6=\$ 294$
STEP 3	Unpaid balance $=\$ 484-\$ 300=\$ 184$

CONCEPT CHECK 7.5

a. An invoice for $\$ 476$ has terms of $1 / 15$, net 25 . How much is the unpaid balance after a $\$ 350$ remittance is made within the discount period?
Complement rate $=100 \%-1 \%=99 \%$
Amount credited $=\$ 350 \div 0.99=\$ 353.54$
Unpaid balance $=\$ 476.00-\$ 353.54=\$ 122.46$
b. An invoice for $\$ 476$ has terms of $1 / 15$, net 25 . What size remittance should be made in order to have a total of $\$ 350$ credited to the account?
Cash discount $=\$ 350 \times 0.01=\$ 3.50$
Remittance $=\$ 350.00-\$ 3.50=\$ 346.50$

COMPLETE ASSIGNMENT 7.2.

Chapter Terms for Review

invoice
invoice date
list price
net price
net purchase amount
remittance
series of discounts
terms of payment
trade discounts

Try Microsoft ${ }^{\circledR}$ Excel

1. Find the required remittance for goods with a list price of $\$ 240$, a trade discount of 25% and a cash discount of 5%.
The formula is List Price $\times(1-$ Trade Discount $\%) \times(1-$ Cash Discount $\%)=$ Remittance. Enter the values in the columns as labeled, and enter the formula in the Remittance cell. Format the remittance cell for Currency with 2 digits after the decimal point.

List	Trade	Cash	
Price	Discount	Discount	Remittance

2. What is the remittance amount for goods with a list price of $\$ 2200$, a trade discount of 40%, and another discount of 25% ?

List Price	Trade Discount	Cash Discount	Remittance

3. What is the remittance amount for goods with a list price of $\$ 1650$, a trade discount of 30%, and another discount of 20% ?

List Price	Trade Discount	Cash Discount	Remittance

Refer to your Student CD template for solutions.

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
7.1	1. Find the net price on a list price of $\$ 280$ with a 25% trade discount, using the discount and the complement methods.

7.2

Compute a series of trade discounts
2. Find the net price on a list price of $\$ 800$ with a series of trade discounts of 25% and 10%. Use both the discount method and the complement method.

7.3

Compute the equivalent single discount rate for a series of trade discounts

7.4

Compute cash discounts and remittance amounts for fully paid invoices

An invoice is dated December 26 and has terms of $2 / 10$, net 25 . The total amount is $\$ 964.24$, with $\$ 141.34$ of returned goods and $\$ 82.90$ freight.
4. Compute the discount date, due date, cash discount, and remittance.
5. Compute the remittance using the complement rate.

7.5

Compute cash discounts and remittance amounts for partially paid invoices
3. A series of trade discounts is $25 \%, 20 \%, 15 \%$. Use complement rates to find the equivalent single discount rate.

An invoice for $\$ 500$ has terms of $3 / 5$, net 45 .
6. Compute the unpaid balance after a $\$ 400$ payment within the discount period.
7. Compute the remittance required within the discount period in order to have $\$ 400$ credited to the account.

Review Problems for Chapter 7

In problems 1 and 2, use the discount method to compute the missing terms.
(1) List price, $\$ 650$; trade discount, 20%
a. Discount amount \qquad
b. Net price \qquad
2 List price, $\$ 1,200$; trade discounts, 30% and 20%
a. First discount amount \qquad
b. Second discount amount \qquad
c. Net price \qquad

In problems 3 and 4, use the complement method to compute the missing terms.

3 List price, $\$ 875$; trade discount, 40%
a. Complement rate \qquad
b. Net price \qquad
4 List price, $\$ 1,600$; trade discounts, 25% and 10%
a. First complement rate \qquad
b. Second complement rate \qquad
c. Net price \qquad

5 Patty Duncan is a broker of hotel rooms in Europe. To tour directors, she offers a standard trade discount of 40% off the list price. She has additional discounts of 20% and 10%, which are based on the number of tours in a season and the total number of tourists. Compute the equivalent single discount rate for tour organizer Kristi Atchison who qualifies for all three discounts.
a. First complement rate \qquad c. Third complement rate \qquad
b. Second complement rate \qquad d. Equivalent single discount rate
\qquad

Use the invoice information given in problems 6 and 7 to compute the missing terms.

6 Terms: $\quad 2 / 10, \mathrm{n} / 30$
Invoice Date: July 25
Invoice Amount: \$874.55
Freight: 0
Returned Goods: 0
a. Discount date \qquad
b. Due date \qquad
c. Discount amount \qquad
d. Remittance \qquad

7 Terms:
Invoice Date:
Invoice Amount:
Freight: $\$ 143$
Freight: \$143
Returned Goods:
\$642
a. Discount date \qquad
b. Due date \qquad
c. Complement rate \qquad
d. Remittance \qquad

8 Joyce Thompson purchased some new pieces of office furniture for her Internet consulting firm. The invoice amount was $\$ 16,540$ with terms of $2 / 10$, net 60 and the discount would apply to any partial payment made within the discount period. Joyce sent in a check for $\$ 10,000$ by the discount date. Find: (a) the amount credited to Joyce's account \qquad ; and (b) the unpaid balance \qquad _.

Assignment 7.1: Trade Discounts

Name
Date Score

A (24 points) Problems 1-3: Find the dollar amount of the trade discount and the net price, using the discount method. Problems 4-6: Find the complement rate and the net price, using the complement method. (2 points for each correct answer)

Trade Discount	List Price	Discount Amount	Net Price
1. 35%	$\$ 1,260$		

2. 30%
\$6,470
3. 25%
\$8,480

Trade Discount	List Price	Complement Rate	Net Price
4. 30%	$\$ 1,670$		

5. 40%
\$3,750
6. 35%
\$4,720 \qquad

Score for A (24)
B (16 points) Find the amount of each discount in the given series of trade discounts. Then find the net price. Where a discount doesn't exist, enter a dash. (2 points for each correct answer)

| $\begin{array}{l}\text { List } \\ \text { Price }\end{array}$ | $\begin{array}{l}\text { Trade } \\ \text { Discounts }\end{array}$ | | Trade Discount Amounts | | |
| :--- | :--- | :--- | :--- | :--- | :--- |$)$| Net |
| :--- |
| |
| 7. |
| $\$ 2,400$ |

8. $\$ 1,600 \quad 40 \%, 25 \%, 20 \%$ \qquad
\qquad

Score for B (16)

C (20 points) Find the complement rate for each discount in the given series of trade discounts. Then find the net price, using the complement method. Where a complement rate doesn't exist, place a dash. (2.5 points for each correct answer)

List Price	Trade Discounts	Complement Rates			Net Price
		First	Second	Third	
9. $\$ 1,800$	30\%, 15\%				

10. $\$ 2,000 \quad 40 \%, 20 \%, 10 \%$ \qquad

Score for C (20)
D ($\mathbf{2 0}$ points) Find the complement rate for each discount in the given series of trade discounts. Then find the equivalent single discount rate, to the nearest $\frac{1}{10}$ of a percent. (2.5 points for each correct answer)

Trade	Complement Rates		
Discounts	First	Second	Third

11. $30 \%, 20 \%, 5 \%$ \qquad
\qquad
\qquad
\qquad
12. $20 \%, 10 \%, 5 \%$ \qquad
\qquad
\qquad
\qquad

Score for D (20)
E (20 points) Solve each of the following business applications about trade discounts. Use either the discount method or the complement method. (10 points for each correct answer)
13. Gifford Landscaping, Inc., purchased $\$ 425$ worth of plants and $\$ 180$ worth of soil and fertilizer from a garden supply wholesaler. The wholesaler gives Gifford a 20% trade discount on the plants and a 30% trade discount on the other items. Compute the net price that Gifford Landscaping will be required to pay. \qquad
14. Hackett Roofing is purchasing redwood shakes to reroof a house. The shakes have a list price of $\$ 15,600$. The Pacific Roofing Supply Company gives Hackett the normal trade discount of 25%. In addition, Pacific gives Hackett two further trade discounts of 20% and 10% because of the large volume of business that the company has done with Pacific so far this year. What is Hackett's net price on the order of redwood shakes? \qquad

Assignment 7.2: Cash Discounts

Name

A (64 points) For the following problems, find the discount date, the due date, the amount of the cash discount, and the amount of the remittance. (2 points for each correct date and 6 points for each correct amount)

1. Terms:
Invoice date:
3/5, n/25
May 27
Invoice amount:
\$622.56
2. Terms:

Invoice date:
2/10, n/30

Invoice amount:
Freight:
July 23
\$484.86
$\$ 45.00$

1.5/15, net 45

Aug. 20
Invoice date:
\$692.00
Returned goods: $\$ 242.00$
4. Terms:

Invoice date:
Invoice amount:
Returned goods:
Freight:
号
2.5/20, N/60

Dec. 28
\$1,245.55
\$398.75
$\$ 70.00$

Discount date:
Due date:
Discount amount:
Remittance:

Discount date:
Due date:
Discount amount:
Remittance:

Discount date:

Due date:
Discount amount:
Remittance:

Discount date:

Due date:
Discount amount:
Remittance:
\qquad
\qquad
\qquad

B (16 points) For the following problems, find the discount date, the complement rate, and the amount of the remittance. (2 points for each date and rate; 4 points for each correct remittance)
5. Terms:

Invoice date: March 29
Invoice amount: \$582.50

6. Terms:	$1 / 25$, net 55
Invoice date:	July 9
Invoice amount:	$\$ 684.92$
Returned goods:	$\$ 171.12$
Freight:	$\$ 45.00$

Discount date:
Complement rate:
Remittance:

Discount date:
Complement rate:
Remittance:

C (20 points) The following problems involve partial payments made within the discount period. Solve for the items indicated. (5 points for each correct answer)
7. Terms:

Invoice date:
3/7, n/45

Invoice amount: \$664.27

8. Terms:	$2 / 15$, net 35
Invoice date:	Feb. 15
Invoice amount:	$\$ 832.90$
Returned goods:	$\$ 186.00$

$2 / 15$, net 35
Feb. 15
Invoice amount: $\$ 832.90$
Returned goods: $\$ 186.00$

Amount credited:
Remittance: $\quad \$ 400$
Unpaid balance: \qquad

Amount credited:
Remittance: $\quad \$ 500$
Unpaid balance:
\qquad
\qquad

Markup

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute the variables in the basic markup formula.

Learning Objective $\mathbf{2}$
Compute the markup variables when the markup percent is based on cost.

Learning Objective 3 Compute markup percent based on cost.

Compute the markup variables when the markup percent is based on selling price.

Learning Objective 5
Compute markup percent based on selling price.

Computing Markup Variables

Learning Objective

Compute the variables in the basic markup formula.

Some businesses manufacture products and sell them. Other businesses buy products from someone else and then resell them. Both types of businesses must sell their products for more than it costs to produce or purchase them. This price increase is called the markup.

Athletes' World is a chain of retail stores that sells athletic equipment and athletic clothing. The store buys shoes directly from a manufacturer. Suppose that the manufacturer charges $\$ 43.00$ per pair for one particular type of athletic shoe. The prorated amount to deliver one pair to the store is $\$ 0.50$. The total cost of the shoes, with delivery, is $\$ 43.50$. $\$ 43.50$ is called the cost of goods sold, or just the cost.

If Athletes' World sells the shoes for exactly the cost, $\$ 43.50$, it will actually lose money on the sale. The store has many other expenses-such as rent, utilities, and salaries-that are not part of the cost of acquiring the shoes. Athletes' World must mark up the selling price far enough above the cost of the shoes to cover all these additional costs-and also leave some profit for the owners.

The total amount that Athletes' World marks up the selling price is called the dollar markup. (Note: Markup is expressed both in dollars and in percents. To eliminate confusion, in this book we use two separate terms: dollar markup and markup percent.)

Suppose that Athletes' World accountants estimate that $\$ 18.80$ of additional expenses should be allocated to each pair of athletic shoes. Also, suppose that the store would like a profit of $\$ 16.00$ on each pair of shoes. Then the total dollar markup that it should give the shoes is $\$ 18.80+\$ 16.00=\$ 34.80$.

To determine the selling price of the shoes, Athletes' World adds the dollar markup to the cost of goods sold (cost), using the basic markup formula:

Selling price $=$ Cost + Dollar markup $=\$ 43.50+\$ 34.80=\$ 78.30$

Because the dollar markup is the difference between the selling price and the cost of goods sold, it is often useful to rewrite the formula as

$$
\text { Dollar markup }=\text { Selling price }- \text { Cost }=\$ 78.30-\$ 43.50=\$ 34.80
$$

Likewise, cost is the difference between selling price and dollar markup. Thus,

$$
\text { Cost }=\text { Selling price }- \text { Dollar markup }=\$ 78.30-\$ 34.80=\$ 43.50
$$

CONCEPT CHECK 8.1

Compute the missing terms in the basic markup formula:
Selling price $=$ Cost + Dollar markup
a. Cost $=\$ 417.82 ;$ Dollar markup $=\$ 204.20$
b. Cost $=\$ 154.40 ;$ Selling price $=\$ 392.12$
c. Dollar markup $=\$ 41.26$; Selling price $=\$ 93.20$

Selling price $=$ Cost + Dollar markup

$$
=\$ 417.82+\$ 204.20=\$ 622.02
$$

Dollar markup $=$ Selling price - Cost

$$
=\$ 392.12-\$ 154.40=\$ 237.72
$$

Cost $=$ Selling price - Dollar markup

$$
=\$ 93.20-\$ 41.26=\$ 51.94
$$

Computing Markup Based on Cost

In the example, Athletes' World computed its markup directly by determining its expenses and the desired profit. However, this method isn't practical when a business has hundreds or thousands of items. Allocating expenses and profit to each item would be too tedious. A more practical method is for the owner, an employee, or an accountant to analyze prior sales of the company or a similar company. The analyst can look at the costs of goods, additional expenses, and desired profit to determine a percent to use to mark up various items, called the markup percent.

One company may use different markup percents for different types of items. For example, an appliance store typically also performs repair services and sells replacement parts for the appliances it sells. The store may have one markup percent for the actual appliance, a second markup percent for repair services, and a third markup percent for replacement parts.

In Chapter 5 on percents, we introduced three terms: rate, base, and percentage. In this chapter, rate is the markup percent, or markup rate. Percentage is the dollar markup. Determining the base is more challenging because sometimes cost is the base and sometimes selling price is the base. For some businesses, cost may be the more logical base for calculating dollar markup. However, calculating dollar markup based on selling price is an advantageous method for many retail stores.

The accountant for Athletes' World says that, in order to pay all expenses and have a reasonable profit, and based upon a cost of $\$ 43.50$, the company should have an 80% markup. When the cost and the markup percent are known, the dollar markup and the selling price can be computed.

STEPS to Compute the Selling Price Based on Cost

1. Multiply the cost by the markup percent to get the dollar markup.
2. Add the dollar markup to the cost to get the selling price.

For the Athletes' World's athletic shoes:
STEP 1
Dollar markup $=$ Markup percent \times Cost $=0.80 \times \$ 43.50=\$ 34.80$
STEP 2
Selling price $=$ Cost + Dollar markup $=\$ 43.50+\$ 34.80=\$ 78.30$

EXAMPLEA

Using markup based on cost, what are the dollar markup and the selling price on merchandise that costs $\$ 60$ and has a 35% markup?

Dollar markup $=$ Markup percent \times Cost $=0.35 \times \$ 60=\$ 21$
STEP 2
Selling price $=$ Cost + Dollar markup $=\$ 60+\$ 21=\$ 81$

COMPUTING SELLING PRICE DIRECTLY FROM COST

You can compute the selling price directly from the cost, without computing the dollar markup.

Learning Objective

Compute the markup variables when the markup percent is based on cost.

Markup Based on
Cost/Selling Price

STEPS to Compute the Selling Price Directly from the Cost

1. Add 100% to the markup percent.
2. Multiply this sum by the cost to get the selling price.

EXAMPLE B

What is the selling price of an item that has a cost of $\$ 250$ and a markup percent of 40% based on cost?

```
STEP 1 Markup percent + 100% = 40% + 100% = 140%
STEP }
Selling price }=(\mathrm{ Markup percent }+100%)\times\mathrm{ Cost }=1.40\times$250=$35
```


COMPUTING COST FROM SELLING PRICE

When you know the selling price and the markup percent, the procedure for computing cost is just the reverse of that for computing selling price.

S T E P S to Compute the Cost from the Markup Percent

1. Add the markup percent to 100%.
2. Divide the selling price by this sum to get the cost.

EXAMPLEC

The selling price of a pair of shoes is $\$ 75$. The markup percent based on cost is 25%. Find the cost.

STEP 1
$100 \%+$ Markup percent $=100 \%+25 \%=125 \%$
STEP 2
Cost $=$ Selling price $\div(100 \%+$ Markup percent $)=\$ 75 \div 1.25=\$ 60$
You can always check your work in markup problems.
Cost is $\$ 60$, and markup percent is 25%.
Dollar markup $=$ Cost \times Markup percent $=\$ 60 \times 0.25=\$ 15$
Selling Price $=$ Cost + Dollar markup $=\$ 60+\$ 15=\$ 75$
It checks!

CONCEPT CHECK 8.2

Compute the required values when the markup percent is based on cost.
a. Cost $=\$ 1,240$; Markup percent $=40 \%$

Find dollar markup, and then find selling price.
b. Cost $=\$ 330$; Markup percent $=50 \%$

Find $100 \%+$ Markup percent, and then find selling price directly.
c. Selling price $=\$ 780$; Markup percent $=25 \%$

Find $100 \%+$ Markup percent, and then find cost directly.

Dollar markup $=0.40 \times \$ 1,240=\$ 496$
Selling price $=\$ 1,240+\$ 496=\$ 1,736$
$100 \%+$ Markup percent $=100 \%+50 \%=150 \%$
Selling price $=1.50 \times \$ 330=\$ 495$
$100 \%+$ Markup percent $=100 \%+25 \%=125 \%$
Cost $=\$ 780 \div 1.25=\$ 624$

Computing Markup Percent Based on Cost

In the illustration for Athletes' World, the accountant determined that the markup percent needed to be 80% of cost, which meant that the selling price needed to be $\$ 78.30$. However, management may want to price the shoes at $\$ 79.95$. Now, the markup is no longer 80% of cost. The markup percent based on cost can be computed in two steps.

S T E P S to Compute the Markup Percent Based on Cost

1. Subtract the cost from the selling price to get the dollar markup.
2. Divide the dollar markup by the cost to get the markup percent.

For the athletic shoes from Athletes' World, priced at $\$ 79.95$:
STEP $1 \quad$ Dollar markup $=$ Selling price - Cost $=\$ 79.95-\$ 43.50=\$ 36.45$
STEP $2 \quad$ Markup percent $=$ Dollar markup \div Cost $=\$ 36.45 \div \$ 43.50=0.838$, or 83.8% (rounded to one decimal place)

EXAMPLED

What is the markup percent based on cost when the selling price is $\$ 120$ and the cost is $\$ 80$?

Compute markup percent based on cost.

STEP 1

Dollar markup $=$ Selling price - Cost $=\$ 120-\$ 80=\$ 40$
STEP 2
Markup percent $=$ Dollar markup \div Cost $=\$ 40 \div \$ 80=0.50$, or 50%

EXAMPLE E

What is the markup percent based on cost when the dollar markup is already known to be $\$ 30$ and the cost is $\$ 75$? (Step 1 is not necessary.)
STEP $2 \quad$ Markup percent $=$ Dollar markup \div Cost $=\$ 30 \div \$ 75=0.40$, or 40%

CONCEPT CHECK 8.3

Cost $=\$ 1,600 ;$ Selling price $=\$ 2,560$
Find the markup percent based on cost.

Dollar markup $=\$ 2,560-\$ 1,600=\$ 960$
Markup percent $=\$ 960 \div \$ 1,600=0.60$, or 60%

COMPLETE ASSIGNMENT 8.1.

Computing Markup Based on Selling Price

Learning Objective

Compute the markup variables when the markup percent is based on selling price.

Although many businesses base their markup on cost, many others, often retailers, commonly use a percent of selling price-that is, they use markup based on selling price. That doesn't mean that selling price is determined without considering cost or even before considering cost. It merely means that the dollar markup is computed by multiplying the markup percent by the selling price.

Many individuals start their own business when they observe another successful business selling a product. New owners believe that they can acquire the product, pay all expenses, and still sell it for less than the existing business is selling its product. Instead of basing the selling price on costs, expenses, and satisfactory profit, the new owners may price their product just under the competition's price. They base their selling price on the competition's selling price rather than marking up from their own costs.

Basing markup calculations on selling price can be an advantage in a retail store where the salesperson or sales manager has the authority to lower the sales price immediately in order to make a sale.

S T E P S to Compute the Dollar Markup and Cost from the Markup Percent

1. Multiply the selling price by the markup percent to get the dollar markup.
2. Subtract the dollar markup from the selling price to get the cost.

EXAMPLE F

Roy Brainard enters Floyd's Appliance Store to buy a washing machine. He finds one with a selling price of $\$ 400$. He knows that he can buy it for $\$ 375$ at another store, but he prefers this store because of its reputation for good service. He tells the sales manager, "I would buy it for $\$ 375$." The manager, Jesse Cullen, knows that the markup percent is 40% based on selling price. What is the cost of the washing machine?

$$
\begin{array}{ll}
\text { STEP } 1 & \text { Dollar markup }=\text { Markup percent } \times \text { Selling price }=0.40 \times \$ 400=\$ 160 \\
\text { STEP 2 } & \text { Cost }=\text { Selling price }- \text { Dollar markup }=\$ 400-\$ 160=\$ 240
\end{array}
$$

Jesse can then decide whether she prefers no sale or one for which she gets a \$135 markup. Although it would be helpful if Jesse knew how much markup she would need to pay for expenses, at least she would know the cost.

EXAMPLE G

Find the dollar markup and the cost of an item that sells for $\$ 120$ and has a markup percent that is 30% based on selling price.

STEP $1 \quad$ Dollar markup $=$ Markup percent \times Selling price $=0.30 \times \$ 120=\$ 36$
STEP 2

$$
\text { Cost }=\text { Selling price }- \text { Dollar markup }=\$ 120-\$ 36=\$ 84
$$

COMPUTING COST DIRECTLY

You can compute the cost directly from the selling price, without computing the dollar markup.

S T E P S to Compute the Cost from the Markup Percent and Selling Price

1. Subtract the markup percent from 100%.
2. Multiply this difference by the selling price to get the cost.

EXAMPLE H

Video

$$
\begin{aligned}
& \text { Markup Based on } \\
& \text { Cost/Selling Price }
\end{aligned}
$$

What is the cost of an item that has a selling price of $\$ 240$ and a markup percent of 60% based on selling price?

STEP 1

$$
100 \%-\text { Markup percent }=100 \%-60 \%=40 \%
$$

STEP 2

$$
\text { Cost }=(100 \%-\text { Markup percent }) \times \text { Selling price }=0.40 \times \$ 240=\$ 96
$$

COMPUTING SELLING PRICE FROM COST

When you know the cost and the markup percent, the procedure for computing cost is just the reverse of that for computing selling price.

STEPS to Compute the Selling Price from the Cost

1. Subtract the markup percent from 100%.
2. Divide the cost by this difference to get the selling price.

EXAMPLE I

The cost of a mountain bike is $\$ 120$. The markup percent based on selling price is 40%. Find the selling price.
STEP 1

$$
100 \%-\text { Markup percent }=100 \%-40 \%=60 \%
$$

STEP 2

$$
\begin{aligned}
& \text { Selling price }=\text { Cost } \div(100 \%-\text { Markup percent })= \\
& \$ 120 \div 0.60=\$ 200
\end{aligned}
$$

You can always check your work in markup problems:
Selling price is $\$ 200$, and markup percent is 40% based on selling price.
Dollar markup $=$ Markup percent \times Selling price $=0.40 \times \$ 200=\$ 80$
Cost $=$ Selling price - Dollar markup $=\$ 200-\$ 80=\$ 120$
It checks!

CONCEPT CHECK 8.4

Compute the required values when the markup percent is based on selling price.
a. Selling price $=\$ 750$; Markup percent $=50 \%$ Find dollar markup, and then find cost.
b. Selling price $=\$ 40$; Markup percent $=30 \%$

Find 100% - Markup percent, and then find cost directly.
c. Cost $=\$ 150$; Markup percent $=40 \%$

Find 100% - Markup percent, and then find selling price directly.

Dollar markup $=0.50 \times \$ 750=\$ 375$
Selling price $=\$ 750-\$ 375=\$ 375$
$100 \%-$ Markup percent $=100 \%-30 \%=70 \%$
Cost $=0.70 \times \$ 40=\$ 28$
$100 \%-$ Markup percent $=100 \%-40 \%=60 \%$
Cost $=\$ 150 \div 0.60=\$ 250$

Computing Markup Percent Based on Selling Price

Learning Objective

Compute markup percent based on selling price

In the illustration for Athletes' World, the pair of athletic shoes had a cost of $\$ 43.50$. The store owner decided that the selling price of the athletic shoes would be $\$ 79.95$. The markup percent based on selling price can be calculated in two steps.

STEPS to Compute the Markup Percent from the Selling Price

1. Subtract the cost from the selling price to get the dollar markup.
2. Divide the dollar markup by the selling price to get the markup percent.

For Athletes' World's athletic shoes,
STEP $1 \quad$ Dollar markup $=$ Selling price - Cost $=\$ 79.95-\$ 43.50=\$ 36.45$
STEP $2 \quad$ Markup percent $=$ Dollar markup \div Selling price $=\$ 36.45 \div \$ 79.95=$ 0.456 , or 45.6% (rounded to one decimal place)

EXAMPLE J

What is the markup percent based on selling price when the selling price is $\$ 80$ and the cost is $\$ 50$?

$$
\begin{array}{ll}
\text { STEP } 1 & \text { Dollar markup }=\text { Selling price }- \text { Cost }=\$ 80-\$ 50=\$ 30 \\
\text { STEP } 2 & \text { Markup percent }=\text { Dollar markup } \div \text { Selling price }=\$ 30 \div \$ 80=0.375, \\
\text { or } 37.5 \%
\end{array}
$$

EXAMPLE K

What is the markup percent based on selling price when the dollar markup is already known to be $\$ 150$ and the selling price is $\$ 375$? (Step 1 is not necessary.)
STEP 2 Markup percent $=$ Dollar markup \div Selling price $=\$ 150 \div \$ 375=0.40$, or 40%

CONCEPT CHECK 8.5

Cost $=\$ 1,600 ;$ Selling price $=\$ 2,560$
Find the markup percent based on selling price.

Dollar markup $=\$ 2,560-\$ 1,600=\$ 960$
Markup percent $=\$ 960 \div \$ 2,560=0.375$, or 37.5%

COMPLETE ASSIGNMENT 8.2.

.

```
R
```

cost of goods sold	markup percent
dollar markup	markup percent based on cost
markup	markup rate
markup based on selling price	

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective
 8.1
 Compute the variables in the basic markup formula

8.2

Compute the markup variables when the markup percent is based on cost

Example

Find the missing variables in the basic formula:
Selling price $=$ Cost + Dollar markup

1. Cost $=\$ 231.50$; Dollar markup $=109.12$
2. Cost $=\$ 34.20$; Selling price $=\$ 59.95$
3. Dollar markup $=\$ 475$; Selling price $=\$ 900$
4. Cost $=\$ 800$; Markup percent $=35 \%$

Find the dollar markup and then find the selling price. Find $100 \%+$ Markup percent, and then find selling price.
5. Selling price $=\$ 2,100$; Markup percent $=40 \%$

Find $100 \%+$ Markup percent and then find cost.
6. Cost $=\$ 80$; Selling price $=\$ 108$

Find the markup percent based on cost.

7. Selling price $=\$ 820$; Markup percent $=25 \%$

Find the dollar markup and then find the cost. Find 100% - Markup percent and then find the cost.
8. Cost $=\$ 1,350$; Markup percent $=40 \%$

Find 100% - Markup percent, and then find the selling price.
9. Cost $=\$ 288$; Selling price $=\$ 640$

Find the markup percent based on the selling price.

Compute the markup percent based on selling price

Review Problems for Chapter 8

(1) Find the missing terms.

Cost of Goods Sold	Dollar Markup	Selling Price	Cost of Goods Sold	Dollar Markup	Selling Price
a. $\$ 28.90$	\$14.45			\$1,405	\$2,975
b. $\$ 188.12$		\$399.95	d. $\$ 426.25$		\$998.88

In problems 2-9, the markup percent is based on cost. Find the missing terms. Round all percents to the nearest one tenth of a percent.

	Cost	Markup Percent	Dollar Markup	Selling		Cost	Markup Percent	Markup Percent	Selling Price
2	\$500	50\%			4	\$225	60\%		
3	\$36	65\%	a.	b.	5	\$165	40\%		
	Selling	Markup	$100 \%+$ Markup			Selling		Dollar	Markup
6	Price $\$ 840$	$\begin{aligned} & \text { Percent } \\ & 100 \% \end{aligned}$	Percent a.	Cost b.	8		$\begin{aligned} & \text { Cost } \\ & \$ 240 \end{aligned}$	Markup a.	Percent b.
7	\$98	40\%	a.		9	\$2,000	\$1,600		

In problems 10-13 the markup percent is based on selling price. Find the missing terms. Round all percents to the nearest one tenth of a percent.

	Selling Price	Markup Percent	Dollar Markup	Cost		Selling Price	Markup Percent	100\% Markup Percent	Cost
10	\$240	30\%			12	\$1,240	40\%		
11	\$144	25\%			13	\$528	75\%		
	Cost	Markup Percent	100% - Markup Percent	Selling Price		Selling Price	Cost	Dollar Markup	Markup Percent
14	\$960	60\%			16	\$800	\$480		
15	\$36	25\%	a.		17	\$3,750	\$1,500	a.	b.

18 Carol Wilson sells high-end toys, specializing in all wooden toys for preschool children. She pays $\$ 40$ for a toy truck. Carol sells the toy truck for $\$ 50$. a. Find the dollar markup. \qquad b. Find the markup percent based on cost. \qquad c. Find the markup percent based on selling price. \qquad

Assignment 8.1: Markup Based on Cost

Name
Date Score

A (12 points) Calculate the missing terms. (2 points for each correct answer)

Cost	Dollar Markup	Selling Price	Cost	Dollar Markup	Selling Price
1. $\$ 480.70$	$\$ 175.25$		2. $\$ 48.51$	-	$\$ 69.95$
3.					
5. $\$ 629.00$			$\$ 829.98$	4. $\$ 175.50$	$\$ 57.50$

B (32 points) In the following problems, the markup percent is based on cost. Find the missing terms. (2 points for each correct answer)

Cost	Markup Percent	Dollar Markup	Selling Price	Cost	100\% + Markup Percent	Markup Percent	Selling Price
7. $\$ 850$	40%				8. $\$ 160$	125%	

9. $\$ 1,500 \quad 70 \%$ \qquad 10. $\$ 240$
100%
10. $\$ 640 \quad 75 \%$ \qquad 12. $\$ 80030 \%$ \qquad
\qquad
11. $\$ 1,500 \quad 150 \%$ \qquad
\qquad 14. $\$ 120$

200\% \qquad
\qquad
11. $\$ 640$
.

Score for B (32)

C (32 points) In the following problems, the markup percent is based on cost. Find the missing terms. Round all percents to the nearest tenth of a percent. (2 points for each correct answer)

Selling Price	Markup Percent	100% + Markup Percent	Cost	Selling Price	Cost	Dollar Markup	Markup Percent
15. $\$ 1,240$	60\%			16. $\$ 48$	\$30		
17. $\$ 110$	100\%			18. $\$ 1,922$	\$1,240		
19. $\$ 594$	35\%			20. $\$ 679$	\$388		
21. $\$ 1,050$	150\%			22. $\$ 216$	\$96		

D (24 points) Business Applications. In the following problems, the markup percent is based on cost. Round all percents to the nearest tenth of a percent. (3 points for each correct answer)
23. Susan Chin owns a firm that sells office furniture to local businesses. One set of six matched pieces costs Susan $\$ 2,100$. To cover her own business expenses and allow a reasonable profit, Susan marks up this set by 75% of the cost. Find the dollar markup and the selling price.
Dollar markup \qquad
Selling price \qquad
24. Stan Wegner manufactures a handheld heart monitoring device. He sells it for $\$ 840$, which represents a markup of 275% on his production cost. Stan marks it up this much to cover additional business expenses and profit as well as product development. Find Stan's production cost and the dollar markup. Cost \qquad
Dollar markup \qquad
25. Sentry Security Systems sells burglar and fire alarm systems for homes and small businesses. One basic system costs Sentry $\$ 720$. Sentry marks up the alarm system by $\$ 396$. Find the selling price, and find the markup percent based on cost.
Selling price \qquad
Markup percent \qquad
26. After Matt Lord drove his father's car with no oil, the car needed a new engine. A local mechanic charged Matt's father $\$ 2,250$ for a rebuilt engine that cost him $\$ 1,800$. All labor was additional. Compute the dollar markup and the markup percent based on cost.
Dollar markup \qquad
Markup percent \qquad

Assignment 8.2: Markup Based on Selling Price

Name
Date Score

A (12 points) Calculate the missing terms. (2 points for each correct answer)

Cost	Dollar Markup	Selling Price	Cost	Dollar Markup	Selling Price
1. $\$ 67.34$	$\$ 82.15$		2. $\$ 193.19$	-	$\$ 458.88$
3.					
5. $\$ 62.50$			4. $\$ 789.25$	$\$ 476.50$	-

Score for A (12)
B (32 points) In the following problems, the markup percent is based on selling price. Find the missing terms. (2 points for each correct answer)

C (32 points) In the following problems, the markup percent is based on selling price. Find the missing terms. (2 points for each correct answer)

Cost	Markup Percent	$\begin{aligned} & 100 \%- \\ & \text { Markup } \\ & \text { Percent } \end{aligned}$	Selling Price	Selling Price	Cost	Dollar Markup	Markup Percent
15. $\$ 855$	40\%			16. $\$ 220$	\$143		
17. $\$ 143$	45\%			18. $\$ 45$	\$27		
19. $\$ 2,520$	30\%			20. $\$ 1,400$	\$924		
21. \$533	35\%			22. $\$ 840$	\$462		

Score for C (32)
D (24 points) Business Applications. In the following problems, the markup percent is based on selling price. Round all percents to the nearest tenth of a percent. (3 points for each correct answer)
23. At the end of summer, Alpine Hardware features garden equipment specials. One rototiller has a selling price of $\$ 348$. The markup to cover expenses and profit is 50% based on the selling price. Calculate the dollar markup and the cost.

Dollar markup \qquad
Cost \qquad
24. Parkside Cyclery is a retail bicycle store. For last Christmas season, Parkside purchased one model of mountain bike to use as a Christmas promotion. The bicycles cost $\$ 156$ each. For this promotion, Parkside's markup was 40% of selling price. Find the selling price and the dollar markup.
Selling price \qquad
Dollar markup \qquad
25. City TV \& Stereo also sells telephones. A two-line cordless telephone set with a speaker phone base, two extra remote handsets, and an answering machine is priced at $\$ 182.40$. This price includes a markup of $\$ 109.44$. If this set sells at $\$ 182.40$, what are the cost and the markup percent based on selling price?
Cost \qquad
Markup percent \qquad
26. Patio World, a warehouse store, purchased a large volume of teak lounge chairs for $\$ 252$ each. Upholstered pads were included in the price. To sell the chairs and pads quickly, the store priced the chairs at $\$ 360$. Compute the dollar markup and the markup percent based on selling price.

Dollar markup \qquad
Markup percent \qquad

Accounting
 Applications

9 Banking
10 Payroll
11 Taxes
12 Insurance

Banking

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Maintain a checking account.

Reconcile a bank statement with a checkbook balance.

Using Deposit Slips and Bank Checks

Learning Objective

Maintain a checking account.

Bank customers usually make deposits to their checking accounts by using deposit slips. Figure 9-1 shows a typical deposit slip, with spaces to list cash and checks being deposited.

In most businesses, each deposit will include a number of checks. Each check is individually listed on each deposit slip. Deposits are also made electronically. Many employees have their pay electronically transmitted directly from their employer's bank accounts to their individual bank accounts.

A bank check is a written order directing the bank to pay a certain sum to a designated party, called the payee. Banks normally provide checkbooks to their members. Figures 9-2 and 9-3 show typical bank checks, one with the stub on the left and the other with the stub on the top.

Today, many bank transactions are completed electronically. Funds that are transmitted electronically, primarily via computers, are called electronic fund transfers (EFTs). They include automatic teller machine (ATM) transactions by which customers can check their balances, make deposits, and withdraw funds from their accounts without having to wait for the next available bank teller. Computer programs also initiate many electronic fund transfers. These transactions are processed through the Automated Clearing House Association and include direct deposits of payroll checks and Social Security and other government and pension benefit payments.

Figure 9-3 Check with Check Stub on Top

Pay to the Men's Wearhouse 300.00 order of Three hundred no/100

MARY MAHEW
40 ACELA DR TIBURON, CA 94920

For \qquad Mary M

CONCEPT CHECK 9.1

Fill in the total (as necessary) and balance on each check stub. Carry each balance forward to the next stub.

Using Checkbooks and Check Registers

A bank checkbook also provides check stubs or a special page on which to record deposits, withdrawals, check numbers, dates, check amounts, other additions and subtractions, and the account balance.

Figure 9-2 shows that check number 2506 was written against the account of Hart Furniture Co. on September 24 to Ace Auto Repair. The check was for $\$ 124.35$ for repairs to the delivery truck. The stub shows a balance brought forward of $\$ 1,332.80$, a deposit

Figure 9-4 \quad Check Register

CHECK REGISTER		DEDUCT ALL PER CHECK OR SERVICE CHARGES THAT APPLY			BALANCE	
DATE		CHECK NUMBER	CHECKS ISSUED TO OR DEPOSTS RECEVED FROM	AMOUNT OFCHECK	AMOUNT OF DEPOSIT	$\$ 1,332.80$
Sept	24		Deposit cash receipts		$1,160.49$	$2,493.29$
	24	2506	Ace Auto Repair	124.35		$2,368.94$
	24	2507	Morton Window Decorators	450.00		$1,918.94$
	24	2508	Donation to Guide Dogs	100.00		$1,818.94$
	25	2509	Secure Alarm Systems	150.00		$1,668.94$

Oct	19	2517	Best Janitorial Service	325.00		855.94
	20		Deposit cash receipts		980.00	$1,835.94$

on September 24 of $\$ 1,160.49$, the amount of this check ($\$ 124.35$), and a balance carried forward of \$2,368.94.

Today, most small businesses and many individuals use a check register. Like a check stub, a check register provides a place to record information about each bank transaction. Figure 9-4 shows a typical check register. Note that a continuous balance is maintained.

CONCEPT CHECK 9.2

In this check register, fill in the cash balance resulting from each transaction.

CHECK REGISTER			DEDUCT ALL PER CHECK OR SERVICE CHARGES THAT APPLY			BALANCE
DATE		CHECK NUMBER	CHECKS ISSUED TO OR DEPOSITS RECEIVED FROM	AMOUNT OF CHECK	$\begin{aligned} & \hline \text { AMOUNT } \\ & \text { OF DEPOSIT } \end{aligned}$	\$520.42
Mar	27	123	Replenish petty cash	\$ 65.20		455.22
	31	124	Jiffy Janitorial Service	150.00		305.22
Apr	01	125	Sun County Water District	96.72		208.50
	03	-	Deposit weekly receipts		\$2,470.80	2,679.30
	03	126	Midtown Mortgage Co.	835.20		1,844.10
	03	127	Sun Gas and Electric Co.	72.18		1,771.92
	04	128	Midtown Weekly Advertiser	32.80		1,739.12
	04	129	Trash Disposal, Inc.	60.00		1,679.12
	04	130	Pacific Plumbing Supplies	906.97		772.15
	10	-	Deposit weekly receipts		2,942.50	3,714.65

Reconciling Bank Statements

Checking account customers receive a printed bank statement every month. The bank statement shows an opening balance; deposits and credits, including EFTs; checks paid; withdrawals, including EFTs; service charges; general information about the account; and the balance at the end of the period. In addition, most banks now provide electronic banking through your personal computer. It allows you to view your current bank statement at any time. Figure 9-5 shows a typical bank statement.

The balance shown in the checkbook or check register is usually different from the balance shown on the bank statement. The items that cause this difference are used in reconciling the two balances. These items are as follows:

An outstanding check is one that has been written but hasn't yet cleared the bank. Almost always you will have written and recorded some checks that haven't yet been presented to or processed by the bank for payment and charged to the customer's account.
A bank charge is a fee for services performed by the bank. At the time the bank statement is made up, your account may have been charged for bank service fees, for printing checks, for bad checks returned, and for EFTs that you haven't yet recorded. These charges would therefore not yet be deducted from your checkbook or check register balance.

Learning Objectives

Reconcile a bank statement with a checkbook balance.


```
VAN NESS-CALIFORNIA #307
1560 VAN NESS AVE.
SAN FRANCISCO CA 94109
```


HART FURNITURE CO.	CALL (415) 456-9081
1039 BROADWAY	24 HOURS/DAY, 7 DAYS/WE
SAN FRANCISCO, CA 94103	FOR ASSISTANCE WI

SAN FRANCISCO, CA 94103

24 HOURS/DAY, 7 DAYS/WEEK YOUR ACCOUNT.

PAGE 1 OF 1 THIS STATEMENT COVERS: 09/21/- - THROUGH 10/20/- -

A credit is a deposit or addition to a bank account. In many cases, the bank will have credited your account for an item such as an EFT deposited into the account or interest earned on the account. You the customer don't know the amount of these credits until the bank statement arrives, so the credits haven't yet been entered in your checkbook or check register.

An outstanding deposit is a credit that hasn't yet been recorded by the bank. A deposit that you made near the end of the statement period may have been recorded in your checkbook or check register but not recorded by the bank in time to appear on the statement.
Because these items cause a difference between the bank statement balance and your checkbook or check register balance, you should always reconcile the two balances immediately upon receipt of the statement.

To start the reconciliation, compare the check stubs or check register, all deposit slips, and any company records of ATM transactions with the bank statement. Such a comparison is called a reconciliation of the bank balance.

When Hart Furniture Company received its monthly bank statement, the bookkeeper noted that the ending balance was $\$ 1,805.36$ but that the balance in the company checkbook was $\$ 1,835.94$. To determine the correct balance, the bookkeeper noted the following differences:

1. An EFT credit for $\$ 400$ had been made to the account and not recorded by Hart.
2. A bank service charge of $\$ 13$ had been subtracted from Hart's account by the bank.
3. Interest earnings of $\$ 6.30$ had been added to Hart's account.
4. A deposit on October 20 of $\$ 980$ had not yet been recorded by the bank.
5. Checks for $\$ 27.92, \$ 10, \$ 48.95, \$ 144.25$, and $\$ 325$ had not yet been processed and deducted by the bank.
Most bank statements have printed on the back of the statement a form that can be used to quickly and easily reconcile the customer's checkbook or check register balance with the statement balance. Figure 9-6 shows this form as completed by the Hart Furniture bookkeeper using the information just noted. Note that the adjusted checkbook balance and the adjusted bank balance now agree, showing the correct cash balance of \$2,229.24.

Balance Your Account
Checks Outstanding
Check No.
Check No.

2513	27	92
2514	10	00
2515	48	95
2516	144	25
2517	325	00

DATE \qquad
1 Check off (\checkmark) checks appearing on your statement. Those checks not checked off (\checkmark) should be recorded in the checks outstanding column.

2

S T E P S to Reconcile Bank Balances

1. Reconcile the checkbook (check register) balance. Start with the last balance as recorded in the checkbook.
a. Add any bank statement credits, such as interest earned or EFT deposits not yet recorded in the checkbook.
b. Subtract any charges or debits made by the bank, such as service charges, check printing charges, returned check charges, or EFT charges not yet recorded in the checkbook.
This gives you your adjusted checkbook balance.
2. Reconcile the bank balance. Start with the balance as presented on the statement.
a. Add any deposits or other credits not yet recorded by the bank.
b. Subtract all outstanding checks.

This gives you your adjusted bank balance.
3. Be sure that the two adjusted balances agree.

CONCEPT CHECK 9.3

At month end, Johnson Hardware received the following bank statement. Use the forms that follow the statement to reconcile the check register used in Concept Check 9.2 and the bank statement.

MIDTOWN BANK

JOHNSON HARDWARE COMPANY
346 POPLAR STREET MIDTOWN, CA 94872 THIS STATEMENT COVERS: 3/27/-- THROUGH 4/08/--

SUMMARY	
PREVIOUS BALANCE	$\$ 304.36$
DEPOSITS	$2,470.80+$
WITHDRAWALS	$2,416.12-$
INTEREST	$5.60+$
SERVICE CHARGES	$7.00-$
NEW BALANCE	$\$ 357.64$

CHECKS AND	CHECK	DATE PAID	AMOUNT	CHECK	DATE PAID	AMOUNT
WITHDRAWALS	123	$3 / 29$	20.00	$130 *$	$4 / 06$	
	124	$4 / 02$	100.00			
	$126 *$	$4 / 03$	475.00			
	127	$4 / 05$	48.32			
	128	$4 / 05$	29.80			
	CUSTOMER DEPOSIT	DATE POSTED				
	CUSTOMER DEPOSIT		$4 / 05$	$2,470.80$		

COMPLETE ASSIGNMENTS 9.1, 9.2, AND 9.3.

Chapter Terms for Review

adjusted bank balance adjusted checkbook balance automatic teller machine (ATM) bank charge bank statement
check
checkbook
check register
credit
deposit slip
electronic fund transfer (EFT)
outstanding check
outstanding deposit
payee
reconciliation of the bank balance

Try Microsoft ${ }^{\circledR}$ Excel

Try working the following problems using the Microsoft Excel templates found on your student CD. Solutions for the problems are also shown on the CD.

1. Complete the following worksheet by adding formulas in shaded cells to calculate the balance after each transaction in the check register. Formulas should work for either the addition of a deposit or subtraction of a check and be able to be copied down the Balance column.

	A	B	C	D	E	F
1	Check Register					Balance
2	Date	Check Number	Checks issued to or deposits received from	Amount of Check	Amount of Deposit	895.42
3	May-04	237	Echo Computer Repair Service	235.00		
4	5		Deposit cash sales		$1,569.12$	
5	6	238	Glendale Gas Co.	127.90		
6	6	239	Yellow Pages - ad	212.33		
7	8	240	City Stationers - supplies	582.91		
8	10		Deposit cash sales		$1,243.32$	
9	12	241	Acme Cleaning Service	450.00		
10	13	242	General Telephone	82.57		
11	15		Deposit tax refund		750.00	

2. Jessica Flint's monthly bank statement balance was $\$ 1,753.04$. Her checkbook balance was $\$ 2,590.24$. She noted that the following checks were outstanding: \#134 for $\$ 17.35$, \#137 for $\$ 128.45$, and $\# 138$ for $\$ 52.00$. She also noted that a deposit of $\$ 974.50$ was not yet recorded by the bank. The bank statement lists a service charge of $\$ 15$ and a bad check of $\$ 45.50$ returned to Jessica by the bank from a recent deposit.

Enter the data given above in the appropriate cells and complete the worksheet to reconcile the bank statement and checkbook balances by adding formulas in shaded cells.

	A	B	C
1	Checkbook balance		
2	Less bank charges:		
3	Service charge		
4	Bad check		
5	Total subtractions		
6	Adjusted checkbook balance		
7			
8	Bank statement balance		
9	Add unrecorded deposit		
10	Subtotal		
11		Less outstanding checks:\#134	
12			
13			
14	Total outstanding check		
15	Adjusted bank balance		

THE BOTTOM LINE

Summary of chapter learning objectives:

9.2

2. Fill in the cash balance for each date.

Maintain a checking account
CHECK REGITTER

DATE	CHECKNUMBER	CHECKTO-DEPOST NFORMATON	DEPOST AMOUNT	CHECKAMOUNT	BALANCE
					$\$ 453.90$
$12 / 11$	100	Albertsons		$\$ 85.92$	
$12 / 12$		Monthly Salary Check	$\$ 1,580.65$		
$12 / 13$	101	C.Dobbs-Rent		$\$ 850.00$	
$12 / 14$	102	TJ Max		$\$$	99.97
$12 / 15$	103	Ace Hardware		$\$ 107.16$	
$12 / 17$		Income from Stocks	$\$ 212.37$		

9.3

Reconcile a bank statement with a checkbook balance
3. Mike Kent's monthly bank statement balance was $\$ 1,418$. His checkbook balance was $\$ 1,620$. He noted the following checks outstanding: \#119 for $\$ 350$ and $\# 125$ for $\$ 197$. He noted a deposit of $\$ 1,600$ as not recorded by the bank. The bank had charged him $\$ 17$ for checks and $\$ 32$ for a bad check he had deposited. The bank had credited his account with an electronic transfer for $\$ 900$. Reconcile the bank and checkbook balances.

Checkbook balance: \$1,620
Add electronic transfer:
Subtotal
Less bank charges: \qquad

Adjusted checkbook balance:
Bank balance on statement:
Add unrecorded deposit:
Subtotal
Less outstanding checks: \#119 \qquad
\#125 \qquad
Adjusted bank balance
\qquad
\qquad
\qquad
\$1,418
\qquad

Review Problems for Chapter 9

(1) Each of the following items requires an adjustment to either the bank statement balance or the check register balance. Indicate the correct handling of each item by writing the appropriate letter in the blank.
$\mathrm{A}=$ add to bank statement balance
B $=$ subtract from bank statement balance
$\mathrm{C}=$ add to checkbook balance
$\mathrm{D}=$ subtract from checkbook balance
\qquad (a) Outstanding check written to the landlord for rent
\qquad (b) Bank charge for printing checks
\qquad (c) A deposit made at the end of the period that was not included on the bank statement
\qquad (d) A customer's check that was returned by the bank for insufficient funds (a bounced check)
\qquad (e) An error in recording a check in the check register. A check written to Acme Services for $\$ 92.20$ was recorded in the check register as $\$ 95.50$
\qquad (f) Interest on the checking account
\qquad (g) A bank fee of $\$ 20$ for the bounced check
(h) Bank fees for ATM withdrawals

2 The balance in Ferndale Construction Company's check register May 31 was $\$ 12,583.40$. The bank statement for Ferndale Construction Company listed the following information:

Previous balance (May 1)	$\$ 12,620.10$
Deposits	$16,265.00$
Checks and withdrawals	$17,805.95$
Interest	52.50
Service charges	20.00
Check returned for insufficient funds	150.00
New balance (May 31)	$\$ 10,961.65$

By comparing the bank statement and the check register, the company's bookkeeper determined that a deposit of $\$ 1,850.15$ was not included on the statement and that the following checks were outstanding:

No. 602	$\$ 35.80$
No. 610	212.00
No. 612	95.10

While preparing the reconciliation, the company's bookkeeper noted that check number 585 , which had been written for $\$ 82.50$, had been recorded in the check register as $\$ 85.50$.

Prepare a bank reconciliation statement for Ferndale Construction Company.

Assignment 9.1: Check Register and Check Stubs

Name

A (20 points) In the following check register, fill in the cash balance resulting from each transaction. (2 points for each correct answer)
1.

CHECK REGISTER			DEDUCT ALL PER CHECK OR SERVICE CHARGES THAT APPLY			BALANCE
DATE		CHECK NUMBER	CHECKS ISSUED TO OR DEPOSITS RECEIVED FROM	AMOUNT OF CHECK	AMOUNT OF DEPOSIT	\$1,450.00
Apr	04	842	Alliance Mortgage Company	865.00		
	04	-	Deposit weekly cash receipts		4,197.50	
	05	843	U.S. Treasury	1,520.00		
	06	844	State Income Tax	990.00		
	07	845	General Telephone	65.30		
	08	846	Maxwell Office Supply	289.70		
	12	-	Deposit weekly cash receipts		3,845.25	
	12	847	Eastwood Water Co.	126.42		
	12	848	Central Advertising, Inc.	965.00		
	12	849	Johnson Tax Services	650.00		

Score for A (20)
B (15 points) Fill in the new balance (New Bal) and balance forward (BalFor'd) on each check stub, carrying each balance forward to the next stub. ($1 \frac{1}{2}$ points for each correct answer)
2.
3.
4.
,
\qquad Dat \qquad New Bal \qquad Deposit 862.13 To NEC This Ck 862.42 New Bal \qquad ForCOMPUTER BaIFor'd \qquad

BalFor'
Deposit
New Bal \qquad This Ck BalFor'd \qquad
5.
BalFor'd \qquad Date 6-10 New Bal
Deposit 2,160.00 For \qquad BalFor'd \qquad
6.
\qquad To B/A Deposit 907.16 NT BalFor'd \qquad
\#105
\#105
BalFor'd
BalFor'd

C ($\mathbf{2 0}$ points) According to the check register of Kyber Electronics, the cash balance on July 1 was $\$ 1,335.60$. During the month, deposits of $\mathbf{\$ 2 8 1 . 7 5} \mathbf{\$} \mathbf{\$ 8 1 . 1 0}$, and $\mathbf{\$ 3 8 5 . 6 0}$ were made. Checks for $\mathbf{\$ 9 8 . 9 9 \text { , }}$ \$307.53, \$19.56, \$212.40, \$287.60, and \$88.62 were recorded. (15 points for a correct answer in 7; 5 points for a correct answer in 8)
7. What was the cash balance shown in the check register on July 31? \qquad
8. After entering all the items in the check register, the bookkeeper found that the check recorded as $\$ 212.40$ was actually written as $\$ 224.20$. What is the correct cash balance? \qquad

D (45 points) The following problems show the deposits and checks that were recorded on a series of check stubs. In each problem, find the bank balance after each deposit or check. (3 points for each correct answer)

10. Balance

Check \#21 Balance Deposit Balance
Check \#22 Balance Check \#23 Balance
Check \#24
Balance

11. Balance

Deposit Balance Check \#31
Balance

Score for D (45)

Assignment 9.2: Check Register and Bank Statements

Name

Date
Score

A (40 points) Solve the following problems. (10 points for a correct final balance in 1; 30 points for a correct final answer in 2)

1. On October 31, the balance of the account of Hobbies Unlimited at the Citizens Bank was $\$ 922.10$. This amount was also the balance on the check register at that time. Company checks written and deposits made during November are shown on the check register. Fill in the cash balance for each transaction.

CHECK REGISTER			DEDUCT ALL PER CHECK OR SERVICE CHARGES THAT APPLY			BALANCE
DATE		CHECK NUMBER	CHECKS ISSUED TO OR DEPOSITS RECEIVED FROM	$\begin{aligned} & \text { AMOUNT } \\ & \text { OF CHECK } \end{aligned}$	AMOUNT OF DEPOSIT	\$922.10
Nov	01	551	Muni. Water, Inc. (2 mos)	119.60		
	06	552	Fenton Gas Co.	49.60		
	07	553	Olympia Telephone	74.19		
	07	-	Deposit cash receipts		225.50	
	21	554	City Trash Disposal (3 mos)	112.32		
	21	555	Jack's Janitorial Service	33.33		
	24	556	United Fund	12.00		
	24	557	Guide Dogs for the Blind	67.77		
	26	558	Wilson Insurance	212.00		
	28	559	Security Systems, Inc.	138.00		
	28	-	Deposit cash receipts		94.00	

2. On December 3, Hobbies Unlimited, whose check register you completed in problem 1, received the following bank statement. Reconcile the balance on the check register at the end of the month with the final balance on the bank statement. In reconciling the bank statement, you can find which of the checks are outstanding by comparing the list of checks on the statement with the register. Interest and a service charge were recorded on the statement.

HOBBIES UNLIMITED

Reconciliation of Bank Statement November 30

Bank balance on statement Plus deposit not recorded by bank

Minus outstanding checks:

Checkbook balance
Plus bank interest

Minus service charge

Assignment 9.2 Continued

B (60 points) Solve the following problems. (12 points for each correct answer)

3. Compute the reconciled balance for each of the problems from the information given.

	Bank Statement Balance	Checkbook Balance	Other Information	Reconciled Balance
a.	\$ 769.12	\$ 794.47	Outstanding checks: \$9.50, \$31.15	
			Automatic transfer to savings: \$50.00	
			Automatic charge, safety deposit box: $\$ 16.00$	
b.	\$1,559.39	\$1,672.00	Outstanding checks: \$84.62, \$14.20, \$55.00	
			Outstanding deposit: \$224.70	
			Automatic transfer to savings: \$50.00	
			Bank interest credited: \$8.27	
c.	\$ 893.17	\$ 944.73	Outstanding checks: $\$ 7.50, \$ 4.18, \$ 62.40$	
			Outstanding deposits: \$12.32, \$120.00	
			Bank interest credited: \$24.18	
			Charge for printing new checks: \$17.50	
d.	\$ 824.90	\$ 739.47	Outstanding checks: $\$ 87.50$	
			Deposit of \$76.89 shown in check register as \$78.96	
e.	\$ 710.00	\$1,274.18	Outstanding checks: \$150.00, \$37.82	
			Outstanding deposit: $\$ 440.00$	
			Deposit of \$312.00 shown twice in check register	

Assignment 9.3: Bank Balance Reconciliation Statements

Name

A (50 points) Using the data provided, prepare a bank reconciliation statement in each of the following problems. Space is provided for your solutions. (25 points for each correct reconciliation)

1. The balance shown in the bank statement of Cogswell Cooling, Inc. on November 30 was $\$ 1,050.82$. The balance shown on the check register was $\$ 668.45$. The following checks were outstanding:

No. 148	$\$ 13.90$	No. 161	$\$ 96.35$
No. 156	235.10	No. 165	34.52

There was a bank interest credit of $\$ 12.00$ and a service charge of $\$ 9.50$ that had not been entered on Cogswell Cooling's check register.
2. The June 30 bank statement for Furgison Electric Company shows that a customer's bad check in the amount of $\$ 960$ was returned and charged against the Furgison Electric Company's account by the bank. This is the first knowledge the company had that one of the checks deposited was not good.

The balance shown on the Furgison Electric Company's bank statement was $\$ 22,367.14$. The balance shown on the check register was $\$ 24,696.83$. The following checks were outstanding:

No. 363	$\$ 1,066.20$	No. 396	$\$ 1,544.14$
No. 387	$1,972.81$	No. 397	772.86

The following items required adjustment on the bank reconciliation statement:

Outstanding deposit:	$\$ 3,001.87$
Automatic transfer to note payment:	$\$ 4,000.00$
Bad check returned and charged to Furgison Electric Company's account by the bank:	$\$ 960.00$
Bank interest credit:	$\$ 276.17$

B (50 points) Using the data provided, prepare a bank reconciliation statement in each of the following problems. Space is provided for your solutions. (25 points for each correct reconciliation)

3. The balance shown on the May 31 bank statement of Linberg Floors was $\$ 18,120.16$. The balance shown by the check register was $\$ 19,512.54$. A deposit of $\$ 2,004.35$ had not been credited by the bank, and the following checks were outstanding:

No. 730	$\$ 85.17$	No. 753	$\$ 462.95$	No. 761	$\$ 19.75$
No. 749	$1,216.20$	No. 757	512.80	No. 768	982.90

The following items required adjustment on the bank reconciliation statement:

Charge for printing checks
\$ 18.00
Automatic insurance payment charged to depositor's account by the bank $\$ 1,765.00$
Check deposited by Linberg Floors, returned by bank as bad check
\$ 920.00
Interest on bank account credited by the bank
\$ 35.20
4. The balance shown on the June 30 bank statement of Greenwood Stables was $\$ 9,527.72$. The balance shown on the check register was $\$ 7,031.25$. The following checks were outstanding:

No. 516	$\$ 621.50$	No. 521	$\$ 93.21$	No. 523	$\$ 144.80$
No. 526	935.11	No. 527	250.00	No. 528	416.35

The following items were listed on the bank statement:
Charge made by the bank for safe deposit box
\$ 20.00
Bank error: AA Realty's check charged to Greenwood Stables' account
\$ 82.50
Interest on bank account credited by the bank
\$ 72.12
Bank charge for printing checks
\$ 27.00

Payroll Records

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Prepare a payroll register.

Learning Objective 2
Compute federal income tax withholding amounts.

Learning Objective 3 Compute Social Security, Medicare, and other withholdings.

Learning Objective 4 Complete an employee's earnings record.

Learning Objective 5
5 Compute an employer's quarterly federal tax return.

Learning Objective 6 Compute an employer's federal and state unemployment tax liability.

Employers must keep payroll records, withhold and pay payroll taxes, and file quarterly and annual reports with state and federal government offices. The payroll records and processes described in this chapter are common to all employers.

Federal taxes paid by all employees include the federal income tax and the two contributions (commonly referred to as taxes) required by the Federal Insurance Contributions Act (FICA): Old-Age, Survivors, and Disability Insurance, commonly called Social Security; and Hospital Insurance, commonly called Medicare.

When hiring new employees, employers must verify each employee's eligibility to work in the United States, get the employee's Social Security number, and have the employee complete a Form W-4. The W-4 form shown in Figure 10-1 indicates that Kyle Abrum is married and claims four exemptions, which constitutes his withholding allowance.

Preparing a Payroll Register

Prepare a payroll register.

A payroll register is a summary of employee status information, wages earned, payroll deductions, and take-home pay. Whether they do it manually or by computer, all employers maintain some form of payroll register.

A payroll register is prepared for each payroll period. Payroll periods are weekly, biweekly, semimonthly, or monthly. Figure 10-2 shows a payroll register for one weekly period ending March 29. The line for Kyle Abrum shows that he is married, claims four withholding allowances, and is paid on an hourly basis at the rate of $\$ 11$ per hour ($\$ 16.50$ for overtime hours). For the current week, he worked 40 regular hours and 6 overtime hours, for gross earnings of $\$ 539$. From his gross pay he had deductions for Social Security (\$33.42), Medicare (\$7.82), Federal Income Tax (\$14.66), Group Medical Insurance (\$39), Group Dental Insurance (\$12), and Other (\$42), totaling \$148.90. His net pay was $\$ 390.10$.

The Fair Labor Standards Act, commonly called the federal wage and hour law, requires that nonexempt employees be paid $1 \frac{1}{2}$ their regular hourly rate for all hours worked in excess of 40 per week. Following the FLSA requirements, the calculations for gross pay are as follows:

STEP 1 Multiply hours worked (up to 40) times the regular rate.
STEP 2 Multiply the regular rate times 1.5 to calculate the overtime rate.

STEP 3 Multiply the hours in excess of 40 times the overtime rate.
STEP $4 \quad$ Add the results of Steps 1 and 3 to determine gross pay.

Gross pay calculations for Kyle Abrum:

STEP 1	40 hours $\times \$ 11=\$ 440$ regular pay
STEP 2	$\$ 11 \times 1.5=\$ 16.50$ overtime rate
STEP 3	6 hours $\times \$ 16.50=\$ 99$ overtime pay
STEP 4	$\$ 440+\$ 99=\$ 539$ gross pay

Form W-4 (2004)

Purpose. Complete Form W - 4 so that your employer can withhoid the correct Federal income tax from your pay. Because your tax situation may change, you may want to refigure your withholding each year.
Exemption from withholding. If you are exempt, complete only lines 1,2,3, 4, and 7 and sign the form to validate it. Your exemption for 2004 expires February 16, 2005. See Pub. 505 Tax Withholding and Estimated Tax.
Note: You cannot claim exemption from with holding if: (a) your income exceeds $\$ 800$ and includes more than $\$ 250$ of unearned income (e.g., interest and dividends) and (b) another person can claim you as a dependent on their tax return.
Basic instructions. If you are not exempt. complete the Personal Allowances Worksheet below. The worksheets on page 2 adjust your withholding allowances based on itemized
deductions, certain credits, adjustments to income or two-earner/two-job situations. Compiete all worksheets that apply. However, you may claim fewer (or zero) allowances.
Head of household. Generally, you may claim head of household filing status on your tax return only if you are unmarried and pay more than 50% of the costs of keeping up a home for yourself and your dependent(s) or other qualifying individuals. See line E below.
Tax credits. You can take projected tax credits into account in figuring your allowable number of withholding allowances. Credits for child or withholding are expenses and the child tax dependent care expenses and the child tax credit may be claimed using the Personal Allowances Worksheet below. See Pub. 919,
How Do I Adjust My Tax Withholding? for information on converting your other credits into withholding allowances.
Nonwage income. If you have a large amount of nonwage income, such as interest or dividends. consider making estimated tax payments using

Form 1040-ES, Estimated Tax for Individuals. Otherwise, you may owe additional tax
Two earners/two jobs. If you have a working spouse or more than one job. figure the total number of allowances you are entitled to claim on all jobs using worksheets from only one Form W-4. Your withholding usually will be most accu rate when all allowances are clamed on the Form W-4 for the highest paying job and zero allowances are claimed on the others.
Nonresident alien. If you are a nonresident alien, see the Instructions for Form 8233 before completing this Form W-4.
Check your withholding. After your Form W-4 takes effect, use Pub. 919 to see how the doliar amount you are having withheld compares to your projected total tax for 2004. See Pub. 919 especially if your earnings exceed $\$ 125,000$ (Single) or \$175.000 (Married)
Recent name change? If your name on tine 1 differs from that shown on your social security card, call 1-800-772-1213 to initiate a name change and obtain a social security card showing your correct name.

Cut here and give Form W-4 to your employer. Keep the top part for your records.

Form $1 / 1.4$
 Employee's Withholding Allowance Certificate
 - Your employer must send a copy of this form to the IRS if: (a) you claim more than
 Department of the Treasury

 0 allowances or (b) you claim "Exempt" and your wages are normally more than $\$ 200$ per week.10 allowances or (b) you claim "E
2 Your social security number

NAME				RATE	HOURS		GROSS EARN- INGS	DEDUCTIONS							$\begin{gathered} \text { NET } \\ \text { EARNINGS } \end{gathered}$
							SOCIAL SECURITY	MEDICARE	FEDERAL INCOME TAX	GROUP MED. INS.	$\begin{gathered} \text { GROUP } \\ \text { DENTAL } \\ \text { INS. } \end{gathered}$	OTHER	TOTAL DEDUCTIONS		
					REG	O/T									
Abrum, Kyle	M	4	H	11.00	40	6	539.00	33.42	7.82	14.65	39.00	12.00	42.00	148.89	390.11
Garcia, Fran	S	2	W	680.00	40	-	680.00	42.16	9.86	69.66	18.00	9.00	-	148.68	531.32
Parker, Marie	S	1	H	12.10	32	-	387.20	24.01	5.61	34.69	18.00	-	-	82.31	304.89
Thomas, Robert	M	3	H	9.40	40	4	432.40	26.81	6.27	9.95	39.00	12.00	13.10	107.13	325.27
Weber, James	S	1	H	16.80	40	-	672.00	41.66	9.74	79.45	18.00	9.00	-	157.85	514.15
Totals						-	2,710.60	168.06	39.30	208.40	132.00	42.00	55.10	644.86	2,065.74

CONCEPT CHECK 10.1

After completion of the payroll register entries, one way to check on the accuracy of computations is to subtract the Total Deductions column from the Gross Pay total; the difference should equal the total of the Net Earnings column. From the payroll register shown in Figure 10-2, check the accuracy of the column totals:

$$
\begin{array}{lr}
\text { Total of Gross Earnings column } & \$ 2,710.60 \\
\text { Less total of Deductions column } & \underline{644.86} \\
\text { Total of Net Earnings column } & \$ 2,065.74
\end{array}
$$

Computing Federal Income Tax Withholding Amounts

Learning Objective

Compute federal income tax withholding amounts.

The federal income tax is a payroll tax that the employer must withhold from the employee's pay and turn over to the Internal Revenue Service (IRS). The amount of the deduction varies with the amount of earnings, the employee's marital status, and the number of withholding allowances claimed.

The Employer's Tax Guide, published annually by the Internal Revenue Service, gives employers two primary methods to figure how much income tax to withhold from their employees. These two methods are the percentage method and the wage-bracket method.

Figure 10-2 shows that Kyle Abrum's federal income tax withholding amount was $\$ 14.65$, computed by the percentage method. With the percentage method, a deduction is granted for each withholding allowance claimed, based on a chart in the Employer's Tax Guide. The amount for each withholding allowance is provided in a table labeled Income Tax Withholding Percentage Method Table. Figure 10-3 illustrates a recent table. It shows that, for weekly pay, a deduction of $\$ 59.62$ is allowed for each withholding allowance. (For monthly pay, a deduction of $\$ 258.33$ is allowed for each withholding allowance.)

Figure 10-3 \quad Percentage Method Amount for One Withholding Allowance

	One Withholding Allowance
Payroll Period	$\$ 59.62$
Weekly	$\$ 119.23$
Biweekly	$\$ 129.17$
Semimonthly	$\$ 258.33$
Monthly	

After the total withholding allowance is subtracted from an employee's gross earnings, the amount to be withheld is computed by taking a percentage of the difference. The percentage to be used is given by the IRS in the Tables for Percentage Method of Withholding. Figure 10-4 illustrates a recent table for weekly, biweekly, semimonthly, and monthly payroll periods.

S T E P S to Figure the Amount of Federal Income Tax Withholding, Using the Percentage Method

1. Determine the employee's gross earnings.
2. Multiply the appropriate (weekly/monthly) "one withholding allowance" amount (from the withholding table in Figure 10-3) by the number of allowances the employee claims.
3. Subtract that amount from the employee's gross earnings.
4. From the appropriate (weekly/monthly and single/married) percentage method table, subtract the "of excess over" figure to get the amount subject to the tax.
5. Multiply the amount from Step 4 by the appropriate percentage from the percentage method table.
6. If required, add the base tax amount (if any) shown next to the percentage from the percentage method table. (For example, see Table 1,WEEKLY Payroll Period, Married, the second line of the table: $\$ 27.50$ plus 15% of excess over \$429.)

Tables for Percentage Method of Withholding
 (For Wages Paid Through December 2004)

TABLE 1-WEEKLY Payroll Period

(a) SINGLE person (including head of household)-

If the amount of wages
(after subtracting The amount of income tax
withholding allowances) is: to withhold is:
Not over \$51 \$0

Over-	But not over-	of excess over-	
\$51	-\$187	10\%	-\$51
\$187	-\$592	\$13.60 plus 15\%	-\$187
\$592	-\$1,317	\$74.35 plus 25\%	-\$592
\$1,317	-\$2,860	\$255.60 plus 28\%	-\$1,317
\$2,860	-\$6,177	\$687.64 plus 33\%	--\$2,860
\$6,177	\$1,782.25 plus 35\%	-\$6,177

(b) MARRIED person-

If the amount of wages
(after subtracting The amount of income tax withholding allowances) is: to withhold is:
Not over \$154 \$0

Over-	But not over-	of excess over-	
\$154	-\$429	10\%	-\$154
\$429	-\$1,245	\$27.50 plus 15\%	-\$429
\$1,245	-\$2,270	\$149.90 plus 25\%	-\$1,245
\$2,270	-\$3,568	\$406.15 plus 28\%	-\$2,270
\$3,568	-\$6,271	\$769.59 plus 33\%	-\$3,568
\$6,271	\$1,661.58 pius 35\%	-\$6,271

TABLE 2-BIWEEKLY Payroll Period
(a) SINGLE person (including head of household)-

If the amount of wages (after subtracting withholding allowances) is:

The amount of income tax withholding aliowances) is: to withhold is:

Not over \$102 \$0

Over-	But not over-			of excess over-
$\$ 102$	$-\$ 373$.	. 10%	
$\$ 373$	$-\$ 1,185$.	. $\$ 27.10$ plus 15%	$-\$ 373$
$\$ 1,185$	$-\$ 2,635$.	. $\$ 148.90$ plus 25%	$-\$ 1,185$
$\$ 2,635$	$-\$ 5,719$.	. $\$ 511.40$ plus 28%	$-\$ 2,635$
$\$ 5,719$	$-\$ 12,354$.	. $\$ 1,374.92$ plus 33%	$-\$ 5,719$
$\$ 12,354$	-	.	.	. $\$ 3,564.47$ plus 35%

(b) MARRIED person-

If the amount of wages (after subtracting withholding allowances) is:
Not over \$308 \$0

TABLE 3-SEMIMONTHLY Payroll Period

(a) SINGLE person (including head of household)-

If the amount of wages
(after subtracting The amount of income tax withholding allowances) is: to withhold is:
Not over \$110 \$0

Over-	But not over-	of excess over-	
\$110	-\$404	10\%	-\$110
\$404	-\$1,283	\$29.40 plus 15\%	-\$404
\$1,283	-\$2,854	\$161.25 plus 25\%	-\$1,283
\$2,854	-\$6,196	\$554.00 plus 28\%	-\$2,854
\$6,196	-\$13,383	\$1,489.76 plus 33\%	--\$6,196
\$13,383	\$3,861.47 plus 35\%	-\$13,383

(b) MARRIED person-

If the amount of wages (after subtracting withholding allowances) is:
Not over \$333

Over-	But not over-	of excess over-	
\$333	-\$929	10\%	-\$333
\$929	-\$2,698	\$59.60 plus 15\%	-\$929
\$2,698	-\$4,919	\$324.95 plus 25\%	-\$2,698
\$4,919	-\$7,731	\$880.20 plus 28\%	-\$4,919
\$7,731	-\$13,588	\$1,667.56 plus 33\%	-\$7,731
\$13,588	\$3,600.37 plus 35\%	-\$13,588

TABLE 4—MONTHLY Payroll Period

(a) SINGLE person (including head of household)
If the amount of wages
(after subtracting
witholding allowances) is: The amount of income tax
Not over $\$ 221$. . . . $\$ 0$

Over-	But not over-	of excess over-	
\$221	-\$808	10\%	-\$221
\$808	-\$2,567	\$58.70 plus 15\%	-\$808
\$2,567	-\$5,708	\$322.55 plus 25\%	-\$2,567
\$5,708	-\$12,392	\$1,107.80 plus 28\%	--\$5,708
\$12,392	-\$26,767	\$2,979.32 plus 33\%	-\$12,392
\$26,767	\$7,723.07 plus 35\%	-\$26,767

(b) MARRIED person-

If the amount of wages
(after subtracting withholding allowances) is:
Not over \$667

Over-	But not over-	of excess over-	
\$667	-\$1,858	10\%	-\$667
\$1,858	-\$5,396	\$119.10 plus 15\%	-\$1,858
\$5,396	-\$9,838	\$649.80 plus 25\%	-\$5,396
\$9,838	-\$15,463	\$1,760.30 plus 28\%	-\$9,838
\$15,463	-\$27,175	\$3,335.30 plus 33\%	-\$15,463
\$27,175	\$7,200.26 plus 35\%	-\$27,175

EXAMPLE A

Using the six steps given, we compute Kyle Abrum's withholding as follows:

STEP 1	\$539.00	(gross earnings from payroll register)
STEP 2	\$ 59.62	(one withholding allowance)
	$\times 4$	(number of withholding allowances)
	\$238.48	(total withholding allowance amount)
STEP 3	\$539.00	(gross earnings)
	238.48	(total withholding allowance amount)
	\$300.52	(amount subject to withholding)
STEP 4	\$300.52	(amount subject to withholding)
	- 154.00	(less "excess over" amount in Figure 10-4)
	\$146.52	(amount subject to percentage computation)
STEP 5	\$146.52	(amount subject to percentage computation)
	$\times 0.1$	(10% computation)
	\$14.65	(amount of tax withheld)

STEP $6 \quad$ The wage range \$154-\$429 doesn't have a base tax amount and therefore doesn't apply in the case of Kyle Abrum.

The second method of figuring the amount of tax to be withheld from an employee's pay, the wage-bracket method, involves use of a series of wage-bracket tables published in the IRS Employer's Tax Guide. Figures 10-5 and 10-6 illustrate the tables for single and married persons who are paid on a weekly basis.

Using the tables from Figure 10-6, we see that a married employee earning a weekly wage of between $\$ 530$ and $\$ 540$ and claiming four withholding allowances will have $\$ 14$ withheld. Note that the amount of federal income tax withheld from Kyle Abrum's pay, using the wage-bracket method, is approximately the same as the amount withheld using the percentage method: $\$ 14$ versus $\$ 14.65$. Small differences will frequently result because the wage-bracket method uses tables based on $\$ 10$ divisions and rounded amounts. Over a period of a year, these differences tend to be relatively insignificant and are accepted by the IRS.

SINGLE Persons-WEEKLY Payroll Period
(For Wages Paid Through December 2004)

If the wages are-		And the number of withholding allowances claimed is-										
	But less	0	1	2	3	4	5	6	7	8	9	10
		The amount of income tax to be withheld is-										
\$0	\$55	\$0	\$0	$\$ 0$	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
55	60	1	0	0	0	0	0	0	0	0	0	0
60	65	1	0	0	0	0	0	0	0	0	0	0
65	70	2	0	0	0	0	0	0	0	0	0	0
70	75	2	0	0	0	0	0	0	0	0	0	0
75	80	3	0	0	0	0	0	0	0	0	0	0
80	85	3	0	0	0	0	0	0	0	0	0	0
85	90	4	0	0	0	0	0	0	0	0	0	0
90	95	4	0	0	0	0	0	0	0	0	0	0
95	100	5	0	0	0	0	0	0	0	0	0	0
100	105	5	0	0	0	0	0	0	0	0	0	0
200	210	16	9	3	0	0	0	0	0	0	0	0
210	220	18	10	4	0	0	0	0	0	0	0	0
220	230	19	11	5	0	0	0	0	0	0	0	0
230	240	21	12	6	1	0	0	0	0	0	0	0
240	250	22	13	7	2	0	0	0	0	0	0	0
250	260	24	15	8	3	0	0	0	0	0	0	0
260	270	25	16	9	4	0	0	0	0	0	0	0
270	280	27	18	10	5	0	0	0	0	0	0	0
280	290	28	19	11	6	0	0	0	0	0	0	0
290	300	30	21	12	7	1	0	0	0	0	0	0
300	310	31	22	13	8	2	0	0	0	0	0	0
310	320	33	24	15	9	3	0	0	0	0	0	0
320	330	34	25	16	10	4	0	0	0	0	0	0
330	340	36	27	18	11	5	0	0	0	0	0	0
340	350	37	28	19	12	6	0	0	0	0	0	0
350	360	39	30	21	13	7	1	0	0	0	0	0
360	370	40	31	22	14	8	2	0	0	0	0	0
370	380	42	33	24	15	9	3	0	0	0	0	0
380	390	43	34	25	17	10	4	0	0	0	0	0
390	400	45	36	27	18	11	5	0	0	0	0	0
400	410	46	37	28	20	12	6	0	0	0	0	0
410	420	48	39	30	21	13	7	1	0	0	0	0
420	430	49	40	31	23	14	8	2	0	0	0	0
430	440	51	42	33	24	15	9	3	0	0	0	0
440	450	52	43	34	26	17	10	4	0	0	0	0
450	460	54	45	36	27	18	11	5	0	0	0	0
460	470	55	46	37	29	20	12	6	0	0	0	0
470	480	57	48	39	30	21	13	7	1	0	0	0
480	490	58	49	40	32	23	14	8	2	0	0	0
490	500	60	51	42	33	24	15	9	3	0	0	0
500	510	61	52	43	35	26	17	10	4	0	0	0
510	520	63	54	45	36	27	18	11	5	0	0	0
520	530	64	55	46	38	29	20	12	6	0	0	0
530	540	66	57	48	39	30	21	13	7	1	0	0
540	550	67	58	49	41	32	23	14	8	2	0	0
550	560	69	60	51	42	33	24	15	9	3	0	0
560	570	70	61	52	44	35	26	17	10	4	0	0
570	580	72	63	54	45	36	27	18	11	5	0	0
580	590	73	64	55	47	38	29	20	12	6	0	0
590	600	75	66	57	48	39	30	21	13	7	1	0
600	610	78	67	58	50	41	32	23	14	8	2	0
610	620	80	69	60	51	42	33	24	15	9	3	0
620	630	83	70	61	53	44	35	26	17	10	4	0
630	640	85	72	63	54	45	36	27	18	11	5	0
640	650	88	73	64	56	47	38	29	20	12	6	0
650	660	90	75	66	57	48	39	30	21	13	7	1
660	670	93	78	67	59	50	41	32	23	14	8	2
670	680	95	80	69	60	51	42	33	24	15	9	3
680	690	98	83	70	62	53	44	35	26	17	10	4
690	700	100	85	72	63	54	45	36	27	18	11	5

MARRIED Persons-WEEKLY Payroll Period
(For Wages Paid Through December 2004)

If the wages are-		And the number of withholding allowances claimed is--										
At least	But less than	0	1	2	3	4	5	6	7	8	9	10
		The amount of income tax to be withheld is-										
\$0	\$125	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
125	130	0	0	0	0	0	0	0	0	0	0	0
130	135	0	0	0	0	0	0	0	0	0	0	0
135	140	0	0	0	0	0	0	0	0	0	0	0
140	145	0	0	0	0	0	0	0	0	0	0	0
145	150	0	0	0	0	0	0	0	0	0	0	0
150	155	0	0	0	0	0	0	0	0	0	0	0
155	160	0	0	0	0	0	0	0	0	0	0	0
160	165	1	0	0	0	0	0	0	0	0	0	0
165	170	1	0	0	0	0	0	0	0	0	0	0
170	175	2	0	0	0	0	0	0	0	0	0	0
175	180	2	0	0	0	0	0	0	0	0	0	0
180	185	3	0	0	0	0	0	0	0	0	0	0
185	190	3	0	0	0	0	0	0	0	0	0	0
190	195	4	0	0	0	0	0	0	0	0	0	0
195	200	4	0	0	0	0	0	0	0	0	0	0
200	210	5	0	0	0	0	0	0	0	0	0	0
210	220	6	0	0	0	0	0	0	0	0	0	0
220	230	7	1	0	0	0	0	0	0	0	0	0
230	240	8	2	0	0	0	0	0	0	0	0	0
240	250	9	3	0	0	0	0	0	0	0	0	0
250	260	10	4	0	0	0	0	0	0	0	0	0
260	270	11	5	0	0	0	0	0	0	0	0	0
270	280	12	6	0	0	0	0	0	0	0	0	0
280	290	13	7	1	0	0	0	0	0	0	0	0
290	300	14	8	2	0	0	0	0	0	0	0	0
300	310	15	9	3	0	0	0	0	0	0	0	0
310	320	16	10	4	0	0	0	0	0	0	0	0
320	330	17	11	5	0	0	0	0	0	0	0	0
330	340	18	12	6	0	0	0	0	0	0	0	0
340	350	19	13	7	1	0	0	0	0	0	0	0
350	360	20	14	8	2	0	0	0	0	0	0	0
360	370	21	15	9	3	0	0	0	0	0	0	0
370	380	22	16	10	4	0	0	0	0	0	0	0
380	390	23	17	11	5	0	0	0	0	0	0	0
390	400	24	18	12	6	0	0		0	0	0	0
400	410	25	19	13	7	1	0	0	0	0	0	0
410	420	26	20	14	8	2	0	0	0	0	0	0
420	430	27	21	15	9	3	0	0	0	0	0	0
430	440	28	22	16	10	4	0	0	0	0	0	0
440	450	30	23	17	11	5	0	0	0	0	0	0
450	460	31	24	18	12	6	0	0	0	0	0	0
460	470	33	25	19	13	7	1	0	0	0	0	0
470	480	34	26	20	14	8	2	0	0	0	0	0
480	490	36	27	21	15	9	3	0	0	0	0	0
490	500	37	28	22	16	10	4	0	0	0	0	0
500	510	39	30	23	17	11	5	0	0	0	0	0
510	520	40	31	24	18	12	6	0	0	0	0	0
520	530	42	33	25	19	13	7	1	0	0	0	0
530	540	43	34	26	20	14	8	2	0	0	0	0
540	550	45	36	27	21	15	9	3	0	0	0	0
550	560	46	37	29	22	16	10	4	0	0	0	0
560	570	48	39	30	23	17	11	5	0	0	0	0
570	580	49	40	32	24	18	12	6	0	0	0	0
580	590	51	42	33	25	19	13	7	1	0	0	0
590	600	52	43	35	26	20	14	8	2	0	0	0
600	610	54	45	36	27	21	15	9	3	0	0	0
610	620	55	46	38	29	22	16	10	4	0	0	0
620	630	57	48	39	30	23	17	11	5	0	0	0
630	640	58	49	41	32	24	18	12	6	0	0	0
640	650	60	51	42	33	25	19	13	7	1	0	0
650	660	61	52	44	35	26	20	14	8	2	0	0
660	670	63	54	45	36	27	21	15	9 9	3	0	0
670	680	64	55	47	38	29	22	16	10	4	0	0
680	690	66	57	48	39	30	23	17	11	5	0	0
690	700	67	58	50	41	32	24	18	12	6	0	0
700	710	69	60	51	42	33	25	19	13	7	1	0
710	720	70	61	53	44	35	26	20	14	8	2	0
720	730	72	63	54	45	36	27	21	15	9	3	0
730	740	73	64	56	47	38	29	22	16	10	4	0

CONCEPT CHECK 10.2

Using the percentage method steps given, verify the federal income tax withholding for Fran Garcia as recorded in the payroll register.

```
STEP 1 $680.00 (gross earnings from payroll register)
STEP 2 $ 59.62 (one withholding allowance)
    < \times2
STEP 3 $680.00 (gross earnings)
    119.24 (total withholding allowance amount)
    $560.76 (amount subject to withholding)
STEP 4 $560.76 (amount subject to withholding)
    -187.00 (less "excess over" amount in Figure 10-4, table 1(a))
    $373.76 (amount subject to percentage computation)
STEP 5 $373.76 (amount subject to percentage computation
    \times0.15 (15% computation)
    $56.06 (amount of tax withheld on percentage computation)
STEP 6 $56.06 (amount of tax withheld on percentage computation)
    13.60 (base tax amount)
    $69.66 (total amount of tax withheld)
```

Use the wage-bracket method to find the federal income tax withholding for Fran Garcia. Then compute the difference between the percentage method and the wage-bracket method.

Percentage method (Step 6)
$\$ 69.66$
Wage-bracket method (Figure 10-5 because she is single)
70.00
$\$ 0.34$

Computing Social Security, Medicare, and Other Withholdings

Learning Objective

Compute Social Security, Medicare, and other withholdings.

The Federal Insurance Contributions Act (FICA) provides for a federal system of old-age, survivors, disability, and hospital insurance. The old-age, survivors, and disability insurance part of FICA is financed by the Social Security tax. The hospital insurance part of FICA is financed by the Medicare tax. These taxes are reported separately and are levied on both the employer and the employee. These taxes have different rates, but only the Social Security tax has a wage base, which is the maximum wage that is subject to the tax for the year.

The Social Security tax rate of 6.2% is levied on both the employer and the employee. For 2004, the wage base was $\$ 87,900$.

The Medicare tax rate of 1.45% is levied on both the employer and the employee. There is no wage-base limit for Medicare; all covered wages are subject to the Medicare tax.

Although both rates are subject to change by legislation, they were current when we compiled the payroll register illustrated in this chapter. All amounts are rounded to the nearest cent. The amounts for Kyle Abrum were $\$ 33.42$ for Social Security and $\$ 7.82$ for Medicare.

EXAMPLE B

Social Security deduction:

$\$ 539.00$	(gross earnings)
$\times 0.062$	(Social Security rate)
$\$ 33.42$	(Social Security amount)

EXAMPLEC

Medicare deduction:
$\$ 539.00$ (gross earnings)
$\times .0145$ (Medicare rate)
(Medicare amount)

Many employers today provide some form of group medical insurance for their employees. Frequently, the employee is asked to pay a portion of the premium charged for such insurance, based on the number of dependents the employee has named to be insured. For the payroll register shown in Figure 10-2, we assumed the weekly rates for medical and dental plans shown in Figure 10-7.

Figure 10-7 \quad Weekly Medical and Dental Plan Rates

	Weekly Medical Plan Premium Paid by Employee	Weekly Dental Plan Premium Paid by Employee
Employee only Employee plus one dependent Employee plus 2 or more dependents	$\$ 18.00$	$\$ 9.00$

The payroll register presented in Figure 10-2 showed that Kyle Abrum subscribed to both the medical and the dental programs. Because of his three dependents, the amounts of his deductions were $\$ 39$ and $\$ 12$, respectively.

Frequently, employees will arrange to have special payroll deductions made by the employer to pay union dues, put money into special retirement or savings plans, or make contributions to charitable organizations.

In addition, 42 of the 50 states have some form of state income tax, which normally requires withholding in the same manner as the federal income tax. In such states, state income tax withholding columns are added to the payroll register and withholdings are made according to wage-bracket or percentage charts established by the state, in the same manner as federal income tax withholdings.

The payroll register illustrated in Figure 10-2 reflects a $\$ 42$ weekly deduction that Kyle Abrum had requested be made for payment of his union dues (other).

CONCEPT CHECK 10.3

Using the format in examples B and C, compute Social Security and Medicare amounts for Fran Garcia, based on her gross weekly earnings of \$680.

Social Security deduction:
\$ 680 (gross earnings)
$\times 0.062$ (Social Security rate)
$\$ 42.16$ (Social Security amount)

Medicare deduction:
$\$ 680$ (gross earnings)
$\times 0.0145$ (Medicare rate)
$\$ 9.86$ (Medicare amount)

Completing an Employee's Earnings Record

Learning Objective

Complete an employee's earnings record.

An employer must submit quarterly and annual reports to the federal government and appropriate state government and pay the amount of taxes withheld from employees' earnings for the period. To obtain the necessary information, most employers keep an employee's earnings record for each employee. The employee's earnings record summarizes by quarter the employee's gross earnings, deductions, and net pay.

EXAMPLE D

Figure 10-8 \quad Employees Earnings Record

Name Kyle Abrum				Social Security No. 234-12-8765				
Address 4052 Oak Ave.				No. of Allowances			Marita Status Married	
			Deductions					$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
Period Ending	Total Wages	Cumulative Wages	Social Security	Medicare	Federal Inc. Tax	Other Deductions	Total	
1/4	\$ 550.00	\$ 550.00	\$ 34.10	\$ 7.98	\$ 15.75	\$ 93.00	\$ 150.83	\$ 399.17
1/11	550.00	1,100.00	34.10	7.98	15.75	93.00	150.83	399.17
3/29	539.00	7,250.00	33.42	7.82	14.65	93.00	148.89	390.11
$\begin{aligned} & \hline \text { Quarter } \\ & \text { Totals } \end{aligned}$	\$7,250.00		\$431.20	\$ 99.87	\$195.79	\$908.70	\$1,635.56	\$5,614.44

The employee's earnings record presented in Figure 10-8 shows that Kyle Abrum is married, claims four allowances, and for the first quarter of the year earned total wages of $\$ 7,250$. His net pay was $\$ 5,614.44$ after first-quarter withholdings as follows:

Federal income tax withholding
Social Security withholding
Medicare withholding
Other deductions
Total deductions
\$ 195.79 431.20
99.87
908.70
$\$ 1,635.56$

CONCEPT CHECK 10.4

Assuming that Fran Garcia's weekly earnings and deductions have remained constant for each of the 13 weeks in the first quarter of the year, compute the following totals, which would appear on her employee's earnings record for the first quarter:

Total wages	$\$ 8,840.00$	$(\$ 680.00 \times 13)$
Federal income tax withholding	905.58	$(\$ 69.66 \times 13)$
Social Security withholding	548.08	$(\$ 42.16 \times 13)$
Medicare withholding	128.18	$(\$ 9.86 \times 13)$
Group medical insurance deductions	234.00	$(\$ 18.00 \times 13)$
Group dental insurance deductions	$\frac{117.00}{\$ 1,932.84}$	$(\$ 9.00 \times 13)$
Total deductions	$\frac{\$ 6,907.16}{}$	
\quad Net pay		

Computing an Employer's Quarterly Federal Tax Return

Every employer who withholds federal income tax and FICA taxes (Social Security and Medicare) must file a quarterly return, Form 941—Employer's Quarterly Federal Tax
Return. Figure 10-9 shows the data that the employer must include on Form 941 (the completed form is slightly abbreviated here). The return must be filed with the IRS within one month after the end of the quarter.

The employer obtains Social Security and Medicare amounts by multiplying the taxable wages paid by 12.4% and 2.9%, respectively. These amounts represent the employees' deductions and matching amounts required to be paid by the employer.

EXAMPLE E

For the first quarter of 2004, Yeager Manufacturing paid total wages of $\$ 2,132,684.27$. The company withheld $\$ 372,486.20$ for federal income tax. All wages paid were subject to Social Security and Medicare taxes. If during the quarter Yeager had deposited $\$ 680,000$ toward its taxes due, how much would it be required to send in with its first-quarter Form 941?

Gross wages $\$ 2,132,684.27 \times 12.4 \%$ (Social Security)
Gross wages $\$ 2,132,684.27 \times 2.9 \%$ (Medicare)
Subtotal
Income taxes withheld
Total
Less deposit
Balance due

$$
\begin{array}{r}
\$ 264,452.85 \\
61,847.84 \\
\hline 326,300.69 \\
372,486.20 \\
\hline 698,786.89 \\
680,000.00 \\
\hline \$ 18,786.89
\end{array}
$$

Learning Objective

Compute an employer's quarterly federal tax return.

15 Balance due (subtract line 14 from line 13). See instructions
\qquad

- All filers: If line 13 is less than $\$ 2,500$, you need not complete line 17 or Schedule B (Form 947).
- Semiweekly schedule depositors: Complete Schedule B (Form 941) and check here .
- Monthly schedule depositors: Complete line 17 , columns (a) through (d), and check here.

17 Monthly Summary of Federal Tax Liability. Do not complete if you were a semiweekly schedule depositor.

17 Monthly Summary of Federal Tax Liability. Do not complete if you were a semiweekly schedule depositor.			
(a) First month liability	(b) Second month liability	(c) Third month liability	(d) Total liability for quarter

| Sign | Under penalties of perjury, I declare that I have examined this return, including accompanying schedules and statements, and to the best of my knowledge
 and belief, it is true, correct, and complete.
 Signature - | Print Your
 Here |
| :--- | :--- | :--- | :--- | :--- |
| For Privacy Act and Paperwork Reduction Act Notice, see back of Payment Voucher. | Cat. No. 170012 | Form 941 (Rev. 1-2001) |

CONCEPT CHECK 10.5

As displayed in Figure 10-9, the total taxes due the IRS consist of the $\$ 4,997.45$ in federal income taxes withheld from employees, plus $\$ 7,457.13$ and $\$ 1,744.01$ for Social Security and Medicare taxes, respectively, half of which is withheld from employees and half of which is paid by the employer. Although the employer files Form 941 quarterly, the amount of taxes due is usually deposited in a qualified depository (bank) monthly or more often, and it is only the difference between the monthly deposits and the total taxes due that is sent with the Form 941 report.

Computing an Employer's Federal and State Unemployment Tax Liability

In the preceding section, you learned that the employer must match the employee's contributions to Social Security and Medicare taxes. In addition, employers must pay two payroll taxes for federal and state unemployment programs.

The Federal Unemployment Tax Act (FUTA) requires the employer to pay a 6.2% tax on the first $\$ 7,000$ paid to each employee to fund the federal unemployment compensation program for those who have lost their jobs. Most states have also passed a State Unemployment Tax Act (SUTA), requiring the employer to pay 5.4% tax on the first $\$ 7,000$ paid to each employee to fund state programs for the unemployed. This 5.4% state tax is deductible from the federal tax payment. Thus, in most cases, employers pay the federal government just 0.8% FUTA tax: 6.2% FUTA -5.4% SUTA $=0.8 \%$ requirement.

EXAMPLE F

During the first quarter, Johnson and Johnson paid wages of $\$ 976,550.80$. Of this amount, $\$ 172,400.60$ was paid to employees who had been paid $\$ 7,000$ earlier in the quarter. What was the employer's liability for FUTA and SUTA taxes, assuming that the state rate was 5.4% ?
$\$ 976,550.80-\$ 172,400.60=\$ 804,150.20$ subject to FUTA and SUTA taxes
$\$ 804,150.20 \times 0.008=\$ 6,433.20$ FUTA tax payment
$\$ 804,150.20 \times 0.054=\$ 43,424.11$ SUTA tax payment
$\$ 6,433.20+\$ 43,424.11=\$ 49,857.31$

Compute an employer's federal and state unemployment tax liability.

CONCEPT CHECK 10.6

Warner-Lambert Company employed Rojas Perez for 13 weeks during the period January 1 through March 31,2004. His salary was $\$ 1,350$ per week. At the end of the quarter, how much in FUTA and SUTA taxes did the company have to pay to the federal and state governments based on Rojas's income?
$\$ 1,350$ per week $\times 13$ weeks $=\$ 17,550$ total wage
$\$ 7,000$ maximum $\times 0.008=\$ 56$ FUTA tax
$\$ 7,000$ maximum $\times 0.054=\$ 378$ SUTA tax
$\$ 378+\$ 56=\$ 434$ total federal and state unemployment taxes

COMPLETE ASSIGNMENTS 10.1 AND 10.2.

Chapter Terms for Review

employee's earnings record
 Employer's Quarterly Federal Tax Return
 Federal Insurance Contributions Act (FICA)

Federal Unemployment Tax Act (FUTA)
payroll register
percentage method
State Unemployment Tax Act (SUTA)
wage-bracket method withholding allowance

Form W-4

Try Microsoft ${ }^{\circledR}$ Excel

Try working the following problems using the Microsoft Excel templates found on your Student CD. Solutions for the problems are also shown on the CD.

1. Brighton Company pays its employees at the regular hourly rate for all hours worked up to 40 hours per week. Hours in excess of 40 are paid at $11 \frac{1}{2}$ times the regular rate. Set up the following spreadsheet in Excel and add formulas to calculate Overtime Hours, Regular Pay, Overtime Pay, and Total Gross Pay for each employee in the shaded cells.

Hint: Use IF function to determine overtime hours.

Employees	Total Hours Worked	Regular Hourly Rate	Overtime Hours	Regular Pay	Overtime Pay	Total Gross Pay
Baker, Jason	42	$\$ 12.80$				
Castro, Jill	38	15.70				
Dobson, Jack	40	12.00				
Ellis, Jennifer	45	14.50				

2. Set up the following worksheet and add formulas in shaded cells to calculate the Social Security, Medicare, Total Deductions, and Net Pay for each employee. Assume all wages are taxable and use the following rates: Social Security $=6.2 \%$, Medicare $=1.45 \%$

Employees	Wages	Social Security	Medicare	Income Tax	Total Deductions	Net Pay
Carter, Janes	$\$ 460.35$			$\$ 45.80$		
Edison, Alice	289.50			25.00		
Garcia, Joseph	375.00			36.90		
Kilmer, Martha	450.70			52.00		

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

10.1

Prepare a payroll register

Example

Based on the data presented, complete the following payroll register. Fill out the total wages section and then compute the federal income tax, Social Security, Medicare, and other withholdings. Total all columns and check. Use the percentage method for federal income tax.

1. G. Lee is paid $\$ 14.20$ per hour. He works 40 regular hours and 6 overtime hours during the week ending January 7. He is single and claims one withholding allowance. He takes a weekly medical deduction of $\$ 7$.
2. E. Berg is paid $\$ 13$ per hour. He worked 40 regular hours and 8 overtime hours during the week of January 7. He is married and claims four withholding allowances. He takes a weekly medical deduction of $\$ 15$.

10.3

Compute Social Security, Medicare, and other withholdings

Name		$\begin{aligned} & \frac{3}{7} \\ & \frac{2}{7} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { 읗 } \\ & \text { 홍 } \\ & \text { 등 } \end{aligned}$	Regular Earnings		Overtime Earnings			Total Wages	Deductions					$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
				Rate per Hour	Amt	Hours Worked	Rate per Hour	Amt		Social Security	Medicare	Fed. Inc. Tax	Med. Insurance	Total	
Lee,G.															
Berg, E.															

10.4

Complete an employee's earnings record
3. Complete the earnings record for D. Chan. Use 6.2% for Social Security and 1.45% for Medicare taxes. Use the percentage method for federal income tax withholding, on the monthly wages.

Address 7821 Oak Ave.				Social Security No. 125-11-3296 \qquad No. of Allowances 1			Marital Status Married	
					Deductio			
Period Ending	Total Wages	Cumulative Total	Social Security	Medicare	$\begin{aligned} & \text { Federal } \\ & \text { Inc. Tax } \end{aligned}$	Other Deductions	Total	$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
1/31	\$3,100	\$3,100				\$18.00		
2/28	3,000	6,100				18.00		
3/31	3,450	\$9,550				18.00		
$\begin{aligned} & \text { Quarter } \\ & \text { Total } \end{aligned}$	\$9,550					\$54.00		

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

10.5

Compute an employer's quarterly federal tax return

10.6

Compute an employer's federal and state unemployment tax liability

Example

4. The Frazer Company had a total payroll of $\$ 279,440$ for the first quarter of the year. It withheld $\$ 29,700$ for federal income tax. It made monthly tax deposits of $\$ 24,100$. Frazer is now filing its quarterly Form 941. Complete the following to determine the amount of the check that Frazer must send to the IRS for undeposited taxes due.
a. Social Security tax due for the quarter \qquad
b. Medicare tax due for the quarter \qquad -
c. Total taxes due for the quarter \qquad
d. Total deposits for the quarter \qquad
e. Undeposited taxes due IRS \qquad
5. Miller Outfitters employed R. Rehnquist for the period from January 1 through March 31, 13 weeks, at a salary of $\$ 1,230$ per week. At the end of the quarter, how much in FUTA and SUTA taxes are owed to the federal and state governments if the state had a 0.8% FUTA rate and a 5.4% SUTA rate?
a. Total wages
b. FUTA tax
c. SUTA tax
d. Total federal and state unemployment taxes paid

Review Problems for Chapter 10

(1) Alex Muñoz is paid $\$ 15$ per hour for the first 40 hours and $1 \frac{1}{2}$ times his regular rate for all hours worked over 40 per week.
a. Determine Alex's gross pay for the week if he works 45 hours.
b. Calculate the amount to be deducted for Social Security and Medicare taxes for the week.
c. Determine the amount to be withheld for federal income tax, using the percentage method, if Alex is single and claims one withholding allowance.
d. What is Alex's net pay for the week, assuming that his only payroll deductions are for Social Security, Medicare, and federal income tax?
2 Determine the amount to be withheld for federal income tax for each of the following, using both the percentage and the wage-bracket methods.
a. A married employee, claiming two allowances, has weekly gross pay of $\$ 650$.
b. A single employee, with one allowance, has weekly gross pay of $\$ 525$.
(3) Calculate the employer's payroll taxes for each of the first three months of the year for three employees who are paid as follows:

Albertson, K.	$\$ 3,000$ per month
Becket, W.	$\$ 4,000$ per month
Jones, C.	$\$ 2,100$ per month

Include FUTA (0.8%), SUTA (5.4%), Social Security (6.2%), and Medicare (1.45%) taxes. Be sure to consider the maximum taxable for unemployment taxes $(\$ 7,000)$ per employee.
4 Determine the taxes to be reported on the quarterly 941 form for an employer who paid total gross wages of $\$ 62,000$ and withheld $\$ 7,800$ for federal income tax.

Social Security	
Medicare	
Federal income tax	\square
\quad Total	

5 Determine the amount to be withheld from the current period's gross pay of $\$ 6,500$ for Social Security and Medicare for an employee whose cumulative wages were $\$ 83,200$, not including pay for the current period. Use the rates and taxable maximum given in the chapter.
6 Employees of Xper Co. are paid at their regular rate for the first 40 hours, at $1 \frac{1}{2}$ times their regular rate for hours worked between 40 and 48 , and double their regular rate for all hours worked over 48 , per week. Calculate each employee's gross pay for the week.

John Kowalski, regular rate $\$ 12.16$, worked 47 hours
Martha Madison, regular rate $\$ 9.50$, worked 50 hours
Joy Weston, regular rate $\$ 10.80$, worked 42 hours

Assignment 10.1: Payroll Problems

Name
Date

Score

A (52 points) Complete the payroll. (1 point for each correct answer)

1. In this company, employees are paid $1 \frac{1}{2}$ times their regular rate for overtime hours between 40 and 48 and 2 times their regular rate for overtime hours over 48, per week.

Score for A (52)

B (28 points) Solve the following problems. (7 points for each correct answer)

2. Dale LaVine is employed at a monthly salary of $\$ 2,700$. How much is deducted from his monthly salary for FICA taxes (Social Security and Medicare)? \qquad
3. Candace Cooper is employed by a company that pays her $\$ 3,600$ a month. She is single and claims one withholding allowance. What is her net pay after Social Security, Medicare, and federal income tax withholding? Use the percentage method for federal income tax. \qquad

Assignment 10.1 Continued

4. On April 1, the company in problem 3 changed its pay plan from monthly to weekly and began paying Candace $\$ 830.77$ per week. What is her net weekly pay after Social Security, Medicare, and income tax deductions? Use the percentage method. \qquad
5. William Diggs is married and claims four withholding allowances. His weekly wages are $\$ 725$. Calculate his Social Security and Medicare deductions and, using the wage-bracket method, his federal income tax withholding. Find his weekly net pay. \qquad

C (20 points) Compute and compare the federal income tax withholding amounts for each of the following individuals using the percentage method and the wage-bracket method. (Follow the steps in Section $\mathbf{1 0 . 2}$ for the percentage method.) (5 points for each correct difference)
6. Ralph Carson: weekly wages, $\$ 320$; single; 1 withholding allowance

Percentage method:
Wage-bracket method:
Difference: \qquad
7. George Wilson: weekly wages, $\$ 445$; married; 3 withholding allowances

Percentage method:
Wage-bracket method:
Difference: \qquad
8. Mary Suizo: weekly wages, $\$ 292$; single; 2 withholding allowances

Percentage method:
Wage-bracket method:
Difference: \qquad
9. Josephine Creighton: weekly wages, $\$ 595$; married; 1 withholding allowance

Percentage method:
Wage-bracket method:
Difference: \qquad

Assignment 10.2: Payroll, Earnings Record, Payroll Tax Returns

Name
Date Score

A (40 points) Solve the following problems. (1 point for each correct answer in the Total Wages column in 1; $\mathbf{2}$ points for each correct answer in the Net Pay column in 1 and 2)

1. Complete the following weekly payroll register. Workers receive overtime pay for any time worked in excess of 40 hours per week at $1 \frac{1}{2}$ the rate of their regular rate per hour. There is a 6.2% deduction for Social Security and 1.45% for Medicare taxes. Use the wage-bracket method for federal income tax withholding. Be sure to use the correct table based on the marital status of each employee.

		$$		Regular Earnings		Overtime Earnings			Total Wages	Deductions					$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
Name				Rate Per Hour	Amount	Hours Worked	Rate Per Hour	Amount		Social Security	Medicare	Fed. Inc. Tax	Med Ins.	Total	
Allen, J.	S	1	40	\$12.40									\$ 15.00		
Clark, C.	M	2	43	10.00		3							12.00		
Frank, B.	S	0	32	13.50									12.00		
Hanson, K.	M	3	40	15.00									18.00		
Johnson, A.	M	2	48	9.20		8							18.00		
Kelly, J.	M	4	44	14.80		4							18.00		
Nelson, R.	s	1	40	9.60									12.00		
Olson, B.	M	5	42	14.28		2							12.00		
Valdez, M.	S	1	40	12.50									15.00		
TOTALS													\$132.00		

2. The total monthly wages of four employees are listed below. Determine the amount of the deductions and the net pay due to each employee. Use 6.2% for Social Security and 1.45% for Medicare tax deductions, and use the percentage method for federal income tax withholding. Determine the deductions and totals.

Name	爱器	플	$\begin{gathered} \text { Total } \\ \text { Wages } \end{gathered}$	Deductions				$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
				Social Security	Medicare	$\begin{gathered} \hline \text { Federal } \\ \text { Income Tax } \end{gathered}$	Total	
Ali, Kyber	s	1	\$1,750.00					
Dawson, William	м	3	2,100.00					
Garcia, Jessica	s	0	2,580.00					
Lawson, Mary	м	2	2,425.00					
TOTALS								

B (20 points) Solve the following problems. (1 point for each correct weekly answer in the Net Pay column and 2 points for the correct quarter total of that column in 3; $\mathbf{1}$ point for each correct answer in 4)
3. Complete the employee's earnings record for Michelle Lee. Use 6.2% for Social Security and 1.45% for Medicare taxes. Use the percentage method for federal income tax withholding.

Name Michelle Lee				Social Security No. 125-55-1254				
Address \qquad 645 Abby Ln				vances	Marital Status Married			
					Deductions			
$\begin{aligned} & \text { Period } \\ & \text { Ending } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Wages } \end{gathered}$	Cumulative Wages	Social Security	Medicare	$\begin{aligned} & \text { Federal } \\ & \text { Inc. Tax } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { United } \\ & \text { Fund } \end{aligned}$	Total	$\begin{aligned} & \text { Net } \\ & \text { Pay } \end{aligned}$
1/6	\$ 450.60	\$ 450.60				\$ 4.00		
1/13	412.00	862.60				4.00		
1/20	412.00	1,274.60				4.00		
1/27	475.50	1,750.10				4.00		
2/3	415.20	2,165.30				4.00		
2/10	490.25	2,655.55				4.00		
2/17	427.50	3,083.05				4.00		
2/24	435.90	3,518.95				4.00		
3/3	510.00	4,028.95				4.00		
3/10	505.60	4,534.55				4.00		
$3 / 17$	516.00	5,050.55				4.00		
3/24	498.50	5,549.05				4.00		
3/31	535.80	6,084.85				4.00		
Quarter Totals	\$6,084.85					\$52.00		

4. The following is a summary of quarterly earnings of a company's employees. Determine the information requested for the employer's quarterly federal tax return.

Name	Total Wages	Taxes Withheld		
		Social Security	Medi- care	Fed. Inc. Tax
Carter, M.	\$ 6,084.85	\$ 377.27	\$ 88.22	\$ 451.42
Davis, L.	5,368.00	332.82	77.84	437.50
Gordon, J.	4,266.35	264.51	61.86	398.65
McBride, C .	7,230.00	448.26	104.84	595.80
Taggert, L.	6,240.50	386.91	90.49	465.50
Walton, N.	5,285.92	327.73	76.65	566.00
TOTALS				

a. Total earnings paid
c. Total Social Security tax paid
e. Total taxes withheld
b. Federal income tax withheld
d. Total Medicare tax paid
\qquad
\qquad

C (40 points) Solve the following problems. (4 points for each correct answer in 5 and 6; 1 point for each correct answer in 7)

5. The quarterly earnings of the employees of the Alpha Company are listed in the following table. Determine the employee information needed for the employer's quarterly federal tax return (Form 941).

Name	Total Wages	Taxes Withheld		
		Social Security	Medicare	Fed. Inc. Tax
Caldwell, Janice	\$ 3,420.00	\$ 212.04	\$ 49.59	\$ 423.90
Dorman, J.A.	3,600.00	223.20	52.20	473.67
Eagie, T.W.	4,016.50	249.04	58.24	433.33
Fortune, Mark	3,774.90	234.02	54.74	410.05
Morris, Regina	3,605.40	223.53	52.28	399.83
Tracy, Joseph	4,111.60	254.92	59.62	360.17
TOTALS				

a. Total earnings paid
b. Employee's contribution of Social Security tax
c. Employee's contribution of Medicare tax
d. Federal income tax withheld from wages
e. Total taxes
6. The Primo Company had a total payroll of $\$ 148,600.34$ for the first quarter of the current year. It withheld $\$ 28,531.27$ from the employees for federal income tax during this quarter. The company made the following deposits in a qualified bank depository for the amount of the income and Social Security and Medicare taxes withheld from the employees and for the company's contribution to the FICA tax: $\$ 17,050$ on February $6 ; \$ 17,050$ on March 4 ; and $\$ 17,050$ on April 5. Primo Company's bookkeeper is now filling out Form 941 (quarterly return), which is due by the end of April. Complete the following to determine the amount of the check that the company must send to the IRS for the undeposited taxes due.
a. Total Social Security and Medicare taxes to be paid for quarter
b. Total Taxes
c. Total deposits for quarter (sent to qualified bank depository)
d. Undeposited taxes due IRS
7. Jordan Mills employed Ruth Liebowitz for the period January 1 through March 31 (13 weeks) at a salary of $\$ 1,500$ per week. At the end of the first quarter of the year, how much in FUTA and SUTA taxes did the company owe to the federal and state governments if the state had an 0.8% FUTA rate and a 5.4% SUTA rate?
a. Total wages and taxable wages \qquad
c. SUTA tax
b. FUTA tax
d. Total federal and state unemployment taxes paid
\qquad

Score for C (40)

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute sales taxes, using rate tables and percents.

Learning Objective
 2

Learning Objective

Learning Objective5

Compute assessed valuations and property taxes based on assessed valuation.

Compute tax rates in percents and mills.

Compute property tax payments involving special assessments, prorations, and exemptions.

Make basic computations to determine taxable income for taxpayers who use the standard federal income tax Form 1040.

Make basic computations to determine the tax liability for taxpayers who use the standard federal income tax Form 1040.

Most retail businesses collect a sales tax from customers when a sale occurs. The tax money must be turned over to the government. People and companies owning property usually pay taxes on the property's value. In this chapter we explain calculations involving sales, property, and income taxes.

Computing Sales Taxes

Learning Objective 1

Compute sales taxes, using rate tables and percents.

A sales tax is a government levy, or charge, on retail sales of certain goods and services. Most states and many cities and other local government entities levy sales taxes. The state tax rate-the percent used to compute the amount of sales tax-currently ranges from 3% to 7%, and city and county rates range from 0.925% to 7%.

Retail sales taxes, which usually are a combination of state and local taxes, are calculated as a single percent of taxable sales. For example, a sale is subject to a state sales tax of 5% and a local sales tax of 1%. The combined rate of 6% is applied to all taxable sales in that locality.

SALES TAX AS A PERCENT OF PRICE

Sales taxes generally are rounded to the nearest cent. For example, sales taxes of 4% and 5% on amounts of up to $\$ 1$ are charged as shown in Figure 11-1.

Figure 11-1 \quad Sales Taxes

$\mathbf{4 \%}$ on Sales of	Tax Due	$\mathbf{5 \%}$ on Sales of	Tax Due
$\$ 0.01$ to $\$ 0.12$	none	$\$ 0.01$ to $\$ 0.09$	none
$\$ 0.13$ to $\$ 0.37$	$\$ 0.01$	$\$ 0.10$ to $\$ 0.29$	$\$ 0.01$
$\$ 0.38$ to $\$ 0.62$	$\$ 0.02$	$\$ 0.30$ to $\$ 0.49$	$\$ 0.02$
$\$ 0.63$ to $\$ 0.87$	$\$ 0.03$	$\$ 0.50$ to $\$ 0.69$	$\$ 0.03$
$\$ 0.88$ to $\$ 1.00$	$\$ 0.04$	$\$ 0.70$ to $\$ 0.89$	$\$ 0.04$
		$\$ 0.90$ to $\$ 1.00$	$\$ 0.05$

STEP S to Compute Sales Tax and Total Sales Amount

1. Multiply the taxable sales amount by the tax rate.
2. Add the sales tax amount to the taxable sales amount to get the total sales amount.

EXAMPLEA

If taxable merchandise of $\$ 60.39$ is sold in a state with a 5% sales tax, what are the amount of tax and the total amount to be paid?

Amount of tax: $\$ 60.39 \times 0.05=\$ 3.019$, which rounds to $\$ 3.02$
Total amount to be paid: $\$ 60.39+\$ 3.02=\$ 63.41$

Most retail stores have cash registers that recognize a code such as the Uniform Product Code (UPC) to determine taxable sales and to calculate the sales tax automatically. The sales receipt usually shows the total taxable sales as a subtotal, the sales tax, and the total sales plus tax. Usually, discounts on a sale are subtracted from the sale price before the tax is figured. Shipping and installation labor charges are generally not taxed.

EXAMPLE B

A customer living in a city with a 6% state sales tax and a 1.5% city sales tax purchased a refrigerator regularly priced at $\$ 850$. He was given a 10% discount. Delivery charges were $\$ 45$. What were the amount of tax and the total cost to the buyer?
Discount amount: $\$ 850 \times 10 \%=\$ 850 \times 0.10=\$ 85$
Price after discount: $\$ 850-\$ 85=\$ 765$, or $\$ 850 \times 0.90=\$ 765$
Sales tax: $\$ 765 \times(0.06+0.015)=\$ 57.38$
Cost to buyer: $\$ 765+\$ 57.38$ tax $+\$ 45$ delivery $=\$ 867.38$

State laws regarding the items subject to sales tax vary. Most states do not tax groceries; however, most do tax meals served in restaurants. Certain nonfood items also sold in grocery stores (such as laundry detergent) are generally taxed. When nontaxable and taxable items are purchased together, the register usually computes the total price of items purchased and automatically adds the correct amount of tax for each taxable item. The taxable items are clearly marked on the register tape along with the total amount of tax charged.

EXAMPLEC

A customer living in a state in which the tax rate is 7% went to a grocery store and purchased a quart of milk for $\$ 1.15$, a loaf of bread for $\$ 2.79$, potatoes for $\$ 2.25$, and two taxable items—laundry detergent for $\$ 8.49$ and fabric softener for $\$ 5.30$. What was her total charge at the checkout counter?

Taxable items: $\$ 8.49+\$ 5.30=\$ 13.79$
Tax: $\$ 13.79 \times 0.07=\$ 0.9653=\$ 0.97$
Total: $\$ 1.15+\$ 2.79+\$ 2.25+\$ 8.49+\$ 5.30+\$ 0.97=\$ 20.95$

SALES TAX AS AN AMOUNT PER UNIT

All of the states and the District of Columbia levy special taxes on gasoline and cigarettes, usually stated in cents per unit (gallon or pack). State taxes on gasoline vary widely, from $\$ 0.075$ in Georgia to $\$ 0.285$ in Wisconsin; in addition, the federal tax is currently $\$ 0.184$ per gallon. State taxes on cigarettes currently range from $\$ 0.025$ to $\$ 1.11$ per pack; the federal tax is currently $\$ 0.71$ per pack.

EXCISE TAX AS AN AMOUNT PER UNIT

An excise tax is a tax assessed on each unit. In some states both the excise tax and the general sales tax apply to items such as gasoline, cigarettes, and alcoholic beverages. In such instances, the excise tax may be part of the taxable sales price for general sales tax purposes. For example, in a certain locality gasoline costs $\$ 1.40$ per gallon, plus state and federal excise taxes of $\$ 0.40$ and is subject to a general sales tax of 6%. The total price per gallon is $\$ 1.91(\$ 1.40+\$ 0.40$ excise tax $+\$ 0.11$ general sales tax $)$. The general sales tax is calculated as 6% of $\$ 1.80$.

CONCEPT CHECK 11.1

In a state in which the combined state and city sales tax rate is 6\%, a customer went to a convenience store and purchased the following items: bread, \$1.95; ground meat, \$6.79; cheese, $\$ 4.79$; lightbulbs, $\$ 4.25$; and motor oil, $\$ 1.79$. Only the last two items are taxable. Rounding the tax to the nearest cent, compute the total cost of all items and tax.

```
Nontaxable items: }$1.95+$6.79+$4.79=$13.5
Taxable items: }\quad$4.25+$1.79=$6.0
Total tax: }\quad$6.04\times0.06\mathrm{ tax rate = $0.36
    $13.53 Nontaxable items
    6.04 Taxable items
    0.36 Tax
```


Computing Assessed Valuations and Property Taxes

Learning Objective

Compute assessed valuations and property taxes based on assessed valuation.

A property tax for a business is a tax on real estate or other property, such as machinery, owned by the business. Businesses usually pay property tax bills semiannually. Taxes are based on a value, known as the assessed valuation, determined by a representative of the local or state government.

Assessed valuation ordinarily is based on the current market value of the property (what the property could be sold for). In many states it is fixed by law at 100%, but it is a fraction of that value in other states. Thus a particular community may use 60% of property values as the basis for tax billing. In most instances, land and buildings are assessed separately.

EXAMPLE D

The Kinsey family lives in a town in which assessed valuation is 60% of market value. The Bailey family lives in a town in which assessed valuation is 75% of market value. Each home has a market value of $\$ 260,000$. What is the assessed valuation of each home?

Kinsey: $\$ 260,000 \times 0.60=\$ 156,000$
Bailey: $\$ 260,000 \times 0.75=\$ 195,000$

Assessed valuation often is increased by improvements to the property, such as the addition of an enclosed porch, a pool, or landscaping: Ordinary maintenance-a new coat of paint, for instance, or repairs to the roof-isn't justification for an increased assessment.

EXAMPLE E

The Lee family and the Kelly family live in a town in which assessed valuation is set by law at 80% of market value. They live in identical houses having a market value of $\$ 220,000$. The Lee family added an enclosed deck costing $\$ 10,500$ and a family room costing $\$ 23,000$. The Kelly family made extensive repairs and repainted the house a new color at a total cost of $\$ 15,000$. What was the assessed valuation on each home the following year?

Lee: $\$ 220,000+\$ 10,500+\$ 23,000=\$ 253,500 \times 0.8=\$ 202,800$
Kelly: $\$ 220,000 \times 0.8=\$ 176,000$ (repairs and painting are not considered improvements)

CONCEPT CHECK 11.2

a. The Coles family owns a home with a market value of $\$ 300,000$ in a community that assesses property at 100% of market value. The Jensen family owns a home with a market value of $\$ 400,000$ in a community that assesses property at 60% of market value. What is the difference between the actual assessments of the two homes?
Coles: $\$ 300,000 \times 1=\$ 300,000$
Jensen: $\$ 400,000 \times 0.6=\$ 240,000$
Difference $=\$ 60,000$
b. The Bay family home has a present market value of $\$ 280,000$ in a community that assesses property at 80% of market value. If they add a family room and an additional bathroom at a cost of $\$ 42,000$, what will be the new assessed valuation?
Revised market value: $\$ 280,000+\$ 42,000=\$ 322,000$
New assessed value: $\$ 322,000 \times 0.80=\$ 257,600$

Computing Tax Rates in Percents and Mills

PERCENTS

For a city, county, or special district, the tax rate is found by dividing the amount of money the government unit needs to raise by the total assessed valuation of the particular unit.

Learning Objective

Compute tax rates in percents and mills.

EXAMPLE F

The town of Lakeside has a total assessed valuation of $\$ 570,000,000$. The amount to be raised by taxation is $\$ 9,975,000$. What is the tax rate?

The tax rate is
$\$ 9,975,000 \div \$ 570,000,000=0.0175$, or 1.75%.
This rate is usually written as 1.75% of value, or $\$ 1.75$ on each $\$ 100$ of value.

EXAMPLE G

If a property in Lakeside is assessed for $\$ 160,000$, what is the tax?
The tax can be found by multiplying the amount by the rate:
$\$ 160,000 \times 0.0175=\$ 2,800$

MILLS

Tax rates sometimes are expressed in a unit of measure called mills. A mill is a tenth of a cent, or $\$ 0.001$ (one thousandth of a dollar). To convert mills to dollars, divide by 1,000 (move the decimal three places to the left). To convert cents to mills, multiply by 10 . Thus a tax rate can be converted from mills to cents or dollars or vice versa by using the following relationships:

$$
\begin{array}{ll}
\text { mills } \div 10=\text { cents } & 150 \text { mills } \div 10=15 \phi \\
\text { mills } \div 1,000=\text { dollars } & 150 \text { mills } \div 1,000=\$ 0.15 \\
\text { cents } \times 10=\text { mills } & 15 \phi \times 10=150 \text { mills } \\
\text { dollars } \times 1,000=\text { mills } & \$ 0.15 \times 1,000=150 \text { mills }
\end{array}
$$

EXAMPLE H

Davis County assesses property at the rate of 182 mills per $\$ 100$ of assessed value. How much tax would be due on property assessed at $\$ 620,000$?

$$
\begin{aligned}
& \$ 620,000 \div 100=\$ 6,200 \text { to assess millage } \\
& 182 \text { mills }=\$ 0.182 \\
& 0.182 \times \$ 6,200=\$ 1,128.40 \text { tax }
\end{aligned}
$$

CONCEPT CHECK 11.3

a. A town has a total assessed valuation of $\$ 960,000,000$. A total of $\$ 12,000,000$ must be raised by taxation for the operating expenses of the town. What will be the tax rate?
$\$ 12,000,000 \div \$ 960,000,000=0.0125$, or 1.25%
b. Convert $\$ 0.57$ into mills: $57 \not \subset \times 10=570$ mills, or $\$ 0.57 \times 1,000=570$ mills
c. If property in a town is assessed at the rate of 140 mills per $\$ 100$ of assessed value, how much tax will be due on property assessed at $\$ 475,000$?
$\$ 475,000 \div 100=\$ 4,750$ to assess millage
140 mills $=\$ 0.14$
$\$ 4,750 \times \$ 0.14=\$ 665$ tax due

Computing Special Assessments, Prorations, and Exemptions

Special assessments can be levied for improvements in a community, such as sewers, roads, or sidewalks. Sometimes the cost is spread over a period of years and added to the annual property tax bill of each property owner.

EXAMPLE I

The residents of Sonora voted to widen their roads and add sidewalks, at a cost of \$480 per residence, with the cost to be spread over a 12-year period. The Walker family had an annual tax bill of $\$ 630$ before the improvements. If they pay their property taxes semiannually, what will be the amount of their next tax payment?

Annual cost for improvement: $\$ 480 \div 12=\$ 40$
Annual property tax and improvement payment:
$\$ 630+\$ 40=\$ 670$
Next semiannual tax payment: $\$ 670 \div 2=\$ 335$

Whenever property is sold, it is customary to prorate, or distribute, the taxes between seller and buyer as of the date of the settlement.

EXAMPLE J

A home having an annual tax bill of $\$ 720$ was sold at the end of the seventh month of the taxable year. The seller had already paid the tax for the full year. How much tax was the seller reimbursed on proration of taxes at the time of the sale?

Months prepaid by seller: $12-7=5$
Tax reimbursed by buyer: $\$ 720 \times \frac{5}{12}=\$ 300$

In almost all states, property used exclusively by nonprofit organizations, such as schools, churches, governments, and charities, is exempt from taxation. Some states also allow partial exemptions for veterans and the elderly.

EXAMPLE K

The town of Hillton assesses property at 75% of market value. The tax rate is 1.2%. A church has a total market value of $\$ 560,000$. How much does the church save each year by being exempt from property taxes?
$\$ 560,000 \times 0.75=\$ 420,000 \quad \$ 420,000 \times 0.012=\$ 5,040$ saved

Learning Objective

Compute property tax payments involving special assessments, prorations, and exemptions.

EXAMPLE L

A veteran living in Conton receives a partial exemption of 15% of regular property taxes. The veteran owns property valued at $\$ 380,000$. If the property is assessed at 80% of value and the current rate is 1.3%, how much tax is due each six months?

Assessed value: $\$ 380,000 \times 0.80=\$ 304,000$
Regular taxes: $\$ 304,000 \times 0.013=\$ 3,952$
Taxes due after exemption: $\$ 3,952 \times 0.85(100 \%-15 \%)=\$ 3,359.20$
Taxes due each six months: $\$ 3,359.20 \div 2=\$ 1,679.60$

CONCEPT CHECK 11.4

a. The city of Belton voted to build a new library at a cost of $\$ 540$ per residence, to be spread over a period of 15 years. If the Douglas family presently has a yearly tax bill of $\$ 730$, paid semiannually, what will be the amount of their next tax payment?
$\$ 540$ per residence $\div 15$ years $=\$ 36$ per year
$\$ 730$ present yearly tax amount $+\$ 36=\$ 766$ new yearly tax amount
$\$ 766 \div 2=\$ 383$ new semiannual tax amount
b. If a home with an annual tax bill of $\$ 780$ is sold at the end of the third month of the tax year, after taxes have already been paid, how much will the buyer reimburse the seller when taxes are prorated?
$12-3=9$ months prepaid by seller
$\$ 780 \times \frac{9}{12}=\$ 585$ reimbursed by buyer
c. A 70-year-old man lives in a state that grants senior citizens a 10% exemption from property taxes. If his home has a market value of $\$ 250,000$ and the tax rate is 1.3%, how much will be his yearly taxes? The county in which he resides assesses property at 70% of market value.
$\$ 250,000$ market value $\times 0.7=\$ 175,000$ assessed valuation
$\$ 175,000$ assessed valuation $\times 0.013=\$ 2,275$ regular taxes
$\$ 2,275$ regular taxes $\times 0.10=\$ 227.50$ reduction
$\$ 2,275$ regular taxes $-\$ 227.50$ reduction $=\$ 2,047.50$ revised taxes

COMPLETE ASSIGNMENTS 11.1 AND 11.2.

Personal income taxes provide 37% of all income of the federal government. Social Security and Medicare taxes, which you studied in Chapter 10, provide another 33\%. Together, these three taxes make up 70% of all federal government income.

Outlays for Social Security, Medicare, and retirement programs constitute 37% of all government expenditures. Payment of interest on government debt represents 7% of all government expenditures.

Figure 11-2 shows the breakdown of federal government income and the allocation of federal government spending.

Determining Taxable Income, Using Standard Form 1040

Form 1040 is the basic form filed by the majority of taxpayers. There are two simplified variations of this form: Form 1040A and Form 1040EZ. The income tax calculation process is illustrated for Form 1040 in Figures 11-3 through 11-8. The label in Figure 11-3 contains spaces for names, address, and Social Security numbers, as well as boxes to check to designate $\$ 3$ to finance presidential elections.

A taxpayer's current filing status is indicated in the second section of Form 1040, shown in Figure 11-4. Five choices are given. The one selected determines the tax rates the taxpayer uses, as well as many of the taxpayer's deductions.

Personal exemptions, shown in Figure 11-5, are reductions to taxable income for the
Personal exemptions, shown in Figure 11-5, are reductions to taxable income for the
primary taxpayer and a spouse. One dependency exemption is granted for each dependent. Exemptions are phased out for individuals with higher incomes. The amount deducted for each exemption is currently $\$ 3,100$. This amount is usually adjusted for inflation each year.

Make basic computations to determine taxable income for taxpayers who use the standard federal income tax form 1040.

Taxable income, shown in Figure 11-6, includes wages, salaries, tips, dividends, interest, commissions, back pay, bonuses and awards, refunds of state and local taxes, alimony received, property received for services, severance pay, accrued leave payments, sick pay, unemployment compensation payments, capital gains, and any other income not specifically exempted by statute. Taxable income may include a portion of Social Security payments, IRA distributions, and pensions and annuities. It also includes income from businesses, professions, farming, partnerships, rents, royalties, estates, trusts, and other sources. It does not include income from gifts, inheritances, bequests, interest on tax-exempt state and local municipal bonds, life insurance proceeds at death, workers' compensation benefits, and certain income items for veterans.

Figure 11-3 \quad Form 1040 Label Section

Figure 11-4 \quad Form 1040 Filing Status Section

Figure 11-5 Form 1040 Exemptions Section

Figure 11-7 \quad Form 1040 Adjustments to Income Section/Adjusted Gross Income

The Adjustments to Income section, shown in Figure 11-7, allows the taxpayer to list certain items that are allowed as reductions to the total income. These adjustments include payments by the taxpayer or spouse to an individual retirement account (IRA), student loan interest, payments into a medical savings account, moving expenses, one half of self-employment tax paid, and payments to a retirement plan for the selfemployed, penalty on early withdrawal of savings, and alimony paid. Adjusted gross income (AGI) is a taxpayer's income after subtraction of adjustments to income from total income. (See lines 36 and 37 of Adjusted Gross Income in Figure 11-7.)

After the adjusted gross income figure is computed, deductions-either the standard deduction or itemized deductions-are subtracted in order to figure taxable income (see Figure 11-8). The standard deductions for most taxpayers are shown in Figure 11-9. There are higher standard deductions for individuals who are 65 or over and for individuals who are blind; these are shown in Figure 11-10.

Tax and Credits

43

Figure 11-9 \quad Standard Deduction Chart for Most People
b If your spouse itamizes on a separate ret sn or you were a djal-siatus alien, see paga 3. and cherk here 38b
39 Itemized deductions (from Schedule A) or your standard deduction (see left margin) . . 39

- Pepple who
checked any
box on line
$38 . a$ or $32 b$ or
who can be
claimed as at
cependent,
see page 31.
- All others:

Single or
Married filing
separately,
$\$ 4,850$
Married filing
Jointly or
Qualifying
witowi(er).
$\$ 9.700$
Head of household. \$7,150

Some taxpayers choose to itemize deductions rather than use the IRS-approved standard deduction. Itemized deductions are deductions allowed for specific payments made by the taxpayer during the tax year. These deductions include charitable contributions, certain interest payments, state and local income (or sales) and property taxes, a portion of medical and dental expenses, casualty and theft losses, tax preparation fees, and other annually identified deductions. Illustrations, examples, and problems in this book are based on the assumption that all state and local taxes and all donations to charity are deductible.

COMPUTING TAXABLE INCOME

Line 42 of Form 1040 shows "taxable income." Taxable income is the amount of income on which the income tax is based. Taxable income for most taxpayers is computed as follows (amounts from the preceding figures):

Total income (income from all sources) (line 22)	$\$ 66,800$
Less adjustments to income (reductions of Total Income) (line 35)	3,000
Adjusted gross income (line 36)	63,800
Less deductions (from Figure 11-9 or 11-10)	9,700
Less exemptions (line 6d $\times \$ 3,100$, per line 41)	$\underline{12,400}$
Taxable income (the amount on which taxes are computed) (line 42)	$\$ 41,700$

CONCEPT CHECK 11.5

Catherine, a 72 -year-old blind widow, had an annual adjusted gross income of $\$ 29,000$. She filed a return claiming a single exemption and standard deduction. What is her taxable income?

Adjusted gross income	$\$ 29,000$
Standard deduction: single, over 65, blind	7,250
	21,750
Minus 1 exemption	3,100
Taxable income	$\$ 18,650$

Determining Taxes Due, Using Standard Form 1040

Taxes are computed from taxable income (line 42). Tax Rate Schedules (Figure 11-11) show the tax rate for (1) single, (2) married filing joint return (even if only one had income), (3) married filing separate return, (4) head of household, and (5) qualifying widow or widower. The Tax Rate Schedules shown are used for all illustrations, examples, and problems in this book.

The remaining sections of Form 1040 permit listing of special credits, other taxes, and payments, to arrive at the final refund or amount owed and have spaces for signatures of the taxpayers and of paid preparers.

Make basic computations to determine the tax liability for taxpayers who use the standard federal income tax Form 1040.

2003 Tax Rate Schedules—Line 16

Schedule X - Use if your 2003 filing status was Single				
If Schedule J, line 15, is: Over-	But not over-	Enter on Schedule J line 16		of the amount over-
\$0	\$7,000	10\%	\$0
7,000	28,400	\$700.00 +	15\%	7,000
28,400	68,800	3,910.00 +	25\%	28,400
68,800	143,500	14,010.00 +	28\%	68,800
143,500	311,950	34,926.00 +	33\%	143,500
311,950	90,514.50 +	35\%	311,950

Schedule Y-1—Use if your 2003 filing status was Married filing jointly or Qualifying widow(er)				
If Schedule J, line 15 , is: Over-	But not over-	Enter on Schedule J, line 16		of the amount over-
\$0	\$14,000		10\%	\$0
14,000	56,800	\$1,400.00 +	15\%	14,000
56,800	114,650	7,820.00 +	25\%	56,800
114,650	174,700	22,282.50 +	28\%	114,650
174,700	311,950	39,096.50 +	33\%	174,700
311,950	84,389.00 +	35\%	311,950

Schedule Y-2 - Use if your 2003 filing status was Married filing separately				
If Schedule J, line 15, is: Over-	But not over-	Enter on Schedule line 16		of the amount over-
\$0	\$7,000		10\%	\$0
7,000	28,400	\$700.00 +	15\%	7,000
28,400	57,325	3,910.00 +	25\%	28,400
57,325	87,350	11,141.25 +	28\%	57,325
87,350	155,975	19,548.25 +	33\%	87,350
155,975	42,194.50 +	35\%	155,975

Schedule Z—Use if your 2003 filing status was Head of household				
If Schedule J, line15, is: Over-	But not over-	Enter on Schedule line 16		of the amount over-
\$0	\$10,000		10\%	\$0
10,000	38,050	\$1,000.00 +	15\%	10,000
38,050	98,250	5,207.50 +	25\%	38,050
98,250	159,100	20,257.50 +	28\%	98,250
159,100	311,950	37,295.50 +	33\%	159,100
311,950	...	87,736.00 +	35\%	311,950

EXAMPLE M

For the Form 1040 illustrated in the text, the tax is computed as follows:
Line 42-Taxable income $\$ 41,700$
From Schedule Y-1 (married):
Tax on $\$ 14,300$
\$1,430
Plus 15% of amount over $\$ 14,300$
$\$ 41,700-\$ 14,300=\$ 27,400 \times 0.15$
Total tax

EXAMPLE N

Filing as head of household, Dave has an adjusted gross income of $\$ 110,000$. He itemizes the following deductions: $\$ 700$ to Salvation Army, $\$ 900$ to his church, $\$ 8,200$ interest on his mortgage, and $\$ 3,300$ state taxes. He claims two exemptions. Compute his federal tax. Round to the nearest dollar.

Adjusted gross income
Minus itemized deductions

Minus 2 exemptions
Taxable income
From Schedule Z:
Tax on \$38,900
Plus 25% (0.25) of excess over $\$ 38,900$
$\$ 90,700-\$ 38,900=\$ 51,800 \times 0.25$
Total tax
\$110,000
$\begin{array}{r}13,100 \\ \hline 96,900\end{array}$
6,200
$\$ 90,700$
\$5,325
$\frac{12,950}{\$ 18,275}$

TAX CREDITS AND NET TAX

Credits allowed are subtracted from the tax to calculate the net tax. One of the most common credits is the Child Tax Credit (line 51). Taxpayers with dependent children under age 17 can receive a credit of $\$ 1,000$ per qualifying child. The credit phases out at higher income levels.

Figure 11-12 shows that John and Mary Sample received a Child Tax Credit of $\$ 1,000$. Look back at Figure 11-5 and note a check mark in the "qualifying child" box for Johnny Sample but not for Maria Sample. This distinction means that the son qualified for the credit because he was under age 17. The daughter qualifies as a dependent for exemption purposes, but no Child Tax Credit is allowed because she is age 17 or older.

Figure 11-12 Form 1040 Credits Section

46	Foreign tax credit. Attach Form 1116 if required	46			5		
47	Credit for child and deperdent care expenses. Attach Form 2441	47					
48	Credit for the elderiy or the disabled. Attach Schedule R .	48			\%		
49	Education credits. Attach Form 8863	49					
50	Retirement savings contributions credit. Altach Form 8880.	50					
51	Child tax credit (see page 37)	51	1,000	00			
52	Adoption credit. Attach Form 8839	52					
53	Credits from: a \square Form 8396 b \square Form 8859 .	53					
54	Other credits. Check applicable box(esi): a \square Form 3800 b \square Form $8801 \quad$ c \square Specify	54					
55	Add lines 46 through 54. These are your total credits				55	1,000	00
56	Subtract line 55 from line 45 . If line 55 is more than line 45, an		-	56	4,540	00

EXAMPLEO

Eric and Audrey Vaughn file a joint return. Their adjusted gross income is $\$ 48,900$, and they take the standard deduction. They have three children, aged 12,15 , and 17 , and claim five exemptions. Compute their net federal income tax after credits.

Adjusted gross income	$\$ 48,900$
Standard deduction (joint)	9,700
	39,200
Minus 5 exemptions $\times \$ 3,100$	$\underline{15,500}$
Taxable income	$\$ 23,700$
From Schedule Y-1:	$\$ 1,430$
Tax on $\$ 14,300$	1,410
Plus 15% on amount over $\$ 14,300$	$-2,840$
$(\$ 23,700-\$ 14,300)=\$ 9,400 \times 0.15$	$\underline{2,000}$
Total	$\$ 840$

CONCEPT CHECK 11.6

Brian and Margaret Lee had wages of $\$ 33,200$ and interest income of $\$ 2,400$. They put $\$ 3,000$ into a deductible IRA. They filed a joint return-claiming three exemptions (Brian, Margaret, and their daughter, aged 5)—and used the standard deduction. During the year, $\$ 950$ in federal income tax had been withheld from their wages. What was the total tax due with the return?

Total income	$\$ 35,600$
Adjustments to income: IRA deduction	$\frac{3,000}{32,600}$
Adjusted gross income	$\frac{9,700}{22,900}$
Standard deduction: married, filing jointly	$\frac{9,300}{}$
Minus 3 exemptions: $3 \times \$ 3,100$	$\$ 13,600$
Taxable income	$\$ 1,360$
From Schedule Y-1:	$\frac{1,000}{}$
$\$ 13,600 \times 0.10$	$\$ 360$
Minus child tax credit for one child	$\$ 950$
Net tax due after credits	$\$ 590$
Minus federal income tax withheld	
Refund	

Chapter Terms for Review

adjusted gross income (AGI)	market value
assessed valuation	mill
Child Tax Credit	personal exemptions
dependency exemption	property tax
excise tax	sales tax
filing status	tax rate
Form 1040	Tax Rate Schedules
itemized deductions	taxable income
levy	

Try Microsoft ${ }^{\circledR}$ Excel

Try working the following problems using the Microsoft Excel templates found on your Student CD. Solutions for the problems are also shown on the CD.

1. Set up the following table and complete using Excel formulas to calculate the values in the Sales Tax Amount and Total Sales with Tax columns using the sales tax rate indicated.
Hint: Use an absolute cell reference for the sales tax rate so that the formula can be copied. Cell references are changed to absolute by adding a $\$$ before both the column letter and the row number. Example: \$D\$9

Sales tax rate:	7.25%

Taxable sale	Sales tax amount	Total sale with tax
$\$ 12.83$		
$\$ 81.91$		
$\$ 20.11$		
$\$ 111.92$		
$\$ 0.55$		
$\$ 7.20$		
$\$ 328.90$		
$\$ 1,552.44$		
$\$ 62.00$		

Try Microsoft ${ }^{\circledR}$ Excel is continued on page 226.

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

11.1

Compute sales taxes, using rate tables and percents

11.2

Compute assessed valuations and property taxes based on assessed valuation

Example

1. The Denver family lives in a state in which the sales tax rate is 6%. When they purchased a dining room table and chairs regularly priced at $\$ 990$, they were given a discount of 15%. Shipping charges were $\$ 50$. What was the total cost to the Farleys?
2. Wanda Green lives in a state in which the state tax on gasoline is $\$ 0.22$ a gallon. Federal tax is $\$ 0.19$ a gallon. If she purchased an average of 12 gallons per week during the 52 -week year, how much did she pay in state and federal taxes combined?
3. The Nguyen family lives in a town in which the assessed valuation on property is 65% of market value. The Parker family lives in a town in which the assessed valuation on property is 80% of market value. Each home has a market value of $\$ 162,000$. How much is the assessed valuation of each home?
4. The town of Tyler has a total assessed valuation of $\$ 850,000,000$. For the coming year the city must raise $\$ 11,730,000$ for operating expenses.
a. What will be the tax rate?
b. What will the semiannual taxes be on a home with an assessed valuation of $\$ 135,000$?
5. a. Convert 650 mills to its dollar equivalent.
b. Convert $\$ 0.12$ to mills.
6. A home with annual tax payments of $\$ 510$ was sold at the end of the tenth month of the taxable year. What was the amount of tax prorated to the buyer?
7. A veteran living in Alameda receives a partial exemption of 10% of regular property taxes. The veteran owns property valued at $\$ 312,000$. If the property is assessed at 70% of value and the current rate is 1.5%, how much tax is due each six months?

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

11.5

Make basic computations to determine taxable income for taxpayers who use the standard federal income Form 1040

11.6

Make basic computations to determine the tax liability for taxpayers who use the standard federal income Form 1040

Example

8. Gilbert Black is 28 years old and single. He claimed one exemption. In 200 X he earned $\$ 47,000$ in wages and $\$ 675$ in taxable interest income. During the year he invested $\$ 1,800$ in an individual retirement account. Because of a change of jobs, he also had $\$ 1,200$ in moving expenses, which qualified as an adjustment to income. He had qualifying deductions of $\$ 1,000$ in deductible medical bills, $\$ 300$ in church donations, and $\$ 9,600$ in interest on the condominium he owned. He also paid $\$ 150$ in state taxes. He had $\$ 2,500$ in federal income tax withheld during the year. What was the amount of tax due with his return?

Income:
Less adjustments to income:
Adjusted gross income
Less deductions:

Less exemption:
Taxable income
Tax computation

Less tax withheld during the year
Tax due with return
9. Donald and Judy Mason are 72 and 70 years of age, respectively. Judy is blind. They filed as married, filing jointly. Last year they had a total income of $\$ 30,000$ from investments. They filed a return and claimed the standard deduction. During the year they made quarterly payments of estimated tax in the amount of $\$ 1,000$. What was the amount of tax due with their return?

Adjusted gross income
Less standard deduction

Less exemptions:
Taxable income
Tax computation

Less payments made during the year on estimated tax
Tax due with return

Review Problems for Chapter 11

1 The Dupree Company is considering the purchase of some equipment from two different suppliers. If the sales tax rate is 6%, which of the following offers should Johnson Company accept?
Company A: Equipment price of $\$ 65,000$ plus installation and shipping costs of $\$ 1,200$.
Company B: Equipment price of $\$ 73,500$ less 10% discount, no additional charge for installation or shipping.
2 Georgetown needs to raise $\$ 7,800,000$ in property taxes on property with a total market value of $\$ 650,000,000$.
a. What will the tax rate be if property is assessed at 80% of market value?
b. Determine the amount of semiannual property tax to be paid by each of the following property owners who live in Georgetown.
Juan Garcia's home in Georgetown has a market value of $\$ 350,000$.
Margaret Smith is a senior citizen who receives a 10% exemption from property tax. Her home in Georgetown has a market value of $\$ 215,000$.
(3) The residents of Hunterville voted to add street lights and sidewalks to their city at a cost per residence of $\$ 324$ to be spread over 12 years.
a. If Mary Nowitski, a resident of Hunterville, had an annual tax bill of $\$ 860$ before the special assessment, how much must she now pay semiannually for her property taxes?
b. If Mary Nowitski sells her home at the end of the eighth month of the tax year and has already paid the property taxes for the full year, including the special assessment, how much of the prepaid property tax should be allocated to the purchaser?

4 Samantha Jones works as a waitress. Last year she earned $\$ 15,800$ in wages, $\$ 8,600$ in tips, and $\$ 1,500$ catering on weekends. She also received $\$ 600$ interest from her credit union, $\$ 800$ from a state bond, and an inheritance of $\$ 10,000$. What was her gross income for federal income tax purposes?
(5) Pete and Angel Romero are married and have two children aged 5 and 8 . They also support Pete's sister, who lives with them. How much can Pete and Angel subtract from their gross income for exemptions?

6 Jan and Kirsten Bjorg, aged 63 and 66 , are married filing a joint tax return. They have itemized deductions totaling $\$ 7,900$. Should they itemize or use the standard deduction?
(7) Eva Jung files as a head of household, has an adjusted gross income of $\$ 38,000$, claims two exemptions, and uses the standard deduction on her federal return. What is her taxable income?

8 Brad and Justine O'Riley are married, filing a joint return, and have taxable income of $\$ 65,000$. What is the amount of their income tax?

Assignment 11.1: Sales Tax

Name

Date
Score

A (50 points) Solve the following problems. (1 point for each correct answer)

1. Jay's fast-food restaurant is in a state with a sales tax rate of 7%. Compute the sales tax, the total sale, and the change given for each transaction.

Amount of Sale	Sales Tax	Total Sale	Cash Paid	Amount of Change
\$6.18			\$10.00	
4.40			5.01	
12.89			20.00	
19.56			25.00	
5.80			10.00	
29.41			40.00	
18.55			20.00	
0.98			1.25	
13.99			15.00	
15.69			20.00	

2. Rosa's Botique is in a city where the state sales tax is 3.5% and the city tax is 2%. Determine the sales tax, the total sale, and the change given for each transaction. Then compute the total sales taxes and total sales.

Amount of Sale	Sales Tax	Total Sale	Cash Paid	Amount of Change
$\$ 284.20$	-	-	$\$ 300.00$	-
42.89	-	-	50.25	-
65.98	-	-	75.00	-
227.89	-	-	250.00	-
125.00	-	-	140.00	-
97.72	-			
Total	-			

Score for A (50)

B (30 points) Solve the following problems. Use Figure 11.1 for problems $\mathbf{3}$ and 4 . (points for correct answers as marked)

3. A candy store, operating in a state with a sales tax of 4%, made 758 sales at $\$ 0.10 ; 862$ sales at $\$ 0.35 ; 685$ sales at $\$ 0.49$; 950 sales at $\$ 0.65$; 575 sales at $\$ 0.75$; and 712 sales at $\$ 0.90$. How much did the store receive in sales taxes? (8 points) \qquad

Assignment 11.1 Continued

4. If the candy store in problem 3 computed the amount of state sales tax submitted to the state based on 4% of gross sales, what would be the difference between the amount of tax the store collected and the amount it submitted to the state? (8 points) \qquad
5. Discount Carpets Company and Oriental Rugs, Inc., each purchased a new delivery van. Discount Carpets is located in a state that has a 5% sales tax and paid the regular price of $\$ 21,800$ plus tax. Oriental Rugs is located in a state that has a 6% sales tax and received a special discount of $\$ 500$ off the regular $\$ 21,800$ price.
a. Including sales tax, which company paid more for its van? (8 points)
b. How much more? (6 points) \qquad
\qquad

C (20 points) Solve the following problems. (points for correct answers as marked)

6. Calico Books has stores in four states. Sales tax rates for the four states are as follows: state A, 8%; state B, 6.2%; state C, $5 \frac{1}{2} \%$; state D, 3%. Annual sales for the four states last year were as follows: state A, $\$ 865,000$; state B, $\$ 925,000$; state C, $\$ 539,000$; state D, $\$ 632,000$.
a. How much did Calico Books collect in sales taxes during the year? (10 points) \qquad
b. If all four states had the same lower sales tax rate of 3%, how much would Calico Books have collected in sales taxes during the year? (5 points) \qquad
c. If all four states had the same higher tax rate of 8%, how much would Calico Books have collected in sales taxes during the year? (5 points) \qquad

Assignment 11.2: Property Taxes

Name
Date Score

A (40 points) Solve the following problems. (4 points for each correct answer)

1. Find the assessed valuation for each of the following towns.

Town	Property Value	Basis for Tax Billing	Assessed Valuation
A	$\$ 625,000,000$	100%	
B	$\$ 862,350,000$	85%	-
C	$\$ 516,800,000$	70%	-

2. Find the tax rate for each of the following towns. Show your answer as a percent.

Town	Assessed Valuation	Amount to Be Raised	Tax Rate
F	$\$ 860,000,000$	$\$ 13,932,000$	-
G	$\$ 645,000,000$	$10,965,000$	-
H	$\$ 732,000,000$	$9,150,000$	

3. Convert the following percentage tax rates into dollars and cents per $\$ 100$ of assessed valuation.

Tax Rate	Dollars and cents
1.3%	
0.98%	

4. Convert the following percent tax rates into mills per $\$ 100$ of assessed valuation.

Tax Rate	Mills
1.3%	
0.98%	

B (24 points) Solve the following problems. (6 points for each correct answer)
5. The Griffin Company is located in a state in which assessed valuation is 100% of market value. The tax rate this year is $\$ 1.35$ on each $\$ 100$ of market value. The market value of the company building is $\$ 190,000$. How much property tax will Griffin pay this year? \qquad
6. The Stockton Corp. is located in an area in which assessed valuation is 80% of market value. The tax rate this year is 1.5%. The market value of Stockton's property is $\$ 450,000$. How much property tax will Stockton pay this year? \qquad
7. Next year, the assessed valuation in Stockton's area (problem 6) will decrease to 75% of market value and the tax rate will remain the same as this year. How much less tax will Stockton pay next year than it paid this year? \qquad
8. Perez, Inc., is headquartered in an area in which assessed valuation is 80% of market value. The tax rate this year is $\$ 1.40$ on each $\$ 100$ of assessed valuation. Its property has a market value of $\$ 320,000$. How much property tax will Perez pay this year? \qquad

C (24 points) Solve the following problems. Round to the nearest dollar. (3 points for each correct answer)
9a. There are four towns in Hogan county: Lawton, Johnsville, Dover, and Gault. Using the total assessed valuations given and the amount of money the town must raise for operating expenses, compute the necessary tax rate for each town.

Town	Total Assessed Valuation	Money That Must Be Raised	Tax Rate as a Percent
Lawton	$\$ 200,000,000$	$\$ 3,400,000$	
Johnsville	$\$ 340,000,000$	$\$ 5,100,000$	-
Dover	$\$ 280,000,000$	$\$ 3,780,000$	-
Gault	$\$ 620,000,000$	$\$ 12,400,000$	

b. Convert each of the percentage rates in part a to mills per dollar of assessed valuation.

Lawton
Johnsville
Dover
Gault \qquad

Assignment 11.2 Continued

D (12 points) Solve the following problems. Round to the nearest dollar. (6 points for each correct answer)

10. A home with annual tax payments of $\$ 624$ was sold at the end of the fifth month of the taxable year. The seller had already paid the entire tax for the year. How much tax was the seller reimbursed on proration of taxes at the time of the sale? \qquad
11. A senior citizen lives in a state that grants a 20% exemption on property taxes. Her property is valued at $\$ 290,000$ and is assessed at 75% of value. The current tax rate is 1.6%. How much tax is due each six months? \qquad

Try Microsoft ${ }^{\circledR}$ Excel (Continued from page 217.)

2. Adams Company purchased a new copy machine priced at $\$ 2,650$ less a 10% discount plus delivery and setup charges of $\$ 150$. Determine the amount of the discount, the sales tax at 6.5%, and the total amount of the sale including delivery and setup costs. Set up the table below on an Excel worksheet and complete by adding formulas for calculations. Hint: Discounts are subtracted before and delivery costs are added after calculating sales tax.

Original price of copy machine	
Discount amount	
Net price after discount	
Sales tax at 6.5%	
Delivery and setup	
Total sale amount	

3. Kingstrom Corporation is located in an area in which assessed valuation is 70% of market value. The current tax rate is 1.35%. Determine Kingstrom's property tax for the year on property with a market value of $\$ 652,000$. Enter the data below into an Excel worksheet and complete by adding formulas for calculations.

Market value of property	
Assessed valuation at 70%	
Property tax at 1.35%	

Assignment 11.3: Federal Income Tax

Name
Date Score

A (52 points) Complete all problems, using the exemptions, deductions, and tax rates given in the chapter. Round all amounts to the nearest dollar. (Rounding is allowed so long as it is done consistently.) (12 points for correct answers to 2a and 3a; 4 points for other correct answers)

1. Determine the taxable income for each of the following taxpayers.

Adjusted Gross Income	Number of Exemptions	Type of Return	Taxable Deductions	Income
a. $\$ 28,700$	1	Single	Standard	-
b. $\$ 52,450$	4	Head of household	Standard	-
c. $\$ 23,900$	2	Joint	Standard	-
d. $\$ 16,452$	1	Single	$\$ 5,960$	-
e. $\$ 43,700$	6	Joint	$\$ 10,212$	-

2. Sadie Gilford is a 70-year-old single person who lives alone. She takes the standard deduction. Her income during the year was $\$ 21,500$.
a. What is Sadie's taxable income? \qquad
b. What is Sadie's tax? \qquad
3. George Sampson is 82 years old. His wife Marcia is 83 and is blind. They have $\$ 21,000$ taxable income. They file a joint return and take the standard deduction.
a. What is the Sampsons' taxable income? \qquad
b. What is the Sampsons' income tax? \qquad

Assignment 11.3 Continued

B (48 points) Solve the following problems. (12 points for correct taxable income; 4 points for correct income tax)

4. Alfred Wild is 66 years old; his wife Silvia is 64 . They file a joint return. Alfred's salary for the year was $\$ 45,000$. Silvia's salary was $\$ 42,000$. They paid mortgage interest of $\$ 12,600$ and property tax of $\$ 1,200$ on their home. They paid state income tax of $\$ 3,800$ during the year. They itemize their deductions.
a. What is their taxable income? \qquad b. What is their income tax? \qquad
5. Michael and Martha Miller are married and have three dependents living with them: their children, aged 17 and 19, and Martha's mother. Michael's salary for the year was $\$ 30,000$, and Martha's salary was $\$ 32,000$. They received taxable interest of $\$ 1,250$ and $\$ 500$ interest from a state bond. They take the standard deduction and file a joint return.
a. What is their taxable income? \qquad b. What is their net tax after credits? \qquad
6. Renaldo and Rita Hernandez have three children aged 17, 18, and 12. Renaldo's father lives with them and has no income. Renaldo earned a salary of $\$ 46,000$ during the year. Rita is not employed. They paid $\$ 3,100$ property tax and $\$ 4,100$ mortgage interest on their home. They paid $\$ 2,600$ principal on their mortgage. They paid state income tax of $\$ 2,175$. They donated $\$ 500$ to their church and $\$ 500$ to the Salvation Army. They spent $\$ 5,600$ on groceries and $\$ 1,100$ on utilities. They itemize their deductions.
a. What is their taxable income? \qquad b. What is their net income tax after credits? \qquad

Insurance

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute costs and savings for auto insurance.

Learning Objective 2
Compute auto insurance premium rates for high- and low-risk drivers.

Learning Objective 3 Compute short-rate refunds.

Learning Objective 4 Compute coinsurance on property losses.

Learning Objective
Compute life insurance premiums.

Learning Objective 6 Compute cash surrender and loan values.

Compute medical insurance contributions and reimbursements.

Computing Auto Insurance Costs

Learning Objective

Compute costs and savings for auto insurance.

Auto insurance falls into three categories: liability and property damage, comprehensive, and collision. A policy that fully protects the insured will contain all three types.

Auto liability and property damage insurance protects the insured against claims resulting from personal injuries and property damage. Some states require all drivers to carry auto liability and property damage insurance. The amount of protection generally ranges from \$50,000 to \$1,000,000 per accident.

Auto comprehensive insurance protects the vehicle of the insured against water, theft, vandalism, falling objects, and other damage not caused by collision.

Auto collision insurance protects the vehicle of the insured against collision damage. Such damage may result from a collision with another vehicle or a one-car accident, such as hitting a tree.

The payment for an insurance policy is called a premium. Premium rates for auto insurance depend primarily on the coverage included in the policy, the driving record of the insured, and the geographical area where the driver lives.

Auto collision insurance policies usually contain a deductible clause, which stipulates that the insured will pay the first portion of collision damage, usually $\$ 50$ to $\$ 500$, and that the insurance company will pay the remainder up to the value of the insured vehicle. A deductible clause not only reduces the amount of damages for which the insurance company must pay but also keeps the insurance company from having to get involved in and do paperwork for small repairs costing less than the deductible. Therefore, a deductible clause lowers the premium for collision insurance.

EXAMPLE A

A car was insured for collision damage with a $\$ 250$ deductible. The premium was $\$ 1,750$ per year. The insured hit a tree, causing $\$ 2,530$ damage to his car. How much more did the insured receive than he paid in premiums for that year?
$\$ 2,530$ damage $-\$ 250$ deductible $=\$ 2,280$ paid by insurance
$\$ 2,280$ received by insured $-\$ 1,750$ premium paid $=\$ 530$.

EXAMPLE B

The driver of car A carried auto liability and property damage insurance only. She struck car B, causing $\$ 1,400$ damage to car B and $\$ 700$ in injuries to the driver. Car A suffered $\$ 940$ damage.
a. How much did the insurance company pay for this accident?
$\$ 1,400$ for damage to car B $+\$ 700$ for injuries to driver $=\$ 2,100$
b. How much did this accident cost the driver of car A?
$\$ 940$ in uncovered damage to her own car
No-fault insurance is a term that is used to describe an auto insurance system that requires drivers to carry insurance for their own protection and that limits their ability to sue other drivers for damages. No-fault insurance requires that the driver of each vehicle involved in an injury accident submit a claim to his or her own insurance company to cover medical costs for injuries to the driver and passengers in that person's own vehicle. No-fault insurance is mandatory in some states. No-fault insurance doesn't cover damage to either vehicle involved in an accident.

EXAMPLE C

Drivers A and B live in a state in which no-fault insurance is mandatory. Their two cars collided. Driver A and his passengers incurred medical expenses of $\$ 3,500$. Driver B and her passengers incurred $\$ 1,700$ in medical expenses. Car A required $\$ 1,400$ in repairs. Car B required $\$ 948$ in repairs. How much did the insurance companies pay under the no-fault insurance coverage?

Driver A's insurance company paid $\$ 3,500$ in medical expenses.
Driver B's insurance company paid $\$ 1,700$ in medical expenses.
Car repairs are not covered under no-fault insurance.

CONCEPT CHECK 12.1

Driver A lives in a state in which no-fault insurance is mandatory. He carries all three classifications of insurance to be fully protected. His total insurance premium is $\$ 2,400$, with a collision deductible of $\$ 500$. Driver A is involved in a major accident when he loses control of his car and hits two parked cars (cars B and C) before colliding with an oncoming car (car D) containing a driver and three passengers. Driver A is alone.

Damage to Driver A's car is $\$ 3,200$.
Damages to cars B, C, and D total \$8,600.
Medical expenses for driver A are $\$ 2,800$.
Medical expenses for the driver and passengers of car D are $\$ 7,300$.
a. How much does driver A's insurance company pay?

Damage to car A: $\$ 3,200-\$ 500$ deductible $=\$ 2,700$ covered by collision
Damage to cars B, C, and D: $\$ 8,600$ covered by liability
Medical expenses for driver A under no-fault: $\$ 2,800$
$\$ 2,700+\$ 8,600+\$ 2,800=\$ 14,100$ paid by driver A's insurance
b. How much does driver D's insurance company pay?

Medical expenses paid for driver D and passengers (no-fault): \$7,300
c. How much more did driver A's insurance company pay to him and on his behalf for this accident than he paid in insurance expenses for the year? (This is the amount driver A saved this year by being fully insured.)
$\$ 2,400$ premium $+\$ 500$ deductible $=\$ 2,900$ paid by Driver A
$\$ 14,100$ from insurance $-\$ 2,900=\$ 11,200$
Driver A saved $\$ 11,200$ this year by being fully insured.

Computing Low-Risk and High-Risk Rates

Auto insurance premium rates reflect the risk involved. Insurance companies study the statistics on automobile accidents relative to driving records. Premium rates are adjusted according to the driving record of the insured. A driver with a clear record of long standing is considered to be a low-risk driver and may be rewarded with a discount in the premium rate. Conversely, a driver with a record of numerous citations or accidents is considered to be a high-risk driver and may pay double, triple, or even a higher multiple than the normal premium rate.

Learning Objective
 2

Compute auto insurance premium rates for high- and low-risk drivers.

EXAMPLE D

Drivers A and B have identical automobiles and amounts of insurance coverage. The normal premium rate for each is $\$ 2,000$ per year. Driver A is a low-risk driver and receives a 15% discount on the premium rate. Driver B is a high-risk driver and must pay double the normal rate. How much more does driver B pay for insurance than driver A?

Driver A pays $\$ 2,000 \times 85 \%=\$ 1,700(100 \%-15 \%$ discount $)$
Driver B pays $\$ 2,000 \times 2=\$ 4,000$
Driver B pays $\$ 4,000-\$ 1,700=\$ 2,300$ more

CONCEPT CHECK 12.2

Driver A, a very careful driver, has had the same insurance company for 5 years and has not had a ticket during that 5-year period. Each year, driver A has received a 10\% reduction in her premium. Driver B has a record of speeding tickets. He has had one or more every year for 5 years. His premium for year 1 was normal, for years 2 and 3 it was 150%, and for years 4 and 5 it was 200\%. The normal annual premium rate for each driver would be $\$ 980$.
a. How much did driver A pay in premiums over the 5 -year period?
$\$ 980 \times 90 \%=\$ 882$
$\$ 882 \times 5=\$ 4,410$
b. How much did driver B pay in premiums over the 5 -year period?

Year 1: \$980
Years 2 and 3: $\$ 980 \times 1.5 \times 2=\$ 2,940$
Years 4 and 5: $\$ 980 \times 2 \times 2=\$ 3,920$
$\$ 980+\$ 2,940+\$ 3,920=\$ 7,840$
c. How much more did driver B pay during the 5 -year period than driver A?
$\$ 7,840-\$ 4,410=\$ 3,430$

Computing Short Rates

Learning Objective

Compute short-rate refunds.

Short rates are rates charged for less than a full term of insurance. If an insurance policy is canceled by the insured (the person who receives the benefit of the insurance) before the policy's full term is complete, the insured will receive a short-rate return of premium. If a policy is canceled by the insurance company rather than by the insured, the company must refund the entire unused premium.

EXAMPLE E

A driver paid an annual premium of $\$ 1,960$ for auto insurance. After 3 months, the vehicle was sold and the insurance canceled. The insurance company refunded the remaining portion of the premium at the short rate, based on a penalty of 10% of the full-year premium. What was the refund?
Unused premium: $\$ 1,960 \times \frac{3}{4}=\$ 1,470 \quad\left(9\right.$ months canceled $=\frac{9}{12}=\frac{3}{4}$ year)
Penalty: $\$ 1,960 \times 10 \%=\$ 196$
Short-rate refund: $\$ 1,470-\$ 196=\$ 1,274$

CONCEPT CHECK 12.3

A company purchased two cars. Each car was insured at an annual premium of $\$ 1,780$. At the end of 6 months, the company sold one car and canceled the insurance on that car. At the end of 9 months, the insurance company decided to cancel the insurance on the second car. The insurance company imposes a 10% penalty for short-rate premiums. Compute the refunds the insurance company paid for car 1 and car 2.

Car 1: $\quad \$ 1,780 \times \frac{1}{2}$ year $=\$ 890$ unused premium
$\$ 1,780 \times 10 \%=\$ 178$ penalty
$\$ 890-\$ 178=\$ 712$ refunded
Car 2: $\quad \$ 1,780 \times \frac{1}{4}$ year $=\$ 445$ unused and refunded premium

COMPLETE ASSIGNMENT 12.1.

Computing Coinsurance on Property Losses

Property insurance is insurance against loss of or damage to property. A policy can be written to protect the insured against loss from fire, casualty, liability, and theft.

Premium rates, which are quoted in terms of dollars per $\$ 1,000$ of insurance, depend on the nature of the risk, the location of the property, and the length of time covered by the policy. Short rates and short-rate penalties for less than a full term of insurance apply to property insurance as they do to auto insurance.

EXAMPLE F

A building worth $\$ 350,000$ is insured for $\$ 210,000$. The annual premium for the policy is $\$ 5,000$. A fire causes $\$ 80,000$ in damage.
a. How much does the insurance company pay?
$\$ 80,000$ in damage is less than the $\$ 210,000$ policy. The insurance company pays the entire $\$ 80,000$.
b. How much does the property owner pay?

The property owner pays no damages.
c. How much does the property owner pay that year in damages and insurance?
$\$ 5,000$ for the insurance premium only.

In an ordinary fire insurance policy, the insured will be paid for the loss up to the amount of the insurance. Policies may be obtained at lower rates if they contain a coinsurance clause. This clause specifies that if a property is not insured up to a specified percentage of its value, the owner is responsible for part of the loss and will not be covered for the full amount of damages.

Compute coinsurance on property losses.

It is common practice for a fire insurance policy to have an 80% coinsurance clause. Under this clause, the full amount of the loss will be paid by the insurance company only if the policy amount equals 80% of the property value.

S T E P S to Determine the Owner's Share of Property Loss Under Coinsurance

1. Compute the amount of insurance required by multiplying the entire value of the property by the percentage of coinsurance specified.
2. Compute the recovery amount, the maximum amount the insurance company will pay, by using the formula
$\frac{\text { Amount of insurance carried }}{\text { Amount of insurance required }} \times$ Loss $=$ Recovery amount.
3. Compare the recovery amount with the amount of the insurance policy.
a. If the recovery amount is greater than the amount of the policy, the insurance company will limit its payment to the amount of the policy.
b. If the recovery amount is less than the amount of the policy, the insurance company will pay the recovery amount.
Note: The insurance company will never pay more than the amount of the loss.
4. Determine the owner's share of the property loss by subtracting the amount the insurance company will pay from the loss amount.

EXAMPLE G

A building valued at $\$ 350,000$ is insured for $\$ 210,000$ under a policy with an 80% coinsurance clause. The annual premium is $\$ 2,800$. A fire causes $\$ 200,000$ damage to the building.
a. How much will the insurance company pay the insured?

$$
\text { STEP } 1 \quad \$ 350,000 \times 80 \%=\$ 280,000 \text { insurance required }
$$

STEPS 2\&3 $\frac{\$ 210,000 \text { amount of insurance carried }}{\$ 280,000 \text { amount of insurance required }} \times \$ 200,000=\$ 150,000$ insurance pays
b. How much must the owner pay if the building is repaired for $\$ 210,000$?

$$
\text { STEP } 4 \quad \$ 210,000-\$ 150,000=\$ 60,000 \text { paid by owner }
$$

c. How much does the property owner pay that year for damages and insurance?
$\$ 60,000$ damages $+\$ 2,800$ premium $=\$ 62,800$
d. How much would the insurance company pay if the fire caused $\$ 300,000$ damage to the building?
$\frac{\$ 210,000}{\$ 280,000} \times \$ 300,000=\$ 225,000$ recovery amount
The insurance company would limit its payment to $\$ 210,000$ (the full value of the policy, because the recovery amount exceeds the policy's coverage).

If the amount of insurance carried in example G had been $\$ 280,000$, how much would the insured have paid for damages and insurance that year?
$\$ 2,800$ premium only (the 80% coinsurance requirement would have been met)

CONCEPT CHECK 12.4

A building worth $\$ 100,000$ is insured for $\$ 60,000$ with an 80% coinsurance clause. A fire causes $\$ 70,000$ in damage. How much of the repair cost will the insurance company pay, and how much will the insured pay?

$$
\begin{aligned}
& \$ 100,000 \times 80 \%=\$ 80,000 \text { insurance required } \\
& \frac{\$ 60,000}{\$ 80,000} \times \$ 70,000=\$ 52,500 \text { insurance pays } \\
& \$ 70,000-\$ 52,500=\$ 17,500 \text { insured pays }
\end{aligned}
$$

COMPLETE ASSIGNMENT 12.2.

Computing Life Insurance Premiums

The policies most commonly issued by life insurance companies are term insurance, straight life (sometimes called ordinary life), limited-payment life, endowment, and annuity.

Term insurance is protection issued for a limited time. A certain premium is paid every year during the specified time period, or term. The policy is payable only in case of death of the insured during the term. Otherwise, neither the insured nor the specified beneficiaries receive any payment, and the protection stops at the end of the term.

For straight (ordinary) life insurance coverage, a certain premium, or fee, is paid every year until the death of the insured. The policy then becomes payable to the beneficiary. A policy beneficiary can be a person, a company, or an organization.

Limited-payment life insurance (such as 20-payment life) requires the payment of a specified premium each year for a certain number of years or until the death of the insured, whichever comes first. Should the insured live longer than the specified number of years, the policy is then paid up for the remainder of the insured's life and is payable to the beneficiary on the death of the insured.

Endowment insurance provides insurance payable on the insured's death if it occurs within a specified period. If the insured is alive at the end of the specified period, an endowment of the same amount as the policy is payable.

Annuity insurance pays a certain sum of money to the insured every year after the insured reaches a specified age, until the insured's death.

An additional death benefit (ADB), sometimes referred to as an accidental death benefit, accompanies some policies. ADB allows the insured to purchase, at a low rate per thousand dollars of coverage, additional insurance up to the full face value of the policy. In case of death of the insured by accident, both the full value of the policy and the ADB are paid to the beneficiaries. If death occurs other than by accident, the full value of the policy is paid, but no ADB is paid.

Compute life insurance premiums

Figure 12-1 shows typical annual, semiannual, and quarterly premiums (ages 25-28) for straight life, 20-payment life, and 20-year endowment policies.

Figure 12-1 \quad Insurance Premium per $\$ \mathbf{1 , 0 0 0}$

Age	Straight Life			20-Payment Life			20-Year Endowment		
	Annual	Semiannual	Quarterly	Annual	Semiannual	Quarterly	Annual	Semiannual	Quarterly
25	\$17.20	\$ 8.94	\$4.73	\$31.20	\$16.26	\$8.26	\$52.00	\$27.04	\$14.30
26	17.85	9.28	4.91	31.81	16.52	8.45	52.60	27.35	14.47
27	18.60	9.67	5.11	32.41	16.83	8.64	53.20	27.66	14.63
28	19.30	10.04	5.31	33.06	17.31	8.85	53.86	28.01	14.81

EXAMPLE I

Using the premiums shown in Figure 12-1, determine the yearly premiums for each of the following $\$ 50,000$ life insurance policies purchased at age 27.

Type of Insurance
Straight Life
20-Year Endowment
20-Payment Life
20-Year Endowment
Straight Life

Method of Payment
Annual
Quarterly
Semiannual
Semiannual
Quarterly

Premium Computation
$\$ 18.60 \times 50=\$ 930$
$\$ 14.63 \times 4 \times 50=\$ 2,926$
$\$ 16.83 \times 2 \times 50=\$ 1,683$
$\$ 27.66 \times 2 \times 50=\$ 2,766$
$\$ 5.11 \times 4 \times 50=\$ 1,022$

CONCEPT CHECK 12.5

a. If a person at age 28 purchases a straight life insurance policy having a face value of $\$ 150,000$ with quarterly premiums, what is the yearly premium?
$\$ 5.31 \times 4 \times 150=\$ 3,186$
b. If a person at age 25 purchases a 20-payment life insurance policy having a face value of $\$ 100,000$ with semiannual premiums, what is the yearly premium?
$\$ 16.26 \times 2 \times 100=\$ 3,252$
c. If a person at age 25 purchases a 20 -year endowment insurance policy having a face value of $\$ 75,000$ with annual premiums, what is the yearly premium?
$\$ 52 \times 75=\$ 3,900$

Computing Cash Surrender and Loan Values

Learning Objective

Compute cash surrender and loan values.

Except for term insurance, insurance usually has a cash surrender value, which is the amount of cash that the company will pay the insured on the surrender, or "cashing in," of the policy. The loan value of a policy is the amount that the insured may borrow on the policy from the insurance company. Interest is charged on such loans. The values, often quoted after the third year of the policy, are stated in the policy and increase every year. Figure 12-2 shows typical cash surrender and loan values for policies issued at age 25 per $\$ 1,000$ of life insurance.

Figure 12-2	Insurance Values per \$1,000		
	Cash Surrender and Loan Values		
End of Policy Year	Straight Life	20-Payment Life	20-Year Endowment
3	$\$ 10$	$\$ 43$	88
4	22	68	130
5	35	93	173
10	104	228	411
15	181	380	684
20	264	552	1,000

EXAMPLE J

Use the figures shown in Figure 12-2 to determine the cash surrender or loan value for each of the following policies.

Policy Year	Type of Policy	Amount of Policy	Cash Surrender or Loan Value
10	Straight Life	\$ 75,000	$75 \times \$ 104=\$ 7,800$
5	20-Year Endowment	\$ 15,000	$15 \times \$ 173=\$ 2,595$
10	20-Payment Life	\$ 50,000	$50 \times \$ 228=\$ 11,400$
20	Straight Life	\$100,000	$100 \times \$ 264=\$ 26,400$
15	20-Year Endowment	\$ 50,000	$50 \times \$ 684=\$ 34,200$

CONCEPT CHECK 12.6

Use the figures shown in Figure 12-2 to determine the cash surrender or loan value for each of the following policies.
a. Third policy year of a $\$ 50,00020$-year endowment policy
$50 \times \$ 88=\$ 4,400$
b. Twentieth policy year of a $\$ 100,000$ straight life policy
$100 \times \$ 264=\$ 26,400$
c. Tenth policy year of a $\$ 25,00020$-payment life policy $25 \times \$ 228=\$ 5,700$

Computing Medical Insurance Contributions and Reimbursements

Most large employers and many small employers subscribe to a group plan on behalf of their employees. Group insurance plans provide medical insurance coverage to large numbers of people at lower premium rates than individuals could obtain separately. Employers generally pay all the premium for employees and a portion of the premium for family members of employees. Many employers now use group plans known as a health maintenance organization (HMO) or a preferred provider organization (PPO).

Learning Objective

Compute medical insurance contributions and reimbursements.

EXAMPLE K

Employer A selected a basic health care plan to cover employees who want to participate. Monthly premiums are as follows: employee only, $\$ 350$; employee with one dependent, $\$ 450$; and employee with multiple dependents, $\$ 530$. Employees pay a portion of the premium as follows: employee only, $\$ 0$; employee with one dependent, $\$ 80$; and employee with multiple dependents, $\$ 120$. How much does the employer pay during the year for each category of employee?

Employee only: $\$ 350 \times 12=\$ 4,200$
Employee with one dependent: $(\$ 450-\$ 80) \times 12=\$ 4,440$
Employee with multiple dependents: $(\$ 530-\$ 120) \times 12=\$ 4,920$

EXAMPLE L

Employer B selected a total care health plan to cover employees who want to participate. Monthly premiums are as follows: employee only, $\$ 300$; employee with one dependent,
 $\$ 400$; and employee with multiple dependents, $\$ 480$. The employer pays most of the premium, but employees pay a portion as follows: employee only, $\$ 30$; employee with one dependent, $\$ 80$; and employee with multiple dependents, $\$ 120$. What percent of the premium will be paid by a single employee, an employee with one dependent, and an employee with six dependents?

A single employee: $\$ 30 \div 300=0.10$, or 10%
An employee with 1 dependent: $\$ 80 \div 400=0.20$, or 20%
An employee with 6 dependents: $\$ 120 \div 480=0.25$, or 25%

Many group plans include a provision for an annual deductible, which is the cost that must be paid by the employee before any cost is paid by the insurance company. Group medical plans also frequently provide for the payment by the insurance company of a percent of costs over the deductible, usually 70% to 90%, with the remaining 30% to 10% paid by the insured.

EXAMPLE M

Employer C provides group health coverage that includes a $\$ 500$ annual deductible per family and payment of 70% of the medical charges exceeding the deductible. How much would an employee with three dependents pay if her year's medical bills were $\$ 1,500$?
$\$ 1,500-\$ 500$ deductible $=\$ 1,000$
$\$ 1,000 \times 30 \%$ paid by employee $=\$ 300$
$\$ 500$ deductible $+\$ 300$ payments $=\$ 800$ paid by the employee

CONCEPT CHECK 12.7

An employer provides group health coverage that includes a $\$ 300$ annual deductible per family and payment of 80% of costs over the deductible.
a. How much would an employee with two dependents pay if his year's medical bills were $\$ 460$?
$\$ 460-\$ 300$ deductible $=\$ 160$
$\$ 160 \times 20 \%=\$ 32$
$\$ 300$ deductible $+\$ 32=\$ 332$ paid by the employee
b. How much would that employee have paid if total medical bills for the year had been $\$ 4,300$?
$\$ 4,300$ medical costs $-\$ 300$ deductible $=\$ 4,000$
$\$ 4,000 \times 20 \%=\$ 800$
$\$ 300$ deductible $+\$ 800=\$ 1,100$
c. How much of the $\$ 4,300$ in medical bills would that employee have paid if his employer did not provide medical insurance?
\$4,300
d. How much did the employer pay if the monthly premium for an employee with multiple dependents was $\$ 480$?
$\$ 480 \times 12=\$ 5,760$

COMPLETE ASSIGNMENT 12.3.

Chapter Terms for Review

additional death benefit (ADB)
annuity insurance
auto collision insurance
auto comprehensive insurance
auto liability and property damage insurance
beneficiary
cash surrender value
coinsurance clause
deductible clause
endowment insurance
group insurance
health maintenance organization (HMO)
high-risk driver
insured
limited-payment life insurance
Ioan value
low-risk driver
no-fault insurance
preferred provider organization (PPO)
premium
property insurance
recovery amount
short rates
straight (ordinary) life insurance
term insurance

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
Compute costs and savings for auto insurance	Drivers A and B live in a state in which no-fault insurance is mandatory. Both drivers carry all three classifications of insurance. Driver A has a deductible of $\$ 500$; driver B has a deductible of $\$ 200$. Driver A crashes into driver B. Neither auto has any passengers. Car A has $\$ 1,800$ in damages; car B has $\$ 2,000$ in damages. Driver A is not hurt; driver B has $\$ 900$ in medical bills.
1. How much does driver A's insurance company pay? 2. How much does driver B's insurance company pay?	

12.2

Compute auto insurance premium rates for high- and low-risk drivers
3. Juan has an excellent driving record and receives a 10% discount on his annual premium. Dave has a record of numerous tickets and must pay $1 \frac{1}{2}$ times the normal annual premium rate. If the normal premium for each driver is $\$ 1,500$, how much more does Dave pay for his insurance than Juan pays?
4. XYZ company purchased a delivery truck and paid an annual insurance premium of $\$ 3,600$. XYZ company sold the truck at the end of 8 months and canceled the policy. The insurance company charges a 10% penalty for short-rate refunds. What was the amount of the short-rate refund to XYZ company?
5. A building worth $\$ 400,000$ is insured for $\$ 300,000$ with an 80% coinsurance clause. Fire causes $\$ 200,000$ in damage. How much does the insurance company pay?
6. Premiums per $\$ 1,000$ of straight life insurance at the age of 25 are as follows: annual, $\$ 17.20$; semiannual, $\$ 8.94$; and quarterly, $\$ 4.73$.
What will be the total yearly premiums for the following three policies: $\$ 50,000$, annual; $\$ 25,000$, semiannual; and $\$ 20,000$, quarterly?

Learning Objective

12.6

Compute cash surrender and loan values

12.7

Compute medical insurance contributions and reimbursements

Example

7. If cash surrender values for year 15 of a policy are $\$ 200$ per thousand dollars of coverage for straight life and $\$ 380$ per thousand dollars of coverage for 20-payment life, what is the total cash surrender value of these two policies: $\$ 50,000$ straight life and $\$ 50,000$ 20-payment life?

8a. An employer provides group health coverage that includes a $\$ 200$ annual deductible per family and payment of 80% of costs over deductible. How much would an employee with four dependents pay if his year's medical bills were as follows: self, $\$ 240$; dependent $1, \$ 170$; dependent $2, \$ 30$; dependent $3, \$ 460$; and dependent 4 , \$2,200?
b. How much would the employee pay if the annual deductible were $\$ 50$ per person?

Review Problems for Chapter 12

(1) Drivers Jim Olson and Joshua Stein live in a state having no-fault auto insurance. Joshua causes an accident by hitting Jim's car. Joshua isn't hurt. Jim spends 3 days in the hospital at a cost of $\$ 5,300$. Compute the amount that each driver's insurance company pays toward medical expenses. \qquad

2 IXP insured an office building for $\$ 290,000$ for 1 year at a premium rate of $\$ 7.20$ per thousand. At the end of 9 months, IXP sold the building and canceled the policy. If the insurance company has a short-rate refund policy that includes a 10% penalty, how much refund did IXP receive?
(3) Driver Devon Cooper has a poor driving record and pays double the usual premium as a high-risk driver. The regular premium would be $\$ 490$ for a year. If Devon must pay the high-risk premium every year for 5 years, how much more will he pay for insurance premiums than a low-risk driver receiving a 10% discount over the same 5 -year period? \qquad
4 Insurance company A has a standard 90% coinsurance clause for all fire insurance coverage. Insurance company B has a standard 75% coinsurance clause for all fire insurance coverage. A building is valued at $\$ 195,000$. How much more insurance coverage would insurance company A require than insurance company B for full coinsurance coverage?
5 The Morgan Company warehouse was valued at $\$ 425,000$. The building was insured for $\$ 170,000$. The policy contained an 80% coinsurance clause. A fire caused $\$ 60,000$ in damages. Compute the amount of the fire damage the Morgan company had to pay. \qquad
(6) Mike Jankowski, age 27 , purchased a $\$ 35,000$, 20-payment life policy with premiums payable annually. John Jamison, also age 27, purchased a $\$ 35,000$ straight life policy with premiums payable semiannually. Both Mike and John lived 40 more years. How much more in premiums did John pay the insurance company during his lifetime than Mike paid during his? \qquad
7 Sally Munson, age 25 , purchased a $\$ 35,000$, 20 -payment life policy. Five years later she needed cash. Compute the maximum amount she could borrow on the policy. \qquad
8 An employer provided group health coverage that includes a $\$ 600$ annual deductible per family and payment of 80% of costs exceeding the deductible amount. An employee with no dependents incurs $\$ 4,800$ in medical expenses during the year. How much of the medical costs must the employee pay? \qquad

Assignment 12.1: Auto Insurance

Name
Date Score

A (50 points) Solve the following problems. (5 points for each correct answer)

1. Mary Johnson had full insurance coverage. Her liability and property damage coverage was $\$ 100,000$ per accident. Her collision insurance had a $\$ 500$ deductible clause. She struck two cars. Damages to the cars were $\$ 640$ and $\$ 320$. Damage to her own car was $\$ 470$. Her annual insurance premium was $\$ 1,180$.
a. What are the total costs to the insurance company for Mary's accident? \qquad
b. If this was the only accident that Mary had this year, how much money did the insurance company make on her? \qquad
c. What are Mary's total costs this year for insurance and the accident? \qquad
d. What would Mary's total costs for the accident have been without insurance? \qquad
2. Renaldo Garcia paid an annual premium of $\$ 3,000$ for auto collision insurance with a $\$ 500$ deductible clause. His steering went out, and he hit a tree causing $\$ 4,000$ damage to his car. How much did he save this year by having insurance? \qquad
3. Sean O'Day received his driver's license 1 year ago. He has had three citations for speeding, but no accidents. His insurance premium last year was $\$ 1,800$. This year his premium will be 100% higher because of his driving record.
a. What will be the amount of his premium this year? \qquad
b. Four months into the next year, Sean has continued his unsafe driving habits. The insurance company is canceling his policy. What will be the amount of the refund? \qquad
c. Sean O'Day has found an insurance company that will insure him as a high-risk driver at triple the standard annual rate of $\$ 1,600$. What will be his average monthly insurance premium for the first 28 months of his driving career? (Round your answer to the nearest dollar.) \qquad
d. If Sean had been a careful driver and kept the amount of his premium unchanged, how much would he have saved in these first 28 months? (Round your computations to the nearest dollar.) \qquad
4. Drivers A and B have identical insurance coverage. Driver A has an excellent driving record and receives a 15% discount on the standard premium. Driver B has numerous citations and pays 50% above the standard rate. The standard rate in both cases is $\$ 1,430$. How much more does driver B pay for insurance than driver A? \qquad

B (50 points) Solve the following problems. (5 points for each correct answer)

5. Tom Barton carries liability and property damage insurance coverage up to $\$ 50,000$ per accident, comprehensive insurance, and collision insurance with a $\$ 100$ deductible clause. He lost control of his car and drove through the display window of a furniture store. Damage to the building was $\$ 17,200$ and to the inventory was $\$ 34,300$. Damage to a bike rack on the sidewalk and three bicycles in the rack was $\$ 1,840$. Damage to his own car was $\$ 6,100$.
a. What was the total property damage, excluding damage to Tom's car? \qquad
b. How much did the insurance company pay for property damage, excluding damage to Tom's car? \qquad
c. How much did the insurance company pay for damage to Tom Barton's car? \qquad
d. How much did the accident cost Tom Barton? \qquad
e. If Tom Barton had been in a previous accident this year in which there had been property damage to a parked car of $\$ 12,700$, how much would the insurance company have paid for damages to everything in the current accident, including Tom Barton's car? \qquad
6. Amy Tan and John Rogers live in a state in which no-fault insurance is mandatory. They have identical full coverage of $\$ 50,000$ liability and property damage per accident, comprehensive insurance, and collision insurance with a $\$ 350$ deductible. John lost control of his car on an icy street and struck Amy's car, a parked motorcycle, and a fence. Amy had medical expenses of $\$ 780$. John had medical expenses of $\$ 560$. Amy's car had damages of $\$ 1,350$. John's car had damages of $\$ 1,750$. Damage to the parked motorcycle was $\$ 650$ and to the fence was $\$ 320$.
a. What did Amy's insurance company pay under the no-fault provision? \qquad
b. What did John's insurance company pay under the no-fault provision? \qquad
c. How much did John's insurance company pay under his liability and property damage coverage? \qquad
d. How much did John's insurance company pay under his comprehensive coverage? \qquad
e. How much would John's insurance company have paid under his liability and property damage if he had hit Amy's car and five parked cars, with total damage to the six cars of $\$ 56,700$? \qquad

Assignment 12.2: Property Insurance

Name
Date Score

A (42 points) Solve the following problems. (6 points for each correct answer)

1. A building valued at $\$ 380,000$ is insured for its full value. The annual premium is $\$ 9.80$ per thousand dollars of coverage.
a. How much does the insured pay to insure his building? \qquad
b. If the insurance company cancels the policy at the end of 3 months, how much refund does the insured receive? \qquad
c. If the insurance company has a 10% penalty clause for short-rate refunds and the insured cancels the policy after 9 months, how much refund does the insured receive?
2. If a company pays an annual premium of $\$ 4,800$ and the insurance company charges $\$ 16$ per thousand dollars of insurance, how much insurance does the company carry? \qquad
3. A company carries property insurance of $\$ 200,000$. A fire causes $\$ 210,000$ in damage. How much does the insurance company pay the insured? \qquad
4. A company carries property insurance of $\$ 300,000$ with a premium of $\$ 13.10$ per thousand dollars of coverage. A fire causes $\$ 120,000$ in damage.
a. How much does the insurance company pay the insured? \qquad
b. What is the amount of the company's benefits after its annual premium payment? \qquad

Assignment 12.2 Continued

B (58 points) Solve the following problems. (points for correct answers as marked)

5. A building worth $\$ 300,000$ is insured for $\$ 180,000$, and the policy carries an 80% coinsurance clause. A fire causes $\$ 220,000$ in damage.
a. How much will the insurance company pay? (10 points) \qquad
b. How much will the insured pay if the building is repaired for $\$ 220,000$? (6 points) \qquad
c. How much would the insurance company pay if damage to the building totaled $\$ 300,000$? (10 points)
d. If the damage totaled $\$ 300,000$, how much would the insured pay if the building were rebuilt for $\$ 300,000$? (6 points) \qquad
6. A building worth $\$ 1,800,000$ is insured for $\$ 1,200,000$, and the policy carries an 80% coinsurance clause. A fire causes \$300,000 in damage.
a. How much does the insurance company pay if the building is repaired for $\$ 300,000$? (10 points) \qquad
b. How much does the insured pay? (6 points) \qquad
7. If an insurance company issues insurance on property valued at $\$ 400,000$ with a 90% coinsurance clause, what is the amount required to be carried by the insured? (5 points) \qquad
8. If an insurance company issues insurance on property valued at $\$ 200,000$ with a 70% coinsurance clause, what is the amount required to be carried by the insured? (5 points) \qquad

Score for B (58)

Assignment 12.3: Life and Medical Insurance

Name
Date Score

A (50 points) Refer to Figures 12-1 and 12-2 in solving the following problems. Assume that every year is a full 12 months long. (points for correct answers as marked)

1. Find the rates per thousand dollars and the premiums for the following policies. (1 point for each correct answer)

Age	Type	Payments Made	Face Value of Policy	Rate per $\mathbf{\$ 1 , 0 0 0}$	Premium Paid Each Year
28	Straight Life	Annually	$\$ 200,000$		-
25	20-Payment Life	Quarterly	80,000	-	-
25	20-Year Endowment	Semiannually	10,000	-	-
26	Straight Life	Quarterly	120,000	-	
27	20-Payment Life	Semiannually	100,000	-	-
28	20-Year Endowment	Annually	85,000		-

2. Find the cash surrender or loan value for each of the following policies issued at age 25. (1 point for each correct answer)

Policy Year	Type of Policy	Amount of Policy	Cash Surrender or Loan Value
10	Straight Life	$\$ 50,000$	-
15	20-Payment Life	$\$ 25,000$	-
10	20-Year Endowment	$\$ 50,000$	-
3	Straight Life	$\$ 20,000$	-
5	20-Payment Life	$\$ 75,000$	-
4	20-Year Endowment	$\$ 60,000$	

3. When Sue Adams was 27 years old, she took out a $\$ 75,000,20$-year endowment policy. She paid the premiums annually and survived the endowment period. How much more did she pay in annual premiums than she received from the insurance company at the end of 20 years? (4 points) \qquad
4. Roger Johnson purchased a $\$ 50,000$ ordinary life policy and an ADB for 50% of the value of the policy. In addition, he purchased a 5 -year, $\$ 50,000$ term policy. He died in an accident 3 years later.
a. How much money did Roger's beneficiaries receive? (4 points) \qquad
b. How much money would Roger's beneficiaries have received if he had died in an accident 7 years after purchasing the policies? (4 points) \qquad
c. How much money would Roger's beneficiaries have received if he had died of natural causes 10 years after purchasing the policies? (4 points) \qquad
5. At the age of 25 , Carlos Baker purchased a $\$ 50,000$ straight life policy, with premiums payable annually. He also purchased a $\$ 25,000$ 20-payment life policy, with premiums payable semiannually. At the end of 15 years, he decided to cash in both policies.
a. How much did Carlos receive for the straight life policy? (4 points) \qquad
b. How much did Carlos receive for the 20-payment life policy? (4 points) \qquad
c. How much more did Carlos pay in premiums than the total amount received for both policies? (8 points) \qquad

Score for A (50)

B (50 points) Solve the following problems. (10 points for a correct answer to problem 6;8 points for each other correct answer)

6. An employer provides group health coverage that includes a $\$ 250$ annual deductible per family and payment of 80% of costs exceeding the deductible. How much would an employee with two dependents pay if her year's medical bills were $\$ 550$ for herself; $\$ 920$ for dependent 1 ; and $\$ 230$ for dependent 2 ? \qquad
7. An employer provides group health coverage that includes a $\$ 400$ annual deductible per family and 70% of costs over the deductible.
a. How much would an employee with no dependents pay if his medical bills were $\$ 980$ this year? \qquad
b. How much would that employee have paid this year if his medical bills were $\$ 7,480$? \qquad
8. An employer provides group health coverage with the following monthly premiums: employee only, $\$ 350$; employee with one dependent, $\$ 450$; and employee with multiple dependents, $\$ 550$.
a. How much does the employer pay over a 5-year period for an employee with multiple dependents? \qquad
b. If that employee had a dependent with a catastrophic illness that cost $\$ 97,000$ for hospitalization and treatments during that 5-year period, how much did the insurance company lose on that employee, assuming that she had no other medical claims? \qquad
c. If an employee with no dependents had no illnesses during that same 5-year period, how much did the insurance company make on that employee? \qquad

Notes

Part 4

Interest Applications

13 Simple Interest 14 Installment Purchases
15 Promissory Notes and Discounting
16 Compound Interest and Present Value

Simple Interest

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute simple interest with time in years or months.

Learning Objective 2

Compute ordinary simple interest, using a 360-day year.

Learning Objective 3 Compute exact simple interest, using a 365-day year.

Learning Objective 4 Compare ordinary simple interest and exact simple interest.

Learning Objective 5
Estimate exact simple interest computations.

Learning Objective 6 Compute the Principal, Rate, and Time from the basic interest formula.

Most businesses and individuals buy at least some assets without making full payment at the time of the purchase. The seller gives immediate possession to the buyer but doesn't require payment until some later date. For example, large retailers such as Macy's Department Store may receive merchandise for the Christmas season but may not be required to pay the seller until January. The seller, who extends credit to the buyer, may or may not charge for this privilege. The charge is called interest, and it is usually quoted as a percent of the amount of credit extended (the principal). When part of the price is paid at the time of purchase, that part is called a down payment.

If the seller charges too much interest or doesn't extend credit, the buyer might borrow money from a third party, such as a bank. A retailer such as Macy's could then buy the merchandise and sell it to repay the bank loan. The amount borrowed is called the principal, and the interest charged is a percent of the principal. The bank will charge interest between the loan date and the repayment date. This period of time is called the interest period or the term of the loan.

The promise to repay a loan or pay for merchandise may be oral or written. If it is written, it may be in the form of a letter or it could be one of several special documents known collectively as commercial paper. Short-term credit transactions are those for between 1 day and 1 year. Long-term credit transactions are those for longer than 1 year. Normally, long-term credit transactions involve major items such as new buildings or equipment rather than supplies or merchandise for sale.

Computing Simple Interest

Learning Objective

Compute simple interest with time in years or months.

The easiest type of interest to calculate is called simple interest. The calculations are the same for both a loan and a purchase on credit. The interest is a percent of the principal for the period of the loan or credit. The quoted percent usually is an annual (yearly) rate. A rate of 10% means that the interest payment for 1 year will be 10% of the principal.

To compute the simple interest on a 1-year loan, simply multiply the Principal by the Rate.

EXAMPLE A

Stan McSwain borrowed $\$ 1,000$ for 1 year at a rate of 8% simple interest. Compute the interest.

The principal is $\$ 1,000$. The interest for 1 year is 8% of $\$ 1,000$, or $0.08 \times \$ 1,000=$ $\$ 80$.

Most loans, however, are not for a period of exactly 1 year. Loans for longer periods will require the borrower to pay more interest. Likewise, loans for shorter periods will require less interest. To compute the simple interest on loans of any period, multiply the Principal by the Rate and then multiply by the Time, with Time stated in years or in fractions of years. The fundamental formula for simple interest is

$$
\begin{aligned}
& \text { Interest }=\text { Principal } \times \text { Rate } \times \text { Time } \\
& \text { abbreviated as } I=P \times R \times T \text { or, even more simply, } I=P R T \text {. }
\end{aligned}
$$

EXAMPLE B

Find the simple interest on loans of $\$ 1,200$ when the rate is 6% and the loan periods are $\frac{3}{4}$ year and 4 years.

$$
\begin{array}{ll}
\frac{\frac{3}{4} \text { year }}{I}=P \times R \times T & \frac{4 \text { years }}{I}=P \times R \times T \\
\quad=\$ 1,200 \times 0.06 \times \frac{3}{4} & =\$ 1,200 \times 0.06 \times 4 \\
=\$ 54 & =\$ 288
\end{array}
$$

The time period often will be measured in months instead of years. Before computing the interest, change the time into years by dividing the number of months by 12 (the number of months in 1 year).

EXAMPLEC

Compute the interest on credit purchases of $\$ 3,000$ at 5% for periods of 8 months and 30 months.

8 months
$I=P \times R \times T$
$=\$ 3,000 \times 0.05 \times \frac{8}{12}$
$=\$ 100$

30 months

$$
\begin{aligned}
I & =P \times R \times T \\
& =\$ 3,000 \times 0.05 \times \frac{30}{12} \\
& =\$ 375
\end{aligned}
$$

USING CALCULATORS

Today, calculators or computers are used in almost every interest application. The numbers are often large and are always important. The steps are performed on the calculator in the same order as they are written in the formula.

EXAMPLE D

Write the calculator steps for computing the simple interest on $\$ 8,000,000$ at 9% for 18 months.

$$
\begin{aligned}
I=P \times R \times T= & \$ 8,000,000 \times 0.09 \times \frac{18}{12} \\
& 8000000 \times .09 \times 18 \div 12
\end{aligned}
$$

$$
\equiv 1,080,000 \text {, or } \$ 1,080,000
$$

With the percent key \%, the steps would be

$$
8000000 \times 9 \% \times 18 \leftrightarrows 12 \leftrightarrows 1,080,000 \text {, or } \$ 1,080,000
$$

The principal is $\$ 2,500$, the rate is 10%, and interest $=$ Principal \times Rate \times Time, or $I=P$ $\times R \times T$. Find the interest both for 5 years and for 6 months.
a. If Time is 5 years: $I=P \times R \times T=\$ 2,500 \times 0.10 \times 5=\$ 1,250$
b. If Time is 6 months: $I=P \times R \times T=\$ 2,500 \times 0.10 \times \frac{6}{12}=\$ 125$

Computing Ordinary Interest

Learning Objective

Compute ordinary simple interest, using a 360 -day year.

If the term of the loan is stated as a certain number of days, computing interest involves dividing the number of days by the number of days in 1 year-either 360 or 365 . Before computers and calculators, interest was easier to compute by assuming that every year had 360 days and that every month had 30 days. The 360 -day method, called the ordinary interest method, is still used by some businesses and individuals.

EXAMPLE E

Compute the ordinary simple interest on $\$ 900$ at 9% for 120 days.
$I=P \times R \times T$
$=\$ 900 \times 0.09 \times \frac{120}{360}$
$=\$ 27$

CONCEPT CHECK 13.2

The Principal is $\$ 4,000$, the Rate is 7%, and the Time is 180 days. Compute the ordinary simple interest.

Ordinary interest involves use of a 360-day year: $I=P \times R \times T=\$ 4,000 \times 0.07 \times \frac{180}{360}=$ \$140

Computing Exact Interest

Learning Objective

Compute exact simple interest, using a 365-day year.

Banks, savings and loan institutions, credit unions, and the federal government use a 365 -day year (366 days for leap years) to compute interest. This method is called the exact interest method. The computations are the same as for ordinary simple interest, except that 365 days is used instead of 360 days.

EXAMPLE F

Compute the exact simple interest on $\$ 900$ at 9% for 120 days.
$I=P \times R \times T$
$=\$ 900 \times 0.09 \times \frac{120}{365}$
$=\$ 26.6301$, or $\$ 26.63$

CONCEPT CHECK 13.3

The Principal is $\$ 4,000$, the Rate is 7%, and the Time is 180 days. Compute the exact simple interest.

Exact interest involves use of a 365-day year: $I=P \times R \times T=\$ 4,000 \times 0.07 \times \frac{180}{365}=\$ 138.08$

Comparing Ordinary Interest and Exact Interest

The 360-day year was very useful before the advent of calculators and computers, so there is a long tradition of using it. However, the 365-day year is more realistic than the 360-day year. Also, the 365-day year is financially better for the borrower because the interest amounts are always smaller. (Why? Because a denominator of 365 gives a smaller quotient than a denominator of 360).

Reexamine examples E and F . The difference between ordinary interest and exact interest is only $\$ 27.00-\$ 26.63$, or $\$ 0.37$. When businesses borrow money, however, the principal may be very large and then the difference will be more significant. Example G is similar to examples E and F, except that the principal is in millions of dollars rather than hundreds.

EXAMPLE G

Find the difference between ordinary interest and exact interest on $\$ 8,000,000$ at 9% for 120 days.

Ordinary Interest

$I=P \times R \times T$
$=\$ 8,000,000 \times 0.09 \times \frac{120}{360}$
$=\$ 240,000 \quad=\$ 236,712.3288$ or $\$ 236,712.33$

Learning Objective

Compare ordinary simple interest and exact simple interest.

The difference is $\$ 240,000-\$ 236,712.33$, or $\$ 3,287.67$.

CONCEPT CHECK 13.4

The principal is $\$ 6,000$, the rate is 12%, and the time is 120 days. Find the difference between the amounts of simple interest calculated by using the ordinary method (360-day year) and the exact method (365-day year).

Ordinary interest: $I=P \times R \times T=\$ 6,000 \times 0.12 \times \frac{120}{360}=\$ 240.00$
Exact interest: $\quad I=P \times R \times T=\$ 6,000 \times 0.12 \times \frac{120}{365}=\$ 236.71$
Difference $=$ Ordinary interest - Exact interest $=\$ 240.00-\$ 236.71=\$ 3.29$

Estimating Exact Simple Interest

Learning Objective

Estimate exact simple interest computations.

Although calculators are used to compute exact interest, approximation remains very useful. The following calculator solution requires a minimum of 20 key entries.

$$
8000000 \times 1.09 \times 120 \times 365 \cong 236712.3288
$$

Pressing any one of the 20 keys incorrectly can result in a large error. By making an estimate of the interest in advance, you may spot a significant calculator error.

COMBINATIONS OF TIME AND INTEREST THAT YIELD 1\%

To simplify mental approximations, you can round the rate and time to numbers that are easy to compute mentally. Also, use 360 days instead of 365 because it cancels more often. For ordinary interest, several combinations of rate and time are easy to use because their product is 1%. For example, $12 \% \times \frac{30}{360}=12 \% \times \frac{1}{12}=1 \%$ and $6 \% \times \frac{60}{360}=6 \% \times \frac{1}{6}=1 \%$.

EXAMPLE H

Approximate the ordinary simple interest on $\$ 2,500$ at 6.15% for 59 days. Then calculate the actual ordinary simple interest.
Round $\quad 6.15 \%$ to 6% and 59 days to 60 days.
Estimate: $\quad \$ 2,500 \times 0.06 \times \frac{60}{360}=\$ 2,500 \times 0.01=\$ 25.00$
Actual interest: $\quad \$ 2,500 \times 0.0615 \times \frac{59}{360}=\$ 25.1979$, or $\$ 25.20$

OTHER RATES AND TIMES

Table 13.1 shows several combinations of rate and time whose products are useful for estimating interest.

Table 13-1: Rate and Time

$$
\begin{array}{rlrl}
4 \% \times \frac{90}{360}=4 \% \times \frac{1}{4}=1 \% & 10 \% \times \frac{36}{360}=10 \% \times \frac{1}{10}=1 \% \\
6 \% \times \frac{60}{360}=6 \% \times \frac{1}{6}=1 \% & 12 \% \times \frac{30}{360}=12 \% \times \frac{1}{12}=1 \% \\
8 \% \times \frac{45}{360}=8 \% \times \frac{1}{8}=1 \% & 18 \% \times \frac{20}{360}=18 \% \times \frac{1}{18}=1 \% \\
9 \% \times \frac{40}{360}=9 \% \times \frac{1}{9}=1 \% & 6 \% \times \frac{120}{360}=6 \% \times \frac{1}{3}=2 \% \\
12 \% \times \frac{60}{360}=12 \% \times \frac{1}{6}=2 \% & 12 \% \times \frac{90}{360}=12 \% \times \frac{1}{4}=3 \% \\
8 \% \times \frac{90}{360}=8 \% \times \frac{1}{4}=2 \% & 9 \% \times \frac{120}{360}=9 \% \times \frac{1}{3}=3 \%
\end{array}
$$

ESTIMATING EXACT INTEREST

The goal in approximating interest is just to get an estimate. Even though exact interest requires 365 days in a year, you can make a reasonable estimate by assuming that the number of days in a year is 360 . This permits the use of all of the shortcut combinations from Table 13.1.

EXAMPLE I

First, compute the actual exact simple interest on $\$ 1,200$ at 11.8% for 62 days.
Actual interest: $\quad \$ 1,200 \times 0.118 \times \frac{62}{365}=\$ 24.0526$, or $\$ 24.05$
Second, estimate the amount of interest by using 12% instead of $11.8 \%, 60$ days instead of 62 days, and 360 instead of 365.
Estimate: $\quad \$ 1,200 \times 0.12 \times \frac{60}{360}=\$ 1,200 \times 0.02=\$ 24$
The difference in $\$ 24.05-\$ 24=\$ 0.05$.

CONCEPT CHECK 13.5

The Principal is $\$ 3,750$, the Rate is 9.1%, and the Time is 39 days. Calculate the actual exact simple interest. Then make an estimate by using a 360-day year and simpler values for R and T. Compare the results.

Actual interest: $I=P \times R \times T=\$ 3,750 \times 0.09 \times \frac{39}{365}=\$ 36.4623$ or $\$ 36.46$
Estimate: $\quad I=P \times R \times T=\$ 3,750 \times 0.09 \times \frac{40}{360}=\$ 3,750 \times 0.01=\$ 37.50$
Difference: \quad Estimate - Actual $=\$ 37.50-\$ 36.46=\$ 1.04$

Computing the Interest Variables

Every simple interest problem has four variables: Interest Amount, Principal, Rate, and Time. Thus far, you have solved for the Interest Amount (I) when the Principal (P), Rate (R), and Time (T) were all given. However, as long as any three variables are given, you can always compute the fourth by just changing the formula $I=P \times R \times T$ into one of its possible variations, as shown in Table 13-2.

Table 13-2: PRT formulas
\qquadTo find You must know
I
P
:---
R

Assume the use of ordinary interest (a 360-day year) unless the use of exact interest (a 365-day year) is indicated. The stated or computed interest rate is the rate for 1 full year. Also, the length of time used for computing interest dollars must be stated in terms of all or part of a year.

Learning Objectives

Compute the Principal, Rate, and Time from the basic interest formula.

FINDING THE INTEREST AMOUNT, PRINCIPAL, RATE, OR TIME

When any three variables are known, you can solve for the fourth variable, using a formula from Table 13.2. All rates are ordinary simple interest (360-day year).

EXAMPLE J

Find the Principal if the Interest Amount is $\$ 75$, the Rate is 6%, and the Time is 30 days.
$P=? ; \quad I=\$ 75 ; \quad R=6 \% ; \quad T=\frac{30}{360}$ year
$P=\frac{I}{(R \times T)}=\frac{\$ 75}{\left(0.06 \times \frac{30}{360}\right)}=\frac{\$ 75}{0.005}=\$ 15,000$

EXAMPLE K

Find the Rate if the Interest Amount is $\$ 22$, the Principal is $\$ 2,000$, and the Time is 30 days.
$R=? ; \quad I=\$ 22 ; \quad P=\$ 2,000 ; \quad T=\frac{30}{360}$ year
$R=\frac{I}{(P \times T)}=\frac{\$ 22}{\left(\$ 2,000 \times \frac{30}{360}\right)}=\frac{\$ 22}{\$ 166.67}=0.132$, or 13.2%

EXAMPLE L

Find the Time if the Interest Amount is $\$ 324$, the Principal is $\$ 4,800$, and the Rate is 9%.
Express Time in days, based on a 360 -day year.
$T=? ; \quad I=\$ 324 ; \quad P=\$ 4,800 ; \quad R=9 \%$
$T=\frac{I}{(P \times R)}=\frac{\$ 324}{(\$ 4,800 \times 0.09)}=\frac{\$ 324}{\$ 432}=0.75$ year
Based on a 360 -day year, 0.75 year $=0.75 \times 360$ days $=270$ days.

CONCEPT CHECK 13.6

Each of the following problems gives three of the four variables. Find the missing variable. All rates are ordinary simple interest (360-day year). Round P and $/$ to the nearest cent; round R to the nearest $\frac{1}{10} \%$; round T to the nearest whole day, assuming that 1 year has 360 days. Use one of the four formulas:

$$
I=P \times R \times T, \quad P=\frac{I}{(R \times T)}, \quad R=\frac{I}{(P \times T)}, \quad \text { and } \quad T=\frac{I}{(P \times R)}
$$

a. Principal $=\$ 1,240 ;$ Rate $=6 \% ;$ Time $=270$ days Find Interest Amount:

$$
I=P \times R \times T=\$ 1,240 \times 0.06 \times \frac{270}{360}=\$ 55.80
$$

c. Principal $=\$ 1,280$; Interest Amount $=\$ 64$; Rate $=10 \%$ Find Time:
$T=\frac{I}{(P \times R)}=\frac{\$ 64}{(\$ 1,280 \times 0.10)}=0.5$ year
In a 360 -day year, $T=0.5$ year $=0.5 \times 360$ days
$=180$ days.
b. Principal $=\$ 8,000$; Interest Amount $=\$ 50$;

Time $=45$ days
Find Rate:

$$
R=\frac{I}{(P \times T)}=\frac{\$ 50}{\left(\$ 8,000 \times \frac{45}{360}\right)}=0.05, \text { or } 5 \%
$$

d. Interest Amount $=\$ 90 ;$ Rate $=9 \%$; Time $=60$ days Find Principal:

$$
T=\frac{I}{(R \times T)}=\frac{\$ 90}{\left(0.09 \times \frac{60}{360}\right)}=\$ 6,000
$$

COMPLETE ASSIGNMENTS 13.1 AND 13.2.

Chapter Terms for Review

commercial paper	ordinary interest method
down payment	principal
exact interest method	short-term credit
interest	simple interest
interest period	term of the loan
long-term credit	time

THE BOTTOM LINE

Summary of chapter learning objectives:

| Learning Objective | Example |
| :--- | :--- | :--- |
| 13.1 | Find the simple interest using the basic formula: |
| Compute simple interest with time in years or months | Interest $=$ Principal \times Rate \times Time, or $\boldsymbol{I}=\boldsymbol{P} \times \boldsymbol{R} \times \boldsymbol{T}$
 1. \quad Principal $=\$ 3,500 ;$ Rate $=9 \% ;$ Time $=2.5$ years
 $2 . \quad$ Principal $=\$ 975 ;$ Rate $=8 \% ;$ Time $=9$ months |

13.2

4. Find the exact simple interest for a 365 -day year:

Principal $=\$ 2,800 ;$ Rate $=7 \% ;$ Time $=75$ days

13.4

Compare ordinary simple interest and exact simple interest
3. Find the ordinary simple interest for a 360 -day year:

Principal $=\$ 3,000 ;$ Rate $=10 \% ;$ Time $=240$ days

Compute ordinary simple interest, using a 360-day year

13.3

Compute exact simple interest, using a 365 -day year
5. Find the difference between ordinary simple interest and exact simple interest:
Principal $=\$ 5,000 ;$ Rate $=6 \% ;$ Time $=75$ days

13.5

Estimate simple interest computations

13.6

Compute the Principal, Rate, and Time from the basic interest formula
6. Estimate the exact interest by using a 360 -day year and simpler values for Rate and Time: Principal $=\$ 2,100$; Rate $=5.8 \%$; Time $=62$ days

Solve for Principal, Rate, and Time using a 360-day year and the formulas

$$
P=\frac{I}{(R \times T)}, \quad R=\frac{I}{(P \times T)}, \quad \text { and } \quad T=\frac{I}{(P \times R)}
$$

7. Interest Amount $=\$ 42$; Rate $=6 \%$ Time $=105$ days
8. Principal $=\$ 1,600$; Interest Amount $=\$ 30$; Time $=75$ days
9. Principal $=\$ 7,200$; Interest Amount $=\$ 135 ;$ Rate $=15 \%$

Review Problems for Chapter 13

In problems 1 and 2, compute the amount of (a) ordinary simple interest and (b) the amount of exact simple interest. Then compute (c) the difference between the two interest amounts

		Ordinary Principal	Rate	Time	Interest

In problems 3 and 4, first compute (a) the actual exact simple interest. Then, change each rate and time to the closest numbers that permit use of the shortcuts shown in Table 13.1 and compute (b) the estimated amount of exact interest. Finally, compute (c) the difference between the actual and estimated exact interest.

5 Dick Liebelt borrowed money for 240 days at a rate of 9% ordinary simple interest. How much did Dick borrow if he paid $\$ 90$ in interest?

6 Linda Rojas loaned $\$ 1,000$ to one of her employees for 90 days. If the employee's interest amount was $\$ 12.50$, what was the ordinary simple interest rate? \qquad
7 Tessa O'Leary loaned $\$ 10,000$ to a machine shop owner who was buying a piece of used equipment. The interest rate was 6% exact simple interest, and the interest amount was $\$ 360$. Compute the number of days of the loan.

8 Kaye Mushalik loaned $\$ 2,500$ to Fay Merritt, a good friend since childhood. Because of their friendship, Kaye charged only 3% ordinary simple interest. Two months later, when Fay received her annual bonus, she repaid the entire loan and all the interest. What was the total amount that Fay paid? \qquad
9 Katherine Wu and her sister Madeline have a home decorating and design business. Often, they buy antiques and fine art objects and then resell the items to their clients. They have a line of credit at their bank to provide short-term financing, if necessary, for these purchases. The bank always charges exact simple interest, but the rate varies depending on the economy. Katherine and Madeline need to borrow $\$ 22,400$ for 90 days to buy a large collection of antique furniture at an estate sale. If the bank charges 5.25%, how much interest would they pay? \qquad

Assignment 13.1: Simple Interest

Name
Date Score

Learning Objectives

A (20 points) Compute the simple interest. If the time is given in months, let one month be $\frac{1}{12}$ of a year. If the time is in days, let one year be 360 days. ($\mathbf{2}$ points for each correct answer)
Principal Rate Time Interest \quad Principal Rate Time Interest

1. $\$ 500$

6.0\%

1 year
2. $\$ 4,000$

8\%
3 years
3. $\$ 1,800$
8%
4 months
4. $\$ 960$
5%
21 months
5. $\$ 7,500$

5\%
180 days
6. $\$ 3,600$
12%
30 months
7. $\$ 12,800$
7%
2.5 years
8. $\$ 450$
5%
$3 \frac{1}{2}$ years
10%
90 days
10. $\$ 20,000$
7.5\%

8 months

Assignment 13.1 Continued

B (30 points) Compute the ordinary interest, the exact interest, and their difference. Round answers to the nearest cent. (2 points for each correct interest; 1 point for each correct difference)

Principal	Rate	Time	Ordinary Interest	Exact Interest	Difference

11. $\$ 2,400 \quad 4 \% \quad 180$ days
12. $\$ 4,800 \quad 5 \%$ days
13. $\$ 12,000 \quad 6 \%$ days
14. $\$ 1,400 \quad 15 \% \quad 60$ days
15. $\$ 7,500 \quad 8 \% \quad 225$ days
16. $\$ 365$

4\% 30 days \qquad
\qquad
\qquad

Score for B (30)

C (20 points) In each problem, first find the actual exact simple interest. Then, estimate the interest by assuming a 360 -day year and round each rate and time to the nearest numbers that will permit the shortcuts in Table 13-1. Finally, find the difference. Round answers to the nearest cent. (2 points for each correct estimate and actual interest; 1 point for each correct difference)

| Principal | Rate | Time | Actual
 Exact
 Interest | Estimate | Difference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17. | | | | | |

18. $\$ 5,600$
3.99\%

92 days \qquad
\qquad
\qquad
19. $\$ 2,000$
8.95\%

123 days \qquad
\qquad
\qquad
20. $\$ 10,000 \quad 6 \% \quad 61$ days \qquad

Score for C (20)
D (30 points) Determine the missing variable by using one of the formulas

$$
I=P \times R \times T, \quad P=\frac{I}{(R \times T)}, \quad R=\frac{I}{(P \times T)}, \quad \text { or } \quad T=\frac{I}{(P \times R)}
$$

For problems 21-25, use a 360-day year. For problems 26-30, use a 365-day year. Round dollar amounts to the nearest cent. Round interest rates to the nearest $\frac{1}{10}$ of a percent. Find the time in days, rounded to the nearest whole day. (3 points for each correct answer)

Principal	Rate	Time	Interest
	11%	240 days	$\$ 352.00$

22. $\$ 12,000$
5%
$\$ 50.00$

Principal	Rate	Time	Interest
23. $\$ 600$		45 days	\$6.00
24. $\$ 2,480$	6\%	75 days	
25. $\$ 25,000$	4\%		\$625.00
26.	8\%	270 days	\$510.00
27. $\$ 1,350$	7.6\%	120 days	
28. $\$ 34,950$	5.5\%		\$395.00
29. $\$ 16,000$		90 days	\$296.00
30.	4.9\%	135 days	\$50.00

Assignment 13.2: Simple Interest Applications

Name
Date Score

A (50 points) Solve each of the following ordinary simple interest problems by using a 360-day year. Find both the interest dollars and the total amount (i.e., principal plus interest) of the loan. (7 points for each correct interest; 3 points for each correct amount)

1. Tom Titus plans to lend $\$ 850$ to his friend Bill White so that Bill can fly with him to Canada for vacation. Tom is charging Bill only 3% ordinary simple interest. Bill repays everything, interest plus principal, to Tom 180 days later. How much does Bill pay?
\qquad
2. Tony Woo and Helen Lee are planning to start a business that will export American food to China. They estimate that they will need $\$ 75,000$ to pay for organizational costs, get product samples, and make three trips to Shanghai. They can borrow the money from their relatives for 4 years. Tony and Helen are willing to pay their relatives 9% ordinary simple interest. Compute the total amount that Tony and Helen will owe their relatives in 4 years.

3. Carolyn Wilfert owns a temporary services employment agency. Businesses call her when they need to hire various types of workers for a short period of time. The businesses pay a fee to Carolyn, who pays the salaries and benefits to the employees. One benefit is that Carolyn will make small, short-term loans to her employees. After a flood, employee Judy Hillstrom needed to borrow \$3,600 to have her house cleaned and repainted. Judy repaid the loan in 6 months. If Carolyn charged 5% ordinary simple interest, how much did Judy repay?

Interest
Amount \qquad
4. Several years ago, Dick Shanley and Karl Coke formed a partnership to rent musical instruments to school districts that do not want to own and maintain the instruments. In the spring, they investigate borrowing $\$ 80,000$ to buy trumpets and trombones. Because they collect their rental fees in advance, they anticipate being able to repay the loan in 135 days. How much will they need to repay if the ordinary simple interest rate is 6.5% ?

Interest
Amount \qquad
5. With her husband, Ruby Williams owns and manages a video game arcade. A manufacturer developed a new line of games and offered very low interest financing to encourage arcade operators such as Ruby to install the new games. Ruby was able to finance $\$ 75,000$ worth of games for 8 months for 3.2% ordinary simple interest. Calculate how much Ruby will repay.

Interest
Amount \qquad

Score for A (50)

B (50 points) Solve each of the following exact simple interest problems by using a 365-day year. Find both the interest dollars and the total amount (i.e., principal plus interest) of the loan. (7 points for each correct interest; 3 points for each correct amount)

6. Robert Burke, managing partner of a local transportation company, thinks that the company should borrow money to upgrade its truck repair facility. After investigating several sources of short-term loans, Robert determines that the company can borrow $\$ 400,000$ for 200 days at 5.5% exact simple interest. If the company agrees to take out this loan, how much will it need to repay at the end of the 200 days?

> Interest
> Amount
7. Dave Engle, a former teacher, now has a business selling supplemetary educational materials such as books and computer software to parents and schools. In June, he borrowed $\$ 45,000$ from his bank to buy some new educational computer games that he hopes to sell during August and September. The bank's rate is 6.25% exact simple interest as long as the time does not exceed half a year. If Dave repays everything in 120 days, how much will he pay?

Interest \qquad
Amount \qquad
8. After working in construction for 5 years, Jerry Weekly had saved almost enough money to buy a fishing boat and move to Alaska to become a commercial fisherman. He still needed $\$ 9,500$, which his wife could borrow from her parents until the end of the first fishing season. The parents charged 5% exact simple interest, and Jerry repaid them after 95 days. How much interest did he pay, and what was the total amount?

Interest
Amount
9. Bill and Carol Campbell need to purchase two new saws for their retail lumber yard. The company that sells the saws offers them some short-term financing at the relatively high rate of 11% exact simple interest. They decide to accept the financing offer, but only for $\$ 5,000$ and only for 45 days. How much will Bill and Carol repay at the end of the 45 days?

Interest
Amount \qquad
10. After working for a large accounting firm for 10 years, Bette Ryan, C.P.A., decided to open her own office. She borrowed $\$ 60,000$ at 7.2% exact simple interest. She made enough during the first income tax season to repay the loan in 190 days. How much did Bette repay?

Interest	
Amount	
	Score for B (50)

Installment Purchases

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Convert between annual and monthly interest rates.

Learning Objective
Compute simple interest on a monthly basis.

Compute finance charges for credit account purchases.

Learning Objective

Compute effective rates.

Learning Objective
 Amortize a loan.

Learning Objective 7 Compute the monthly payment on a home mortgage.

Most individuals today can purchase goods or services on credit if they choose. The buyer gets immediate possession or immediate service but delays payment. Either the seller extends the credit or the buyer uses a credit card, or loan, from a third party.

Credit is usually offered for an interest charge, which is usually computed each month. A summary of the purchases, payments, and interest charges is sent to the borrower (credit purchaser) each month. It may not be simple to compare the methods used to compute interest by competing lenders. Some lenders may charge interest on the average daily balance. Although it is a simple concept, and easy for a computer to calculate, it may be difficult for the purchaser to reconcile when he or she makes many purchases and/or merchandise returns in a single month.

In addition to interest, a lender may charge additional fees to extend credit or loan money. These might include items such as loan origination fees, membership fees, credit check fees, administrative fees, and insurance premiums. All of the fees together are called finance charges. These additional fees, whether one-time, annual, or monthly, also make it difficult to compare lenders because each lender could be slightly different. It is of some help to consumers that there are laws that mandate that lenders must explain their various fees and rates.

Converting Interest Rates

Learning Objective

Convert between annual and monthly interest rates.

The general concept behind charging for credit purchases is to compute finance charges on the unpaid balance each month. The formula is still $I=P \times R \times T$, where P is the unpaid balance. However, T is not years or a fraction of a year (as in Chapter 13)— T is in months, and R, the rate, is a monthly rate. For example, the rate might be 1.5% per month.

Understanding the relationship between monthly and annual rates is important.
Rule: To convert an annual rate to a monthly rate, divide the annual rate by 12 ; to convert a monthly rate to an annual rate, multiply the monthly rate by 12.

EXAMPLEA

a. Convert 9% per year to the equivalent monthly rate.
9% annually $\div 12=0.75 \%$ monthly
b. Convert 0.5% per month to the equivalent annual rate.
0.5% monthly $\times 12=6 \%$ annually

CONCEPT CHECK 14.1

a. Convert an 18% annual rate to the equivalent monthly rate.

Divide the annual rate by 12 to get the monthly rate: $\quad 18 \% \div 12=1.5 \%$ per month
b. Convert a 1.25% monthly rate to the equivalent annual rate.

Multiply the monthly rate by 12 to get the annual rate:
$1.25 \% \times 12=15 \%$ per year

Computing Simple Interest on a Monthly Basis

In terms of single-payment simple interest, 1.5% per month is identical to 18% per year.

Rule: If the rate is annual, the time must be in years; if the rate is monthly, the time must be in months.

Compute simple interest on a monthly basis.

EXAMPLE B

Compute the simple interest on $\$ 1,000$ for 2 months at 18% per year, on an annual basis and on a monthly basis.

Annual: $\quad I=P \times R \times T=\$ 1,000 \times 0.18$ per year $\times \frac{2}{12}$ year $=\$ 30$
Monthly: $\quad 18 \%$ per year $=18 \% \div 12=1.5 \%$ per month

$$
\begin{aligned}
I=P \times R \times T & =\$ 1,000 \times 0.015 \text { per month } \times 2 \text { months } \\
& =\$ 30
\end{aligned}
$$

Reminder: Both computations differ from those in Chapter 13, where you counted the exact number of days and divided by either 360 or 365 .

CONCEPT CHECK 14.2

Compute the simple interest on $\$ 800$ for 3 months at 0.5% per month.
$I=P \times R \times T=\$ 800 \times 0.5 \%$ per month $\times 3$ months $=\$ 800 \times 0.005 \times 3=\$ 12$

Computing Finance Charges

To enable consumers to compute the total cost of credit, Congress has passed several laws, beginning with the Consumer Credit Protection Act of 1968 (CCPA). Title I of the CCPA is known as the Truth in Lending Act (TILA). TILA is administered by the Federal Reserve Board. Among other major legislation, Congress also passed the Consumer Leasing Act of 1976, administered by the Federal Trade Commission, and the Home Ownership and Equity Protection Act of 1994 , administered by the Department of Housing and Urban Development. All of these require lenders to make certain disclosures to consumers.

Among several mandates, TILA requires creditors to tell consumers these three things:

1. The total of all finance charges, including interest, carrying charges, insurance, and special fees
2. The annual percentage rate (APR) of the total finance charge
3. The method by which they compute the finance charge

As noted in the previous section, an annual interest rate is a monthly interest rate multiplied by 12 . However, as the term is used in TILA, the annual percentage rate (APR) is a specific, defined term that must include all finance charges, not just interest.

Learning Objective

Compute finance charges for credit account purchases.

Furthermore, under TILA, lenders are permitted to use more than one method to compute the APR. Lenders may even use either a 360 -day year or a 365 -day year. TILA does not set limits on rates.

As mentioned, TILA does require that total finance charges be stated clearly, that the finance charges also be stated as an annual percentage rate, and the method of computation be given. Although the method that is mentioned may be stated clearly, it may not always be simple for a consumer to calculate. One difficulty might be to determine the account balance that is to be used in the calculation. A wide variety of methods may be applied. For example:

1. The finance charge may be based on the amount owed at the beginning of the current month, ignoring payments and purchases.
2. The finance charge may be based on the amount owed at the beginning of the month, after subtracting any payments during the month and ignoring purchases.
3. The finance charge may be based on the average daily balance. (Add the unpaid balance each day; divide the total by the number of days in the month.) Payments are usually included; new purchases may or may not be included.
4. A variation of the average daily balance method is to compute the interest charge each day, on a daily basis, and then add all the daily interest charges for the month.

Although the total finance charges, and the annual percentage rate, and the method of calculation may all be clearly stated, some consumers will have difficulty reconstructing the interest and finance charges on their bills. A consumer who wants to understand more can write to the creditor for a more detailed explanation and even an example of how to do the calculations.

Figure 14-1 is the lower portion of a typical statement of a retail store. Examples C and D illustrate two simple methods used to compute finance charges.

Figure 14-1 \quad Retail Statement of Account

PREVIOUS BALANCE FINANCE CHARGE PAYMENTS CREDITS PURCHASES NEW BALANCE MINIMUM PAYMENT CLOSING DATE 624.00 9.36 500.00 62.95 364.57 434.98 45.00 $10-16-99$
IF WE RECEIVE PAYMENT OF THE FULL AMOUNT OF THE NEW BALANCE BEFORE THE NEXT CYCLE CLOSING DATE, SHOWN ABOVE, YOU WILL AVOID AINANCE CHARGE NEXT MONTH. THE FINANCE CHARGE, IF ANY, IS CALCULATED ON THE PREVIOUS BALANCE BEFORE DEDUCTING ANY PAYMENTS OR CREDITS SHOWN ABOVE. THE PERIODIC RATES USED ARE 1.5\% OF THE BALANCE ON AMOUNTS UNDER \$\$1,00 AND 1\% OF AMOUNTS IN EXCESS OF \$1,000, WHICH ARE ANNUAL PERCENTAGE RATES OF 18\% AND 12\% RESPECTVELY.

EXAMPLEC

Compute the finance charge and the new balance for the statement shown in Figure 14-1 based on the previous balance, $\$ 624$, ignoring all payments, credits, and purchases.

Finance charge $=\$ 624 \times 1.5 \% \times 1$ month $=\$ 9.36$
New balance $=\$ 624.00+\$ 9.36-\$ 500.00-\$ 62.95+\$ 364.57=\$ 434.98$

EXAMPLE D

Assume that the finance charge in Figure 14-1 is based on the previous balance, less any payments or credits, but ignores subsequent purchases. Compute the finance charge and the new balance.

The finance charge is based on $\$ 624.00-\$ 500.00-\$ 62.95=\$ 61.05$.
Finance charge $=\$ 61.05 \times 1.5 \% \times 1$ month $=\$ 0.91575$, or $\$ 0.92$
New balance $=\$ 624.00+\$ 0.92-\$ 500.00-\$ 62.95+\$ 364.57=\$ 426.54$

CONCEPT CHECK 14.3

The finance terms given in the charge account statement of Figure 14-1 indicate that the finance charge, if any, is charged on the previous balance, before deducting payments or credits or adding purchases. Calculate the finance charge and the unpaid balance if the previous balance was $\$ 2,425.90$, the payment was $\$ 1,200$, there were no credits, and there were $\$ 572.50$ in new purchases.

An interest rate of 1.5% applies to the first $\$ 1,000$ and 1% applies to the excess: $\$ 2,425.90-\$ 1,000=\$ 1,425.90$.

```
0.015 }\times$$1,000=$15.0
0.01 }\times$1,425.90=$14.2
Finance charge = $15.00 + $14.26=$29.26
New balance = $2,425.90 - $1,200 + $29.26 + $572.50 = $1,827.66
```

COMPLETE ASSIGNMENT 14.1.

Computing Costs of Installment Purchases

In a credit sale, the buyer pays the purchase price plus credit charges. Usually, the buyer makes monthly payments called installments. Just as you saw in the previous section, the method of computing the interest is just as important as the interest rate. Most often, the interest is based on the unpaid balance and is calculated each month using a monthly interest rate. Sometimes, the interest may be calculated only once at the beginning using an annual interest rate, but the interest might be paid in equal installments along with the principal installments.

EXAMPLE E

Nancy Bjonerud purchases $\$ 4,000$ worth of merchandise. She will repay the principal in four equal monthly payments of $\$ 1,000$ each. She will also pay interest each month on the unpaid balance for that month, which is calculated at an annual rate of 12%. First, calculate each of the monthly interest payments. Then, display the results in a table.

Given the annual interest of 12%, the monthly rate is $12 \% \div 12=1 \%$ per month.

$$
\begin{array}{ll}
\text { Month 1: } \$ 4,000 \times 1 \%=\$ 40 & \text { Month 3: } \$ 2,000 \times 1 \%=\$ 20 \\
\text { Month 2: } \$ 3,000 \times 1 \%=\$ 30 & \text { Month 4: } \$ 1,000 \times 1 \%=\$ 10 \\
\text { Total interest }=\$ 40+\$ 30+\$ 20+\$ 10=\$ 100 &
\end{array}
$$

| Month | Unpaid
 Balance | Monthly
 $\mathbf{1}$ | Interest | Principal
 Payment | Total
 Payment |
| :---: | ---: | ---: | ---: | ---: | ---: | | New
 Balance |
| :--- |
| $\mathbf{2}$ |

EXAMPLE F

Carmel Dufault purchases $\$ 4,000$ worth of merchandise. She will pay interest of 12% on $\$ 4,000$ for four months. First, calculate the total amount of interest. Carmel will repay one-fourth of the interest amount each month. In addition, she will repay the $\$ 4,000$ in four equal monthly amounts of $\$ 1,000$ each. Display the results in a table.

$$
\$ 4,000 \times 12 \% \times \frac{4}{12}=\$ 160
$$

$\$ 160 \div 4=\$ 40$ per month for interest

| Month | Unpaid
 Balance | Monthly
 $\mathbf{1}$ | Interest | Principal
 Payment | Total
 Payment |
| :---: | ---: | ---: | ---: | ---: | ---: | | New
 Balance |
| :--- |
| $\mathbf{2}$ |

CONCEPTCHECK 14.4

A kitchen stove is priced at $\$ 600$ and is purchased with a $\$ 100$ down payment. The $\$ 500$ remaining balance is paid in two successive monthly payments of $\$ 250$ each. Compute interest using the following methods:
a. Interest of 1.5% is calculated on the unpaid balance each month (18% annual rate).

Month 1: $\$ 500 \times 0.015=\$ 7.50$
Month 2: New balance is $\$ 250 . \$ 250 \times 0.015=\$ 3.75$
Total interest $=\$ 7.50+\$ 3.75=\$ 11.25$
b. Simple interest is calculated on the entire $\$ 500$ for 2 months at 1.5% per month (18% annual rate). $\$ 500 \times 0.015$ per month $\times 2$ months $=\$ 15.00$

Computing Effective Interest Rates

Examples E and F are very similar, but not quite identical. The numbers are the same: Both purchases are for $\$ 4,000$; both repay the $\$ 4,000$ principal in four equal monthly payments; both use a 12% annual interest rate. The only difference is the method of calculating the interest. In example E, the total amount of interest is $\$ 100$; in example F , it is $\$ 160$. In example F, it is more expensive to borrow the same money than in example E. In example F, interest is calculated as if the entire $\$ 4,000$ were borrowed for 4 months $(\$ 4,000 \times 0.12 \times 4 / 12)$. But Carmel repays $\$ 1,000$ of the money after only 1 month.

The true interest rate, or the effective interest rate, cannot be the same in each example because it costs more in example F to borrow the same amount of money for the same length of time. To calculate the effective interest rate, we use the familiar formula from Chapter $13, R=\frac{I}{P \times T}$, where I is the amount of interest in dollars, T is the time of the loan in years, and P is the average unpaid balance (or the average principal) over the period of the loan. The average unpaid balance is the sum of all of the unpaid monthly balances divided by the number of months. (Note: The term effective interest rate is also used in other contexts where a different formula is used to find the effective rate.)

EXAMPLE G

Use the formula $R=\frac{I}{P \times T}$ to compute the effective interest rates for (a) example E and (b) example F. In both examples, the time of the loan is $T=\frac{4}{12}$ of a year. Using the preceding tables, for each example, the average unpaid balance is
$P=\frac{\$ 4,000+\$ 3,000+\$ 2,000+\$ 1,000}{4}=\frac{\$ 10,000}{4}=\$ 2,500$. But in example E,
$I=\$ 100$ and in example F, $I=\$ 160$.
a. Example F: $T=\frac{4}{12} ; P=\$ 2,500 ; I=\$ 100$; so that

$$
R=\frac{I}{P \times T}=\frac{\$ 100}{\$ 2,500 \times \frac{4}{12}}=\frac{\$ 100}{\$ 833.33}=0.120000, \text { or } 12 \%
$$

b. Example F: $T=\frac{4}{12} ; P=\$ 2,500 ; I=\$ 160$; so that

$$
R=\frac{I}{P \times T}=\frac{\$ 160}{\$ 2,500 \times \frac{4}{12}}=\frac{\$ 160}{\$ 833.33}=0.1920008 \text { or } 19.2 \%
$$

Rule: When the interest is calculated on the unpaid balance each month, the quoted rate and the effective rate will always be the same. When interest is computed only once on the original principal, but the principal is repaid in installments, then the effective interest rate will always be higher than the quoted rate.

The preceding rule is true even when the principal is not repaid in equal installments each month.

Learning Objective

Compute effective rates.

EXAMPLE H

Look back at example E where Nancy Bjonerud made four equal principal payments of $\$ 1,000$ each. Suppose instead that she repays the principal in four monthly payments of $\$ 900, \$ 1,200, \$ 1,100$, and $\$ 800$. As in example E, she will also pay interest each month on the unpaid balance for that month, which is calculated at an annual rate of 12%. Compute the interest amount for each month and display the results in a table. Then, compute the average unpaid balance and the effective interest rate using the formula $R=\frac{I}{P \times T}$

Given annual interest of 12%, the monthly rate is $12 \% \div 12=1 \%$ per month.
Month 1: $\$ 4,000 \times 1 \%=\$ 40 \quad$ Month 3: $\$ 1,900 \times 1 \%=\$ 19$
Month 2: $\$ 3,100 \times 1 \%=\$ 31 \quad$ Month 4: $\$ 800 \times 1 \%=\$ 8$
Total interest $=\$ 40+\$ 31+\$ 19+\$ 8=\$ 98$

Month	Unpaid Balance	Monthly Interest	Principal Payment	Total Payment	New Balance
1	\$4,000	\$40	\$ 900	\$ 940	\$3,100
2	3,100	31	1,200	1,231	1,900
3	1,900	19	1,100	1,119	800
4	800	8	800	808	0
	\$9,800	\$98	\$4,000	\$4,098	

$P=\frac{\$ 4,000+\$ 3,100+\$ 1,900+\$ 800}{4}=\frac{\$ 9,800}{4}=\$ 2,450$
$R=\frac{I}{P \times T}=\frac{\$ 98}{\$ 2,450 \times \frac{4}{12}}=\frac{\$ 98}{\$ 816.67}=0.11999951$, or 12%

INCREASING THE EFFECTIVE RATE

Example F shows how the effective rate in an installment sale can be increased by using a different method to calculate interest. Of course, a reputable lender should indicate the true interest rate in the terms of the agreement. But in installment sales, the interest rate may be only one of several variables in the total cost of purchasing. Any additional fees to make the installment purchase increase the actual cost of borrowing.

Naturally, some businesses will attempt to attract buyers by offering very low purchase prices, even "guaranteeing to match all competitors' advertised prices for 30 days." Others may offer installment purchases at low or even 0% interest rates and no additional fees-but they will charge a higher base price. Different consumers are attracted by different things-some by low prices; some by favorable terms of purchase. For many consumers, buying is simply an emotional response with very little actual thought given to actual costs.

Lender and sellers "effectively" increase the cost of borrowing money or buying in installments by charging or suggesting additional fees. If it is a purchase of merchandise, the lender could require that the merchandise be insured for the term of purchase. Or the lender could charge a credit application fee.

Consider the following modification to example E, which had an effective rate of 12% in example G, part a.

EXAMPLE I

Look back at example G, part a, where we used $R=\frac{I}{P \times T}$ to calculate the effective rate for example E, with I equal to the total interest charge of $\$ 100$. Suppose instead that the lender had charged Nancy the interest of $\$ 100$, AND a loan origination fee of 1% of the purchase price, AND an insurance premium of $\$ 1$ per month for the term of the loan.
Use the formula $R=\frac{I}{P \times T}$ to compute the effective interest rate, but let I be the total finance charge.

The average unpaid balance is still $P=\frac{\$ 4,000+\$ 3,000+\$ 2,000+\$ 1,000}{4}=$ $\frac{\$ 10,000}{4}=\$ 2,500$.
$I=$ Total finance charge $=$ Interest + Loan origination fee + Insurance
Interest only $=\$ 40+\$ 30+\$ 20+\$ 10=\$ 100$
Loan origination fee $=1 \%$ of $\$ 4,000=0.01 \times \$ 4,000=\$ 40$
Insurance $=\$ 1 \times 4$ months $=\$ 4$
Therefore, $I=\$ 100+\$ 40+\$ 4=\$ 144$

$$
R=\frac{I}{P \times T}=\frac{\$ 144}{\$ 2,500 \times \frac{4}{12}}=\frac{\$ 144}{\$ 833.33}=0.17280069, \text { or } 17.3 \%
$$

Because the interest in example E was paid on the unpaid balance, the effective rate was 12%, the same as the quoted interest rate. If these same additional finance charges from example I were applied to example F, the results would be even more dramatic.

CONCEPT CHECK 14.5

From Concept Check 14.4, a kitchen stove priced at $\$ 600$ is purchased with a $\$ 100$ down payment. The remaining balance of $\$ 500$ may be financed over 2 months with either of the following installment payment plans.
Plan 1: Two monthly principal payments of \$250 each and a total interest amount of \$11.25
Plan 2: Two monthly principal payments of $\$ 250$ each and a total interest amount of $\$ 15.00$
Calculate the effective annual rate of each plan, using $R=\frac{I}{(P \times T)}$, where P is the average unpaid monthly balance and T is $\frac{2}{12}$ year. In each plan, the monthly unpaid balances are $\$ 500$ in month 1 and $\$ 250$ in month 2.

The average unpaid balance is $\frac{(\$ 500+\$ 250)}{2}=\frac{\$ 750}{2}=\$ 375$, so $P=\$ 375$.
Plan 1: $R=\frac{I}{(P \times T)}=\frac{\$ 11.25}{\left(\$ 375 \times \frac{2}{12}\right)}=\frac{\$ 11.25}{\$ 62.50}=0.18$, or 18% effective annual rate
Plan 2: $R=\frac{I}{(P \times T)}=\frac{\$ 15.00}{\left(\$ 375 \times \frac{2}{12}\right)}=\frac{\$ 15.00}{\$ 62.50}=0.24$, or 24% effective annual rate

COMPLETE ASSIGNMENT 14.2.

Amortizing a Loan

Amortize a loan.

In example E , interest was calculated on the unpaid balance, but the total payment was different each month: $\$ 1,040, \$ 1,030, \$ 1,020$, and $\$ 1,010$. Equal monthly payments are usually simpler, especially for the borrower. In example F, the total payments were the same each month, always $\$ 1,040$. However, the interest was not calculated on the unpaid balance. In example E, the effective interest rate was equal to the quoted interest rate of 12%. But in example F, the effective rate was much higher, 19.2%.

Taking the best features of each example, consider a loan where the total payments are equal each month AND the interest is calculated on the unpaid balance each month. Such a loan is said to be amortized; the method is called amortization. (The word amortize is also used in different contexts and there is more than one way to amortize a loan.) Although possible for any time purchase, amortization is especially relevant for larger purchases made over longer periods of time. Loans to pay for homes and automobiles are usually amortized. There may, or may not, be a down payment.

COMPUTING THE MONTHLY PAYMENT

The basic concept to amortize a loan is to multiply the loan amount by a amortization payment factor. The product is the amount of the monthly payment. This factor may be derived from a calculator or computer or from a book of financial tables. When lenders amortize loans today, they use computers to do the final calculations. Initial calculations, however, are often made using calculators or tables. Chapter 23 will describe how to use a calculator to make amortization calculations. In Chapter 14, we will use tables. Both methods are still used, and both lead to the same results. (You can also go to the Internet, search on "amortization calculations," and find Websites that help you to do the calculations.)

Table 14-1 illustrates the concept of tables for amortization payment factors. Actual tables would have many pages and would be much more detailed. If you study other courses in business mathematics, accounting or finance, you may use tables that are slightly different than Table 14.1. In Chapter 23, we will encounter one such table. Regardless of the exact format of the table, the concepts are the same. And, to repeat, financial calculators and computers will eventually completely eliminate the need for any of these tables.

Notice that the title of Table 14-1 is "Amount of Monthly Payment per \$1,000 Borrowed." Therfore, you must first determine the amount of the loan in "thousands of dollars," not the number of dollars. The annual interest rates in Table 14.1 were selected because they are evenly divisible by 12 . This will eliminate the necessity to round off interest rates when you convert an annual rate into a monthly rate.

S T E P S to Find the Monthly Payment of an Amortized Loan Using

Table 14-1

1. Divide the loan amount by $\$ 1,000$ to get the number of thousands of dollars.
2. Locate the amortization payment factor in Table 14-1.
3. Multiply the quotient in Step 1 by the amortization payment factor. The product is the amount of the monthly payment.

	Term of	Annual Interest Rate											
	Loan	$\mathbf{4 . 5 \%}$							$\mathbf{6} \%$	$\mathbf{7 . 5 \%}$	$\mathbf{9 \%}$	$\mathbf{1 0 . 5 \%}$	$\mathbf{1 2 \%}$
$\mathbf{1}$	month	1003.75000	1005.00000	1006.25000	1007.50000	1008.75000	1010.00000						
$\mathbf{2}$	months	502.81425	503.75312	504.69237	505.63200	506.57203	507.51244						
$\mathbf{3}$	months	335.83645	336.67221	337.50865	338.34579	339.18361	340.02211						
$\mathbf{4}$	months	252.34814	253.13279	253.91842	254.70501	255.49257	256.28109						
$\mathbf{5}$	months	202.25561	203.00997	203.76558	204.52242	205.28049	206.03980						
$\mathbf{6}$	months	168.86099	169.59546	170.33143	171.06891	171.80789	172.54837						
$\mathbf{1}$	year	85.37852	86.06643	86.75742	87.45148	88.14860	88.84879						
$\mathbf{2}$	years	43.64781	44.32061	44.99959	45.68474	46.37604	47.07347						
$\mathbf{3}$	years	29.74692	30.42194	31.10622	31.79973	32.50244	33.21431						
$\mathbf{4}$	years	22.80349	23.48503	24.17890	24.88504	25.60338	26.33384						
$\mathbf{5}$	years	18.64302	19.33280	20.03795	20.75836	21.49390	22.24445						
$\mathbf{1 0}$	years	10.36384	11.10205	11.87018	12.66758	13.49350	14.34709						
$\mathbf{1 5}$	years	7.64993	8.43857	9.27012	10.14267	11.05399	12.00168						
$\mathbf{2 0}$	years	6.32649	7.16431	8.05593	8.99726	9.98380	11.01086						
$\mathbf{2 5}$	years	5.55832	6.44301	7.38991	8.39196	9.44182	10.53224						
$\mathbf{3 0}$	years	5.06685	5.99551	6.99215	8.04623	9.14739	10.28613						

EXAMPLE J

Find the monthly payment required to amortize a $\$ 4,000$ loan over 4 months at 12% (1% per month).

STEP 1 Divide $\$ 4,000$ by $\$ 1,000 ; \$ 4,000 \div \$ 1,000=4$ thousands
STEP 2 Find the intersection of the 12% column and the 4-month row in Table 14-1. The amortization payment factor is $\$ 256.28109$ per each one thousand dollars.

STEP 3 Multiply the 4 (from step 1) by the amortization payment factor. $4 \times \$ 256.28109=\$ 1,025.12436$, or $\$ 1,025.12$ monthly.

EXAMPLE K

Judith Kranz agrees to purchase an automobile for $\$ 18,300$. Judith will make a $\$ 2,000$ down payment and amortize the balance with monthly payments over 4 years at 9% (0.75\% per month). Determine Judith's monthly payment.
$\$ 18,300-\$ 2,000=\$ 16,300$ amount financed
STEP $1 \quad \$ 16,300 \div \$ 1,000=16.3$ thousands

STEP 2

Find the intersection of the 9% column and the 4 -year row in Table 14-1. The amortization payment factor is $\$ 24.88504$ per thousand.

STEP 3 Multiply the 16.3 (from step 1) by the amortization payment factor. $16.3 \times \$ 24.88504=\$ 405.62615$, or $\$ 405.63$ monthly.

LOAN PAYMENT SCHEDULE

After determining the amount of the monthly payments, a lender can prepare a schedule of loan payments called an amortization schedule. The payment for the last month is determined in the schedule, and it may be slightly different from the payment in the other months.

STEPS to Create an Amortization Schedule

For each row except the last:

1. Interest payment $=$ Unpaid balance \times Monthly interest rate
2. Principal payment $=$ Monthly payment - Interest payment
3. New unpaid balance = Old unpaid balance - Principal payment

For the last row (i.e., for the final payment):

1. Interest payment $=$ Unpaid balance \times Monthly interest rate
2. Monthly payment $=$ Unpaid balance + Interest payment
3. Principal payment $=$ Unpaid balance

EXAMPLE L

Create an amortization schedule for the loan in example J, a \$4,000 loan amortized at 12% over 4 months. The interest rate is 1% per month.

Month	Unpaid Balance	Interest Payment	Principal Payment	Total Payment	New Balance
1	\$ 4,000.00	\$ 40.00	\$ 985.12	\$1,025.12	\$3,014.88
2	3,014.88	30.15	994.97	1,025.12	2,019.91
3	2,019.91	20.20	1,004.92	1,025.12	1,014.99
4	1,014.99	10.15	1,014.99	1,025.14	
Totals	\$10,049.78	\$100.50	\$4,000.00	\$4,100.50	

Note: In example L, the last monthly payment is 2 cents larger than the others. Because the interest payments need to be rounded, the final payment usually will be slightly different from the previous payments.

Since amortization implies that interest is paid on the unpaid balance, the formula $R=\frac{I}{P \times T}$ should show that the effective rate is the same as the quoted rate of 12%. Looking at the table for example L , the average unpaid balance is

$$
\begin{aligned}
P & =\frac{\$ 4,000.00+\$ 3,014.88+\$ 2,019.91+\$ 1,1014.99}{4}=\frac{\$ 10,049.78}{4} \\
& =\$ 2,512.45
\end{aligned}
$$

The total interest paid is $I=\$ 40.00+\$ 30.15+\$ 20.20+\$ 10.15=\$ 100.50$. Therefore,

$$
R=\frac{I}{P \times T}=\frac{\$ 100.50}{\$ 2,512.45 \times \frac{4}{12}}=\frac{\$ 100.50}{\$ 837.48}=0.1200029, \text { or } 12 \%
$$

The reason that the result was 12.00029% instead of 12%, is that all of the payments were rounded to the nearest cent. You can easily verify that if you round all payments to five decimal places, $R=12.0000007$. However, also be sure to calculate the monthly payment to five places, or $\$ 1,025.12436$.

CONCEPT CHECK 14.6

A $\$ 2,000$ purchase is amortized over 2 months at an annual rate of 9%. First use Table 14-1 to calculate the monthly payment for month 1 . Then show the calculations to construct a 2-month amortization schedule.

$$
\$ 2,000 \div \$ 1,000=2 \text { thousands }
$$

Amortization payment factor from Table 14-1 is $\$ 505.63200$.
$2 \times \$ 505.63200=\$ 1,011.264$, or $\$ 1,011.26$ for month 1

Month	1		2	
Unpaid balance	Original principal:	$\$ 2,000.00$	From end of month 1:	$\$ 1,003.74$
Monthly rate	$0.09 \div 12=0.0075$			
Interest payment	$\$ 2,000.00 \times 0.0075=$	$\$ 15.00$	$\$ 1,003.74 \times 0.0075=$	$\$$
Total payment	From above:	$\$ 1,011.26$	$\$ 1,003.74+\$ 7.53=$	$\$ 1,011.27$
Principal payment	$\$ 1,011.26-\$ 15.00=$	$\$ 996.26$		$\$ 1,003.74$
New balance	$\$ 2,000.00-\$ 996.26=$	$\$ 1,003.74$	$\$ 1,003.74-\$ 1,003.74=$	$\$ 0.00$

COMPLETE ASSIGNMENT 14.3

Finding the Monthly Payment of a Home Mortgage

Persons who decide to purchase a home usually borrow the majority of the money. The amount that is borrowed is usually amortized, and usually for a long time, such as 15,20 , or 30 years. Such a home loan is called a mortgage. The interest rate may be fixed, which means that it stays the same for the entire length of the loan. Also popular are variable-rate loans, which permit the lender to periodically adjust the interest rate depending on current financial market conditions. Whether a borrower decides on a fixed or variable rate loan depends on several factors, such as how long he or she plans to remain in that home.

A mortgage loan is still a loan. And amortizing a mortgage is the same as amortizing any other loan: Look up the amortization payment factor in Table 14-1 and multiply by the number of thousands of dollars that are borrowed.

Learning Objective

Compute the monthly payment on a home mortgage.

EXAMPLE M

George and Kathy Jarvis bought a home priced at $\$ 190,000$. They made a $\$ 20,000$ down payment and took out a 30-year, 6% mortgage on the balance. Find the size of their monthly payment.

$$
\$ 19,000-\$ 20,000=\$ 17,000 \text { amount borrowed }
$$

STEP 1 Divide $\$ 170,000$ by $\$ 1,000$ to get 170.
STEP 2 Find the amortization factor in the 6% column and 30-year row of Table 14-1. It is $\$ 5.99551$.

STEP 3 Multiply the 170 from Step 1 by $\$ 5.99551$ to get $\$ 1,019.23670$.
The monthly payment will be $\$ 1,019.24$.

AMORTIZATION SCHEDULE FOR A MORTGAGE

An amortization schedule for a mortgage is computed line-by-line just as the amortization schedules for other loans such as the one in example L. However, a 30-year loan will have 360 lines, one for each month of the loan. This could be about six or seven pages of paper with three calculations per line, or 1,080 calculations. Today, these tables are always produced with a computer. You can create an amortization schedule using EXCEL or you can find several sources on the Internet to do the calculations for you. However, to review the concept, examine example N .

EXAMPLE N

Construct the first three lines of an amortization schedule for the Jarvis's home mortgage loan in example M.

The Jarvis's \$170,000 mortgage has a monthly payment of \$1,019.24.
For a 6% annual interest rate, the monthly rate is $6 \% \div 12=0.5 \%$.
For each row, 1. Monthly interest $=$ Unpaid balance $\times 0.005$
2. Principal payment $=$ Total payment - Monthly interest
3. New balance $=$ Unpaid balance - Principal payment

| Month | Unpaid
 Balance | Monthly
 $\mathbf{1}$ | Interest | Principal
 Payment | Total
 Payment |
| :--- | :--- | ---: | :--- | ---: | ---: | | New |
| :--- |
| $\mathbf{2}$ |

Concept Check 14.7

A home cost $\$ 180,000$. The buyers made a down payment of $\$ 30,000$. Compute the monthly payment on a 25 -year mortgage with an annual interest rate of 7.5%. Use Table 14-1.

The amount borrowed is $\$ 180,000-\$ 30,000=\$ 150,000$.
The amortization payment factor from Table 14-1 is 7.38991 .
The amount of the loan in thousands is $\$ 150,000 \div \$ 1,000=150$.
The monthly mortgage payment is $150 \times \$ 7.38991=\$ 1,108.49$.

Chapter Terms for Review

amortization

amortization payment factor amortization schedule annual percentage rate (APR) average daily balance average principal average unpaid balance credit card

effective interest rate

finance charge
fixed interest rate
installments
mortgage
Truth in Lending Act (TILA)
variable-rate loans

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective	Example
14.1 Convert between annual and monthly interest rates	1. Convert 0.75% per month to an annual rate. 2. Convert 15% per year to a monthly rate
14.2 Compute simple interest on a monthly basis	3. Compute the simple interest on $\$ 1,500$ for 7 months at 0.5% per month (6% per year).
14.3 Compute finance charges for credit account purchases	4. Charge account terms apply a 1.25% finance charge to the previous balance, less any payments and credits, ignoring purchases. Find the finance charge and new balance when the previous balance is $\$ 1,683.43$, payments plus credits total $\$ 942.77$, and purchases are \$411.48.
14.4 Compute costs of installment purchases	5. Furniture worth $\$ 2,500$ is paid for with a $\$ 400$ down payment and three payments of $\$ 700$, plus monthly interest of 1% on the unpaid balance. Find the total interest paid. The monthly balances are $\$ 2,100, \$ 1,400$, and $\$ 700$.
14.5 Compute effective rates	6. A $\$ 2,400$ purchase is to be repaid in 3 equal monthly principal payments of $\$ 800$ each. There will be one interest payment of $\$ 60(10 \%$ of $\$ 2400$ for three months) and insurance premiums of $\$ 1$ each month. Calculate the effective rate of interest. The monthly balances are $\$ 2,400, \$ 1,600$, and $\$ 800$.
14.6 Amortize a loan	7. A $\$ 2,000$ loan will be amortized over 6 months at an annual rate of 9%. Find the payment, using Table 14-1, and calculate the unpaid balance after the first month.
14.7	8. A $\$ 130,000$ home mortgage is for 20 years at 4.5% annual interest. Find the monthly payment.
Compute the monthly payment on a home mortgage.	

Review Problems for Chapter 14

1 Change the monthly rates to annual rates.
a. $0.75 \%=$ \qquad
b. $0.6 \%=$ \qquad c. $1.2 \%=$ \qquad d. $\frac{2}{5} \%=$ \qquad

2 Change the annual rates to monthly rates.
a. $6 \%=$ \qquad b. $15 \%=$ \qquad c. $13.2 \%=$ \qquad d. $9.6 \%=$ \qquad

3 A store offers the following credit terms: "There will be no finance charge if the full amount of the new balance is received on or before the due date. Unpaid balances after the due date will be charged interest based upon the previous balance, less any payments and credits before the due date. The rates are 1.75% on the first $\$ 1,000$ of the unpaid balance and 1.25% on the part of the unpaid balance that exceeds $\$ 1,000$."

Calculate (a) the finance charge and (b) the new balance on an account that had a previous balance of $\$ 2,752.88$; a payment of $\$ 800$; credits of $\$ 215$; and purchases of $\$ 622.75$.

4 Neta Prefontaine buys $\$ 3,000$ worth of merchandise. She agrees to pay $\$ 1,000$ per month on the principal. In addition, she will pay interest of 1% per month (12% annually) on the unpaid balance. Complete the following table.

Month	Unpaid Balance	Interest Payment	Principal Payment	Total Payment	New Balance
1	$\$ 3,000.00$	a.	$\$ 1,000.00$	b.	c. -
2	d.	e.	$\$ 1,000.00$	f.	g. -
3	h.	i.	$\$ 1,000.00$	j.	$\$ 0.00$

5 Use the results of problem 4 and compute the effective annual interest rate using the formula $R=\frac{I}{P \times T}$, where \boldsymbol{P} is the average unpaid balance, \boldsymbol{I} is the total interest paid, and \boldsymbol{T} is the period of the loan in years.

6 Use Table 14-1 to find the monthly payment of a $\$ 125,000$ mortgage that is amortized over 15 years at 7.5%.

7 A $\$ 3,000$ loan is amortized over 3 months at 12%. The first two monthly payments are $\$ 1,020.07$; the final payment may differ. Complete the following table.

Month	Unpaid Balance	Interest Payment	Total Payment	Principal Payment	New Balance
$\mathbf{1}$	$\$ 3,000.00$	a.		$\$ 1,020.07$	b.

Assignment 14.1 Monthly Finance Charges

Name

A (19 points) Problem 1: Change the rates from annual to monthly. Problem 2: Change the rates from monthly to annual. (1 point for each correct answer)

1a. $18 \%=$ \qquad b. 15% \qquad c. 16.8%
d. 7.2%
e. 6% \qquad f. 19.2% \qquad g. 14.4% \qquad h. 8.4% \qquad
i. 9% \qquad j. 9.6% \qquad
2a. $0.5 \%=$ \qquad
b. $0.7 \%=$ \qquad
c. $1.3 \%=$ \qquad
d. $1.25 \%=$ \qquad
e. $1.1 \%=$ \qquad
f. $0.75 \%=$ \qquad
g. $0.9 \%=$ \qquad
h. $1.15 \%=$ \qquad
i. $0.4 \%=$ \qquad -
\qquad -

B (33 points) Lakeside Furniture Store offers the credit terms shown to its retail customers. In problems 3-5 compute the finance charge, if any, and the new balance. Assume that all payments are made within the current billing cycle. (3 points for each correct answer)

TERMS: There will be no finance charge if the full amount of the new balance is received within 25 days after the cycle-closing date. The finance charge, if any, is based upon the entire previous balance before any payments or credits are deducted. The rates are 1.5% per month on amounts up to $\$ 1,000$ and 1.25% on amounts in excess of $\$ 1,000$. These are annual percentage rates of 18% and 15%, respectively.

Cycle Closing	Previous Balance	Payment Amount	Credits	Finance Charge	Purchases	New Balance
$3 / 20 / 200-$	$\$ 2,147.12$	$\$ 900.00$	$\$ 175.50$		$\$ 647.72$	

4. $6 / 20 / 200-\quad \$ 743.72 \quad \$ 0.00 \quad \$ 15.00 \quad \$ 609.88$
5. $9 / 20 / 200-\$ 3,412.27 \quad \$ 3,000.00 \quad \$ 212.98 \quad \$ 907.51$

In problems 6 and 7, Lelia McDaniel has an account at Lakeside Furniture Store. Compute the missing values in Lelia's account summary for the months of August and September. The previous balance in September is the same as the new balance in August.

Cycle Closing	Previous Balance	Payment Amount	Credits	Finance Charge	Purchases	New Balance
$8 / 20 / 200-$	$\$ 1,636.55$	$\$ 900.00$	$\$ 36.00$		$\$ 966.75$	

7. $9 / 20 / 200-\quad \$ 1,200.00 \quad \$ 109.75 \quad \$ 589.41 \quad ـ$

Score for B (33)

C (48 points) Devlin's Feed \& Fuel offers the credit terms shown to its retail customers. In problems 8-12 compute the missing values in the charge accounts shown. Assume that all payments are made within 30 days of the billing date. (3 points for each correct answer)

TERMS: Finance Charge is based on the Net Balance, if payment is received within 30 days of the billing date. If payment is made after 30 days, then the Finance Charge is based on the Previous Balance. Net Balance equals Previous Balance less Payments and Credits. In either case, the monthly rate is 1.25% on the first $\$ 500$ and 1% on any amount over $\$ 500$. These are annual percentage rates of 15% and 12%, respectively.

Billing Date	Previous Balance	Payment Amount	Credit	Net Balance	Finance Charge	New Purchases	New Balance
$4 / 25 / 200-$	$\$ 2,621.05$	$\$ 1,700.00$	$\$ 0.00$			$\$ 751.16$	

Assignment 14.1 Continued

Billing Date	Previous Balance	Payment Amount	Credit	Net Balance	Finance Charge	New Purchases	New Balance
$3 / 25 / 200-$	$\$ 1,827.15$	$\$ 700.00$	$\$ 28.75$			$\$ 672.39$	

10. $11 / 25 / 200-\$ 1,241.88 \quad \$ 250.00 \quad \$ 84.09 \quad \$ 351.94$

In problems 11 and 12 compute the missing values in Jimmy Petrasek's charge account summary at Devlin's for the months of June and July. The previous balance in July is the same as the new balance in June.
11. $6 / 25 / 200-\quad \$ 1,571.62 \quad \$ 500.00 \quad \$ 62.00$ \qquad \$772.35
12. $7 / 25 / 200-$ \qquad $\$ 600.00 \quad \$ 67.77$ \qquad \$743.95

Score for C (48)

Assignment 14.2 Installment Sales and Effective Rates

Name
Date Score

A (60 points) Bob Wallis needed to purchase office equipment costing $\$ \mathbf{4}, 800$. He was able to finance his purchase over 3 months at a 9% annual interest rate. Following are three different payment options under these conditions. Complete the installment purchase table for each payment option. (2 points for each correct answer)

1. Bob pays the $\$ 1,600$ per month on the principal and pays interest of 0.75% of the unpaid balance each month (9% annual rate).

Month	Unpaid Balance	Monthly Interest	Principal Payment	Total Payment	New Balance
$\mathbf{1}$	$\$ 4,800.00$	-		$\$ 1,600.00$	
$\mathbf{2}$	-			$1,600.00$	-
$\mathbf{3}$	-			$-2,600.00$	-

2. Bob makes monthly payments of $\$ 1,400, \$ 1,400$, and $\$ 2,000$ on the principal and pays interest of 0.75% of the unpaid balance each month (9% annual rate).

Month	Unpaid Balance	Monthly Interest	Principal Payment	Total Payment	New Balance
$\mathbf{1}$	$\$ 4,800.00$	-	$\$ 1,400.00$		
$\mathbf{2}$	-	-	$1,400.00$	-	-
$\mathbf{3}$	-	-	$2,000.00$	-	-
	-			-800.00	

3. Bob pays $\$ 1,600$ principal on the principal. The total interest charge is 9% of the original principal for 3 months. Bob pays $\frac{1}{3}$ of the interest each month.

Month	Unpaid Balance	Monthly Interest	Principal Payment	Total Payment	New Balance
$\mathbf{1}$	$\$ 4,800.00$	-	$\$ 1,600.00$		-
$\mathbf{2}$	-	-	$1,600.00$	-	-
$\mathbf{3}$	-				-600.00
				-800.00	

B (40 points) For each of the following problems calculate the effective rate using the formula $R=\frac{I}{P \times T}$. (Points for each correct answer as shown)
4. Compute $R=$ effective rate for the table in problem 1 in Part A, with $P=$ average unpaid balance and $I=$ total interest charge.
a. $P=$ Average unpaid balance \qquad (3 pts)
b. $I=$ Total interest charge \qquad (3 pts)
c. $R=$ Effective interest rate \qquad (4 pts)
5. Compute $R=$ effective rate for the table in problem 1 in Part A , with $P=$ average unpaid balance and $I=$ total finance charge. The finance charge is the total interest, plus a loan origination fee of $\frac{1}{2} \%$ of the original principal, plus $\$ 6$ of insurance premiums ($\$ 2$ per month).
a. $P=$ Average unpaid balance \qquad (3 pts)
b. $\quad I=$ Total finance charge \qquad (3 pts)
c. $R=$ Effective interest rate \qquad (4 pts)
6. Compute $R=$ effective rate for the table in problem 2 in Part A , with $P=$ average unpaid balance and $I=$ total interest charge.
a. $P=$ Average unpaid balance \qquad (3 pts)
b. $I=$ Total interest charge \qquad (3 pts)
c. $R=$ Effective interest rate \qquad (4 pts)
7. Compute $R=$ effective rate for the table in problem 3 in Part A , with $P=$ average unpaid balance and $I=$ total interest charge.
a. $P=$ Average unpaid balance \qquad (3 pts)
b. $I=$ Total interest charge \qquad (3 pts)
c. $R=$ Effective interest rate \qquad (4 pts)

Assignment 14.3 Amortization and Mortgages

Name
Date Score

A (16 points) Lincoln Lending Corp. amortizes all of mortgage loans and many of its personal loans on a monthly basis. The total monthly payments are equal each month and include both interest and principal. Use Table 14-1 to find the amortization payment factor for each loan. Then compute the monthly payment. (2 points for each correct answer)

Loan and Terms of Amortization	Amortization Payment Factor	Monthly Payment

1. $\$ 5,000$ over 6 months at 7.5%
2. $\$ 16,000$ over 2 years at 10.5%
3. $\$ 175,000$ over 25 years at 6%
4. $\$ 230,000$ over 30 years at 7.5%
\qquad
\qquad
\qquad

Score for A (16)
B (32 points) On April 13, Braunda Johannesen borrowed \$6,000 from her bank to help her pay her federal income taxes for the previous year. The bank amortized her loan over 4 months at an annual rate of $\mathbf{9 \%}$. Braunda paid interest of 0.75% of the unpaid balance each month. Find the amortization payment factor in Table 14-1.This factor makes a total payment of $\$ 1,528.23$ each month except the last. For the last month, the total payment is the interest payment plus the unpaid balance. Complete the following amortization schedule. (2 points for each correct answer.)
5. Amortization factor from Table 14-1:

Multiply the amortization factor by 6 to get the total payment shown for months 1,2 , and 3 .

Month	Unpaid Balance	Interest Payment	Total Payment	Principal Payment	New Balance
6.	1	$\$ 6,000.00$	-		$\$ 1,528.23$

C (30 points) Refer to Part B, in which Braunda Johannesen borrowed $\$ 6,000$ to help pay her federal income taxes. Now suppose that Braunda agreed to make payments of $\$ 1,200$ in months 1,2 and 3 . The bank will compute the interest on the unpaid balance at a rate of $0.75 \%(9 \% / 12)$ each month and deduct the interest from the $\mathbf{\$ 1 , 2 0 0}$. In the last (fourth) month, Braunda will pay all of the remaining unpaid balance plus the interest for the last month. Complete the table, using the same procedure as in Part B. (2 points for each correct answer)

	Unpaid Month Balance	Interest Payment	Total Payment	Principal Payment	New Balance
10.	1	$\$ 6,000.00$	-		$\$ 1,200.00$
11.	2				-
12.	3	-			$1,200.00$

Score for C (30)
D (22 points) Mr. and Mrs. Paul Yeiter sold their previous home and used the profits as a down payment to buy a new home. They took out a $\mathbf{\$ 1 6 0 , 0 0 0}, \mathbf{2 5}$-year mortgage from Colonial Home Finance. The mortgage had an annual interest rate of 6%. From Table 14-1, the amortization payment factor is $\$ 6.44301$ and the monthly payment is $\$ 1,030.88$. Complete the first three rows of the amortization schedule for the Yeiters' mortgage. (2 points for each correct answer)

	Amortization Schedule for Mortgage					
Month	Unpaid Balance	Monthly Interest	Principal Payment	Total Payment	New Balance	
$\mathbf{1}$	$\$ 160,000.00$	-			$\$ 1,030.88$	-
$\mathbf{2}$	-	-			$1,030.88$	-
$\mathbf{3}$	-				$1,030.88$	-

Promissory Notes and Discounting

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute the number of interest days of a promissory note.

Learning Objective $\mathbf{2}$ Determine the due date of a promissory note.

Learning Objective 3 Compute the maturity value of a promissory note.

Learning Objective 4 Discount a promissory note.

Compute the proceeds and actual interest rate on a bank discount loan.

Learning Objective
6
Compute the savings from borrowing money to take a cash discount.

Business and individuals both use long-term loans (more than 1 year) to purchase large items such as equipment or buildings. Likewise, businesses and individuals also use short-term loans when they are convenient. Long-term and short-term loans are written in the form of various financial documents, one of which is called a promissory note. It is a promise by a borrower to repay a certain amount of money on a certain date. Sometimes the promissory note can be sold to a third party, in which case the note is called a negotiable promissory note. Because the buyer of the note is assuming some risk that the borrower will not repay, he or she will not likely pay the entire value of the note. Such a note is said to have been discounted. Similarly, an individual may go to a bank to borrow money, and the bank may deduct the entire amount of the interest in advance. This is called bank discounting.

Unlike individuals, however, businesses may borrow large amounts of money for only a few days. For example, a retail business buys merchandise from manufacturers and wholesalers. But the retailer may know immediately that it cannot sell the merchandise in time to pay the supplier's invoice. Perhaps the supplier also offers a cash discount if the buyer pays the invoice within a few days (see Chapter 7). The retailer can usually save money by borrowing enough cash to pay the invoice and take advantage of the cash discount. If the amounts are large, the savings can be significant.

Promissory Notes

A promissory note is an unconditional promise by the maker of the note (the borrower) to repay money to the bearer of the note (the lender) at some time in the future. This date is called the due date or the maturity date. The dollar amount written on the note is called the face value of the note. It is the same as the principal (\boldsymbol{P} in Chapter 13). Most promissory notes are interest-bearing, especially if one or both parties is a business. This means that the maker must also pay interest to the bearer on the maturity date. The sum of the face value and the interest dollars (I in Chapter 13) is the maturity value (MV) of the note. Figure 15-1 illustrates a simple promissory note.

Figure 15-1 \quad Promissory Note
$\$ 2,00000$ \qquad ATLANTA, GEORGIA March 15 --

- Sixty days - AFTER DATE \qquad PROMISE TO PAY TO
THE ORDER OF William Dale Crises

PAYABLE AT Bank of the South
Two thousand and OO/100 DOLLARS
VALUE RECEIVED WITH EXACT INTEREST AT _10 \% PER ANNUM

$$
\text { NO. } 47 \text { DUE May 14, 20-- }
$$

Computing the Number of Interest Days of a Note

To define the interest period, or term, of a promissory note, the lender either specifies the due date of the note or states the number of interest days. When the due date is given, the number of interest days must be computed before the interest charge can be computed.

To do so you need the number of days in each month, as shown in Table 15-1. February has 29 days in leap years. A leap year is any year that is evenly divisible by 4 , except for certain years ending in 00 (e.g., 1900 and 2000). In order to be leap years, years ending in 00 must be evenly divisible by 400; thus 2000 was a leap year, but 1900 wasn't.

Learning Objective

Compute the number of interest days of a promissory note.

EXAMPLE A

A promissory note is made on July 25. The due date is October 8. Use Table 15-1 to help you determine the number of interest days between July 25 and October 8.

Table 15-1 Days in Each Month

(non-leap years)

CONCEPT CHECK 15.1

A promissory note is dated October 20. The maturity date (due date) is February 20. Determine the number of interest days.

As October has 31 days and the note is dated October 20, there are $31-20=11$ days of interest in October. Since the note is due on February 20, there are 20 interest days in February. The total can be expressed as

October		November		December		January		February		Total Interest Days
11	$+$	30	$+$	31	$+$	31	$+$	20		123

Determining the Due Date of a Note

Learning Objective

Determine the due date of a promissory note.

When the promissory note explicitly states the number of interest days, then you must determine the due date. The procedure is somewhat the reverse of finding the number of interest days.

STEPS to Determine the Due Date

1. Determine the number of interest days in the beginning month.
2. Determine the number of interest days that remain after the first month.
3. Determine the number of interest days remaining at the end of each succeeding month by subtracting. Continue subtracting until less than 1 month remains. The due date is the number of interest days remaining in the final month.

EXAMPLE B

A promissory note is made on July 25 . The note is for 75 days. Determine the due date.

Although the procedure looks somewhat cumbersome on paper, it goes very quickly on a calculator. You can subtract repeatedly to deduct the days of each month, and after each subtraction, the calculator will display the number of interest days remaining. You don't need to write down all the intermediate results.

When the length of the interest period is expressed in months, the date is advanced by the number of months given. The due date is the same date of the month as the date of the note. For example, a 3-month note dated July 3 will be due on September 3. The exact number of interest days must then be computed, as shown previously. If the note is dated the 31st of a month and the month of maturity is April, June, September, or November, the due date is the 30th. If the month of maturity is February, the due date is the 28th (or 29th in a leap year).

EXAMPLEC

Find the due date of a 3-month note dated January 31 (the last day of the month).
Maturity month: April (count "February, March, April")
Last day: $\quad 30$ (last day of April)
Therefore the due date is April 30.

CONCEPT CHECK 15.2

a. A 90-day promissory note is dated February 5 in a non-leap year. Determine the due date. Since February has 28 days, the note has $28-5=23$ days of interest in February.

Total Interest Days		February		March		April
90	-	23	-	31	-	30
	$=$	67	$=$	36	$=$	6 days remaining after April

The due date is May 6.
b. A 4-month promissory note is dated April 30. Determine the due date.

Four months after April 30 is August 30. The due date is August 30.

Computing the Maturity Value of a Note

Learning Objective
3

Compute the maturity value of a promissory note.

The maturity value ($M V$) of a promissory note is the sum of the face value (principal) of the note and the interest:
Maturity value $=$ Principal + Interest or $M V=P+I$

EXAMPLE D

Compute the maturity value of the interest-bearing promissory note illustrated in Figure 15-1.

The face value (P) of the note is $\$ 2,000$. The interest rate (R) is 10% exact interest per year. The loan period of the note is 60 days, so the time in years (T) is $\frac{60}{365}$.
$I=P \times R \times T=\$ 2,000+0.10 \times \frac{60}{365}=\$ 32.88$
$M V=P+I=\$ 2,000+\$ 32.88=\$ 2,032.88$

CONCEPT CHECK 15.3

A 90-day promissory note has a face value of $\$ 2,800$ and an exact simple interest rate of 7.5%.
Compute the maturity value.
$I=P \times R \times T=\$ 2,800 \times 0.075 \times \frac{90}{365}=\$ 51.78 \quad M V=P+I=\$ 2,800+\$ 51.78=\$ 2,851.78$

COMPLETE ASSIGNMENT 15.1.

Discounting Promissory Notes

Learning Objective

Discount a promissory note.

Often, when a lender holds a promissory note as security for a loan to a borrower, the lender may need cash before the maturity date of the note. One option is for the lender to "sell" the note to a third party. Such a note is said to be negotiable.

However, now the third party is assuming the risk that the original borrower might not pay everything on the maturity date. Therefore, to acquire the note, the third party will pay the original lender less money than the maturity value. The note is said to "sell at a discount."

There is are several new vocabulary terms involved in discounting promissory notes. The calculations, however, are straightforward and very similar to simple interest calculations. This can be explained by using examples.

EXAMPLE E

On August 19, Telescan Medical Instruments borrows \$75,000 from a private investor, Margaret Wegner. In return, Telescan gives Margaret Wegner a 120-day promissory note at an ordinary simple interest rate of 8% (360-day year). Compute the due date and the maturity value of the promissory note.

Due date: \quad August $19+120$ days $=$ December 17
Interest: $\quad I=P \times R \times T=\$ 75,000 \times 0.08 \times \frac{120}{360}=\$ 2,000$
Maturity value: $\quad M V=$ Principal + Interest $=\$ 75,000+\$ 2,000=\$ 77,000$
In the example, Telescan Medical must pay \$77,000 to Margaret Wegner until
December 17. During the 120 days, Margaret has only the promissory note-no cash. If the note is negotiable, Margaret can sell the note to a third party at any time before December 17. Suppose that Margaret sells the note on October 5 to Auburn Financial Corporation. October 5 is called the discount date. The time between October 1 and December 17 is the discount period. The length of the discount period is the number of days between October 5 and December 17. Since the original 8\% interest rate was ordinary simple interest (360-day year), we will also use a 360-day year in the discount calculation.

Auburn Financial agrees to buy the note at a discount of 12% of the maturity value. 12% is the discount rate. The discount amount is calculated using a formula similar to ordinary simple interest:

Discount Amount $=$ Maturity value \times Discount rate \times Time $($ Discount period $)$
Maturity value: $\$ 77,000$
Discount rate: 12%
Discount period: October 5 to December $17=(31-5)+30+17=73$ days
Discount Amount $=\$ 77,000 \times 0.12 \times \frac{73}{360}=\$ 1,873.67$
The difference between the maturity value and the discount amount is called the proceeds. It is the amount that Auburn Financial will pay to Margaret Wegner for her promissory note from Telescan Medical Systems.

$$
\begin{aligned}
\text { Proceeds } & =\text { Maturity value }- \text { Discount amount } \\
& =\$ 77,000-\$ 1,873.67=\$ 75,126.33
\end{aligned}
$$

To summarize

STEPS to Discount a Promissory Note

1. Compute the interest amount and maturity value ($M V$) of the promissory note.
2. Determine the maturity (due) date of the note.
3. Compute the number of days in the discount period. The time, T, is the number of days in the discount period divided by 360 (or by 365).
4. Compute the discount amount, using $D=M V \times R \times T$, where R is the discount rate.
5. Compute the proceeds by subtracting the discount amount from the maturity value.

NON-INTEREST-BEARING PROMISSORY NOTES

Sometimes the original lender may not charge any interest at all. In this situation, the maturity value of the note is equal to the face value. Similarly, the original lender may require that all of the interest must be completely paid in advance. Therefore, this is another type of promissory note that does not have any interest dollars in the maturity value, so the maturity value is equal to the face value. To find the proceeds of a non-interest-bearing promissory note, follow the same steps that were listed above. But, in Step 1, the amount of interest is $\$ 0$ and the maturity value is the face value.

EXAMPLE F

Willie Smith, owner of a True-Value Hardware Store, is holding a 75-day, non-interestbearing note for $\$ 3,500$. The note is dated June 21. On August 10, Willie sells the note to the Marshfield Lending Company, which discounts the note at 11%. Find the discount amount and the proceeds using a 365-day year.

STEP 1	Interest amount $=\$ 0$; Maturity value $=$ Face value $=\$ 3,500$	
STEP 2	Due date:	June $21+75$ days $=$ September 4
STEP 3	Discount period:	August 10 to September $4=25$ days
STEP 4	Discount amount:	Maturity value \times Discount rate \times time $\begin{aligned} & =\$ 3,500 \times 0.11 \times \frac{25}{365} \\ & =\$ 26.37 \end{aligned}$
STEP 5	Proceeds:	$\begin{aligned} & \text { Maturity value }- \text { Discount amount } \\ & \quad=\$ 3,500-\$ 26.37 \\ & =\$ 3,473.63 \end{aligned}$

CONCEPT CHECK 15.4

A 75-day promissory note, bearing interest at 10\%, is dated December 11 and has a face value of $\$ 5,000$. On January 24 , the note is discounted at 14%. Find the discount amount and the proceeds. Note:The interest amount, the maturity value, the maturity date, and the days of discount must first be determined. Use a 365-day year for all interest and discount calculations.

$$
\begin{array}{ll}
\text { Interest amount: } & \$ 5,000 \times 0.10 \times \frac{75}{365}=\$ 102.74 \\
\text { Maturity value: } & \$ 5,000+\$ 102.74=\$ 5,102.74 \\
\text { Maturity date: } & \text { Dec. } 11+75 \text { days }=\text { Feb. } 24 \\
\text { Days of discount: } & \text { Jan. } 24 \text { to Feb. } 24=31 \text { days } \\
\text { Discount amount: } & \$ 5,102.74 \times 0.14 \times \frac{31}{365}=\$ 60.67 \\
\text { Proceeds: } & \$ 5,102.74-\$ 60.67=\$ 5,042.07
\end{array}
$$

COMPLETE ASSIGNMENT 15.2.

Bank Discounting

In Chapter 13 and at the beginning of this chapter, we studied the simple procedure to borrow and repay money: Determine the Principal, Rate, and Time; compute the interest amount; the maturity value (amount due) is the principal plus the interest.

EXAMPLE G

Rueben Cortez, owner/operator of a fast-food restaurant, borrows \$50,000 from his bank for 60 days at 9% ordinary simple interest. Using a 360 -day year, compute the interest and the maturity value.
$P=\$ 50,000 ; R=9 \% ; T=\frac{60}{360}$
Interest $(I)=P \times R \times T=\$ 50,000 \times 0.09 \times \frac{60}{360}=\$ 750$
Maturity value $(M V)=P+I=\$ 50,000+\$ 750=\$ 50,750$

Please observe: Rueben will keep the entire $\$ 50,000$ for the entire 60 days and then repay a total of $\$ 50,750$ on the due date.

In the previous section, we studied promissory notes that were discounted at some date between the date of the loan and the due date. Similarly, sometimes banks will discount loans immediately, at the time they are written. The steps to discount a loan are the same as discounting promissory notes, but even simpler because (a) the face value is equal to the maturity value, (b) the discount date is the same as the loan date, and (3) the number of discount days is the same as the period of the loan.

STEPS to Discount a Bank Loan

1. Compute the discount amount, using $D=F V \times R \times T$, where R is the discount rate.
2. Compute the proceeds by subtracting the discount amount from the face value.

EXAMPLE H

Rueben Cortez, owner/operator of a fast-food restaurant, goes to his bank to borrow money. Rueben signs a 60 -day note with a $\$ 50,000$ face value at a 9% discount rate. Using a 360-day year, compute the discount amount and the proceeds of the loan.
$F V=\$ 50,000 ; R=9 \% ; T=\frac{60}{360}$

STEP 1
Discount amount $(D)=F V \times R \times T=\$ 50,000 \times 0.09 \times \frac{60}{360}=\$ 750$
STEP 2

$$
\text { Proceeds }=\text { Face value }- \text { Discount amount }=\$ 50,000-\$ 750=\$ 49,250
$$

Learning Objective 5

Compute the proceeds and actual interest rate on a bank discount loan.

Please observe: In Example H, Rueben will keep \$49,250 for the entire 60 days and then repay a total of $\$ 50,000$ on the due date.

As mentioned earlier, some persons refer to this type of discounted loan as "non-interest-bearing" because the amount to be repaid is the "face value." However, the term non-interest-bearing is misleading because the loan is NOT "interest-free." There is a charge of $\$ 750$ to borrow $\$ 49,250$ for 60 days.

COMPARING A DISCOUNT RATE TO AN INTEREST RATE

Discount rates are less familiar to those consumers who have encountered only interest rates. There is the possibility of misunderstanding or confusion. In Example G, Rueben Cortez borrowed $\$ 50,000$ for 60 days and paid $\$ 750$. The ordinary simple interest rate was 9%. In Example H, Rueben borrowed $\$ 49,250$ for 60 days and paid $\$ 750$. Although a discount rate (9\%) was given, a simple interest rate was not given. To compute the actual simple interest rate, use the formula from Chapter 14:

$$
\begin{aligned}
R & =\frac{I}{P \times T}, \text { letting } I=\$ 750, P=\$ 49,250, \text { and } T=\frac{60}{360} \\
R & =\frac{I}{P \times T}=\frac{\$ 750}{\$ 49,250 \times \frac{60}{360}}=\frac{\$ 750}{\$ 8,208.33}=0.09137, \text { or } 9.14 \%
\end{aligned}
$$

The interest rate in Example H is actually 9.14\%; the discount rate is 9\%. They are different rates, but both lead to a $\$ 750$ fee to borrow $\$ 49,250$ for 60 days. A borrower must understand the difference between interest rates and discount rates and how each is used in loan calculations.

CONCEPT CHECK 15.5

A bank made a 90-day loan on a discount basis. The face value was $\$ 64,000$, and the discount rate was 11%. Compute the discount amount and the proceeds. Then compute the actual interest rate, using the proceeds as the principal of the loan instead of the face value. Use a 360-day year in all calculations.

$$
\begin{aligned}
& \text { Discount amount }=F V \times R \times T=\$ 64,000 \times 0.11 \times \frac{90}{360}=\$ 1,760 \\
& \text { Proceeds }=\text { Face value }- \text { Discount amount }=\$ 64,000-\$ 1,760=\$ 62,240 \\
& \text { Actual Interest Rate }=\frac{I}{(P \times T)}=\frac{\$ 1,760}{\left(\$ 62,240 \times \frac{90}{360}\right)}=0.1131, \text { or } 11.31 \%
\end{aligned}
$$

Borrowing Money to Take a Cash Discount

In Chapter 7, we described how manufacturers and wholesalers use cash discounts to encourage their customers to pay their invoices early. Recall that the terms " $2 / 10$, net 30 " mean that the buyer will receive a 2% discount by paying the invoice within 10 days and that the entire invoice is due within 30 days. However, it would be normal that a buyer would not have the immediate cash to pay the invoice early. The buyer may need to sell the merchandise to get the cash to pay the invoice. Normally, a buyer can save money by borrowing money to pay the invoice early and earn the cash discount.

EXAMPLE I

DVD Central purchased $\$ 100,000$ worth of CDs and DVDs. The invoice was dated October 4 with terms of $2 / 10$, net 30 . Compute the due date, the discount date, the cash discount, and the total remittance required to get the cash discount. (Review Chapter 12 if necessary.)

Due date $=$ October $4+30$ days $=$ November 3
Discount date $=$ October $4+10$ days $=$ October 14
If paid by October 14:
Cash discount $=\$ 100,000 \times 0.02=\$ 2,000$
Total remittance: $\$ 100,000-\$ 2,000=\$ 98,000$
Regardless of whether it takes the discount, DVD Central needs to pay $\$ 100,000$ by November 3. The company may want to save the $\$ 2,000$, but perhaps it doesn't have the $\$ 98,000$ now. Or maybe it has the money but wants to spend it on something else. In either situation, DVD Central might be able to borrow the money from October 14 until November 3. Before borrowing, DVD Central should compare the savings from the cash discount with the interest on a loan.

EXAMPLE J

DVD Central can borrow $\$ 98,000$ for 20 days (October 14 to November 3) by paying 10% exact simple interest (365-day year). Compute the interest on the loan and the savings for DVD Central if it borrows to take the discount.

Interest $=P \times R \times T=\$ 98,000 \times 0.10 \times \frac{20}{365}=\$ 536.99$
Savings $=\$ 2,000$ discount $-\$ 536.99$ interest $=\$ 1,463.01$

The reason for borrowing only between the discount date and the due date is to delay making payments as long as possible, whether to get discounts or to avoid penalties. The discount date is the latest possible date to pay and get the discount; the due date is the latest possible date to pay and avoid a penalty.

Although borrowing and taking the discount is almost always cheaper, the actual dollar amount may determine what DVD Central decides. If the original purchase were only $\$ 1,000$, the savings would be only $\$ 14.63$. Such an amount may not be worth the effort of getting a loan. However, for borrowing small amounts regularly, businesses often have "revolving lines of credit." These allow them to borrow and repay frequently, without always making a new loan application.

Compute the savings from borrowing money to take a cash discount.

CONCEPT CHECK 15.6

A retailer purchases merchandise under the terms $1.5 / 20$, net 45 . The invoice is for $\$ 45,000$ and is dated July 22 . For the cash discount, calculate the due date, the discount date, the amount of the cash discount, and the total remittance required. The retailer borrows enough money to pay the entire remittance. The interest rate is 12% exact simple interest, and the loan is for the length of time between the last date to take advantage of the cash discount and the due date. Calculate the amount of the interest and the savings gained by borrowing the remittance to take the discount.

Discount:	Due date:	July $22+45$ days $=$ September 5
	Discount date:	July $22+20$ days $=$ August 11
	Cash discount:	\$45,000 $\times 0.015=\$ 675$
	Remittance:	\$45,000-\$675 = \$44,325
Loan:	Interest days:	August 11 to September $5=25$ days
	$\text { Interest }=P$	$=\$ 44,325 \times 0.12 \times \frac{25}{365}=\$ 364.32$
Savings:	\$675 cash disco	\$364.32 interest $=\$ 310.68$

COMPLETE ASSIGNMENT 15.3.

Chapter Terms for Review

bank discount
bearer
discount a note
discount amount (D)
discount date
discount period
discount rate
due date
face value
interest dollars (I)
interest-bearing note
maker
maturity date
maturity value (MV)
negotiable promissory note
non-interest-bearing note
proceeds
promissory note

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

15.1

Compute the number of interest days of a promissory note

Example

1. Find the number of days between December 15 and February 27.
2. Find the due date of a 60 -day note written on April 20.
3. Find the maturity value of a 90-day promissory note with a face value of $\$ 6,500$ and an exact interest rate of 8%.

15.3

Compute the maturity value of a promissory note

15.4

Discount a promissory note

15.5

Compute the proceeds and actual interest rate on a bank discount loan

4a. A 30-day note, bearing an interest rate of 9%, is dated November 6 and has a face value of $\$ 8,000$. On November 15, the note is discounted at 12%. Use a 365 -day year to find the interest amount, the discount amount, and the proceeds.
4b. A 60 -day non-interest-bearing note has a face value of $\$ 2,500$ and is dated May 13. On June 3, the note is discounted at 11%. Use a 365 -day year to find the discount amount and the proceeds.

15.6

Compute the savings from borrowing money to take a cash discount
5. A 60 -day bank loan with a face value of $\$ 3,900$ is made on a discount basis at a discount rate of 12%. Use the 360 -day year to compute the discount amount and the proceeds. Then find the actual interest rate, based on the proceeds rather than on the face value.
6. A $\$ 20,000$ invoice dated March 15 has terms of $2 / 5$, net 25 . Find the due date, discount date, cash discount, and required remittance. Next, calculate the interest amount of borrowing the remittance at 9% exact interest for the time between the last date to take advantage of the cash discount and the due date. Finally, calculate the savings.

Review Problems for Chapter 15

1 A 75 -day promissory note for $\$ 3,500$ is dated November 24,2006 . Find (a) the due date and (b) the maturity value, if the rate is 7% ordinary simple interest.

2 A promissory note for $\$ 4,400$ is dated December 12, 2005 and has a due date of May 12, 2006. Find (a) the number of interest days and (b) the maturity value, if the rate is 6% ordinary simple interest.

3 A 135-day promissory note for $\$ 15,000$ is dated August 24,2007 . Find (a) the due date and (b) the maturity value, if the rate is 4.6% exact simple interest.

4 A promissory note for $\$ 2,980$ is dated May 20, 2008 and has a due date of September 20, 2008. Find (a) the number of interest days and (b) the maturity value, if the rate is 6.5% exact simple interest.

5 Vernon Lee holds a 120-day interest-bearing note for $\$ 2,960$ that is dated May 15 and has a rate of 8% exact simple interest. On July 15, Vernon sells it at a discount rate of 15%. Using a 365 -day year, calculate (a) the interest amount, (b) the maturity value, (c) the maturity date, (d) the days of discount, (e) the discount amount, and (f) the proceeds.

6 Contractor Allen Kimmel is holding a 90-day non-interest-bearing note for $\$ 3,100$ dated November 10. On December 10, Mr. Kimmel sells the note to Thrift's Financing, Inc. at a discount rate of 12%. Using a 365 -day year, calculate (a) the maturity value, (b) the maturity date, (c) the days of discount, (d) the discount amount, and (e) the proceeds.

7 Eastside Bank \& Trust Co. made a 120-day loan for $\$ 4,500$ on a discount basis, using a discount rate of 9%. Using a 360-day year, calculate (a) the discount amount, (b) the proceeds, and (c) the actual interest rate (to two decimal places).

8 Jankowski Corporation just received an invoice for $\$ 1,600$ that has cash discount terms of $2 / 10$, net 30 . Jankowski borrows enough money from Eastside Bank \& Trust Co. at 10% exact simple interest (365 -day year) to take advantage of the cash discount. It borrows the money only for the time period between the due date and the last day to take advantage of the discount. Calculate (a) the amount of the cash discount, (b) the number of interest days, (c) the amount of interest on the loan, and (d) the amount of its savings.

Assignment 15.1: Dates, Times, and Maturity Value

Name
Date Score

A (36 points) Problems 1-6: Find the number of interest days. Problems 7-12: Find the due date. Be sure to check for leap years. (3 points for each correct answer)

Date of Note	Due Date	Days of Interest
1. April 6, 2006	October 11, 2006	-
2. June 30, 2008	October 6, 2008	
3. February 9, 2007	June 11, 2007	
4. June 14, 2005	September 13, 2005	
5. November 8,2006	March 9, 2007	
6. July 14,2008		

7. | Date of Note | Interest Days | Due Date |
| :--- | :--- | :--- |
| November 1, 2005 | 90 days | |
8. August 17,2006

180 days
9. September 24,2008

75 days
10. April 28, 2006

60 days
11. November 7, 2005

120 days
12. March 25, 2007

3 months

B (64 points) For each of the following promissory notes, find the missing entry for days of interest or maturity date (due date). Then compute the amount of interest due at maturity and the maturity value. For problems 13-16, use a 360-day year; for problems 17-20, use a 365 -day year. (Points indicated at the top of each column.)

Face Value	Date of Note	Days of Interest (3 pts)	Maturity Date (3 pts)	Rate	Interest Amount (3 pts)	Maturity Value (2 pts)
$\$ 26,000$	Oct. 11, 2006	90		6.2%		

14. $\$ 12,500 \quad$ Mar. 28, 2006 \qquad July 7, 2006
8.5\%
15. $\$ 35,750$ July $15,2005 \quad 105$

- 5.6\%

16. $\$ 950$

Jan. 26, 2007 \qquad April 2, $2007 \quad$ 7.2\%
\qquad
\qquad
17. $\$ 11,800$ Nov. 23, 2005 \qquad Mar. 28, 2006 4.9\%
18. $\$ 18,420$ May 7, 2007 \qquad Sept. 20, 2007 6.75\%
19. $\$ 52,000$

Feb. 10, 2005
180 \qquad
\qquad
20. $\$ 31,860$ June 2, 2008105 \qquad 7.5\% \qquad
\qquad

Assignment 15.2: Discounting Promissory Notes

Name

A (50 points) Compute the missing information to discount the following interest-bearing and non-interest-bearing promissory notes. Use a 360-day year for all interest and discount calculations. (Points for each correct answer are shown in parentheses.)

1. Sharon Wilder had been holding a 75 -day note for $\$ 2,500$. The note had a 6% interest rate and had been written on March 1. To pay income taxes, Sharon sold the note on April 13 to a loan company. The loan company discounted the note at 11%.

Interest amount (3 pts) \qquad
Maturity value (2 pts) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad
3. Jim Walter was holding a 105-day non-interestbearing note for $\$ 4,500$. The note was dated October 10. To raise Christmas cash, Jim sold the note to a local finance company on December 15 . The company discounted the note at 10%.
Interest amount (1 pt) \qquad
Maturity value (1 pt) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad
2. On September 7, Carol Swift Financial Services bought a $\$ 12,500$ promissory note. The note had been written on July 7, was for 150 days, and had an interest rate of 9%. Carol's company discounted the note at 12%

Interest amount (3 pts) \qquad
Maturity value (2 pts) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad
4. Barbara Finell owned a finance company. On July 19 she purchased a 180-day non-interest-bearing promissory note for $\$ 6,000$. The note had been written on May 23. Because of the high financial risk involved, Barbara discounted the note at 15%.

Interest amount (1 pt) \qquad
Maturity value (1 pt) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad

B (50 points) Compute the missing information to discount the following interest-bearing and non-interest-bearing promissory notes. Use a $\mathbf{3 6 5}$-day year for all interest and discount calculations. (Points for each correct answer are shown in parentheses.)

5. As payment for services, Pat Chard held a $90-$ day, 8% note for $\$ 3,600$ that was dated April 20 . On June 5, Pat took the note to a financial services company, which bought the note at a 13% discount rate.

Interest amount (3 pts) \qquad
Maturity value (2 pts) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad
6. Joslin Builders received a 135 -day, 7% note dated October 11. The face value was $\$ 12,450$, which was for remodeling a client's garage. On December 20, Joslin sold the note to McGraw Lending Corp., which discounted the note at 12%.

Interest amount (3 pts) \qquad
Maturity value (2 pts) \qquad
Maturity date (2 pts) \qquad
Days of discount (2 pts) \qquad
Discount amount (3 pts) \qquad
Proceeds (2 pts) \qquad
8. Patti Gentry was holding a 60 -day non-interestbearing note for $\$ 6,200$. The note was dated June 22. On July 16, Patti sold the note to a lender who discounted the note at 14%.
Interest amount $(1 \mathrm{pt})$
Maturity value $(1 \mathrm{pt})-$
Maturity date $(2 \mathrm{pts})$
Days of discount $(2 \mathrm{pts})$
Discount amount $(3 \mathrm{pts})$
Proceeds (2 pts)

Assignment 15.3: Bank Discounting and Cash Discounts

Name

A (36 points) The Citizens' Bank of New England made six new loans on a discount basis. Compute the discount amount and the proceeds. Then compute the actual interest rate based on the proceeds rather than the face value. Use a 360-day year for problems 1-3 and use a 365-day year for problems 4-6. Round the actual interest rates to the nearest 1/100 of a percent. (2 points for each correct answer.)

Face Value	Discount Rate	Time	Discount Amount	Proceeds	Actual Interest Rate
$\$ 7,500$	10%	120 days			

2. $\$ 4,450$

6\%
90 days \qquad
\qquad
\qquad
3. $\$ 16,500$
12%
150 days \qquad
\qquad
\qquad
4. $\$ 6,750$
8.2\%

75 days \qquad
\qquad
\qquad
5. $\$ 980$
7.5%
135 days \qquad
\qquad
\qquad
6. $\$ 18,250$
9.6\%

105 days

B (64 points) William Bros. Home Builders made several purchases from vendors who offered various terms of payment. How much can William Bros. save on each invoice if it borrows the money to pay the invoice early and receive the cash discount? The loan interest rates are all exact simple interest (365-day year). Assume that the number of interest days is the time between the due date and the last day to take advantage of the cash discount. (2 points for each correct answer)

Invoice	Terms	Cash Discount	Interest Rate on Loan	Interest Days	Interest Amount	Savings
$\$ 5,000$	$2 / 10, \mathrm{n} / 30$			10%		

8. $\$ 8,500 \quad 1.5 / 15, \mathrm{n} / 30 \quad 6.25 \%$
9. $\$ 17,5003 / 5, \mathrm{n} / 25$ \qquad 8\%
10. $\$ 18,600 \quad 1 / 15, \mathrm{n} / 45 \quad 9 \%$
11. $\$ 9,200$
$1 / 30, n / 60$ \qquad 9.6\%
12. $\$ 12,500$

2/10, n/45 \qquad 8\%
13. $\$ 26,000 \quad 2.5 / 5, \mathrm{n} / 25$ \qquad 8.5\%
$\begin{array}{lll}\text { 13. } \$ 26,000 & \\ \\ \text { 14. } \$ 65,400 & 3 / 10, \mathrm{n} / 25 & -\end{array}$
$\begin{array}{lll}\text { 13. } \$ 26,000 & \\ \\ \text { 14. } \$ 65,400 & 3 / 10, \mathrm{n} / 25 & -\end{array}$
\qquad
$\begin{array}{lll}\text { 13. } \$ 26,000 & \\ \\ \text { 14. } \$ 65,400 & 3 / 10, \mathrm{n} / 25 & -\end{array}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compound Interest and Present Value

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute future values and compound interest.

Learning Objective $\mathbf{2}$ Compute present values.

Learning Objective 3 Use present value tables and/or formulas.

Most Americans will buy at least one product that is financed over 1 or more years. The product will probably be large, such as a car or a home. The interest on the loan for the car or home is not the simple interest you studied in Chapter 13; it is compound interest. Interest on car loans or home loans is normally compounded monthly. Most banks offer savings accounts and certificates of deposit (CDs) for which interest is compounded daily. Credit unions may pay interest that is compounded quarterly (four times a year). To evaluate the value of corporate bonds, an investor bases calculations on interest compounded semiannually (twice a year).

To understand even the simplest financial decisions in today's world, you need to understand the fundamentals of compound interest, future values, and present values.

Computing Future Values and Compound Interest

Compute future values and compound interest.

Simple interest is computed with the formula $I=P \times R \times T$, which you learned in Chapter 13. For example, the simple interest on $\$ 2,000$ invested at 6% for 2 years is $I=P \times R \times T=\$ 2,000 \times 0.06 \times 2=\$ 240$. The amount, or future value, of the investment is $A=P+I=\$ 2,000+\$ 240=\$ 2,240$.

Compound interest means that the computations of the simple interest formula are performed periodically during the term of the investment. The money from the previous interest computation is added to the principal before the next interest computation is performed. If an investment is compounded annually for 2 years, the simple interest is computed once at the end of each year. The simple interest earned in year 1 is added to the principal for the beginning of year 2. The total value of an investment is the principal plus all the compound interest, called the future value or the compound amount. In finance, the principal is usually called the present value.

EXAMPLE A

Don Robertson invests $\$ 2,000$ for 2 years in an account that pays 6% compounded annually. Compute the total compound interest and future value (compound amount).

$\$ 2,000.00$	Original principal
$\times \quad 0.06$	Interest rate
$\$ 120.0000$	First-year interest
$+2,000.00$	First-year principal
$\$ 2,120.00$	Second-year principal
$\times \quad 0.06$	Interest rate
$\$ 127.2000$	Second-year interest
$\underline{2,120.00}$	Second-year principal
$\$ 2,247.20$	Final compound amount (future value)
$\$ 2,000.00$	Original principal
$\$ 247.20$	Total compound interest

On the $\$ 2,000$ investment in example A, the total amount of compound interest paid is $\$ 247.20$, compared to $\$ 240$ simple interest over the same 2 years.

The computations in example A are time-consuming and become more tedious with each compounding. Twice as many computations would be required for a 4 -year
investment. In actual practice, compound interest is computed using compound interest tables, calculators or computers.

Table 16-1, on pages 338 and 339, is part of a future value table. The numbers in the table are called future value factors or compound amount factors. The columns (verti$\mathrm{cal})$ represent interest rates, and the rows (horizontal) represent the number of times that interest is compounded. The following steps explain how to use Table 16-1 to find future values (compound amounts) and compound interest.

STEPS to Use the Future Value Table

1. Locate the factor in the proper row and column of Table 16-1.
2. Multiply the principal (present value) by the factor. The product is the future value.
3. Subtract the principal (present value) from the future value. The difference is the total amount of compound interest.

EXAMPLE B

Use Table 16-1 to compute the future value and total amount of compound interest of a 2 -year $\$ 2,000$ investment at 6% compounded annually.

$$
\begin{array}{ll}
\text { STEP } 1 & \text { The interest rate is } 6 \% \text {. Interest is compounded twice-once each year for } \\
2 \text { years. Locate the intersection of the } 6.00 \% \text { column and row } 2 \text {. The future } \\
\text { value factor is } 1.12360 .
\end{array} \text { STEP 2 } \begin{aligned}
& \text { Future value }=\$ 2,000 \times 1.12360=\$ 2,247.20 \\
& \text { STEP 3 } \\
& \text { Compound interest }=\$ 2,247.20-\$ 2,000=\$ 247.20
\end{aligned}
$$

These results are identical to the results in example A.

EXAMPLEC

Mary Simmons loans \$5,000 to her son for 6 years at 4% compounded annually. Compute the future value and total compound interest. Use Table 16-1.

STEP 1 The interest rate is 4%. Interest is computed six times, once each year for

STEP 2 6 years. The future value factor in the 4.00% column and row 6 is 1.26532 .

STEP 3
Future value $=\$ 5,000 \times 1.26532=\$ 6,326.60$

$$
\text { Compound interest }=\$ 6,326.60-\$ 5,000=\$ 1,326.60
$$

FUTURE VALUE FORMULA

If you prefer, Step 2 may be summarized as a formula in words or symbols:

Future value $=$ Principal $($ Present value) \times Future value factor (from Table 16-1) or, $F V=P V \times F V F$

$$
\begin{aligned}
& {[m=1,2,4,12,365]} \\
& {\left[i=\frac{r}{m}\right]} \\
& {[n=m \cdot t]}
\end{aligned}
$$

VARIOUS COMPOUNDING PERIODS

In examples A, B, and C , the compounding was annual (i.e., done once each year). Compounding is also done daily (every day), monthly (every month), quarterly (every quarter), or semiannually (every half-year). The word period is the unit of time of the compounding. The period will be a day, a month, a quarter, a half-year, or a year. You can use Table 16-1 with some interest rates for all these compounding periods except 1 day. Daily compounding requires the use of a calculator with an exponent key.

To do monthly, quarterly, or semiannual compounding using Table 16-1, follow the same steps you used to do annual compounding. The only differences are that the column will be the periodic interest rate (i) and that the row will be the number of compounding periods (n). Sometimes the periodic rate and the number of periods will be stated clearly. More often perhaps, the interest rate will be given as an annual rate (r) and the time will be stated in years (t). When that happens, find the row and column as described in the steps below. The letter m is the number of compounding periods in one year.

STEPS to Determine the Periodic Rate and the Number of Compounding

 Periodsi. Determine the number of compounding periods in 1 year ($m=1$ for annually, $m=2$ for semiannually, $m=4$ for quarterly, $m=12$ for monthly, $m=365$ for daily).
ii. Divide the stated annual rate (r) by the number of periods in 1 year (m). The quotient is the periodic rate (i), the correct column.
iii. Multiply the number of periods in 1 year (m) by the number of years (t). The product is the total number of compounding periods (n), the correct row.

EXAMPLED

Find the periodic interest rate and the number of compounding periods in 2 years when 12% is compounded (a) semiannually ($m=2$ times per year), (b) quarterly ($m=4$ times per year), and (c) monthly ($m=12$ times per year). Then find the future value factors in Table 16-1.

Each term is for 2 years; each rate is 12%, but compounded differently:

STEP i

Periods per Year

a. 2
b. 4
c. 12

STEP ii
Periodic Interest Rate
$12 \% \div 2=6 \%$
$12 \% \div 4=3 \%$
$12 \% \div 12=1 \%$

STEP iii
Compounding Periods
2×2 years $=4$ periods
4×2 years $=8$ periods
12×2 years $=24$ periods

Future value factors from Table 16-1 are as follows.

a. Semiannually	6.00% column and row 4	Factor $=1.26248$
b. Quarterly	3.00% column and row 8	Factor $=1.26677$
c. Monthly	1.00% column and row 24	Factor $=1.26973$

To compute the future value and the compound interest, first determine the periodic rate and the number of compounding periods using Steps i, ii, and iii. Then do Steps 1, 2 , and 3, as illustrated in examples B and C previously.

Calculators and Exponents

Note: This is an optional section that describes how to use a calculator to compute future value factors. It requires some knowledge of exponents and exponential notation and it requires a calculator that has an exponent key. Some persons will prefer to use Table 161 , but others may prefer to use a calculator or to use a calculator just to check their work.

The expression 2^{3} means $2 \times 2 \times 2=8$. The 3 is called an exponent, or we can say that " 2 is raised to the $3^{\text {rd }}$ power." Many calculators have a key labeled y^{x} that is used for exponents. To compute 2^{3}, enter the following keystrokes: $2 y^{x} 3=$. The answer on the calculator display is 8 .

The future value factors in Table 16-1 can be calculated directly by anyone who has a calculator that will compute exponents. For the periodic interest rate of i (decimal) and for the number of compounding periods equal to n, the future value factor is $F V F=(1+i)^{n}$. Note: The interest rate must be entered as a decimal, not a percent.

EXAMPLE E

Use a calculator with an exponent key to compute the future value factor for each of the following:
a. 12% compounded semiannually for 2 years: $i=0.12 \div 2=0.06 ; n=2 \times 2=$ 4 periods
$F V F=(1+i)^{n}=(1+0.06)^{4}=1.26247696$
The calculator keystrokes might be $1.06 y^{x} 4$
The exact calculator strokes will depend upon your own calculator. Refer to your calculator's manual. It is usually faster to mentally add the 1 and 0.06 because the sum is just 1.06, but many calculators also have keys for "parenthesis."
b. 12% compounded quarterly for 2 years: $i=0.12 \div 4=0.03 ; n=2 \times 4=8$ periods

$$
F V F=(1+i)^{n}=(1+0.03)^{8}=1.26677008 \quad 1.03 y^{x} 8
$$

c. 12% compounded monthly for 2 years: $i=0.12 \div 12=0.01 ; n=2 \times 12=24$ periods

$$
F V F=(1+i)^{n}=(1+0.01)^{24}=1.26973465 \quad 1.01 y^{x} 24=
$$

In the example, we wrote each future value factor with eight decimal places. The factors in Table 16-1 have only five decimal places. Throughout this chapter, factors that have five decimal places come from the tables and factors with eight decimal places come from the formula using a calculator. If you use a calculator and more than five decimal places, usually you will get a slightly different answer than if you use only five decimal places. The more decimal places you use, the more accurate the answers will be. In this book, all of the solutions assume the use of the tables and only five decimal places.

Throughout the chapter, any calculator solutions will be shown in brackets in the margins.

EXAMPLE F

$$
\begin{aligned}
& {[m=4]} \\
& {\left[i=\frac{0.08}{4}=0.02\right]} \\
& {[n=4 \times 2=8]} \\
& {\left[F V F=(1+i)^{n}=(1.02)^{8}\right.} \\
& \quad=1.17165938]
\end{aligned} \begin{aligned}
{[F V=} & P V \times(1+i)^{n} \\
& =\$ 20,000 \times 1.17165938 \\
= & \$ 23,433.1876 \\
& \text { or } \$ 23,433.19]
\end{aligned} ~\left[\begin{array}{rl}
\\
{[F}
\end{array}\right]
$$

Barbara Scoble and her husband deposit \$20,000 in her credit union, which pays interest of 8% compounded quarterly. Find the future value and the total compound interest after 2 years. (Use Table 16-1, or a calculator.)

STEP i There are $m=4$ compounding periods in 1 year.
STEP ii \quad Periodic interest rate $=8 \% \div 4=2 \%$ per period
STEP iii \quad Number of periods $=4 \times 2$ years $=8$ periods
STEP 1 Using Table 16-1, the 2.00% column and row 8:
Future value factor $(F V F)=1.17166$.
STEP 2
Future value $=\$ 20,000.00 \times 1.17166=\$ 23,433.20$
STEP 3
Total compound interest $=\$ 23,433.20-\$ 20,000.00=\$ 3,433.20$
Thus, using Table 16-1 to find the FVF, \$20,000 invested at 8% compounded quarterly will be worth $\$ 23,433.20$ in 2 years. If you use a calculator to find the $F V F$, the future value is $\$ 23,433.19$. You should use whichever method seems more clear to you.

Effective Rates

In Chapter 14, we said that the term "effective rate" is used in more than one context. In Chapter 14, "effective rate" was related to the interest rate paid on the "average unpaid balance" in an installment purchase. Here in Chapter 16, "effective rate" refers to the true annual yield an investor earns when her/his money is compounded more than once per year.

In example F, Barbara Scoble and her husband earned 8% compounded quarterly. Their \$20,000 deposit was worth \$23,433.20 after 2 years. 8% is an annual rate, not a quarterly rate. But 8% was not really used in the compounding; the rate that was actually compounded was 2% per quarter. Thus, 8% is not the true annual rate, or the effective rate. The 8% in example F is called a "nominal" rate because the name of the rate is 8% and the 8% is compounded quarterly.

The effective rate is the rate that the Scobles would earn if their money had been compounded annually instead of quarterly. You can either use Table 16.1 or use a formula with a calculator to find the effective rate.

To use Table 16.1, find the future value factor of 2% for 4 quarters (1 year). It is 1.08243. Subtract 1 to get 0.08243 , or 8.243%. The effective rate is 8.243% per year. What this means is that the Scobles are actually earning 8.243% per year on an investment that has been quoted as earning " 8% compounded quarterly."

The formula for the effective rate R is $R=\left(1+\frac{0.08}{4}\right)^{4}-1$. In example F , $R=\left(1+\frac{0.08}{4}\right)^{4}-1=(1+0.02)^{4}-1=1.08243216-1=0.08243216$, or 8.243216%. Rounded to four decimal places, the effective rate is $\mathrm{R}=8.2432 \%$.

DAILY COMPOUNDING

Most banks offer daily compounding on several different savings accounts and certificates of deposit. Tables to do daily compounding would be cumbersome and impractical. However, using a calculator with an exponent, the computation is just as simple as other compounding. Assume that there are 365 days in a year.

EXAMPLE G

Use a calculator to find the future value of $\$ 20,000$ invested for 2 years at 8% compounded daily. First find the periodic interest rate (i) as a decimal, and find the number of days (n) in two years. Then find the future value factor to eight decimal places.

STEP $\mathrm{i} \quad$ There are $m=365$ compounding periods in 1 year.

STEP ii
$i=$ periodic interest rate $=0.08 \div 365=0.00021918$
STEP iii
$n=$ number of periods $=365 \times 2=730$ periods
STEP 1
$F V F=(1+i)^{n}=(1+0.00021918)^{730}=1.17349194$
STEP 2
Future value $=\$ 20,000 \times 1.17349194=\$ 23,469.84$
Compare the two future values from Examples F and G. The future value using quarterly compounding is $\$ 23,433.19$ (using a calculator to find the FVF). With daily compounding, the future value is $\$ 23,469.84$, a difference of $\$ 36.65$.

CONCEPT CHECK 16.1

a. If $\$ 2,600$ is invested for 5 years at 6% compounded semiannually, compute the future value of the investment. (Use Table 16-1 or a calculator.)
Semiannually means $m=2$ periods per year.
Periodic rate $=6 \% \div 2=3 \%$ per half-year
Number of periods $=2 \times 5$ years $=10$ periods
The FVF from row 10 of the 3.00% column in Table 16-1 is 1.34392 .
Future value $=\$ 2,600 \times 1.34392=\$ 3,494.192$, or $\$ 3,494.19$
b. If $\$ 3,200$ is invested for 1 year at 9% compounded monthly, what is the compound interest on the investment?
Monthly means $m=12$ periods per year.
Periodic rate $=9 \% \div 12=0.75 \%$ per month.
Number of periods is 12×1 year $=12$ periods.
The FVF from row 12 of the 0.75% column in Table $16-1$ is 1.09381 .
Future value $=\$ 3,200 \times 1.09381=\$ 3,500.192$, or $\$ 3,500.19$
Compound interest $=$ Future value - Present value (Principal)

$$
=\$ 3,500.19-\$ 3,200=\$ 300.19
$$

COMPLETE ASSIGNMENT 16.1.

Computing Present Values

Learning Objective

$\left[F V=P V \times(1+i)^{n}\right]$
$\left[P V=\frac{F V}{(1+i)^{n}}\right]$
$[m=2]$
[$\left.i=\frac{0.08}{2}=0.04\right]$
$[n=2 \times 3=6]$
$\left[F V F=(1+0.04)^{6}\right.$
$=1.26531902]$

The basic investment problem is to compute what a given sum of money invested today will be worth in the future. Example F was such a future value problem. There we found that $\$ 20,000$ original principal (or present value) invested today at 8% compounded quarterly will have a future value of $\$ 23,433.20$ in 2 years.

Some savers and investors want to compute future values; others want to compute present values. Consider the following present value problem.

EXAMPLE H

Polly Layer has a 12 -year-old son and a 10-year-old daughter. Polly inherits $\$ 100,000$. Friends tell Polly that she should plan to have $\$ 60,000$ cash available for her son's education when he turns 18 . She should also have $\$ 70,000$ cash available for her daughter's education when she turns 18 . Polly wants to put enough money in an investment for each child so that in 6 and 8 years the two accounts will be worth $\$ 60,000$ and $\$ 70,000$, respectively. If Polly can earn 5% compounded annually, how much money should she put into each investment today?

Polly knows the future value of the investments—\$60,000 and $\$ 70,000$. What she wants to compute is the present value-the amounts that she needs to invest today for each child. We will solve this problem later, in example L.

Businesses make investments in the present to provide future revenues. Sometimes a business will estimate its future revenues and costs (future values). Then the business might use these numbers to compute the required amounts to invest initially (present values).

As given earlier, the formula for future value is

$$
\text { Future value }=\text { Present value } \times \text { Future value factor (from Table } 16-1 \text { or a calculator) }
$$

Rewriting the formula to solve for present value gives

Present value $=$ Future value \div Future value factor (from Table 16-1 or a calculator)

EXAMPLE I

How much money must be invested today to end up with $\$ 6,326.60$ in 3 years? The interest rate is 8% compounded semiannually. (Use Table 16-1 or a calculator.)

The $\$ 6,326.60$ is the future value for which we want to find the present value. Interest is computed six times-twice each year for 3 years. The future value factor in Table 16-1 in the 4.00% column and row 6 is 1.26532 . Substitute these values into the formula to solve for present value.

$$
\begin{aligned}
\text { Present value } & =\text { Future value } \div \text { Future value factor (from Table 16-1) } \\
& =\$ 6,326.60 \div 1.26532=\$ 5,000
\end{aligned}
$$

Compare this result to that of example C, in which \$5,000 was invested for 6 years at 4\% compounded annually. The future value was $\$ 6,326.60$.

EXAMPLE J

Edison Motors estimates that in 2 years it will cost $\$ 20,000$ to repair a diagnostic machine. How much must Edison invest today to have $\$ 20,000$ in 2 years, if the interest rate is 6% compounded monthly? How much interest will Edison Motors earn on its investment?
$\$ 20,000$ is the future value for which Edison wants to know the present value.
STEP $\mathrm{I} \quad$ There are 12 compounding periods in 1 year (monthly).
STEP ii
Periodic rate $=6 \% \div 12=0.5 \%$
STEP iii
Number of compounding periods $=12 \times 2$ years $=24$
The future value factor in the 0.5% column and row 24 of Table $16-1$ is 1.12716 .

$$
\begin{aligned}
& {[m=12]} \\
& {\left[i=\frac{0.06}{12}=0.005\right]} \\
& {[n=12 \times 2=24]} \\
& {\left[F V F=(1+0.005)^{24}\right.} \\
& \quad=1.12715978]
\end{aligned}
$$

Substitute these values into the formula to solve for present value:
Present value $=$ Future value \div Future value factor (from Table 16-1)

$$
=\$ 20,000 \div 1.12716=\$ 17,743.71 \text { to the nearest cent }
$$

If Edison Motors invests $\$ 17,743.71$ today at 6% compounded monthly, it will have $\$ 20,000$ at the end of 2 years.

The $\$ 20,000$ is the sum of the amount invested plus the total compound interest earned. To find the interest, subtract the amount invested from $\$ 20,000$.

Interest $=$ Future value - Present value $=\$ 20,000-\$ 17,743.71=\$ 2,256.29$

CONCEPT CHECK 16.2

What present value (principal) invested for 3 years at 10\% compounded semiannually will result in a total future value of $\$ 4,000$? (Use Table 16-1 or a calculator.)

Semiannually means 2 periods per year.
Periodic rate $=10 \% \div 2=5 \%$ per half-year
Number of periods $=3$ years $\times 2=6$ periods
The future value factor from row 6 of the 5.00% column in Table $16-1$ is 1.34010 .
Present value $=$ Future value \div Future value factor

$$
=\$ 4,000 \div 1.34010=\$ 2,984.852, \text { or } \$ 2,984.85
$$

$$
\begin{aligned}
& {[m=2]} \\
& {\left[i=\frac{0.10}{2}=0.05\right]} \\
& {[n=2 \times 3=6]}
\end{aligned} \begin{aligned}
& {\left[\begin{array}{r}
{\left[F V F=(1+0.05)^{6}\right.} \\
\quad=1.34009564]
\end{array}\right.}
\end{aligned}
$$

Using Present Value Tables and/or Formulas

You may prefer to solve for present values by using present value factors (PVF) rather than future value factors, as in the preceding formula. Table 16-2, on pages 340 and 341, is a table of present value factors. Use exactly the same procedure (Steps i, ii, and iii) to find present value factors as you used to find future value factors.

With a calculator, $P V F=\frac{1}{F V F}=\frac{1}{(1+i)^{n}}$
[$m=12$]
$\left[i=\frac{0.06}{12}=0.005\right]$
$[n=12 \times 2=24]$
$\left[P V F=\frac{1}{(1+0.005)^{24}}\right.$

$$
=0.88718567]
$$

Son
$[m=1]$
[$\left.i=\frac{0.05}{1}=0.05\right]$
$[n=1 \times 6=6]$
$\left[P V F=\frac{1}{(1+0.05)^{6}}\right.$
$=0.74621540]$
Daughter
[$m=1$]
[$\left.i=\frac{0.05}{1}=0.05\right]$
$[n=1 \times 8=8]$
$\left[P V F=\frac{1}{(1+0.05)^{8}}\right.$

$$
=0.67683936]
$$

PRESENT VALUE FORMULA

If you use the present value factors (Table 16-2 or a calculator), you use a different formula, the present value formula,

Present value $=$ Future value \times Present value factor (from Table 16-2 or a calculator) or, $\quad P V=F V \times P V F$

EXAMPLE K

Rework example J using Table 16-2 and the present value formula. How much must Edison Motors invest today to have $\$ 20,000$ in 2 years if the interest rate is 6% compounded monthly?
$\$ 20,000$ is the future value, for which Edison wants to know the present value.
STEP i There are 12 compounding periods in 1 year (monthly).
STEP ii
STEP iii \quad Number of compounding periods $=12 \times 2$ years $=24$
The present value factor in the 0.5% column and row 24 of Table $16-2$ is 0.88719 .

Substitute these values into the present value formula.
Present value $=$ Future value \times Present value factor (from Table 16-2)

$$
=\$ 20,000 \times 0.88719=\$ 17,743.80
$$

The answer to example J was $\$ 17,743.71$. The discrepancy between that result and $\$ 17,743.80$ in example K is due to rounding. If the two tables had more decimal places instead of just five, this discrepancy would disappear. In fact, using the calculator PVF from the margin, we get $P V=\$ 20,000 \times 0.88718567=\$ 17,743.7134$, which is identical to the nearest cent.

EXAMPLEL

Solve the present value problem from example H. If Polly can earn 5\% compounded annually, how much should she deposit today in investments for her son and daughter so that the investments will be worth $\$ 60,000$ and $\$ 70,000$ in 6 and 8 years, respectively?

		Son	Daughter
	Future value:	\$60,000	\$70,000
	Term:	6 years	8 years
	Rate:	5% compounded annually	5% compounded annually
STEP i	Periods per year:	1 (annual)	1 (annual)
STEP ii	Periodic rate:	$5 \% \div 1=5 \%$	$5 \% \div 1=5 \%$
STEP iii	Compounding periods:	1×6 years $=6$	1×8 years $=8$
	PV factor (Table 16-2):	0.74622	0.67684
	Present value:	$\begin{gathered} \$ 60,000 \times 0.74622= \\ \$ 44,773.20 \end{gathered}$	$\begin{gathered} \$ 70,000 \times 0.67684= \\ \$ 47,378.80 \end{gathered}$

The reason for two formulas and two tables is historical, predating handheld calculators. Without a calculator, a multiplication problem is typically easier than a division problem with the same two numbers.

Theoretically, we need only one formula and one table. The second present value formula and the table of present value factors permit us to solve present value problems by using multiplication instead of division. Look at example J. To solve the problem requires that we divide $\$ 20,000$ by 1.12716 , which is extremely time-consuming to do without a calculator. (The answer is $\$ 17,743.71$.) Using Table $16-2$, we can solve the same problem by multiplying $\$ 20,000$ by 0.88719 , a relatively easy calculation without a calculator. (The answer is $\$ 17,743.80$; the difference is due to rounding in the creation of the table.)

nOTES ABOUT THE FUTURE VALUE AND PRESENT VALUE TABLES

The numbers in the future value table (Table 16-1) are actually just the future value of $\$ 1.00$ at a specific interest rate and for a specific period of time. For example, suppose that you invest $\$ 1.00$ for 2 years at 6% compounded annually. This is the same problem as example A, except that the principal is only $\$ 1.00$ instead of \$2,000.00

The calculations shown at the right have not been rounded off. The answer, which is $\$ 1.1236$, is the future value of the

$\$ 1.00$	Original principal
$\times 0.06$	Interest rate
$\$ 0.0600$	First-year interest
+1.00	First-year principal
$\$ 1.0600$	Second-year principal
$\times 0.06$	Interest rate
$\$ 0.0636$	Second-year interest
+1.06	Second-year principal
$\$ 1.1236$	Final compound amount

Each number in the present value table (Table 16-2) can be calculated directly from the corresponding number in the future value table. The corresponding numbers are reciprocals of each other. Recall that the reciprocal of a number is found by dividing the number into 1.

Look back at examples J and K, which showed two different ways to solve the same problem. In example J we used a future value factor, which was 1.12716. In example K we used a present value factor, which was 0.88719 . Each factor is in row

$$
\begin{aligned}
& 1 \div 1.12716=0.88718549, \text { or } 0.88719 \\
& 1 \div 0.88719=1.12715427, \text { or } 1.12716
\end{aligned}
$$ 24 and the 0.50% column of its respective table. With your calculator, divide 1 by 1.12716 to get 0.88718549 , which rounded to five places is 0.88719 . And dividing 1 by 0.88719 gives 1.12715427 .

Examine your calculator. You may have a reciprocal key, labeled " $1 / \mathrm{x}$." If you have such a key, enter 1.12716 and press the $1 / \mathrm{x}$ key. The calculator will display 0.88718549 . Press the $1 / \mathrm{x}$ key again and the calculator will display 1.12716 , or perhaps 1.12716000 .

CONCEPT CHECK 16.3

$$
\begin{aligned}
& {[m=2]} \\
& {\left[i=\frac{0.10}{2}=0.05\right]} \\
& {[n=2 \times 3=6]} \\
& {\left[P V F=\frac{1}{(1+0.05)^{6}}\right.} \\
& \quad=0.74621540]
\end{aligned}
$$

$$
\begin{aligned}
& {[m=1]} \\
& {\left[i=\frac{0.09}{1}=0.09\right]} \\
& {[n=1 \times 7=7]} \\
& {\left[P V F=\frac{1}{(1+0.09)^{2}}\right.} \\
& \quad=0.54703424]
\end{aligned}
$$

a. What present value (principal) invested for 3 years at 10% compounded semiannually will result in a total future value of $\$ 4,000$? (Use Table 16-2 or a calculator.)

Semiannually means 2 periods per year.
Periodic rate $=10 \% \div 2=5 \%$ per half-year
Number of periods $=2 \times 3$ years $=6$ periods
The present value factor from row 6 of the 5.00% column in Table $16-2$ is 0.74622 .
Present value $=$ Future value \times Present value factor

$$
=\$ 4,000 \times 0.74622=\$ 2,984.88
$$

Note: The answers to Concept Checks 16.2 and 16.3a are essentially the same. If the future value table and the present value table had values with six decimals, the answers would both be $\$ 2,984.86$.
b. Seven years ago, a woman invested money at 9% compounded annually. If the investment is now worth $\$ 6,000$, how much compound interest did she earn in the 7 years? (Use Table 16-2 or a calculator.)

Annually means 1 period per year.
Periodic rate $=9 \% \div 1=9 \%$ per year
Number of periods is 1×7 years $=7$ periods
The present value factor from row 7 of the 9.00% column in Table $16-2$ is 0.54703 .
Present value $=$ Future value \times Present value factor

$$
=\$ 6,000 \times 0.54703=\$ 3,282.18
$$

Compound interest $=$ Future value - Present value

$$
=\$ 6,000-\$ 3,282.18=\$ 2,717.82
$$

COMPLETE ASSIGNMENT 16.2.

Chapter Terms for Review

number of compounding periods period (compounding period) periodic interest rate
power
present value
present value factors

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

16.1

Compute future values and compound interest

16.2

Compute present values

16.3

Use present value tables and/or formulas

Example

1. Compute the future value of $\$ 9,000$ invested at 6% compounded monthly for 2 years.
2. Compute the compound interest earned on $\$ 5,000$ invested at 6% compounded quarterly for 5 years.
3. Compute the present value that has to be invested at 10% compounded semiannually for 6 years to result in $\$ 8,000$.
4. If $\$ 6,000$ is the future value after 13 years at 9% compounded annually, compute the principal (present value).
5. An investment made 16 months ago is worth $\$ 5,634.95$ today. If the interest rate was 9% compounded monthly, what was the amount of compound interest?

Review Problems for Chapter 16

1 Calculate the future value (compound amount) and compound interest. (Use Table 16-1 or a calculator.)

Principal	Rate	Time	Future Value	Interest
\$ 4,000	6\% compounded monthly	3 yr	a.	b.
\$12,000	8\% compounded quarterly	7 yr	c.	d.
\$20,000	9% compounded annually	11 yr	e.	f.
\$ 8,000	10% compounded semiannually	10 yr	g.	h.

2 Calculate the present value (principal) and compound interest. (Use Table 16-2 or a calculator.)
Future

Value	Rate	Time	Present Value	Interest
$\$ 30,000$	5% compounded annually	7 yr	a.	b.
$\$ 6,000$	8% compounded semiannually	12 yr	c.	d.
$\$ 15,000$	9% compounded monthly	4 yr	e.	f. -
$\$ 40,000$	6% compounded quarterly	5 yr	g.	h.

3 Vernon Lee received a $\$ 6,000$ bonus from his employer. He can invest it safely in his credit union at 4% compounded quarterly. What will be the value of the investment in 7 years?

4 Donna Takeuchi inherited $\$ 6,200$. She invested it immediately in an investment fund paying 6% compounded semiannually. How much interest would Donna earn if she left principal and interest invested for 10 years?

5 Sandy Hopkins was planning to buy a new car in 3 years. She has some money today that she can invest for 3 years in an account that will pay 6% compounded quarterly. How much of it would she need to deposit today so that she will have $\$ 8,000$ in her account in 3 years?

6 Doug Jurgensen will need to buy a $\$ 25,000$ wood lathe in 2 years. He can deposit excess profits from this year in an investment that should pay 9% compounded monthly. If Doug earns the $\$ 25,000$ in 2 years, how much will he earn in interest?

Assignment 16.1: Future Value (Compound Amount)

Name

A (28 points) Find the future value (compound amount) and the compound interest, as indicated, for each of the following investments. Round answers to the nearest cent. Use Table 16-1 or a calculator. (2 points for each correct answer)

Principal	Rate	Term	Future Value	Compound Interest
1. $\$ 6,000$	6% compounded monthly	4 years		

2. $\$ 750$
8% compounded semiannually
13 years \qquad

8 years
3. $\$ 20,000 \quad 8 \%$ compounded quarterly \qquad
\qquad
4. $\$ 8,400$
10% compounded annually
20 years \qquad
\qquad
5. $\$ 5,000$
9% compounded monthly
18 months \qquad
\qquad
6. $\$ 14,450$
6% compounded quarterly
4 years \qquad
\qquad
7. $\$ 4,000$
4% compounded semiannually
9 years
\qquad

B (32 points) Find the future value (compound amount) or the compound interest, as indicated, for each of the following investments or loans. Round answers to the nearest cent. Use Table 16-1 or a calculator. (4 points for each correct answer)

8. Compute the future value (compound amount) of $\$ 4,500$ invested for 10 years at 5% compounded quarterly.
9. How much compound interest will you pay if you borrow $\$ 25,000$ for 13 months at 15% compounded monthly?
10. Calculate the future value (compound amount) on a loan of $\$ 6,500$ at 10% compounded annually for 5 years.
11. How much compound interest will you earn if you loan $\$ 7,900$ for 16.5 years at 12% compounded semiannually?
12. What total amount (principal and interest) must be repaid in $2 \frac{1}{2}$ years on a loan of $\$ 15,000$ at 9% compounded monthly?
13. Determine the total compound interest that you will have to pay if you borrow $\$ 845$ at 10% compounded semiannually and don't pay it back for 11 years.
14. How much compound interest will you earn if you invest $\$ 10,000$ for 13 years at 8% compounded annually?
15. Compute the future value (compound amount) of $\$ 18,000$ invested for 4.5 years at 5% compounded quarterly.

C (40 points) Business Applications. Find the future value (compound amount) or the compound interest, as indicated. Round answers to the nearest cent. Use Table 16-1 or a calculator. (4 points for each correct answer)

16. Kathy Shutter thinks that she needs to borrow $\$ 7,500$ for 2 years. She doesn't have a very good credit rating, so most finance companies want to charge her a high interest rate. She finally finds a lender that will loan her the money at 12% compounded monthly. How much interest will Kathy have to pay to this particular lender?
17. Mary Sousa receives a telephone call from a salesperson who describes "an incredible investment opportunity." The investment promises a return of 16% compounded semiannually for investments of $\$ 5,000$ or more. One disadvantage is that no money will be paid out for a long time. Another disadvantage is that the investment is very risky. Mary doesn't think that she will need the money for 6 years, so she decides to invest $\$ 5,000$. If the investment pays what it promises, how much interest will Mary earn in the 6 years?
18. William Wang wants to borrow money from his father to buy a car. William's father is trying to teach him how to manage money, so he agrees to loan him the money, but at 5% compounded quarterly. William borrows $\$ 11,200$ and repays everything—principal plus all of the interest-in $3 \frac{1}{2}$ years. How much does William pay back to his father?
19. Don Hildebrand is trying to decide whether to invest money in a bank or in something a little riskier that will pay a higher return. One very simple investment promises to pay a minimum of 9% compounded annually, but he must leave all of money and interest invested for 6 years. How much will Don earn during the 6 years if he invests $\$ 4,500$ and the investment pays the minimum?
20. Marcia Juarez and her brother-in-law have a successful business with several employees. They decide to borrow $\$ 15,000$ to pay their quarterly payments for payroll taxes and federal income tax. They get the money at 9% compounded monthly and repay all interest and principal after 9 months. How much do they repay?

Assignment 16.1 Continued

21. Sammie Crass inherited $\$ 16,780$. She wants to invest it in something relatively safe so that she can transfer all the money to her children's college fund in about 8 years. One investment brochure (called a prospectus) states that it will pay a return of 8% compounded quarterly. How much will Sammie have total, principal plus interest, after 8 years?
22. To help his daughter and son-in-law purchase their first new car, Robert Chow loans them $\$ 15,000$. They agree on an interest rate of 3% compounded annually, and Mr. Chow tells them that they can pay it all back, the $\$ 15,000$ plus the interest, in 5 years. How much interest will Mr. Chow receive from them?
23. Sandee Millet owns and operates an art supply store in a suburban shopping center. Sandee learns about an investment that claims to pay a return of 8% compounded semiannually for 4 years. Sandee decides to invest $\$ 4,750$. Compute the amount of interest that she will earn in the 4 years.
24. Ken Ortman is a student at medical school. He borrowed $\$ 32,000$ for 26 months at the rate of 6% compounded monthly. How much total, principal plus compound interest, must Ken repay at the end of the 26 months?
25. The County Employees Credit Union pays an interest rate of 8% compounded quarterly on savings accounts of $\$ 1,000$ or more, with the requirement that the money be deposited for at least 6 months. How much interest will Marilyn Bunnell earn if she deposits $\$ 1,800$ and leaves it in the credit union for 2 years?

Assignment 16.2: Present Value

Name

A (28 points) Find the present value (principal) and the compound interest, as indicated, for each of the following investments. (Hint: Subtract the present value from the future value to find the compound interest.) Use Table 16-1, Table 16-2, or a calculator. Round answers to the nearest cent. (2 points for each correct answer)

Future Value	Rate	Term	Present Value	Compound Interest
$\$ 3,900$	6% compounded semiannually	3 years		

\qquad
\qquad
\qquad
\qquad
6. $\$ 50,000$
8% compounded semiannually
6 years
\qquad
\qquad

Score for A (28)

B (32 points) Find the present value (principal) or the compound interest, as indicated, for each of the following investments or loans. Use Table 16-1, Table 16-2, or a calculator. Round answers to the nearest cent. (4 points for each correct answer)

8. Compute the present value (principal) if the future value 20 years from now is $\$ 25,000$ and if the interest rate is 8% compounded semiannually.
9. How much compound interest would you pay if you repay a total of $\$ 8,4251$ year and 6 months after borrowing the principal at 9% compounded monthly?
10. Calculate the present value (principal) of a loan made 3 years ago at 8% compounded quarterly if the borrower repays a total of $\$ 6,250$.
11. Compute the amount that a company must invest (the present value) at 10% compounded annually if it wants to have $\$ 100,000$ available (the future value) in 25 years.
12. How much compound interest is earned on a 6.5 -year investment that has a rate of return of 6% compounded quarterly and repays a total compound amount (future value) of $\$ 9,600$?
13. Determine the present value (principal) of a single deposit that is worth exactly $\$ 4,750$ after 15 months at 6% compounded monthly.
14. Calculate the amount of compound interest that has accrued on an investment that is now worth $\$ 15,000$ after 14 years at 10% compounded semiannually.
15. Compute the present value (principal) if the future value is $\$ 50,000$ after 50 years at 6% compounded annually.

Score for B (32)

C (40 points) Business Applications. Find the present value (principal) or the compound interest, as indicated. Use either Table 16-1, Table 16-2, or a calculator. Round answers to the nearest cent. (4 points for each correct answer)

16. Ben Mahaffy needs to buy another used logging truck. His mother will loan him part of the money at only 4% compounded quarterly. If Ben estimates that he will be able to repay his mother a total of $\$ 27,500$ in $1 \frac{1}{2}$ years, how much can he borrow from her today?
17. Six years ago, Eleanor Baker invested money at 8% compounded annually. Today she received a check for $\$ 6,000$ that represented her total payment of principal and interest. Compute the amount of the interest that she earned.
18. Lee Oman wants to have $\$ 30,000$ available at the end of 3 years to help purchase a computerized metal lathe for his machine stop. If he can invest money at 6% compounded semiannually, how much should he invest?
19. As part of their financial planning, Janice Garcia's grandparents made monetary gifts to each of their grandchildren. In addition, Janice's grandfather told her that, if she would save part of her gift for at least a year, he would pay her interest of 9% compounded monthly. Janice decided to save just enough so that she would have $\$ 5,000$ at the end of 21 months, when she will be 16 years old. How much should she save?
20. Marilyn Whitehorse estimated that she would need $\$ 12,600$ in $5 \frac{1}{2}$ years to buy new equipment for her pottery shop. Having extra cash, she invested money in an extremely safe investment that advertised a return of 6% compounded semiannually. Marilyn invested just enough money to end up with the $\$ 12,600$. How much of the $\$ 12,600$ did Marilyn earn on her investment?
21. Keith Smith is a financial advisor. A client would like to have $\$ 25,000$ in 5 years for possible weddings for her twin daughters who are now 18 years old. After comparing the projected returns with the risk, Keith recommends an investment that will pay 6% compounded quarterly. To end up with the $\$ 25,000$, how much must the client invest today?
22. A small company estimated that a modest investment today would realize a return of 10% compounded annually. The company wants a total sum of $\$ 20,000$ in 5 years. If the company invests the appropriate amount to reach the $\$ 20,000$ objective, how much of the $\$ 20,000$ will be earned by the investment?
23. Linda Anderson inherited $\$ 10,000$. She knew that she would need $\$ 8,000$ in 3 years to pay additional tuition for her children's education. Linda wanted to save enough to have the $\$ 8,0003$ years from now. She found an incredible, relatively safe investment that would pay 15% compounded monthly for the entire 3 years-if she agreed to leave the money untouched for 3 years. If Linda invests enough of the inheritance to guarantee the $\$ 8,000$, how much will she have left over from the $\$ 10,000$ inheritance?
24. Charles Peterson owns an antique store in New England. He is planning a buying trip to France for next spring-in 9 months. Charles estimates the cost of the trip will be $\$ 8,000$ in 9 months. How much should Charles set aside today to have $\$ 8,000$ in 9 months? He can earn 8% compounded quarterly.
25. Technology advances so rapidly that printers for higher-end computer systems are obsolete almost before they come onto the market. Frances Leung thinks that it would be reasonable to budget $\$ 500$ next year for an up-to-date printer. Frances can make a safe investment paying 9% compounded monthly for a year. If she invests the necessary amount of her money, how much of the $\$ 500$ will be paid by the investment?

Notes

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
1	1.00500	1.00750	1.01000	1.01250	1.01500	1.02000	1.03000	1.04000	1.05000	1.06000	1.08000	1.09000	1.10000	1.12000
2	1.01003	1.01506	1.02010	1.02516	1.03023	1.04040	1.06090	1.08160	1.10250	1.12360	1.16640	1.18810	1.21000	1.25440
3	1.01508	1.02267	1.03030	1.03797	1.04568	1.06121	1.09273	1.12486	1.15763	1.19102	1.25971	1.29503	00	1.40493
4	1.02015	1.03034	1.04060	1.05095	1.06136	1.08243	1.12551	1.16986	1.21551	1.26248	1.36049	1.41158	1.46410	52
5	1.02525	1.03807	1.05101	1.06408	1.07728	1.10408	1.15927	1.21665	1.27628	1.33823	1.46933	1.53862	1.61051	1.76234
6	1.03038	1.04585	1.06152	1.07738	1.09344	1.12616	1.19405	1.26532	1.34010	1.41852	1.58687	1.67710	1.77156	82
7	1.03553	1.05370	1.07214	1.09085	1.10984	1.14869	1.22987	1.31593	1.40710	1.50363	1.71382	1.82804	72	2.21068
8	1.04071	1.06160	1.08286	1.10449	1.12649	1.17166	1.26677	1.36857	1.47746	1.59385	1.85093	1.99256	2.14359	2.47596
9	1.04591	1.06956	1.09369	1.11829	1.14339	1.19509	1.30477	1.42331	1.55133	1.68948	1.99900	2.17189	5	08
10	1.05114	1.07758	1.10462	1.13227	1.16054	1.21899	1.34392	1.48024	1.62889	1.79085	2.15892	2.36736	2.59374	3.10585
11	1.05640	1.08566	1.11567	1.14642	1.17795	1.24337	1.38423	1.53945	1.71034	1.89830	2.33164	2.58043	2.85312	3.47855
12	1.06168	1.09381	1.12683	1.16075	1.19562	1.26824	1.42576	1.60103	1.79586	2.01220	2.51817	2.81266	3.13843	89598
13	1.06699	1.10201	1.13809	1.17526	1.21355	1.29361	1.46853	1.66507	1.88565	2.13293	2.71962	3.06580	3.45227	4.36349
14	1.07232	1.11028	1.14947	1.18995	1.23176	1.31948	1.51259	1.73168	1.97993	2.26090	2.93719	3.34173	3.79750	711
15	1.07768	1.11860	1.16097	1.20483	1.25023	1.34587	1.55797	1.80094	2.07893	2.39656	3.17217	3.64248	4.17725	5.47357
16	1.08307	1.12699	1.17258	1.21989	1.26899	1.37279	1.60471	1.87298	2.18287	2.54035	3.42594	3.97031	4.59497	6.13039
17	1.08849	1.13544	1.18430	1.23514	1.28802	1.40024	1.65285	1.94790	2.29202	2.69277	3.70002	4.32763	5.05447	6.86604
18	1.09393	1.14396	1.19615	1.25058	1.30734	1.42825	1.70243	2.02582	2.40662	2.85434	3.99602	4.71712	5.55992	7.68997
19	1.09940	1.15254	1.20811	1.26621	1.32695	1.45681	1.75351	2.10685	2.52695	3.02560	4.31570	5.14166	6.11591	8.61276
20	1.10490	1.16118	1.22019	1.28204	1.34686	1.48595	1.80611	2.19112	2.65330	3.20714	4.66096	5.60441	6.72750	9.64629
21	1.11042	1.16989	1.23239	1.29806	1.36706	1.51567	1.86029	2.27877	2.78596	3.39956	5.03383	6.10881	7.40025	10.80385
22	1.11597	1.17867	1.24472	1.31429	1.38756	1.54598	1.91610	2.36992	2.92526	3.60354	5.43654	6.65860	8.14027	12.10031
23	1.12155	1.18751	1.25716	1.33072	1.40838	1.57690	1.97359	2.46472	3.07152	3.81975	5.87146	7.25787	8.95430	13.55235
24	1.12716	1.19641	1.26973	1.34735	1.42950	1.60844	2.03279	2.56330	3.22510	4.04893	6.34118	7.91108	9.84973	15.17863
25	1.13280	1.20539	1.28243	1.36419	1.45095	1.64061	2.09378	2.66584	3.38635	4.29187	6.84848	8.62308	10.83471	17.00006

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
26	1.13846	1.21443	1.29526	1.38125	1.47271	1.67342	2.15659	2.77247	3.55567	4.54938	7.39635	9.39916	11.91818	19.04007
27	1.	1.	1.	1.	1.49480			2.	6	4.82235	6	8	13.10999	8
28	1.14987	1.2	1.32129	1.41599	1.51722	1.7	2.28793	2.99870	3.92013	69	8.62711	11.16714	0	387
29	1.		1.33450	1.43369	1.53998		2.35657			5.41839	9.31727	12.17218	15.86309	3
30	1.16140	1.	1.	1.	1.5	1.8		3.	4.		10.06266	68		
31	1.16721	1.2606	1.36133	1.4697	1.58653	1.8	2.5000	3.37313	4.53804	6.08810	10.86767			
32	1.1		1.3	1.48813	1.	1.8	2.5	3.	4.76494	6.45339	11.73708	15.76333	21.11378	3
33	1.1789	1.2796	1.3886	1.50673	1.63448	1.9222	2.65	3.64838	5.00319	6.84059	12.67605	17.18203	23.225	42.09153
34	1.18480	1.2	1.4	1.5	1.65900	1.	2.		5.	7.25103	13.69013	18.72841	25.54767	2
35	1.1	1.2	1.	1.5	1.	1.	2.8	3.94609	5.51602	7.6860	14.78	20.41397	28	2
36	1.19668	1.3086	1.	1.56	1.	2.03	2.89828	4.10393	5.7	8.14725	15.	22.25123	30.91268	59.13557
37	1.20266	1.3	1.4	1.5834	1.7	2.	2.	4.26809	6.08141	9	17.24563	4	34.00395	4
38	1.20868	1.3283	1.45953	1.60329	1.7608	2.	3.0747	4.43881	6.38548	5425	18.62528	26.43668	7.40434	4.17966
39	1.21	1.3	1.	1.6	1.	2.1	3.	4.6	6.70475	9.70351	20.11530	28.81598	41.14478	83.08122
40	1.2207	1.3	1.48886	1.6436	1.8140	2.208	3.26	4.80102	7.03999	10.2857	21.72452	31.40942	45.25926	93
41	1.2	1.	1.		1.	2		4.99306	9	10.90286	23.46248	23627	18	104.21709
42	1.23303	1.36	1.5	1.68497	1.8688	2.2	3.	5.19278	7.76159	11.55703	25.33948	37.31753	54.76370	16.72314
43	1.23920	1.3	1.5	1.70603	1.8968	2.3	3.5	5.40050	8.14967	12.25045	27.3666	40.67611	60.24007	130.72991
44	1.24	1.3	1.5	1.72735	1.	2.3	3.	5.61652	8.55715	12.98548	29.55597	44.33696	66.26408	146.41750
45	1.25162	1.39968	1.56481	1.74895	1.954	2.4378	3.78160	5.84118	8.98501	13.7646	31.92045	48.32729	72.89048	163.98760
46	1.25	1.410	1.5	1.77081	1.98	2.	3.	6.07482	9.43426	14.59049	34.4740	52.67674	80.17953	183.66612
47	1.26417	1.4207	1.59626	1.79294	2.01328	2.53634	4.01190	6.31782	9.90597	15.46592	37.23201	57.41765	88.19749	205.70605
48	1.27049	1.43141	1.61223	1.81535	2.04348	2.58707	4.13225	6.57053	10.40127	16.39387	40.21057	62.58524	97.01723	230.39078
49	1.27684	1.44214	1.62835	1.83805	2.07413	2.63881	4.25622	6.83335	10.92133	17.37750	43.42742	68.21791	106.71896	258.03767
50	1.28323	1.45296	1.64463	1.86102	2.10524	2.69159	4.38391	7.10668	11.46740	18.42015	46.90161	74.35752	117.39085	289.00219

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
1	0.99502	0.99256	0.99010	0.98765	0.98522	0.98039	0.97087	0.96154	0.95238	0.94340	0.92593	0.91743	0.90909	0.89286
2	0.99007	0.98517	0.98030	0.97546	0.97066	0.96117	0.94260	0.92456	0.90703	0.89000	0.85734	0.84168	0.82645	0.79719
3	0.98515	0.97783	0.97059	0.96342	0.95632	0.94232	0.91514	0.88900	0.86384	0.83962	0.79383	0.77218	0.75131	0.71178
4	0.98025	0.97055	0.96098	0.95152	0.94218	0.92385	0.88849	0.85480	0.82270	0.79209	0.73503	0.70843	0.68301	0.63552
5	0.97537	0.96333	0.95147	0.93978	0.92826	0.90573	0.86261	0.82193	0.78353	0.74726	0.68058	0.64993	0.62092	0.56743
6	0.97052	0.95616	0.94205	0.92817	0.91454	0.88797	0.83748	0.79031	0.74622	0.70496	0.63017	0.59627	0.56447	0.50663
7	0.96569	0.94904	0.93272	0.91672	0.90103	0.87056	0.81309	0.75992	0.71068	0.66506	0.58349	0.54703	0.51316	0.45235
8	0.96089	0.94198	0.92348	0.90540	0.88771	0.85349	0.78941	0.73069	0.67684	0.62741	0.54027	0.50187	0.46651	0.40388
9	0.95610	0.93496	0.91434	0.89422	0.87459	0.83676	0.76642	0.70259	0.64461	0.59190	0.50025	0.46043	0.42410	0.36061
10	0.95135	0.92800	0.90529	0.88318	0.86167	0.82035	0.74409	0.67556	0.61391	0.55839	0.46319	0.42241	0.38554	0.32197
11	0.94661	0.92109	0.89632	0.87228	0.84893	0.80426	0.72242	0.64958	0.58468	0.52679	0.42888	0.38753	0.35049	0.28748
12	0.94191	0.91424	0.88745	0.86151	0.83639	0.78849	0.70138	0.62460	0.55684	0.49697	0.39711	0.35553	0.31863	0.25668
13	0.93722	0.90743	0.87866	0.85087	0.82403	0.77303	0.68095	0.60057	0.53032	0.46884	0.36770	0.32618	0.28966	0.22917
14	0.93256	0.90068	0.86996	0.84037	0.81185	0.75788	0.66112	0.57748	0.50507	0.44230	0.34046	0.29925	0.26333	0.20462
15	0.92792	0.89397	0.86135	0.82999	0.79985	0.74301	0.64186	0.55526	0.48102	0.41727	0.31524	0.27454	0.23939	0.18270
16	0.92330	0.88732	0.85282	0.81975	0.78803	0.72845	0.62317	0.53391	0.45811	0.39365	0.29189	0.25187	0.21763	0.16312
17	0.91871	0.88071	0.84438	0.80963	0.77639	0.71416	0.60502	0.51337	0.43630	0.37136	0.27027	0.23107	0.19784	0.14564
18	0.91414	0.87416	0.83602	0.79963	0.76491	0.70016	0.58739	0.49363	0.41552	0.35034	0.25025	0.21199	0.17986	0.13004
19	0.90959	0.86765	0.82774	0.78976	0.75361	0.68643	0.57029	0.47464	0.39573	0.33051	0.23171	0.19449	0.16351	0.11611
20	0.90506	0.86119	0.81954	0.78001	0.74247	0.67297	0.55368	0.45639	0.37689	0.31180	0.21455	0.17843	0.14864	0.10367
21	0.90056	0.85478	0.81143	0.77038	0.73150	0.65978	0.53755	0.43883	0.35894	0.29416	0.19866	0.16370	0.13513	0.09256
22	0.89608	0.84842	0.80340	0.76087	0.72069	0.64684	0.52189	0.42196	0.34185	0.27751	0.18394	0.15018	0.12285	0.08264
23	0.89162	0.84210	0.79544	0.75147	0.71004	0.63416	0.50669	0.40573	0.32557	0.26180	0.17032	0.13778	0.11168	0.07379
24	0.88719	0.83583	0.78757	0.74220	0.69954	0.62172	0.49193	0.39012	0.31007	0.24698	0.15770	0.12640	0.10153	0.06588
25	0.88277	0.82961	0.77977	0.73303	0.68921	0.60953	0.47761	0.37512	0.29530	0.23300	0.14602	0.11597	0.09230	0.05882

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
26	0.87838	0.82343	0.77205	0.72398	0.67902	0.59758	0.46369	0.36069	0.28124	0.21981	0.13520	0.10639	0.08391	0.05252
27	0.8	0.81730	0.7	0.71505	0.66899	0.5	0.45019	0.34682	0.26785	0.20737	0.12519	0.09761	0.07628	9
28	0.86966	0.81122	0.75684	0.70622	0.65910	0.57437	0.43708	0.33348	0.25509	0.19563	0.11591	0.08955	0.06934	0.04187
2	0.8	0.	0.	0.69750	0.64936	0.	0.42435	5	0.24295	0.18456	0.10733	5	4	8
30	0.86103	. 0	0.	0.68889	0.63976	0.5	0.	0.30832	0.23		0.09938	0.07537	0.	38
31	0.85675	0.7932	0.73458	0.68038	0.63031	0.5412	0.39999	0.29646	0.22036	0.16425	0.09202	0.06915	0.05210	0.02980
3	0.85248	0.7	0.7	0.67198	0.6	0.5	0.	0.28506	0.2	0.	0.08520	0.0	0.04736	1
33	0.84824	0.78147	0.7201	0.66369	0.61182	0.52023	0.37703	0.27409	0.19987	0.14619	0.07889	0.05820	0.04306	0.02376
34	0.84402	0.77565	0.7	0.65	0.6	0.5	0.36604	0.26355	0.1	0.	0.07305	0.05339	0.	21
35	0.83982	0.7	0.7	0.64740	0.59387	0.50	0.35538	0.25342	0.18	0.13	0.06763	0.04899	0.03558	0.01894
36	0.83564	0.76415	0.69892	0.63	0.58509	0.4902	0.34503	0.24367	0.17266	0.12274	0.06262	0.04494	0.03235	0.01691
37	0.83149	0.75846	0.69200	0.63152	0.57644	0.4806	0.33	0.23430	0.16	0.11579	0.05799	0.04123	0.	0
38	0.82735	0.7528	0.68515	0.62372	0.56792	0.4711	0.32523	0.22529	0.1566	0.10924	0.05369	0.03783	0.02673	0.01348
39	0.82323	0.74	0.67	0.61	0.55953	0.46	0.31575	0.21662	0.1	0.10306	0.04971	0.03470	0.02430	4
40	0.8191	0.74165	0.6716	0.608	0.55126	0.4528	0.30656	0.20829	0.14205	0.09722	0.04603	0.03184	0.02209	0.01075
41	0.8	0.	0.	0.600	0.54312	0.4440	0.29763	0.20028	0.13528	0.09172	0.04262	0.02921	0.02009	0.00960
42	0.81101	0.73065	0.65	0.593	0.53509	0.4353	0.28896	0.19257	0.12884	0.08653	0.03946	0.02680	0.01826	0.00857
43	0.8069	0.7	0.6519	0.586	0.52718	0.426	0.28054	0.18517	0.1227	0.08163	0.03654	0.02458	0.01660	0.00765
44	0.80296	0.7	0.6	0.57892	0.51939	0.4	0.2	0.17805	0.1	0.07701	0.03383	0.02255	0.01509	0.00683
45	0.79896	0.71445	0.63905	0.57177	0.5117	0.41020	0.26444	0.17120	0.11130	0.07265	0.03133	0.02069	0.01372	0.00610
46	0.7949	0.70913	0.6327	0.564	0.50415	0.402	0.256	0.16461	0.10600	0.0685	0.02901	0.01898	0.01247	0.00544
47	0.79103	0.70385	0.6264	0.55774	0.49670	0.3942	0.24926	0.15828	0.10095	0.06466	0.02686	0.01742	0.01134	0.00486
48	0.78710	0.69861	0.62026	0.55086	0.48936	0.38654	0.24200	0.15219	0.09614	0.06100	0.02487	0.01598	0.01031	0.00434
49	0.78318	0.69341	0.61412	0.54406	0.48213	0.37896	0.23495	0.14634	0.09156	0.05755	0.02303	0.01466	0.00937	0.00388
50	0.77929	0.68825	0.60804	0.53734	0.47500	0.37153	0.22811	0.14071	0.08720	0.05429	0.02132	0.01345	0.00852	0.00346

Business Applications

17 Inventory and Turnover 18 Depreciation
19 Financial Statements
20 International Business

Inventory and Turnover

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective
 1

Account for inventory by inventory sheets and reports from a perpetual inventory system.

Compute inventory value by the average cost, LIFO, and FIFO methods.

Learning Objective 3 Compute inventory by using the lower of cost or market value.

Learning Objective 4 Estimate inventory by using cost of goods sold.

Learning Objective
5
Compute inventory turnover.

A company's inventory is the amount of goods it has on hand at any particular time. Retailers and wholesalers have only one kind of inventory-merchandise, which are the goods they sell.

Accounting for Inventory

Learning Objective

Account for inventory by inventory sheets and reports from a perpetual inventory system.

INVENTORY SHEETS

At least once each year, businesses undertake a physical inventory-an actual counting of the merchandise on hand. Some stores that require close control take a physical inventory every six months, quarterly, or even monthly. Sometimes retail stores use outside firms that specialize in taking inventory.

When inventory is counted, a description of each item, the quantity, the unit cost or retail price, and the extension (quantity \times price) are recorded on an inventory sheet, as shown in Figure 17-1. The inventory value is then compared with accounting records, and any needed adjustments are made.

Figure 17-1 \quad Inventory Sheet

WARREN'S AUTO PARTS

Inventory Sheet
April 30, 20-

Description	Quantity	Unit Price (Average Cost)	Extension
Ignition terminals-\#746083	318	$\$ 36.14$	$\$ 11,492.52$
Odometer cables—\#007614	73	9.97	727.81
Wiper blades, compact-\#417654	38	4.71	178.98
Spark plugs, 0.14-\#772034	354	2.34	828.36
Hood/truck latches-\#476508	58	13.42	778.36
\quad Total			$\$ 14,006.03$

PERPETUAL INVENTORY SYSTEMS

Some firms keep a perpetual inventory-a running count of all inventory items, based on tracking each item as it comes into and goes out of inventory. In businesses that handle high-cost items, such as cars or large appliances, the perpetual system keeps track of each item by serial number and price.

Businesses that handle small items, such as candy bars or shoes, have difficulty identifying each specific item. Their perpetual inventory systems keep a count of the number of units on hand, not individual prices and serial numbers.

Data for a perpetual inventory system are usually kept on a computer. Figure 17-2 illustrates a computer printout of an inventory record sheet. The last item in the Balance on Hand column shows how many units are on hand on the $4 / 30$ recording date- 354 Quickstart spark plugs: 0.14, part number 772034.

WARREN'S AUTO PARTS

Inventory Record Sheet

ITEM: QUICKSTART SPARK PLUG: 0.14

PART NUMBER: \#772034

LOCATION: Aisle 72, Bin 4, Box C
MINIMUM STOCK: 200 MAXIMUM STOCK: 800

ORDER FROM:
Northwest Distributors
2337 Colfax Avenue
Milbrae, CA 93233
Phone-(415) 345-7654
ORDER: 100-800

Purchase Orders (PO)			Inventory Control		Units In	Unit Cost	Units Out	Balance on hand
Date	PO No.	Quantity	Date	Source Code				
2/03	F0129	400	1/01	-		\$2.10		350
3/15	M1678	300	1/31	SJ01			120	230
3/22	M2076	200	2/28	SJ02			58	172
4/26	A3210	400	3/02	F0129	400	2.36		572
			3/31	SJ03			315	257
			4/03	M1678	300	2.40		557
			4/20	M2076	200	2.64		757
			4/30	SJ04			403	354

Note: The 400 units ordered 4/26 have not yet been received.

CONCEPTCHECK 17.1

The CompuParts wholesale computer store maintains a perpetual inventory of computer parts received and removed or shipped out. The following inventory record sheet shows the data for May. Compute the balance on hand after each transaction.

COMPUPARTS WHOLESALE

Inventory Record Sheet

ITEM: MONITOR CORD \#A718
Location: BIN \#C7
Minimum Stock: 250 Maximum Stock: 1,000

	Units In	Unit Cost	Units Out	Balance on Hand
$5 / 01$	\boxed{W}	$\$ 15.40$	-80	
$5 / 11$	470		260	390
$5 / 15$		$\$ 15.90$		660
$5 / 28$	320		410	900
$5 / 31$				510

Computing Inventory, Using the Average Cost, FIFO, and LIFO Methods

Learning Objective

Compute inventory value by the average cost, LIFO, and FIFO methods.

In all inventory systems, the cost of the inventory on hand at the end of the period is called ending inventory (EI). The ending inventory must be computed before financial statements can be prepared.

To compute ending inventory, a business usually adopts one of three cost methods: average cost, first-in, first-out (FIFO); or last-in, first-out (LIFO). Once selected, the method must be followed consistently. We use the cost data from Figure 17-2 to illustrate computations for the three cost methods.

THE AVERAGE COST METHOD

The average cost method is based on the assumption that the cost for each item on hand is the average cost for items from the opening inventory and items purchased during the period.

EXAMPLE A

The average cost of the units on the inventory record sheet for stock part \#772034
(Quickstart spark plugs: 0.14) is computed as follows:

| | Units
 Date
 $1 / 01$ | $\frac{\text { Purchased }}{350}$ | | $\underline{\text { Cost }}$ |
| :--- | :--- | :--- | ---: | ---: | ---: |

Average cost per unit: $\$ 2,927 \div 1,250=\$ 2.34$
Ending inventory (EI) at average cost: 354 units $\times \$ 2.34=\$ 828.36$

THE FIFO METHOD

The first-in, first-out (FIFO) costing method is based on the assumption that the cost for units sold is determined in the order in which the units were purchased. Thus the cost of the inventory remaining is assumed to be based on the price of the units received most recently.

EXAMPLE B

Under the FIFO method, the inventory of 354 units would consist of the 200 units last purchased plus 154 units from the preceding purchase.

$\frac{\text { Date }}{4 / 20}$	200 units $\times \$ 2.64=\$ 528.00$
$4 / 03$	$\frac{154}{354}$
	units $\times \$ 2.40=\underline{\$ 369.60}$
$\$ 897.60$	

THE LIFO METHOD

The last-in, first-out (LIFO) costing method is based on the assumption that the cost of the inventory remaining is determined by the cost of the units purchased the earliest.

EXAMPLEC

Under the LIFO method, the 354 units would consist of the 350 units on hand on 1/01 plus 4 units from the first purchase on 3/02.

Date
$1 / 01 \quad 350$ units $\times \$ 2.10=\$ 735.00$
$3 / 02 \quad \frac{4}{354}$ units $\times \$ 2.36=\frac{\$ 9.44}{\$ 744.44}$
Ending inventory at LIFO cost

CONCEPT CHECK 17.2

The inventory record sheets for Hairbrushes at Debbie's Beauty Supply show 5,000 units purchased (or on hand) at a total cost of $\$ 10,240$. The inventory at year's end was 1,500 units. Compute the value of the ending inventory by each of the three methods: average cost, FIFO, and LIFO.

Date	Units Purchased	Cost	Extension	
1/01	2,000	\$2.00	\$ 4,000	Average Cost: $\$ 10,240 \div 5,000=\$ 2.048$
1/30	200	2.10	420	$1,500 \times \$ 2.05($ rounded $)=\$ 3,075$
2/20	700	2.10	1,470	
3/17	1,100	2.00	2,200	FIFO: $(500 \times \$ 2.10)+(500 \times \$ 2.20)+$
10/30	500	2.20	1,100	$(500 \times \$ 2.00)=\$ 3,150$
11/17	500	2.10	1,050	
	$\overline{5,000}$		\$10,240	LIFO: $(1,500 \times \$ 2.00)=\$ 3,000$

Computing Inventory at the Lower of Cost or Market Value

Financial statements usually present the ending inventory at its cost value, computed by using the average, FIFO, or LIFO costing method. However, in some cases the market value (current replacement cost) of goods is lower than their original or average cost. Most companies prefer to show the lower of cost or market value in their inventories. When market value exceeds the cost, the cost is used; when the cost exceeds market value, market value is used.

Learning Objective

Compute inventory by using the lower of cost or market value.

S T E P S to Determine the Lower of Cost or Market (LCM) Inventory Value

1. Compute the unit or total cost for each type of inventory item, using the average, FIFO, or LIFO costing method.
2. Determine the market value for each inventory item.
3. Compare the cost value from Step 1 with the market value from Step 2 and choose the lower of the two.
4. Compute the extension amount for each item based on the lower amount.
5. Sum the amounts in Step 4 to determine the total inventory value under LCM.

EXAMPLE D

Under LCM, using the average cost method illustrated in example A, the total inventory shown in Figure 17-1 would be valued at $\$ 13,802.13$.

Description	(A) Quantity	STEP 1	STEP 2	STEP 3	STEP 4	
		(B)	(C)	(D)		
		Unit Price (Average Cost)	Unit Price at Market	Lower of (B) or (C)	Extension	$\times \mathrm{D})$
Ignition terminals - 746083	318	\$36.14	\$35.50	\$35.50	\$11,289.00	Market
Odometer cables-\#007614	73	9.97	11.00	9.97	727.81	Cost
Wiper blades, compact - \#417654	38	4.71	4.70	4.70	178.60	Market
Spark plugs, 0.14-\#772034	354	2.34	2.64	2.34	828.36	Cost
Hood/trunk latches - \#476508	58	13.42	14.10	13.42	778.36	Cost
Total					\$13,802.13	STEP 5

EXAMPLE E

Under LCM, using the FIFO cost method illustrated in example B, the FIFO cost for the inventory for Quickstart spark plugs would be \$897.60. Combining LCM with FIFO for the Quickstart spark plugs illustrated in example B, the ending inventory for this one item would be valued at $\$ 897.60$ because the market value ($\$ 934.56$) is higher than the FIFO cost.

			Market Value		
			(C)	(D)	
	(A)	(B)	Unit Price	Total	Lower of
Description	Quantity	FIFO Cost	at Market	$(\mathrm{A} \times \mathrm{C})$	(B) or (D)
Spark plugs	354	\$897.60	\$2.64	\$934.56	\$897.60 Cost

CONCEPT CHECK 17.3

L \& L Records' inventory shows the following. Compute the inventory value at the lower of cost or market.

Description	Quantity	Cost	Market	Extension	
Classical \#3	300	\$ 7.07	\$10.10	\$2,121.00	Cost
Western \#8	180	9.10	8.07	1,452.60	Market
Modern-light \#11	410	11.17	12.08	4,579.70	Cost
Rock-new \#4	89	12.10	12.10	\$1,076.90	Cost/market
Total				\$9,230.20	

Estimating Inventory Value

For monthly financial statements, inventory frequently is estimated without a physical count or a perpetual inventory system. The method usually used to estimate month-end inventory is called the gross profit method. This method involves estimating the cost of goods sold and subtracting this amount from the sum of the opening inventory and purchases made during the month. Note that beginning inventory (BI) is the ending inventory from the month before and purchases (\mathbf{P}) are those goods for sale that have been purchased during the current month. The gross profit method is based on the formula

> Beginning inventory (BI)
> + Purchases (P)
> Cost of goods available for sale
> - Cost of goods sold (CGS) (estimated)

> Ending inventory (EI) (estimate)

Without a physical inventory, a precise cost of goods sold can't be determined. In this case, it is estimated by applying a markup percentage rate to net sales (total sales less sales returned and adjustments for the period). The net sales (100\%) less this markup rate (percent) equals the cost of goods sold (percent). For instance, if the markup rate were 30%, the cost of goods sold would be $100 \%-30 \%=70 \%$. If the rate of markup were 40%, the cost of goods sold would be $100 \%-40 \%=60 \%$.

EXAMPLE F

Assume that Warren's Auto Parts had a beginning inventory of \$80,000. During the month, the company purchased and received \$50,000 in goods and had net sales of $\$ 90,000$. Throughout the month, Warren's maintained a 40% markup on all sales. Its cost of goods sold would be computed as follows.

Net sales for the month	$\$ 90,000$
Cost of goods sold (estimated)	$\$ 54,000 \quad[\$ 90,000 \times(100 \%-40 \%)=\$ 90,000 \times 0.60]$

Warren's Auto Parts would then determine its ending inventory (estimated) as follows:
Inventory, beginning of month
\$80,000
Purchases for month
Goods available for sale
$\begin{array}{r}+50,000 \\ \hline \$ 130,000\end{array}$
Cost of goods sold (estimated)
$\begin{array}{r}-54,000 \\ \hline\end{array}$
Ending inventory (estimated)
$\$ 76,000$
$\begin{array}{ll}\text { Net sales for the month } & \$ 90,000 \\ \text { Cost of goods sold (estimated) } & \$ 54,000 \quad[\$ 90,000 \times(100 \%-40 \%)=\$ 90,000 \times 0.60]\end{array}$

Learning Objective

Estimate inventory by using cost of goods sold.

Sometimes a company's markup rate is based on cost rather than selling price. In this case, if the markup on cost were 30%, the cost of goods sold would be net sales divided by 130%. If the markup on cost were 40%, the cost of goods sold would be net sales divided by 140%.

EXAMPLE G

Assume that Warren's Auto Parts had a beginning inventory of $\$ 80,000$. During the month, it had purchases of $\$ 50,000$ and net sales of $\$ 90,000$. Throughout the month, Warren's maintained a markup of 50% based on cost. What were Warren's cost of goods sold and ending inventory?

Beginning inventory
\$80,000
$\begin{array}{ll}\text { Purchases } & \frac{+50,000}{\text { Cost of goods available for sale }} \quad \begin{array}{l}\$ 130,000\end{array}, ~\end{array}$
Cost of goods sold (estimated) $\quad-60,000$
Ending inventory (estimated) \$70,000

$$
(\$ 90,000 \div 150 \%)
$$

CONCEPT CHECK 17.4

C \& S Electronics records show the following. Compute the estimated ending inventory at cost.

Beginning inventory	$\$ 24,000$	Net sales for period	$\$ 60,000$
Purchases for period $\quad \$ 33,000 \quad$ Markup based on retail	40%		
$\$ 24,000+\$ 33,000=\$ 57,000$ cost of goods available			
$\$ 60,000 \times 60 \%=\$ 36,000$ cost of goods sold			
$\$ 57,000-\$ 36,000=\$ 21,000$ ending inventory			

Computing Inventory Turnover

Learning Objective

Compute inventory turnover.

Inventory turnover is the number of times the average inventory is converted into sales during the year. Inventory turnover is very high for a grocery store or ice cream parlor; it is very low for a specialty jewelry store or an antique shop. Standard turnover rates for corporate businesses are published. Some standard rates are 3.5 for hardware stores, 12.7 for grocery stores, 3.3 for nurseries, and 39.3 for stations and mini-marts.

Before turnover can be determined, average inventory must be calculated. Average inventory is the average of the inventories taken over a specific period of timeannually, semiannually, quarterly, or monthly.

Inventory is taken

Annually (once a year)
Semiannually (every six months)
Quarterly (every three months)
Monthly (every month)

Average inventory (at retail or cost)

$(\mathrm{BI}+\mathrm{EI}) \div 2$
(BI + end of 6 months +EI$) \div 3$
$(\mathrm{BI}+3$ quarterlys +EI$) \div 5$
$(\mathrm{BI}+11$ monthlys +EI$) \div 13$

Computation of inventory turnover can be based on either retail (selling) price or cost. Inventory turnover at retail is net sales divided by average inventory.

S T E P S to Compute Inventory Turnover at Retail

1. Determine net sales.
2. Compute average inventory using retail price.
3. Compute inventory turnover at retail: Net sales \div Average inventory at retail.

EXAMPLE H

Assume that inventories for the year, based on selling price, are as follows: beginning, $\$ 90,000$; end of month $3, \$ 80,000$; end of month $6, \$ 100,000$; end of month $9, \$ 70,000$; and end of month 12 (ending), $\$ 60,000$. Net sales for the year are $\$ 520,000$. Compute the inventory turnover at retail.

STEP 2

$$
\begin{aligned}
\text { Average inventory }= & (\$ 90,000+\$ 80,000+\$ 100,000+\$ 70,000 \\
& +\$ 60,000) \div 5 \\
= & \$ 400,000 \div 5=\$ 80,000
\end{aligned}
$$

STEP 3
Inventory turnover at retail $=\$ 520,000$ net sales

$$
\div \$ 80,000 \text { average inventory }=6.5 \text { times }
$$

Note: The value of net sales and average inventory must both be figured at retail.

Some retailers prefer to express their rate of inventory turnover in terms of cost. Inventory turnover at cost is obtained by dividing the cost of goods sold (CGS) during a period by the average inventory for the same period computed at cost prices. (CGS is simply net sales at cost.)

STEPS to Compute Inventory Turnover at Cost

1. Compute the cost of goods sold using the formula $\mathrm{BI}+\mathrm{P}-\mathrm{EI}=\mathrm{CGS}$.
2. Compute the average inventory at cost.
3. Compute inventory turnover at cost: Cost of goods sold \div Average inventory at cost.

EXAMPLE I

Assume that beginning inventory cost $\$ 60,000$, purchases cost $\$ 300,000$, and ending inventory cost $\$ 80,000$. Compute the inventory turnover at cost.

STEP 1	Cost of goods sold:	Inventory at beginning of year	\$ 60,000
		Purchases during year	+ 300,000
		Goods available for sale	\$ 360,000
		Inventory at end of year	- 80,000
		Cost of goods sold	\$ 280,000
STEP 2	Average inventory	$\begin{aligned} & =(\$ 60,000 \mathrm{BI}+\$ 80,00 \mathrm{EI}) \div 2 \\ & =\$ 140,000 \div 2=\$ 70,000 \end{aligned}$	

STEP 3
Inventory turnover at cost $=\$ 280,000$ cost of goods sold

$$
\div \$ 70,000 \text { average inventory }=4.0 \text { times }
$$

Note: The value of goods sold and average inventory must both be figured at cost.

CONCEPT CHECK 17.5

Brinkman Scooter Shop has two branches (A and B), each using a markup of 50\% of retail. Compute ending inventory, average inventory, and inventory turnover based on retail for each branch from the following data.

	Branch A	Branch B
Net sales	\$1,400,000	\$1,200,000
Beginning inventory	220,000	300,000
Inventory (March 31)	190,000	400,000
Inventory (June 30)	280,000	350,000
Inventory (September 30)	280,000	360,000
Inventory (December 31)	200,000	300,000
Average inventory: A-(\$ $B-(\$$	$\begin{aligned} & +190,000 \\ & +400,000 \end{aligned}$	$\begin{aligned} & 00+280,00 \\ & 00+360,00 \end{aligned}$
Retail turnover: A-\$1,40 $\text { B- } \$ 1,20$	$\begin{aligned} & \$ 234,000= \\ & \$ 342,000= \end{aligned}$	
COMPLETE ASSIGNMENT	nd 17.2.	

average cost method
average inventory
beginning inventory (BI)
cost of goods sold (CGS)
ending inventory (EI)
extension
first-in, first-out (FIFO) costing method
gross profit method
inventory sheet
inventory turnover
inventory turnover at cost
inventory turnover at retail
last-in, first-out (LIFO) costing method
lower of cost or market value (LCM)
market value
net sales
perpetual inventory
physical inventory
purchases (P)

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective
17.1
Account for inventory by inventory sheets and reports
from a perpetual inventory system

Example

1. Compute the Balance on Hand after each transaction:

Date	Units In	Units Out	Balance on Hand
$12 / 01$			34,768
$12 / 17$	7,789		-
$12 / 19$		17,072	-
$12 / 20$	11,789		
$12 / 31$		14,490	

17.2

Compute inventory value by the average cost, LIFO, and FIFO methods
2. From the data shown, compute the ending inventory by the average cost, FIFO, and LIFO methods for Redwood Stove Company's stove part \#717. The ending inventory, by physical count, was 300.

Stove Part \#717

Date	Units In	Cost	Extension	Ending Inventory Value:
$1 / 12$	200	$\$ 3.00$	$\$ 600$	
$1 / 14$	300	3.20	960	Average cost:
$1 / 15$	500	3.00	1,500	FIFO:
$1 / 17$	200	3.10	620	LIFO:
$1 / 18$	400	3.00	1,200	
Total	$\frac{1,600}{1,60}$		$\$ 4,880$	

3. Compute Redwood Stove Company's inventory value at the lower of cost or market value.

Description	Quantity	Cost	Market	Extension
Stoves	24	$\$ 277.50$	$\$ 350.50$	-
Piping	90	34.50	27.00	-
Hearths	75	78.00	78.00	-
Screens	50	105.00	125.00	-
Tool Sets	28	65.50	55.00	-
\quad Total				-

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

17.4

Estimate inventory by computing an estimated cost of goods sold

Example

4. Redwood Stove Company has a markup of 50% of retail. Last year it had total sales of $\$ 400,000$. It had a beginning inventory of $\$ 150,000$ based on cost. It purchased merchandise for $\$ 180,000$ during the year. Compute the ending inventory at cost.
5. Two years ago Redwood Stove Company used a markup of 65% of cost. That year's data are shown. Compute ending inventory, average inventory, and inventory turnover at retail.

Net sales	$\$ 900,000$	Purchases (cost)	600,000
Beginning inventory—retail	300,000	Inventory—retail	450,000
		(June 30)	

Review Problems for Chapter 17

(1) The D\&D Company has 45 units on hand January 1. During the month, units in total 320 and units out total 285 . What is the balance on hand January 31 ? \qquad

2 According to physical count, Dawson Lumber had 3,250 units in inventory March 31. Dawson Lumber's beginning inventory and purchases for the first quarter were as follows:

Jan. 1 Beginning Inventory 2,500 units @ \$25.00
Jan. 15 Purchased 5,000 units @ \$27.50
Feb. 5 Purchased 6,000 units @ \$26.25
Mar. 10 Purchased 3,000 units @ \$27.00
Calculate the value of the inventory March 31 and cost of goods sold for the quarter based on the average, FIFO, and LIFO costing methods.

Inventory Value Cost of Goods Sold
a. Average cost: \qquad
\qquad
b. FIFO cost: \qquad
\qquad
c. LIFO cost: \qquad
\qquad

3 Lansky Company's inventory January 1 was valued at $\$ 41,000$. During the first quarter, $\$ 365,000$ of goods were purchased and sales totaled $\$ 550,000$. Estimate the inventory March 31 if Baxter's markup is 40% based on selling price. \qquad

4 Compute the average inventory cost of goods sold, and turnover based on cost using the following data. Kelly Pet Supplies takes inventory every 6 months and had inventory of $\$ 35,000$ on January $1, \$ 42,600$ on June 30, and $\$ 38,200$ on December 31. Kelly's purchased goods totaling $\$ 275,000$ during the year and had sales of $\$ 390,000$.
a. Average inventory: \qquad
b. Cost of goods sold: \qquad
c. Turnover: \qquad

Assignment 17.1: Inventory Cost

Name
Date Score

A (40 points) Compute the extensions and totals. (1 point for each correct answer)

1. The inventory of Michelle's Clock Shop shows the following items, at both costs and market prices.

Determine the total value of the inventory at the lower of cost or market price for each item.

	Unit Cost Price	Quantity Market Price	Extension at Lower of Cost or Market	
Description	$\$ 36.00$	$\$ 34.80$	-	
Quartz clock and pen set	22	15.60	19.20	-
Travel alarm clock	42	23.00	23.70	-
Ultrasonic travel clock	16	19.80	18.60	-
Digital alarm clock	40	21.00	21.00	-
AM/FM clock radio	85	54.00	57.50	-
Digital clock radio	9			-

2. A retail furniture dealer counted the following goods in inventory on December 31. An accountant recommended that the inventory items be valued at the lower of cost or market price. Compute the total value of the inventory based on the lower of cost or market price.

Article	Quantity	Unit Cost Price	Extension at Cost	Unit Market Price	Extension at Market	Inventory Value at Lower of Cost or Market
Armchairs, wood	24	\$ 40.00		\$ 68.50		
Armchairs, tapestry	6	75.00		105.00		
Armchairs, Windsor	12	115.00		85.00		
Beds, bunk	8	85.50		75.00		
Bedroom suites	3	297.50		410.00		
Tables, coffee	30	63.00		62.00		
Chairs, kitchen	24	23.00		32.00		
Dining tables	8	117.40		95.70		
Dining suites	5	288.80		395.00		
Sofa sets	9	479.60		325.00		
Total						

B (60 points) Compute the value of ending inventory. (10 points for each correct answer)

3. Garcia Manufacturing Company made purchases of a material as shown in the following listing. The inventory at the end of the year was 3,500 units. Compute the value of the inventory by each of the three methods: (a) average cost; (b) first-in, first-out; and (c) last-in, first-out.

Date	Units	Unit Cost	Total Cost
Jan 5	3,600	$\$ 6.20$	$\$ 22,320$
Mar. 11	3,000	5.80	17,400
May 14	5,300	6.00	31,800
July 8	1,600	6.30	10,080
Sept. 7	4,000	6.20	24,800
Nov. 10	$\underline{2,500}$	6.40	$\frac{16,000}{\text { Total }}$
20,000			$\$ 122,400$

a. Average cost: \qquad
4. The Willand Company had 320 units on hand at the beginning of the year, with a unit cost of $\$ 4.20$. The number and unit cost of units purchased and the number of units sold during the year are shown. What would be the value of the ending inventory of 380 units based on the (a) average cost; (b) first-in, first-out; and (c) last-in, first-out costing methods?

Date	Units Purchased	Unit Cost	Units Sold	Units on Hand	a. Average cost: b. First-in, first-out: Jan. 1
	$\$ 4.20$		320		c. Last-in, first-out:
Feb. 2		190	130		
Apr. 16	200	$\$ 4.32$		330	
June 10	300	$\$ 4.40$		630	
Aug. 5			280	350	
Oct. 12	250	$\$ 4.48$		600	
Nov. 27			220	380	

Assignment 17.2: Inventory Estimating and Turnover

Name

Date

Score

A (50 points) Solve the following problems. (2 points for each correct answer)

1. Fill in the blanks in each of the following calculations with the correct amount. Use the formulas

Beginning inventory + Purchases $=$ Goods available for sale
Goods available for sale - Cost of goods sold $=$ Ending inventory

	Store A	Store B	Store C	Store D	Store E
Beginning inventory	$\$ 80,000$			$\$ 37,000$	
Purchases		90,000			$\$ 42,000$
Goods available for sale	200,000	210,000	109,000		117,000
Less cost of goods sold	125,000	128,000		30,000	135,000
Ending inventory				$\$ 23,000$	

2. Each of the five stores in problem 1 had the net sales shown. What was the average percent of markup, based on cost, for each of the five stores? What was the average percent of markup, based on selling price, for each of the five stores?

Net sales
Markup-cost

Store A	Store B	Store C	Store D	Store E
$\$ 200,000$	$\$ 150,000$	$\$ 172,000$	$\$ 40,000$	$\$ 100,000$
-		-		

Assignment 17.2 Continued

3. The Country Kitchen takes inventory at retail sales price every 3 months. Its inventory at the beginning of last year was $\$ 40,500$; at 3 months, $\$ 45,000$; at 6 months, $\$ 52,500$; at 9 months, $\$ 49,500$; and at the end of the year, $\$ 44,000$. Net sales for the year were $\$ 296,800$.
a. What was the average inventory? \qquad
b. What was the turnover? \qquad
4. Steve's Auto Shop began the year with an inventory of $\$ 33,500$. Purchases during the year totaled $\$ 194,200$. The inventory at the end of the year was $\$ 36,400$.
a. What was the cost of goods sold? \qquad
b. What was the average inventory? \qquad
c. What was the turnover? \qquad

Score for A (50)

B (50 points) Solve the following problems. (Points for each correct answer as marked)

5. Jackson Wholesalers' records showed these figures.

	Cost	Retail Price			
Beginning inventory	$\$ 19,793$		$\$ 32,990$		Net sales for the year

Compute the ending inventory:
a. At cost: \qquad
b. At retail price: \qquad

Assignment 17.2 Continued

6. The JM Clothing store kept all merchandise records in terms of selling price. On July 1, the JM books showed the following information.
Beginning inventory, January 1: \$23,500
6-month purchases: 99,000
6-month net sales: 87,800
What was the estimated ending inventory on July 1? (5 points) \qquad
7. The Kid's Land Clothing Store kept all purchase and inventory records on a cost basis. The owner marked up all goods at 40.0% of the cost price. On July 1, the Kid's Land books showed the following information.

Beginning inventory, January 1:	$\$ 1,126,000$
6-month purchases:	$2,221,400$
6-month net sales:	$2,508,200$

What was the estimated inventory, at cost, on July 1 ? (5 points) \qquad
8. Amy's Art Shop kept all inventory and sales records on the basis of retail prices. It recorded purchases at cost and marked up its merchandise at 120% of cost. On January 1 , its inventory of art was $\$ 260,000$. During the year, its purchases were $\$ 300,000$ and net sales were $\$ 730,000$. What was its ending inventory? (5 points) \qquad

Assignment 17.2 Continued

9. From the information given, calculate the estimated cost of goods sold and ending inventory. Round to the nearest dollar. (1 point for each correct answer)

Cost of Goods Available for Sale	Net Sales	Markup Based on Cost	Markup Based on Sales	Estimated Cost of Goods Sold	Estimated Ending Inventory
a. \$204,000	\$260,000	30\%			
b. 268,000	260,000		30\%		
c. 444,000	350,000		27\%		
d. 444,000	350,000	27\%			
e. 37,500	36,000	50\%			
f. 368,000	400,000		60\%		
g. 420,000	600,000		40\%		
h. 440,000	360,000	15\%			
i. 125,000	180,000	60\%			
j. 130,000	200,000	100\%			

10. Maurice Company sells hair products. From the following inventory record sheets for Baby Soft Shampoo, determine the total units in, total amount, and the value of the ending inventory of 300 bottles based on average cost, FIFO, and LIFO. (2 points for each correct answer)

Date	Units In	Cost	Amount		
$1 / 11$	400	$\$ 3.40$	$\$ 1,360$		Average cost:
$1 / 23$	50	3.00	150		
$2 / 10$	100	3.20	320	FIFO:	-
$2 / 20$	200	3.30	660		
$2 / 25$	-80	3.50	$\underline{280}$	LIFO:	
	-		-		

Depreciation

Learning Objectives
By studying this chapter and completing all assignments you will be able to:

Compute depreciation using the units of production method.

Learning Objective
Compute depreciation using the declining-balance method.

Compute depreciation using the sum-of-the-years-digits method.

Learning Objective
Compute depreciation for income tax purposes using the Modified Accelerated Cost Recovery System (MACRS).

Learning Objective
Compute partial-year depreciation using the five primary different depreciation methods covered.

Depreciation is the decrease in the value of assets owned by a business, such as automobiles, buildings, and computers. Depreciation is caused by wear or by obsolescence (becoming out-of-date). In the toy manufacturing industry, some dies and tools last only 1 or 2 years because of changing fads. An automobile will wear out after a number of years or miles of use. Buildings lose value as wood, electrical wiring, and fixtures deteriorate and as design characteristics and owners' needs change. A business computer frequently becomes obsolete in 3 to 5 years.

In business, depreciation is figured on almost all physical assets owned and in use. Depreciation is deducted from gross profits as an expense. In this chapter, we present five common methods of calculating depreciation: the straight-line, units-of-production, declining-balance, sum-of-the-years-digits, and Modified Accelerated Cost Recovery System methods.

Computing Depreciation with the Straight-Line Method

Compute depreciation using the straight-line method.

The straight-line (SL) method of determining depreciation is the easiest method. It distributes depreciation evenly over the useful life of an asset, assigning equal amounts to designated units (miles, number of items made, etc.) or periods (usually months or years). It is based on the assumption that wear and obsolescence occur evenly over the life of the property. The three factors used to compute depreciation by the straight-line method are

1. The original cost, which includes the price paid for an item and any freight charges and expenses for installation. Cost includes anything necessary to get the asset to where it is to be used and in a condition to be used.
2. The estimated service life, which is the length of time the buyer expects to be able to use an asset. The estimated service life may be stated in terms of years or months that normally may be expected during the life of the asset.
3. The estimated scrap value (SV), which is the amount the owner of an asset expects to receive upon disposing of it at the end of its estimated service life.
The basic formula for computing the amount of depreciation under the straight-line method is
(Original cost - Scrap value) \div Estimated service life in periods of time
$=$ Depreciation amount for 1 unit or period

EXAMPLEA

An office computer costing \$12,500 has an estimated life of 5 years and an estimated scrap value of $\$ 900$. What is the annual depreciation amount?
$\$ 12,500$ cost $-\$ 900 \mathrm{SV}=\$ 11,600$ estimated total depreciation
$\$ 11,600 \div 5$ estimated total years $=\$ 2,320$ annual depreciation

Computing Depreciation with the Units-of-Production Method

The units-of-production method of determining depreciation distributes depreciation based on how much the asset is used. It is usually expressed in miles driven, hours used, tons hauled, or units produced. Calculation is like that used in the straight-line method except that miles, hours, tons, or units are used rather than months or years. The basic formula for computing the amount of depreciation under the units-of-production method is
(Original cost - Scrap value) \div Estimated life in service units
$=$ Depreciation amount for 1 unit

Example B shows depreciation of an asset based on the number of hours it is used. First you must find the hourly depreciation and then multiply it by the number of hours operated during a particular month or year.

EXAMPLE B

A machine costing \$10,000 has an estimated life of 60,000 hours of operation and an estimated scrap value of $\$ 400$. If it was operated for 2,800 hours during the first year, how much depreciation expense will be shown for the first year?
$\$ 10,000$ cost $-\$ 400 \mathrm{SV}=\$ 9,600$ estimated total depreciation
$\$ 9,600 \div 60,000$ estimated total hours $=\$ 0.16$ hourly depreciation
2,800 hours operated $\times \$ 0.16=\$ 448$ first year's depreciation.

Example C shows depreciation in terms of the number of units that it will produce during its lifetime: Divide the number of units into the estimated total depreciation amount to get the depreciation per unit.

EXAMPLEC

A press that costs $\$ 145,000$ will produce an estimated 3,500,000 units in its life and has an estimated scrap value of $\$ 5,000$. If it produced 235,000 units this year, how much depreciation will be shown for the year?
$\$ 145,000$ cost $-\$ 5,000 \mathrm{SV}=\$ 140,000$ estimated total depreciation $\$ 140,000 \div 3,500,000$ estimated total units $=\$ 0.04$ depreciation per unit 235,000 units produced $\times \$ 0.04=\$ 9,400$ first year's depreciation

BOOK VALUE

The book value of an asset is the original cost minus the accumulated depreciation, or the total of all depreciation to that time.

EXAMPLED

At the end of the first year, the book value of the press in example C would be
$\$ 145,000$ cost $-\$ 9,400$ accumulated depreciation $=\$ 135,600$

Learning Objective

Compute depreciation using the units-of-production method.

The book value can be determined at any time in the life of an asset.

EXAMPLE E

At the end of the third year, the book value of the computer in example A would be computed as follows:
\$2,320 annual depreciation $\times 3$ years $=\$ 6,960$ accumulated depreciation
$\$ 12,500$ cost $-\$ 6,960=\$ 5,540$.

CONCEPT CHECK 18.1

On January 1, Oakdale Appliances bought a new delivery truck for \$48,000. Oakdale's accountant estimated a truck life of 200,000 miles and a scrap (trade-in) value of $\$ 4,000$. In the first year, the truck was driven 38,000 miles; in the second year, it was driven 46,000 miles. Compute the depreciation and book value for the first 2 years.

$$
\begin{array}{ll}
\$ 48,000 \text { cost }-\$ 4,000 \mathrm{SV}=\$ 44,000 \text { estimated total depreciation } \\
\$ 44,000 \div 200,000 \text { miles }=\$ 0.22 \text { depreciation per mile } \\
\text { Year 1: } & 38,000 \text { miles } \times \$ 0.22 \text { per mile }=\$ 8,360 \text { depreciation } \\
& \$ 48,000 \text { cost }-\$ 8,360=\$ 39,640 \text { book value } \\
\text { Year 2: } & 46,000 \text { miles } \times \$ 0.22 \text { per mile }=\$ 10,120 \text { depreciation } \\
& \$ 39,640 \text { year } 1 \text { book value }-\$ 10,120=\$ 29,520 \text { new book value } \\
& \text { or } \\
& \$ 48,000 \text { cost }-(\$ 8,360+\$ 10,120) \text { accumulated depreciation }=\$ 29,520 \text { book value }
\end{array}
$$

Computing Depreciation with the Declining-Balance Method

Learning Objective

Compute depreciation using the declining-balance method.

The declining-balance (DB) method is based on the theory that depreciation is greatest in the first year and less in each succeeding year.

STEPS to Compute Depreciation, Using the DB Method

1. Divide 100% by the estimated years of useful life to determine the basic depreciation rate.
2. Multiply the basic depreciation rate by 2 (double-declining-balance) or by 1.5 ($\mathbf{1 5 0 \%}$-declining-balance) to determine the declining-balance depreciation rate.
3. Multiply the declining-balance depreciation rate by the book value of the asset at the beginning of the year to determine the depreciation amount for that year. (For the first year, the book value at the beginning of the year equals the asset cost. Do not subtract the scrap value.)

Step 3 is repeated each year, using the new (declined) book value (last year's beginning book value minus last year's depreciation amount). The same rate is used each year. The declining-balance rate continues to apply until the scrap value is reached. The item may not be depreciated below its scrap value.

EXAMPLE F

Use the declining-balance method with an annual double-declining balance to depreciate the office computer in example A.

STEP 1

$$
100 \% \div 5 \text { years }=20 \%
$$

STEP $2 \quad 20 \% \times 2=40 \%$ annual double-declining-balance rate.

Year		Beginning		STEP 3	
		Book Value	Rate	Depre	ciation
1		\$12,500	$\times 40 \%$	\$5,000	
2	\$12,500-\$5,000 =	7,500	$\times 40 \%$	3,000	
3	$7,500-3,000=$	4,500	$\times 40 \%$	1,800	
4	$4,500-1,800=$	2,700	$\times 40 \%$	1,080	
5	$2,700-1,080=$	1,620	$\times 40 \%=$	648	
6	$1,620-648=$	972	$\times 40 \%=$	388.8	\$72*

*As book value (\$972) is larger than estimated scrap value (\$900), there is some depreciation in the sixth year. However, the calculated depreciation $(\$ 388.80)$ is greater than book value minus scrap value $(\$ 972-\$ 900=\$ 72)$.
Thus depreciation is limited to the smaller amount, $\$ 72$.

CONCEPT CHECK 18.2

On January 1, Oakdale Appliances bought a new delivery truck for $\$ 48,000$. Oakdale's accountant estimated a truck life of 4 years and a scrap value of $\$ 4,000$. Compute the depreciation for the first 2 years using the 150%-declining-balance method.
$\$ 48,000$ cost
$100 \% \div 4$ years $=25 \%$
$25 \% \times 1.5=37.5 \%$ annual 150%-declining-balance rate
Year 1: $\quad \$ 48,000 \times 37.5 \%=\$ 18,000$ depreciation
$\$ 48,000-\$ 18,000=\$ 30,000$ book value
Year 2: $\quad \$ 30,000 \times 37.5 \%=\$ 11,250$ depreciation

Computing Depreciation with the Sum-of-the-Years-Digits Method

Learning Objective

Compute depreciation using the sum-of-the-years-digits method.

The sum-of-the-years-digits (SYD) method also is used to compute a greater depreciation amount in the earlier years of an asset's life. The book value decreases more slowly than under the declining-balance method. This method's name comes from the calculation done in Step 1.

STEPS to Compute Depreciation Using the SYD method

1. Compute the sum of all the years digits in the estimated life of the asset. Use this shortcut formula:

$$
\frac{(n+1) \times n}{2}
$$

where $n=$ number of years in the estimated life.
2. Determine the current year's depreciation fraction by using this formula: Estimated years of life remaining at the beginning of the current year \div Sum of all digits from Step 1 .
3. Multiply the total depreciation amount (Cost -SV) of the asset by the depreciation fraction from Step 2 to determine depreciation for the current year.

Note that each year a new depreciation fraction from Step 2 is determined and Step 3 is repeated. The sum of all digits in Step 1 and the total depreciation amount in Step 3 are the same every year.

EXAMPLE G

Under the sum-of-the-years-digits method, the office computer in example A would be depreciated as follows.

CONCEPT CHECK 18.3

On January 1, Oakdale Appliances bought a new delivery truck for $\$ 48,000$. Oakdale's accountant estimated a truck life of 4 years and a scrap value of $\$ 4,000$. Compute the depreciation for the first 2 years using the sum-of-the-years-digits method.

$$
\begin{aligned}
& \$ 48,000 \text { cost }-\$ 4,000 \mathrm{SV}=\$ 44,000 \text { to be depreciated } \\
& \frac{(4+1) \times 4}{2}=10(\text { or } 1+2+3+4=10)
\end{aligned}
$$

Year 1: $\quad \frac{4}{10} \times \$ 44,000=\$ 17,600$ depreciation
Year 2: $\quad \frac{3}{10} \times \$ 44,000=\$ 13,200$ depreciation

Computing Depreciation with the Modified Accelerated Cost Recovery System

Businesses use the depreciation methods previously described for financial reporting. However, federal tax laws regulate how depreciation must be taken for income tax purposes. The IRS requires that the Modified Accelerated Cost Recovery System (MACRS) be used for depreciation of property purchased and put into service after 1986. MACRS "recovers" the entire cost of depreciable property over the allowable period. No scrap value is permitted.

For common business assets, MACRS provides depreciation periods of $3,5,7,10,15$, and 20 years. Examples of assets from each of these categories are as follows:

3 years: Property with a life of 4 years or less—some types of equipment used for research and development, some machine tools, some tractors, and racehorses more than 2 years old when placed in service.
5 years: Property with a life of 4 to 10 years-computers, automobiles and taxis, office machines, certain telephone equipment, and trucks and buses.

7 years: Property with a life of 10 to 15 years-office furniture and fixtures, some agricultural and horticultural structures, and commercial airplanes.

10 years: Property with a life of 16 to 19 years-tugboats, vessels, and barges.
15 years: Property with a life of 20 to 24 years-this category usually contains certain municipal, public utility, and telephone distribution plants.
20 years: Property with a life of 25 or more years—farm buildings and certain municipal infrastructure items such as sewers.

Figure 18-1 shows IRS annual percentages used to compute depreciation by MACRS.

Learning Objective

Compute depreciation for income tax purposes using the Modified Accelerated Cost Recovery System (MACRS).

	Appropriate Percentage					
3-Year	5-Year	7-Year	10-Year	15-Year	20-Year	
Class	Class	Class	Class	Class	Class	
1	33.33	20.00	14.29	10.00	5.00	3.750
2	44.45	32.00	24.49	18.00	9.50	7.219
3	14.81	19.20	17.49	14.40	8.55	6.677
4	7.41	11.52	12.49	11.52	7.70	6.177
5		11.52	8.93	9.22	6.93	5.713
6		5.76	8.92	7.37	6.23	5.285
7			8.93	6.55	5.90	4.888
8			4.46	6.55	5.90	4.522
9			6.56	5.91	4.462	
10			6.55	5.90	4.461	
11			3.28	5.91	4.462	
12				5.90	4.461	
13				5.91	4.462	
14				5.90	4.461	
15				5.91	4.462	
16				2.95	4.461	
17					4.462	
18					4.461	
19					4.462	
20					4.461	
21					2.231	

Note: The MACRS percentage for the first year is applicable to a partial or full year.

EXAMPLE H

Use the MACRS Depreciation Schedule shown in Figure 18-1 to depreciate the office computer in example A for tax purposes.

Year	Rate (\%)	Cost	Depreciation (Rounded)	Beginning Book Value	Current Depreciation	Ending Book Value
1	20.00	$\times \$ 12,500=$	\$2,500	\$12,500	- \$2,500	$=\$ 10,000$
2	32.00	$\times 12,500=$	4,000	10,000	- 4,000	$=6,000$
3	19.20	$\times 12,500=$	2,400	6,000	- 2,400	$=3,600$
4	11.52	$\times 12,500=$	1,440	3,600	- 1,440	$=2,160$
5	11.52	$\times 12,500=$	1,440	2,160	- 1,440	$=720$
6	5.76	$\times 12,500=$	720	720	- 720	$=0$

CONCEPT CHECK 18.4

On April 10, Oakdale Appliances bought a new delivery truck for $\$ 48,000$. Compute the depreciation for the first year and for the second year using the MACRS table (5-year class).

MACRS depreciation first year: $\quad \$ 48,000 \times 20.00 \%=\$ 9,600$ (effectively allows for $\frac{1}{2}$ year's depreciation) MACRS depreciation second year: $\quad \$ 48,000 \times 32.00 \%=\$ 15,360$ (full year's depreciation)

Computing Partial-Year Depreciation

Frequently, businesses are faced with the need to compute depreciation for only part of the year. Partial-year depreciation can be computed with any of the methods described in this chapter.

With the straight-line method, compute the depreciation amount for a partial year by dividing the annual depreciation amount by 12 and then multiplying that result by the number of months of use.

With the units-of-production method, simply multiply the number of units (miles or hours) used by the per-unit amount.

With the declining-balance method, find the current year's annual depreciation and then divide by 12 ; multiply that result by the number of months of use.

With the sum-of-the-years-digits method, first consider the overlapping years. To find the annual depreciation for the first partial year, divide by 12 and multiply the result by the number of months of use. From then on, every year will include the remaining fraction of the prior year's depreciation and the partial-year depreciation for the remainder of the current year.

MACRS tables automatically consider partial-year depreciation for the first and last years regardless of the date the item was placed in service.

EXAMPLE I

Office furniture costing $\$ 18,000$ and put in use on May 1 is expected to have a useful life of 10 years. Its estimated resale value is $\$ 1,500$. Using each of the four methods, compute the depreciation expense for May 1 through December 31 of the first tax year and all 12 months of the second year.

SL	$\frac{\text { Year }}{1 \text { st }}$		$\frac{\text { Calculation (rounded to the nearest dollar) }}{(\$ 18,000-\$ 1,500) \div 10 \times \frac{8}{12}=\$ 1,100}$
	2nd		$(\$ 18,000-\$ 1,500) \div 10=\$ 1,650$
DB (200%)	1 st	$\left(\frac{100 \%}{10}\right) \times 2 \times \$ 18,000 \times \frac{8}{12}=\$ 2,400$	
	2 nd	$(\$ 18,000-\$ 2,400) \times 20 \%=\$ 3,120$	

Learning Objective

Compute partial-year depreciation using the five primary different depreciation methods covered.

Method	Year	Calculation (rounded to the nearest dollar)
SYD	1st	$\frac{(10+1) \times 10}{2}=55$
	2nd	$\begin{aligned} & (\$ 18,000-\$ 1,500) \times \frac{10}{55} \times \frac{8}{12}=\$ 2,000 \\ & (\$ 18,000-\$ 1,500) \times \frac{10}{55} \times \frac{4}{12}=\$ 1,000 \\ & (\$ 18,000-\$ 1,500) \times \frac{9}{55} \times \frac{8}{12}=\$ 1,800 \end{aligned}$
MACRS	1st	\$18,000 $\times 14.29 \%=\$ 2,572.20$
(7-year class)	2nd	\$18,000 $\times 24.49 \%=\$ 4,408.20$

CONCEPT CHECK 18.5

In October, Oakdale Appliances bought a new mid-size van for $\$ 34,000$. It had an estimated scrap value of $\$ 4,000$ and useful life of 5 years. Compute the depreciation expense for the 3 months of the first year and for the full second year, using the 150\%-declining-balance and the sum-of-the-years-digits methods.

$\$ 34,000$ cost $-\$ 4,000$ scrap value $=\$ 30,000$ to be depreciated

Declining Balance

$100 \% \div 5$ years $\times 1.5=30 \%$
$30 \% \times \$ 34,000=\$ 10,200$
Year 1: $\quad \$ 10,200 \times \frac{3}{12}=\$ 2,550(3$ months $)$
Year 2: $\quad(\$ 34,000-\$ 2,550) \times 30 \%=\$ 9,435$ (full year)
Sum of the Years Digits
$\frac{(5+1) \times 5}{2}=15($ or $1+2+3+4+5=15)$
$\frac{5}{15} \times \$ 30,000=\$ 10,000$
Year 1: $\quad \$ 10,000 \times \frac{3}{12}=\$ 2,500(3$ months $)$
Year 2: $\quad \$ 10,000 \times \frac{9}{12}=\$ 7,500(9$ months $)$

$$
\begin{aligned}
& \frac{4}{15} \times \$ 30,000=\$ 8,000 \\
& \$ 8,000 \times \frac{3}{12}=\$ 2,000(3 \text { months }) \\
& \$ 7,500+\$ 2,000=\$ 9,500 \text { in year } 2
\end{aligned}
$$

COMPLETE ASSIGNMENTS 18.1 AND 18.2.

Chapter Terms for Review

accumulated depreciation	obsolescence
basic depreciation rate	150%-declining-balance
book value	original cost
declining-balance (DB) method	scrap value (SV)
declining-balance depreciation	straight-line (SL) method rate
sum-of-the-years-digits (SYD) method depreciation	units-of-production method
double-declining-balance	
Modimated service life	
Recovery System (MACRS)	

THE BOTTOM LINE

Review of chapter learning objectives:

Learning Objective Example

18.1

Compute depreciation, using the straight-line method

18.2

Compute depreciation using the units-of-production method
2. The Yellow Cab Company bought a new taxi for $\$ 42,000$ and estimated its useful life to be 200,000 miles, after which it would have a scrap value of $\$ 2,000$. Compute the depreciation for the first 7 months if the vehicle had been driven 37,600 miles.

18.3

Compute depreciation, using the declining-balance method

1. On January 1, 2000, the local Pepsi-Cola bottling franchise purchased a bottling machine for $\$ 320,000$. Freight was added for $\$ 12,000$. The cost of installation was $\$ 68,000$. It was estimated that the machine could be used for 80,000 hours, after which there would be no resale value. The machine was used 4,600 hours the first year, 4,300 hours the second year, and 5,200 hours the third year. Determine the straight-line depreciation per year based on the hours of use and the book value at the end of each year.
2. For $\$ 56,000$, a Gap clothing store bought display racks with an estimated life of 20 years and a scrap value of $\$ 4,000$. After 3 years, this store closed and sold the display racks for $\$ 32,000$. If the racks were depreciated by the declining-balance method (150% annual rate), how much less than the book value did the company receive? Round to the nearest dollar.

18.4

Compute depreciation, using the sum-of-the-yearsdigits method

18.5

Compute depreciation for income tax purposes, using the Modified Accelerated Recovery Systems (MACRS)

18.6

Compute partial-year depreciation using the four different depreciation methods covered
5. Bank One bought new calculators in July for $\$ 12,000$. Using the MACRS method (5-year class), show the rate, depreciation, and ending book value for the first 2 years.

Review Problems for Chapter 18

(1) Determine the annual declining-balance depreciation rate to be used for each of the following:
a. 150% declining balance, 12 -year life \qquad
b. 200% declining balance, 8 -year life \qquad
c. 125% declining balance, 5 -year life \qquad
d. 200% declining balance, 5 -year life \qquad
2 What fraction is to be used each year for sum-of-the-years-digits depreciation for an asset with a useful life of 4 years? \qquad
3 For which depreciation method(s) is salvage value not subtracted to calculate depreciation? \qquad
4 Lopez Construction Company purchased construction equipment for $\$ 116,000$ at the beginning of the year. It is estimated that the equipment will have a useful life of 12 years and will have a scrap value of $\$ 8,000$.
a. Calculate the annual depreciation if Lopez uses straight-line depreciation. \qquad
b. Calculate the book value of the equipment at the end of 5 years, assuming that Lopez uses straight-line depreciation. \qquad
c. Compute the depreciation for the first year ending December 31 if Lopez purchased the equipment September 1. \qquad
d. Determine the depreciation per hour if Lopez uses the straight-line method based on 120,000 hours of useful life and an \$8,000 scrap value. \qquad
e. Using the rate determined in (d), what is the depreciation for the year if the equipment is used for 2,360 hours? \qquad
5 Jurgenson Manufacturing uses the double-declining-balance method of depreciation. A piece of equipment costing $\$ 37,500$ has an estimated useful life of 5 years and an estimated scrap value of $\$ 2,700$.
a. Compute the amount of depreciation taken in the second year. \qquad
b. What is the book value at the end of the second year? \qquad
6 Young Manufacturing uses the sum-of-the-years-digits method of depreciation. Equipment costing \$37,500 has an estimated life of 5 years and an estimated scrap value of $\$ 2,700$.
a. Compute the amount of depreciation expense for the second year. \qquad
b. What is the book value at the end of the second year? \qquad
(7) Calculate the depreciation expense for tax purposes using MACRS for each asset. Use Figure 18-1 on page 370 to determine the proper life and rate for each asset. (Round to the nearest dollar.)
a. Computer equipment purchased this year for $\$ 5,200$. \qquad
b. Office furniture purchased 2 years ago for $\$ 8,500$. (This is the third year.) \qquad

Assignment 18.1: Business Depreciation

Name
Date Score

A (30 points) Solve the following depreciation problems. (points for correct answers as marked)

1. A pharmaceutical company has testing machines on which it estimates depreciation by the straight-line method. The following table shows cost, estimated life, years used, and scrap value for each machine. Find the annual depreciation, total depreciation, and book value after the indicated number of years of use. ($\frac{1}{2}$ point for each correct answer)

Original Cost	Estimated Life (years)	$\begin{aligned} & \text { Years } \\ & \text { Used } \end{aligned}$	Scrap Value	Annual Depreciation	Total Depreciation to Date	Book Value
a. $\$ 30,000$	10	4	\$3,000			
b. 48,000	7	4	\$5,300			
c. 84,000	8	2	none			
d. 34,600	6	2	\$1,000			

2. Ace Delivery Service bought two new trucks. The following table shows the cost, scrap value, estimated life (in miles), and mileage for the first year. Using the straight-line method based on mileage driven, compute the first year's depreciation and the book value at the end of the first year for each truck. (2 points for each correct depreciation amount and 1 point for each correct book value)

Original Cost	Scrap Value	Estimated Life (miles)	Mileage for First Year	Depreciation for First Year	Book Value after 1 Year
a. $\$ 49,500$	$\$ 1,500$	150,000	21,700		-
b. $\$ 23,000$	$\$ 600$	80,000	9,500	-	-

3. Dole Fruit Company's equipment cost $\$ 214,000$. Its useful life is estimated to be 15 years, and its scrap value is $\$ 4,000$. The company uses straight-line depreciation. (2 points for each correct answer)
a. What is the annual depreciation? \qquad
b. What is the book value of the equipment at the end of 14 years? \qquad

Assignment 18.1 Continued

4. Carlucci and sons purchased a machine for $\$ 13,645$ at the beginning of the year. Additional costs included $\$ 250$ freight and $\$ 175$ for installation. It was estimated that the machine could be operated for 30,000 hours, after which its resale value would be $\$ 570$. Determine the straight-line depreciation based on hours of operation and the book value at the end of each of the first 7 years. (1 point for each correct answer)

Year	Hours of Operation	Depreciation	Book Value
1	2,300	-	-
2	2,750	-	-
3	2,500	-	-
4	2,480	-	-
5	2,800	-	-
6	3,100	-	-

B (56 points) Solve the following depreciation problems. Round dollar amounts to two decimal places. (points for correct answers as marked)

5. Anderson Tool and Die Company owns a group of machines, the details of which are shown in the following table. Anderson uses the double-declining-balance method of calculating depreciation. Compute the depreciation for the specific years indicated. (2 points for each correct answer)

Original Cost	Estimated Life $($ years $)$	Scrap Value	Year	Depreciation	Year	Depreciation
a. $\$ 32,000$	16	$\$ 1,200$	1		3	
b. $\$ 25,800$	5	$\$ 3,000$	3	-	5	
c. $\$ 8,000$	4	$\$ 300$	2	-	5	-
d. $\$ 15,000$	10	-	3	-	4	-
e. $\$ 12,600$	8	$\$ 1,200$	2	-	5	-
f. $\$ 95,000$	20	-	3			

Assignment 18.1 Continued

6. Machinery purchased from Telecom, Inc., by Blazedales cost $\$ 69,800$. Depreciation was determined by the double-declining-balance method for an estimated life of 16 years. Compute the following:
a. Book value after 4 years (8 points): \qquad
b. Total depreciation after 6 years (4 points): \qquad
7. The Dugan Manufacturing Company bought an engine for $\$ 31,500$. The engine had an estimated life of 20 years and a scrap value of $\$ 5,250$. After 6 years, the company went out of business and sold the engine for $\$ 15,200$. If the machine was depreciated by the double-declining-balance method, how much did the company lose on the sale (the difference between the book value and the selling price)? (20 points) \qquad

C (14 points) Solve the following depreciation problems. (1 point for each correct answer)

8. The Western Salvage Service bought three trucks. The following table shows the cost, estimated life, and resale estimate for each truck. Use the sum-of-the-years-digits method to find each truck's depreciation for the first and second years of use. Round answers to the nearest dollar.

\quad Original Cost	Estimated Life	Resale Estimate	Depreciation for First Year	Depreciation for Second Year
a. $\$ 36,000$	6 yr	$\$ 6,000$	-	-
b. $\$ 48,000$	5 yr	8,000	-	-
c. $\$ 60,000$	7 yr	12,000	-	

9. Use the information in problem 8 b to compute the amount of depreciation for years 3-5.

Year 3: \qquad
Year 4: \qquad
Year 5: \qquad
10. Use the information in problem 8 to compute the amount of depreciation for each vehicle for the first 2 years using the straight-line method. Round to the nearest dollar.
a. \qquad
b. \qquad
c. \qquad
11. Which method of depreciation would give the smaller amount of write-off, and how much less would it be for the three vehicles for the first 2 years? \qquad -

Assignment 18.2: Business Depreciation

Name
Date Score

A (43 points) Solve the following depreciation problems. Round dollar amounts to two decimal places. (points for correct answers as marked)

1. An architect bought drafting equipment for $\$ 7,500$. Its estimated life was 6 years, and its scrap value was $\$ 300$. At the end of 4 years, the equipment wears out and is sold for scrap for $\$ 225$. (4 points for each correct answer)
a. By the straight-line method, how much difference is there between the book value and the cash value of the equipment on the date of the sale? \qquad
b. In April 2000, a computer and software costing $\$ 18,000$ are purchased. Its estimated life is 5 years. What is the book value of the new computing equipment on December 31, 2001? Use MACRS. \qquad
2. E, F, and G were partners in a small textile company. They spent $\$ 54,000$ for equipment that they agreed would last 8 years and have a resale value of 5% of cost. The three partners couldn't agree on the depreciation method to use. E was in favor of using the double-declining-balance system, F insisted on the 150%-declining-balance method, and G was sure that the sum-of-the-years-digits method would be better. Show the depreciation for the first 4 years for each method in the following table. At the end of 4 years, what would be the book value under each of the three methods? (2 points for each correct depreciation amount, 1 point for each correct total, and 1 point for the correct book value)

Year	Double-DB	$\mathbf{1 5 0 \% - D B}$	SYD
1	-	-	-
2	-	-	-
3	-	-	-
4	-	-	-
Total	-	-	-
Book value	-	-	

3. Baxter Company owned assets that cost $\$ 100,000$. Depreciation was figured at a straight-line rate of 4% per year. After 12 years, the company sold the assets for $\$ 60,000$. How much greater was the selling price than the book value at the time of the sale? (5 points) \qquad

B (57 points) Solve the following depreciation problems. (points for correct answers as marked)

4. On March 1, Jarvis Realty spent $\$ 16,000$ for a new company car with an estimated life of 4 years and an estimated scrap value of $\$ 4,000$. Jarvis Realty elected to use the straight-line method for depreciation. On the same date, Carter Realty bought an identical car at the same price and also estimated the car's life and scrap value to be 4 years and $\$ 4,000$, respectively. Carter Realty, however, chose the sum-of-the-years-digits method for depreciation.
a. At the end of the first year (10 months of use) and second year, how much depreciation did each company calculate? (3 points for each correct answer)

Jarvis:	Year 1	Carter:	Year 1		
	Year 2			Year 2	

b. At the end of the second year, which company had more recorded accumulated depreciation, and what was the difference in the amounts? (5 points) \qquad
c. True or false: At the end of the fourth year, Carter Realty will have recorded more accumulated depreciation than Jarvis Realty. Explain your answer. (4 points) \qquad
5. In May 2001, Jian \& Ming bought a light-duty truck for $\$ 20,800$. One year later, they bought an additional truck for $\$ 21,800$. In June 2003, a third truck was purchased for $\$ 23,500$. Use MACRS (5 -year class) to determine the total allowable cost recovery for 2003. (12 points) \qquad
6. David Marcus purchased new office furniture July 15,2000 , for $\$ 28,100$. Use MACRS (7 -year class) to show the rate, depreciation, and beginning and ending book values for 2000, 2001, and 2002. Round to the nearest dollar. (2 points for each correct answer)

Year	Rate		Cost		Dep reciation	Beginning Book Value	Ending Book Value
2000	-	\times	$\$ 28,100$	$=$			-
2001	-	\times	$\$ 28,100$	$=$	-	-	
2002	-	\times	$\$ 28,100$	$=$	-	-	

Financial Statements

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Analyze balance sheets, comparing items and periods.

Analyze income statements, comparing items and periods.

Learning Objective 3 Compute commonly used business operating ratios.

Financial statements provide information that allows owners, managers, and others interested in a business to evaluate its current condition and past operating results. Two important financial statements are the balance sheet and income statement. The balance sheet shows the current condition of a business at a definite point in time. It lists what a business owns (assets), how much it owes (liabilities), and the difference between the two (net worth), usually referred to as owners' or shareholders' equity. The income statement shows the past operating results for a given period of time. It lists the revenues, the expenses, and the net income or loss for the period.

Financial statement data are typically analyzed three ways. The first, called horizontal analysis, is a comparison of data from year to year. This analysis shows the dollar amount of change and the percent of change for each item on the statement from one year to the next. The second, called vertical analysis, compares all other data on a statement with one figure for that same year. On the balance sheet, for example, each asset, liability, and equity amount is calculated as a percent of total assets (or total liabilities and owners' equity). The third type of analysis compares selected related data for the year such as current assets to current liabilities. These analyses are used by managers, owners, investors, creditors, and others to help them analyze and simplify the complex data and make decisions concerning the business.

Analyzing Balance Sheets

Analyze balance sheets, comparing items and periods.

On a balance sheet, total assets must always equal total liabilities plus owners' or shareholders' equity. Balance sheets are analyzed to compare individual items with other items and with the same item on different dates, usually 1 year apart. Many businesses use the form of balance sheet illustrated in Figure 19-1.

Figure 19-1 \quad Balance Sheet

THE SKI CHALET

Balance Sheet as of December 31, 2004 and 2003

	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Increase/Decrease	
					Amount	Percent
ASSETS						
Current assets:						
Cash	\$ 90,000	12.64\%	\$ 86,000	13.15\%	\$ 4,000	4.65\%
Accounts receivable	134,000	18.82\%	98,000	14.98\%	36,000	36.73\%
Notes receivable	28,000	3.93\%	32,000	4.89\%	$(4,000)$	-12.50\%
Merchandise inventory	180,000	25.28\%	148,000	22.63\%	32,000	21.62\%
Total current assets	\$432,000	60.67\%	\$364,000	55.66\%	\$ 68,000	18.68\%
Fixed assets:						
Equipment	\$220,000	30.90\%	\$190,000	29.05\%	\$ 30,000	15.79\%
Less depreciation	$(60,000)$	-8.43\%	$(50,000)$	-7.65\%	$(10,000)$	20.00%
Equipment net	\$160,000	22.47\%	\$140,000	21.41\%	\$ 20,000	14.29\%
Buildings	300,000	42.13\%	300,000	45.87\%	-	0.00\%
Less depreciation	(180,000)	-25.28\%	$(150,000)$	-22.94\%	$(30,000)$	-20.00\%
Buildings net	\$120,000	16.85\%	\$150,000	22.94\%	\$(30,000)	-20.00\%
Total fixed assets	\$280,000	39.33\%	\$290,000	44.34\%	\$(10,000)	-3.45\%
TOTAL ASSETS	\$712,000	100.00\%	\$654,000	100.00\%	\$58,000	8.87\%

	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Increase/Decrease	
					Amount	Percent
LIABILITIES AND						
SHAREHOLDERS' EQUITY						
Current liabilities:						
Accounts payable	\$ 18,000	2.53\%	\$ 24,000	3.67\%	\$ $(6,000)$	-25.00\%
Accrued payroll	38,000	5.34\%	30,000	4.59\%	8,000	26.67\%
Payroll taxes payable	6,000	0.84\%	4,000	0.61\%	2,000	50.00\%
Notes payable	42,000	5.90\%	48,000	7.34\%	$(6,000)$	-12.50\%
Total current liabilities	\$104,000	14.61\%	\$106,000	16.21\%	\$ $(2,000)$	-1.89\%
Long-term liabilities:						
Mortgage payable	\$ 90,000	12.64\%	\$120,000	18.35\%	\$(30,000)	-25.00\%
Notes payable (over 1 year)	36,000	5.06\%	30,000	4.59\%	6,000	20.00\%
Total long-term liabilities	\$126,000	17.70\%	\$150,000	22.94\%	\$(24,000)	-16.00\%
Total liabilities	\$230,000	32.30\%	\$256,000	39.14\%	\$(26,000)	-10.16\%
Shareholders' equity:						
Common stock	\$359,000	50.42\%	\$359,000	54.89\%	-	0.00\%
Retained earnings	123,000	17.28\%	39,000	5.96\%	84,000	215.38\%
Total shareholders' equity	\$482,000	67.70\%	\$398,000	60.86\%	\$84,000	21.11\%
TOTAL LIABILITIES AND						
SHAREHOLDERS' EQUITY	\$712,000	100.00\%	\$654,000	100.00\%	\$ 58,000	8.87\%

In Figure 19-1, the amounts for various items such as cash and accounts payable are compared to total assets and total liabilities and shareholders' equity. Also, the amounts for 2004 are compared to the corresponding amounts for 2003, and the amounts and percents of increase or decrease are shown. When two statements are compared, the earlier period, usually the prior year, is always used as the base. The changes in balance sheet items between two periods measure the growth or decline of the business.

The first step in analyzing a balance sheet is to compute the percent each item is of the total assets or of the total liabilities and shareholders' equity (net worth). For example, the percent of cash for 2004 is calculated by dividing the amount of cash for 2004 by the total assets for 2004 and then converting the resulting decimal answer to a percent $(\$ 90,000 \div \$ 712,000=0.1264=12.64 \%)$.

The second step is to compute the amount and percent of change between the two
 dates being compared. The amount of change in cash from 2003 to 2004 is calculated by subtracting the cash amounts for the two years ($\$ 90,000-\$ 86,000=\$ 4,000$ increase). Increases are shown as positive numbers. Decreases, negative changes, are shown in parentheses. The percent of change in cash is calculated by dividing the amount of change by the prior year's amount ($\$ 4,000 \div \$ 86,000=0.0465=4.65 \%$).

Note three facts:

1. The totals for assets equal the totals for liabilities and shareholders' equity.
2. The percent listed for each item under assets is of the total assets; the percent listed for each item under liabilities and shareholders' equity is of the total liabilities and shareholders' equity.
3. The percent of increase or decrease between the two years is based on 2003, the earlier year.

CONCEPT CHECK 19.1

In its next year, 2005, The Ski Chalet had total assets of \$720,000, total liabilities of $\$ 245,000$, cash of $\$ 123,000$, and mortgage payable of $\$ 60,000$. Determine the following amounts and percents.
a. What was its total shareholders' equity in 2005?
$\$ 720,000-\$ 245,000=\$ 475,000$
b. What was its balance sheet percent of cash?
$\$ 123,000 \div \$ 720,000=17.08 \%$
c. What was its balance sheet percent of mortgage payable?
$\$ 60,000 \div \$ 720,000=8.33 \%$
d. What was its percent of increase in cash?
$(\$ 123,000-\$ 90,000) \div \$ 90,000=36.67 \%$
e. What was its percent of decrease in mortgage payable?

$$
(\$ 90,000-\$ 60,000) \div \$ 90,000=33.33 \%
$$

Analyzing Income Statements

Learning Objective

Analyze income statements, comparing items and periods.

The income statement shows revenue, expenses, and the difference between the two, or net income. Income statements are analyzed by comparing all other statement items with the net revenue, which is total revenue less any returns and allowances. Net revenue (frequently called net sales) is always 100%. All other items on the income statement are reported as a percent of net revenue/sales. The resulting percents are extremely important for all businesspeople. They are compared to budgeted amounts, to percents for competing businesses, and to percents for past periods.

Figure 19-2 shows a typical income statement for 1 year, in which dollar amounts are converted to percents based on net sales. Percents are rounded to two decimal places, and dollar amounts are rounded to the nearest whole dollar. Cents are seldom used in reporting annual figures.

Figure 19-2 Income Statement

THE SKI CHALET
Income Statement for Year Ended
December 31, 2004

	$\mathbf{2 0 0 4}$ Amount	$\mathbf{2 0 0 4}$ Percent
Revenue from sales:	$\$ 988,900$	
Sales	13,900	101.43%
Less returns	$\$ 975,000$	1.43%
NET SALES		100.00%

	2004 Amount	2004 Percent
Cost of goods sold:		
Inventory, January 1	\$ 148,000	15.18\%
Purchases	440,000	45.13\%
Available for sale	\$ 588,000	60.31\%
Inventory, December 31	180,000	18.46\%
Cost of goods sold	\$ 408,000	41.85\%
Gross profit on sales	\$ 567,000	58.15\%
Operating expenses:		
Salary and benefits	\$ 290,000	29.74\%
Rent and utilities	62,000	6.36\%
Advertising	32,400	3.32\%
Depreciation	40,000	4.10\%
Equipment and supplies	15,800	1.62\%
Administrative	12,500	1.28\%
Total operating expense	\$ 452,700	46.43\%
Income before tax	\$ 114,300	11.72\%
Income tax	30,300	3.11\%
NET INCOME	\$ 84,000	8.62\%

Most businesses want to compare the operations of the current year with those of the preceding year. The statement shown in Figure 19-3 has information for both the current and the preceding year. It also shows the amount and percent of increase or decrease from the preceding year.

Figure 19-3 \quad Comparative Income Statement

THE SKI CHALET

Income Statement for the Years Ended
December 31, 2004 and 2003

	2004 Amount	2004 Percent	2003 Amount	$\begin{aligned} & 2003 \\ & \text { Percent } \end{aligned}$	Difference	
					Amount	Percent
Revenue from sales:						
Sales	\$988,900	101.43\%	\$850,000	104.81\%	\$138,900	16.34\%
Less returns	13,900	1.43\%	39,000	4.81\%	$(25,100)$	-64.36\%
NET SALES	\$975,000	100.00\%	\$811,000	100.00\%	\$164,000	20.22\%
Cost of goods sold:						
Inventory, January 1	\$148,000	15.18\%	\$152,000	18.74\%	\$ $(4,000)$	-2.63\%
Purchases	440,000	45.13\%	379,000	46.73\%	61,000	16.09\%
Available for sale	\$588,000	60.31\%	\$531,000	65.47\%	\$ 57,000	10.73\%
Inventory, December 31	180,000	18.46\%	148,000	18.25\%	32,000	21.62\%
Cost of goods sold	\$408,000	41.85\%	\$383,000	47.23\%	\$ 25,000	6.53\%
Gross profit on sales	\$567,000	58.15\%	\$428,000	52.77\%	\$139,000	32.48\%

	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Difference	
					Amount	Percent
Operating expenses:						
Salary and benefits	\$290,000	29.74\%	\$242,000	29.84\%	\$ 48,000	19.83\%
Rent and utilities	62,000	6.36\%	61,400	7.57\%	600	0.98\%
Advertising	32,400	3.32\%	25,700	3.17\%	6,700	26.07\%
Depreciation	40,000	4.10\%	32,000	3.95\%	8,000	25.00\%
Equipment and supplies	15,800	1.62\%	10,300	1.27\%	5,500	53.40\%
Administrative	12,500	1.28\%	14,200	1.75\%	$(1,700)$	-11.97\%
Total operating expense	\$452,700	46.43\%	\$385,600	47.55\%	\$ 67,100	17.40\%
Income before tax	\$114,300	11.72\%	\$42,400	5.23\%	\$ 71,900	169.58\%
Income tax	30,300	3.11\%	24,400	3.01\%	5,900	24.18\%
NET INCOME	\$ 84,000	8.62\%	$\underline{\$ 18,000}$	2.22\%	\$ 66,000	$\underline{\underline{366.67 \%}}$

Another analysis carried out by many businesses is a comparison between actual results and budgeted figures. Owners and managers note differences between budgeted and actual amounts and make adjustments where necessary. Most businesses and virtually all government entities use monthly and annual budgets to guide and monitor their operations. Figure 19-4 illustrates a monthly and year-to-date budget comparison at the end of June, the sixth month of the year.

To find the percent change, the budgeted amount is subtracted from the actual amount and the difference is divided by the budgeted amount.

Figure 19-4 Monthly/Year-to-Date Budget Comparison

THE SKI CHALET

Income Statement for the Month and the
Six-Month Period Ended June 30, 2004

	June 2004				Six Months Year-to-Date			
	Budget	Actual	Amount Difference	Percent Difference	Budget	Actual	Amount Difference	Percent Difference
Revenue from sales:								
Sales	\$85,000	\$86,500	\$ 1,500	1.76\%	\$510,000	\$480,000	\$(30,000)	-5.88\%
Sales returns	5,000	3,500	\$(1,500)	-30.00\%	10,000	6,000	\$ (4,000)	-40.00\%
NET SALES	\$80,000	\$83,000	\$ 3,000	3.75\%	\$500,000	\$474,000	\$(26,000)	-5.20\%
Cost of goods sold	35,000	38,000	\$ 3,000	8.57\%	225,000	230,000	\$ 5,000	2.22\%
Gross profit	\$45,000	\$45,000	\$	0.00\%	\$275,000	\$244,000	\$(31,000)	-11.27\%
Operating expenses	31,000	39,000	\$8,000	25.81\%	185,000	196,000	\$ 11,000	5.95\%
Income before tax	\$14,000	\$ 6,000	\$(8,000)	-57.14\%	\$ 90,000	\$ 48,000	\$(42,000)	-46.67\%
Income tax	6,000	1,000	\$(5,000)	-83.33\%	40,000	16,000	\$(24,000)	-60.00\%
NET INCOME	\$ 8,000	\$ 5,000	$\underline{\$(3,000)}$	$\underline{-37.50 \%}$	\$ 50,000	\$ 32,000	\$(18,000)	$\underline{-36.00 \%}$

CONCEPT CHECK 19.2

In its next year, 2005, The Ski Chalet had total sales of $\$ 1,480,000$, net sales of $\$ 1,320,000$, gross profit of $\$ 710,000$, and advertising expense of $\$ 45,000$. In 2005 , the company budgeted gross profit of $\$ 800,000$. Determine the following amounts and percents.
a. Amount of sales returns in 2005
$\$ 1,480,000-\$ 1,320,000=\$ 160,000$
b. Amount of cost of goods sold in 2005
$\$ 1,320,000-\$ 710,000=\$ 610,000$
c. Percent of net sales increase from 2004 to 2005
$(\$ 1,320,000-\$ 975,000) \div \$ 975,000=35.38 \%$
d. Percent of advertising expense in 2005
$\$ 45,000 \div \$ 1,320,000=3.41 \%$
e. Difference between percent gross profit and 2005 budgeted amount $(\$ 710,000-\$ 800,000) \div \$ 800,000=-11.25 \%$

Computing Business Operating Ratios

In addition to comparing dollar amounts and percents on financial statements, business managers and owners frequently want to study relationships between various items on their income statements and balance sheets. These relationships generally are expressed by ratios. A ratio is the relation of one amount to another. Thus the ratio of one dollar to one quarter, or $\$ 1$ to $\$ 0.25$, is a ratio of 4 to 1 , or $4: 1$, showing that a dollar is 4 times the value of a quarter.

In analyzing financial statements, six important financial analysis ratios are commonly used: the working capital ratio, the acid test ratio, the ratio of accounts receivable to net sales, the inventory turnover rate, the relation of net income to net sales, and the rate of return on investment (equity).

WORKING CAPITAL RATIO

Working capital and the working capital ratio come from the balance sheet. Working capital is the amount of current assets less current liabilities. It tells the amount of current assets that would remain if all the company's current liabilities were paid immediately. The working capital ratio shows the relationship between current assets and current liabilities. It calculates the amount of current assets per dollar of current liabilities. The working capital ratio helps the reader of the balance sheet understand how well the company is able to pay its current debts.

Working capital ratio $=$ Total current assets \div Total current liabilities

Learning Objective

Compute commonly used business operating ratios.

EXAMPLE A

The working capital ratio for The Ski Chalet for 2004 from Figure 19-1 is
$\$ 432,000 \div \$ 104,000=4.2=4.2: 1$

The ratio 4.2 to 1 , or $4.2: 1$, means that the business has $\$ 4.20$ in current assets to pay for each $\$ 1$ in current liabilities.

ACID TEST RATIO

The acid test ratio is used to determine the relationship between assets that can be quickly turned into cash and current liabilities. Usually, these assets are cash and accounts receivable. Accounts receivable are amounts owed to a business for services performed or goods delivered.

$$
\text { Acid test ratio }=(\text { Total of cash }+ \text { Accounts receivable }) \div \text { Total current liabilities }
$$

EXAMPLE B

The acid test ratio for The Ski Chalet for 2004 from Figure 19-1 is computed as follows:

Cash	$\$ 90,000$
Accounts receivable	$\underline{134,000}$
Total cash and receivables	$\$ 224,000$
$\$ 224,000 \div \$ 104,000=2.2=2.2: 1$	

RATIO OF ACCOUNTS RECEIVABLE TO NET SALES

When businesses sell on credit, they need to be alert to the amount and quality of their accounts receivable. They need to compare the amount of their current receivables to the amounts for prior years and compare the extent of their receivables to those of similar companies. By computing the ratio of accounts receivable to net sales every year, management and investors can keep track of the percent of sales that have not yet been paid for by customers. An increasing ratio over the years can indicate problems with collecting payments and should be investigated.

Ratio of accounts receivable to net sales $=$ Accounts receivable \div Net sales

EXAMPLEC

The Ski Chalet ratio for 2004 is
Figure 19-1
Figure 19-3
\$134,000
$\div \quad \$ 975,000=0.137=0.14: 1$

© ANDY SOTIRIOU/PHOTODISC/GETTY IMAGES

INVENTORY TURNOVER

In retail stores, the cost of inventory often is very high. One way to control inventory costs and increase profit is to maintain a high level of inventory turnover. Recall from Chapter 17 that inventory turnover lets management and others know the number of times average inventory is sold during the year. The higher the turnover number, the better is the movement of inventory. Recall also that average inventory, found by averaging monthly, quarterly, or yearly inventory amounts, must be computed first. Inventory turnover is given as the number of times instead of as a ratio to 1 .

$$
\begin{aligned}
& \text { Average inventory }=(\text { Beginning inventory }+ \text { Ending inventory }) \div 2(\text { annual }) \\
& \text { Inventory turnover }=\text { Cost of goods sold } \div \text { Average inventory }
\end{aligned}
$$

EXAMPLE D

Based on the information given in Figures 19-3 and 19-1, the 2004 inventory turnover for The Ski Chalet is found as follows:
$\underline{\mathbf{0 1 - J a n}}\left(\$ 148,000+\frac{\text { 31-Dec }}{\$ 180,000) \div 2=\$ 328,000 \div 2=\$ 164,000 \text { average inventory }}\right.$
$\$ 408,000$ cost of merchandise sold $\div \$ 164,000=2.5$ times inventory turnover rate

RELATIONSHIP OF NET INCOME TO NET SALES

An increase in total sales volume doesn't necessarily mean that a business is improving because expenses may be increasing at an equal or greater rate than revenues. Thus looking at the relationship of net income to net sales is important. The relationship is given as a percentage.

Relationship of net income to net sales $=$ Net income \div Net sales

EXAMPLE E

Based on information from Figure 19-3, The Ski Chalet's 2004 relationship of net income to net sales is $\$ 84,000 \div \$ 975,000=8.6 \%$. Comparison with the relationship for 2003 of $2.2 \%(\$ 18,000 \div \$ 811,000)$ indicates an improvement.

RATE OF RETURN ON INVESTMENT

Shareholders and owners want a reasonable return on their investment (equity). A ratio that measures the rate of return on investment is the ratio of net income to shareholders'/owners' equity. The rate is given as a percentage.

Rate of return on investment $=$ Net income \div Shareholders'/owners' equity

EXAMPLE F

Based on Figures 19-3 and 19-1, the rate of return on the shareholders' investment for The Ski Chalet for 2004 is
$\$ 84,000 \div \$ 482,000=0.1742=17.4 \%$ rate of return

CONCEPT CHECK 19.3

Boswell Designs' financial statements showed the following:

Cash	$\$ 85,000$	Current liabilities	$\$ 320,000$	Net sales	$\$ 950,000$
Accounts receivable	260,000	Total liabilities	560,000	Inventory $1 / 1 / 2004$	240,000
Total current assets	580,000	Net income	80,000	Inventory $12 / 31 / 2004$	200,000
Total assets	990,000	Shareholders' equity	430,000	Purchases for 2004	630,000

Using the above numbers, compute the following ratios:
a. Working capital ratio $\$ 580,000 \div \$ 320,000=1.81: 1$
b. Acid test ratio $(\$ 85,000+\$ 260,000) \div \$ 320,000=1.08: 1$
c. Average inventory $(\$ 240,000+\$ 200,000) \div 2=\$ 220,000$
d. Inventory turnover $\$ 240,000+\$ 630,000-\$ 200,000=\$ 670,000$ $\$ 670,000 \div \$ 220,000=3.05$ turnovers
e. Net income to net sales ratio $\$ 80,000 \div \$ 950,000=0.084$, or 8.4%
f. Rate of return on investment $\$ 80,000 \div \$ 430,000=0.186$, or 18.6%

COMPLETE ASSIGNMENTS 19.1, 19.2, AND 19.3.

Chapter Terms for Review

accounts receivable
acid test ratio
assets
balance sheet
financial statements
income statement
liabilities
net revenue
net worth
rate of return on investment
ratio
ratio of accounts receivable to net sales
relationship of net income to net sales
working capital
working capital ratio

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

19.1

Analyze balance sheets, comparing items and periods

Example

1. A modified balance sheet for The Ski Chalet for December 2004 and 2003 is shown. Compute the percents for 2004 and the percents of increase/decrease between 2004 and 2003.

THE SKI CHALET

Balance Sheet as of
December 31, 2004 and 2003

	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Increase/Decrease	
					Amount	Percent
ASSETS						
Current assets:						
Cash	\$ 90,000		\$ 86,000	15.03\%	\$ 4,000	
Accounts receivable	134,000		98,000	17.13\%	36,000	
Merchandise inventory	180,000		148,000	25.87\%	32,000	
Total current assets	\$404,000		\$332,000	58.04\%	\$ 72,000	
Fixed assets:						
Equipment	\$220,000		\$190,000	33.22\%	\$ 30,000	
Less depreciation	$(60,000)$		$(50,000)$	-8.74\%	$(10,000)$	
Equipment net	\$160,000		\$140,000	24.48\%	\$ 20,000	
Buildings	100,000		100,000	17.48\%	-	
Total fixed assets	\$260,000		\$240,000	41.96\%	\$ 20,000	
TOTAL ASSETS	\$664,000		\$572,000	100.00\%	\$ 92,000	
LIABILITIES AND						
SHAREHOLDERS' EQUITY						
Current liabilities:						
Accounts payable	\$ 18,000		\$ 24,000	4.20\%	\$ $(6,000)$	
Accrued payroll	38,000		30,000	5.24\%	8,000	
Payroll taxes payable	6,000		4,000	0.70\%	2,000	
Total current liabilities	\$ 62,000		\$ 58,000	10.14\%	\$ 4,000	
Long-term liabilities:						
Mortgage payable	90,000		120,000	20.98\%	$(30,000)$	
Total liabilities	\$152,000		\$178,000	31.12\%	$\overline{\$(26,000)}$	
Shareholders' equity:						
Common stock	\$359,000		\$359,000	62.76\%	-	
Retained earnings	153,000		35,000	6.12\%	18,000	
Total shareholders' equity	\$512,000		\$394,000	68.88\%	\$118,000	
TOTAL LIABILITIES AND						
SHAREHOLDERS' EQUITY	\$664,000		\$572,000	100.00\%	\$ 92,000	

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

19.2

Analyze income statements, comparing items and periods

THE SKI CHALET

Income Statement for the Years Ended
December 31, 2004 and 2003

Example

2. A modified income statement for The Ski Chalet for the years 2004 and 2003 is shown. Compute the percents for 2004 and the percents of difference between 2004 and 2003.

	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Difference	
					Amount	Percent
Revenue from sales:						
Sales	\$988,900		\$850,000	104.81\%	\$138,900	
Less returns	13,900		39,000	4.81\%	$(25,100)$	
NET SALES	\$975,000		\$811,000	100.00\%	\$164,000	
Cost of goods sold:						
Inventory, January 1	\$148,000		\$152,000	18.74\%	$(\$ 4,000)$	
Purchases	440,000		379,000	46.73\%	61,000	
Available for sale	\$588,000		\$531,000	65.47\%	\$57,000	
Inventory, December 31	180,000		148,000	18.25\%	32,000	
Cost of goods sold	\$408,000		\$383,000	47.23\%	\$25,000	
Gross profit on sales	$(\$ 408,000)$		$(\$ 383,000)$	52.77\%	$(\$ 25,000)$	
Operating expenses:						
Salary and benefits	\$221,000		\$225,000	27.74\%	\$ $(4,000)$	
Rent and utilities	62,000		61,400	7.57\%	600	
Advertising	32,400		25,700	3.17\%	6,700	
Depreciation	40,000		32,000	3.95\%	8,000	
Equipment and supplies	15,800		10,300	1.27\%	5,500	
Administrative	12,500		14,200	1.75\%	$(1,700)$	
Total operating expense	\$383,700		\$368,600	45.45\%	\$15,100	
Income before tax	\$183,300		\$59,400	7.32\%	\$123,900	
Income tax	30,300		24,400	3.01\%	5,900	
NET INCOME	\$153,000		\$35,000	4.32\%	$\underline{\$ 118,000}$	

19.3

Compute commonly used business operating ratios

Using the Balance Sheet and Income Statement for 2004 from
The Bottom Line problems 1 and 2, compute the following ratios:
3. Acid test
4. Average inventory
5. Net income to net sales
6. Rate of return on investment

Review Problems for Chapter 19

1 Quality Construction Company, Inc., had total assets of $\$ 620,000$ and total liabilities of $\$ 335,000$ on December 31, 2004. On December 31, 2005, Quality Construction has total assets of $\$ 712,000$ and total liabilities of $\$ 330,000$.
a. What was the amount of the owners' equity as of December 31, 2004?
b. What is the amount of the owners' equity as of December 31, 2005?
c. Calculate the percent of increase or decrease in total assets, total liabilities, and owners' equity. (Round to one decimal place.)
2 Quality Construction Company, Inc., had net sales of $\$ 460,250$ and cost of merchandise sold of $\$ 320,600$. Compute the gross profit amount and the percent of gross profit based on net sales.

3 The comparative income statement of Benson Electronics, Inc., showed sales of \$425,000 in 2003 and $\$ 494,450$ in 2004. Compute the percent of change in sales. (Round answer to one decimal place.)

4 Calculate the percent of increase or decrease for each of the following balance sheet items. If any percent cannot be calculated, give a brief explanation. (Answers correct to two decimal places.)

	Item	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 4}$	Percent of Increase/Decrease
a.	Cash	$\$ 35,000$	$\$ 30,000$	-
b.	Supplies	1,200	1,600	-
c.	Notes Receivable	2,000	$-0-$	-
d.	Merchandise Inventory	16,500	16,500	-
e.	Accounts Receivable	$-0-$	1,500	-

5 Selected figures from the Balance Sheet and the Income Statement of Multimedia, Inc., follow. Use the data to calculate the ratios listed. (Give answers accurate to two decimal places.)

From the Balance Sheet		From the Income Statement	
Cash	$\$ 210,734$	Net Sales	$\$ 244,750$
Accounts Receivable	$\$ 138,126$	Cost of Merchandise Sold	$\$ 190,000$
Merchandise Inventory:		Net Income	$\$ 26,406$
\quad End of this year	$\$ 184,500$		
\quad End of last year	$\$ 178,300$		
Total Current Assets	$\$ 533,360$		
Total Current Liabilities	$\$ 324,152$		
Total Stockholders' Equity	$\$ 149,000$		

a. Working capital ratio
b. Acid test ratio
c. Inventory turnover
d. Rate of return on investment
e. Net income as a percent of sales
f. Ratio of accounts receivable to net sales

Notes

\qquad

Assignment 19.1: Balance Sheet Analysis

Name

A (50 points) Solve the following balance sheet problems. (points for correct answers as marked)

1. In the following balance sheet, find the percent for each 2004 and 2003 item. Then find the amount and percent of change. Round percents to two decimal places. (1/2 point for each correct answer)

	$\begin{aligned} & \text { 2004 } \\ & \text { Amount } \end{aligned}$		Blair Merchandising Company Balance Sheet As of December 31, 2004 and 2003			2003 Percent	Increase/Decrease			
			2004 Percent	2003 Amount						
			Amount			Percent				
ASSETS										
Current assets:										
Cash		\$ 230,000					\$ 212,000			
Accounts receivable		250,000			175,000					
Inventory		420,000			350,000					
Total current assets		\$ 900,000			\$ 737,000					
Fixed assets:										
Machinery		\$ 280,000			\$ 280,000					
Less depreciation		120,000			100,000					
Machinery net		\$ 160,000			\$ 180,000					
Building		350,000			270,000					
Land parcel holdings		235,000			190,000					
Total fixed assets		\$ 745,000			\$ 640,000					
TOTAL ASSETS		\$1,645,000			\$1,377,000					
LIABILITIES										
Current liabilities:										
Accounts payable		\$ 96,000			\$ 62,000					
Accrued payroll		45,000			35,000					
Payroll taxes payable		15,000			20,000					
Total current liabilities		\$ 156,000			\$ 117,000					
Long-term liabilities:										
Mortgages payable		\$ 309,000			\$ 320,000					
Note payable-long-term		180,000			210,000					
Total long-term liabilities		\$ 489,000			\$ 530,000					
Total liabilities		\$ 645,000			647,000					
Shareholders' equity:										
Common stock		\$ 520,000			\$ 467,000					
Preferred stock		330,000			220,000					
Retained earnings		150,000			43,000					
Total shareholders' equity		\$1,000,000			\$ 730,000					
TOTAL LIABILITIES AND										
SHAREHOLDERS' EQUITY		\$1,645,000			\$1,377,000					

2. Blair Merchandising's bookkeeper overlooked the fact that $\$ 15,000$ cash had been paid to employees but not deducted from the cash account. Assume that the balance sheet in problem 1 was adjusted to reflect the correction. (1 point for each correct answer)
a. What would be the adjusted amount for 2004 cash? \qquad
b. What would be the adjusted amount for 2004 accrued payroll?

Score for A (50)

B (50 points) Solve the following balance sheet problems. (points for correct answers as marked)

3. In the following balance sheet, find the percent for each 2004 and 2003 item. Then find the amount and percent of change. Round percents to one decimal place. Note that totals will sometimes be different from individual amounts because of rounding. ($1 / 2$ point for each correct answer)

	2004 Amount	Cozy Coffee Company Balance Sheet As of December 31, 2004 and 2003		2003 Percent	Increase/Decrease	
		2004 Percent	2003 Amount			
					Amount	Percent
ASSETS						
Current assets:						
Cash	\$ 52,500		\$ 37,900			
Accounts receivable	37,800		29,790			
Inventory	62,000		55,500			
Total current assets	\$152,300		\$123,190			
Fixed assets:						
Equipment	\$ 84,200		\$ 72,000			
Less depreciation	15,300		12,500			
Machinery net	\$ 68,900		\$ 59,500			
Building	235,000		235,000			
Land parcel holdings	70,000		50,000			
Total fixed assets	\$373,900		\$344,500			
TOTAL ASSETS	\$526,200		\$467,690			
LIABILITIES						
Current liabilities:						
Accounts payable	\$ 13,950		\$ 14,200			
Accrued payroll	8,200		7,400			
Payroll taxes payable	1,200		980			
Total current liabilities	\$ 23,350		\$ 22,580			
Long-term liabilities:						
Mortgages payable	\$ 81,500		\$ 83,700			
Note payable-long-term	25,000		21,000			
Total long-term liabilities	\$106,500		\$104,700			
Total liabilities	\$129,850		\$127,280			
Shareholders' equity:						
Common stock	\$195,000		\$180,000			
Preferred stock	82,000		82,000			
Retained earnings	119,350		78,410			
Total shareholders' equity	\$396,350		\$340,410			
TOTAL LIABILITIES AND						
SHAREHOLDERS' EQUITY:	\$526,200		\$467,690			

4. Show what changes would have been made in the cash and preferred stock amount in 2004 if Cozy Coffee Company had sold an additional $\$ 6,000$ in preferred stock. ($1 / 2$ point for each correct answer)

	Amount	Percent
Cash	-	
Preferred stock	-	-

Assignment 19.2: Income Statement Analysis

Name

A (50 points) Solve the following income statement problems. (points for correct answers as marked)

1. In the following income statement, find the percent for each 2004 and 2003 item. Then find the amount and percent of change. Round percents to two decimal places. (1/2 point for each correct answer)

Georgia Textiles
Income Statement
For the Years Ended December 31, 2004 and 2003

	For the Years Ended December 31, 2004 and 2003					
	2004 Amount	2004 Percent	2003 Amount	2003 Percent	Increase/Decrease	
					Amount	Percent
Revenue from sales:						
Sales	\$920,000		\$827,000			
Less returns	35,000		30,000			
NET SALES	\$885,000		\$797,000			
Cost of goods sold:						
Inventory, January 1	\$210,000		\$197,000			
Purchases	460,000		395,000			
Available for sale	\$670,000		\$592,000			
Inventory, December 31	240,000		210,000			
Cost of goods sold	\$430,000		\$382,000			
Gross profit	\$455,000		\$415,000			
Operating expenses:						
Wages	\$132,600		\$120,000			
Rent	84,000		80,000			
Advertising	18,000		20,000			
Insurance	4,500		4,200			
Depreciation	3,600		3,100			
Equipment rental	1,200		1,400			
Administrative	7,000		5,200			
Miscellaneous	3,200		2,100			
Total operating expenses	\$254,100		\$236,000			
Income before tax	\$200,900		\$179,000			
Income tax	32,000		28,000			
NET INCOME	\$168,900		\$151,000			

2. Assume that the ending inventory was $\$ 220,000$ in 2004 . Compute the following items. (2 points for each correct answer)
2004 Gross profit amount
2004 NET INCOME amount

20 \quad| 2004 Gross profit percent |
| :--- |
| 2004 NET INCOME percent |

B (100 points) Solve the following income statement problems. (points for correct answers as marked)

3. In the following income statement, find the percent for each 2004 and 2003 item, then find the amount and percent of change. Round percents (no decimal places). (84 points, 1 point for each correct answer)

	Baldwin Field Enterprises Income Statement For the Years Ended December 31, 2004 and 2003				Difference	
	2004 Amount	2004 Percent	2003 Amount	2003 Percent		
					Amount	Percent
Revenue from sales:						
Sales	\$ 87,000		\$ 74,800			
Less returns	2,000		1,800			
NET SALES	\$ 85,000		\$73,000			
Cost of goods sold:						
Inventory, January 1	\$ 22,000		17,500			
Purchases	38,000		35,000			
Available for sale	\$ 60,000		52,500			
Inventory, December 31	24,100		22,000			
Cost of goods sold	\$ 35,900		30,500			
Gross profit	\$ 49,100		\$ 42,500			
Operating expenses:						
Salary	\$ 11,200		10,900			
Rent	7,500		6,000			
Advertising	1,400		1,200			
Delivery	450		380			
Depreciation	650		600			
Equipment rental	350		420			
Administrative	1,900		1,700			
Miscellaneous	190		220			
Total operating expenses	\$ 23,640		\$ 21,420			
Income before tax	\$ 25,460		21,080			
Income tax	2,200		2,000			
NET INCOME	\$ 23,260		$\underline{\text { \$ 19,080 }}$			

4. Assume that the beginning inventory was $\$ 18,000$ in 2003 and $\$ 20,500$ in 2004 and that the rent was $\$ 6,400$ in 2003 and $\$ 8,800$ in 2004. Compute the following amounts and percents to reflect the revised beginning inventory and rent numbers. (8 points for each correct row)

Assignment 19.3: Financial Statement Ratios

Name
Date Score

A (26 points) Solve the following financial statement ratio problems. (1/2 point for each correct answer)

1. Alice Anderson was considering investing in a business. She used the following statement in analyzing the Dover Clock Shop. Compute the net changes in the balance sheet and income statement. Round to one decimal place.

ASSETS

Current assets:		
Cash	\$110,000	\$104,600
Accounts receivable	135,000	115,900
Merchandise inventory	185,000	145,000
Total current assets	\$430,000	\$365,500
Fixed assets:		
Building improvements	\$ 45,000	\$ 48,500
Equipment	145,000	132,000
Total fixed assets	\$190,000	\$180,500
TOTAL ASSETS	\$620,000	\$546,000
LIABILITIES		
Current liabilities:		
Salaries payable	\$ 33,000	\$ 28,200
Accounts payable	120,000	112,900
Total current liabilities	\$153,000	\$141,100
Long-term liabilities:		
Note payable	\$100,000	\$120,000
Total liabilities	\$253,000	\$261,100
Owner's equity:		
J. C. Dover, capital	367,000	284,900
TOTAL LIABILITIES AND		
OWNER'S EQUITY	\$620,000	\$546,000

Dover Clock Shop

Comparative Income Statement
For the Years Ended December 31, 2004 and 2003

NET SALES

Cost of goods sold:
Merchandise inventory, January 1
Purchases
Merchandise available for sale
Merchandise inventory, December 31
Cost of goods sold
Gross profit on sales
Expenses:
Selling
Other
Total expenses
NET INCOME

2004	2003	Difference	
		Amount	Percent
\$780,000	\$835,000		
\$145,000	\$138,000		
585,000	620,000		
\$730,000	\$758,000		
185,000	145,000		
\$545,000	\$613,000		
\$235,000	\$222,000		
\$ 82,000	\$ 78,600		
29,200	30,200		
\$111,200	\$108,800		
\$123,800	\$113,200		

B (24 points) Solve the following problems. (2 points for each correct answer)
Score for A (26)
2. Provide the following information for Alice Anderson's consideration. When the ratio is less than 1 , give the ratio to three decimal places; otherwise, round to one decimal place.

a. Working capital ratio	2004	-
b. Acid test ratio	-	

c. Ratio of accounts receivable to net sales
d. Inventory turnover
e. Ratio of net income to net sales
f. Rate of return on investment
\qquad
\qquad

Score for B (24)
C (26 points) Solve the following problems. (1/2 point for each correct answer)
3. Alice Anderson was offered a second business. She received the following statements for 2004 and 2003. Complete calculations for a comparative balance sheet and a comparative income statement for The Grandfather Clock Shop, showing the amount and percent of change.

Assignment 19.3 Continued

ASSETS

Current assets:
Cash
Accounts receivable
Merchandise inventory
Total current assets
Fixed assets:
Store fixtures
Office equipment
Total fixed assets
TOTAL ASSETS
LIABILITIES
Current liabilities:
Sales tax payable
Accounts payable
Total current liabilities
Long-term liabilities:
Note payable
Total liabilities
Owner's equity
R. A. Banner, capital

TOTAL LIABILITIES AND
OWNER'S EQUITY

Grandfather Clock Shop
Comparative Balance Sheet
As of December 31, 2004 and 2003

2004		2003		Increase/Decrease	
Amount	Percent	Amount	Percent	Amount	Percent

\$	4,500	3.3\%	\$	5,500	5.0\%	
	9,500	6.9\%		6,000	5.5\%	
	14,000	10.2\%	\$	11,500	10.6\%	

$\frac{\$ 30,000}{\$ 44,000}$	$\frac{21.9 \%}{32.1 \%}$	$\frac{\$ 38,000}{\$ 49,500}$	$\frac{34.9 \%}{45.4 \%}$	-	
$\$ 93,000$	$\underline{67.9 \%}$	$\underline{\$ 59,500}$	$\underline{54.6 \%}$	-	
$\$ 137,000$	$\underline{100.0 \%}$	$\underline{\$ 109,000}$	$\underline{100.0 \%}$	-	-

Assignment 19.3 Continued

Grandfather Clock Shop Comparative Income Statement For the Years Ended December 31, 2004 and 2003

	2004		2003		Difference	
	Amount	Percent	Amount	Percent	Amount	Percent
NET SALES	\$205,000	100.0\%	\$120,000	100.0\%		
Cost of goods sold:						
Merchandise inventory, January 1	\$ 31,000	15.1\%	\$ 27,500	22.9\%		
Purchases	154,000	75.1\%	84,500	70.4\%		
Merchandise available for sale	\$185,000	90.2\%	$\overline{\$ 112,000}$	93.3\%		
Merchandise inventory, December 31	46,000	22.4\%	31,000	25.8\%		
Cost of goods sold	\$139,000	67.8\%	\$81,000	67.5\%		
Gross profit on sales	\$ 66,000	32.2\%	\$ 39,000	32.5\%		
Expenses:						
Selling	\$ 31,000	15.1\%	\$ 21,500	17.9\%		
Other	13,000	6.3\%	7,250	6.0\%		
Total expenses	\$44,000	21.5\%	\$ 28,750	24.0\%		
NET INCOME	\$ 22,000	10.7\%	\$ 10,250	8.5\%		

Any differences of 0.1% from individual items are due to rounding.

International Business

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute currency exchange rates.

Learning Objective

Learning Objective
 Compute duties on imports.

Learning Objective

Compute the effects of exchange rate changes.

Convert between U.S. weights and measures and metric weights and measures.

Businesses in the United States import goods made in other countries and export domestic goods made in the United States. International business transactions amount to billions of dollars annually and constitute an important part of the economies of most nations in the world.

International trade between U.S. companies and those in other countries is under the jurisdiction of the International Trade Administration (ITA), a branch of the Department of Commerce. All international trade is subject to a set of ITA rules and regulations known as the Export Administration Regulations. Any company in the United States planning to sell goods to companies in other countries must have an ITA export license for the transactions.

Computing Currency Exchange Rates

Learning Objective

Compute currency exchange rates.

In order to conduct international trade, U.S. companies must exchange U.S. dollars for other currencies and vice versa. Figure 20-1 lists the names of the currency units used in the major countries, the U.S. dollars per unit, and the number of units per U.S. dollar.

CURRENCY EXCHANGE RATES
Quotes delayed at least 20 minutes.

All Currencies

Name	In US\$	Per US\$
Algerian Dinar	0.01310	76.350
Argentine Peso	0.33750	2.963
Australian Dollar	0.72530	1.379
Bahraini Dinar	2.6524	0.377
Bolivian Boliviano	0.12479	8.014
Brazilian Real	0.35026	2.855
British Pound	1.7983	0.556
Botswana Pula	0.21277	4.700
Canadian Dollar	0.79586	1.257
Chilean Peso	0.00164	609.8
Chinese Yuan	0.12068	8.287
Colombian Peso	0.00039	2,567
Cyprus Pound	2.1678	0.461
Czech Koruna	0.03978	25.139
Danish Krone	0.16799	5.953
Ecuador Sucre	0.00004	25,500
Euro	1.2495	0.800
Ghana Cedi	0.00011	9,102
Guatemalan Quetzal	7.9975	0.125
Hong Kong Dollar	0.12837	7.790
Hungarian Forint	0.00504	198.3

Name	In US\$	Per US\$
Israeli New Shekel	0.22292	4.486
Indian Rupee	0.02181	45.845
Indonesian Rupiah	0.00011	9,112
Japanese Yen	0.00914	109.4
Jordanian Dinar	1.4094	0.710
Kenyan Shilling	0.01228	81.420
Korean Won	0.00088	1,143
Kuwaiti Dinar	3.3931	0.295
Moroccan Dirham	0.11307	8.844
Malaysian Ringgit	0.26312	3.801
Mexican Peso	0.08716	11.473
Namibian Dollar	0.15319	6.528
New Zealand Dollar	0.68520	1.459
Norwegian Krone	0.15192	6.583
Omani Rial	2.5963	0.385
Peruvian Nuevo Sol	0.30187	3.313
Pakistani Rupee	0.01662	60.160
Qatari Riyal	0.27467	3.641
Russian Ruble	0.03433	29.130
Saudi Arabian Riyal	0.26663	3.751
Singapore Dollar	0.59584	1.678
South African Rand	0.15686	6.375
Swedish Krona	0.13763	7.266
Swiss Franc	0.81162	1.232
Taiwanese Dollar	0.02961	33.775
Tanzanian Shilling	0.00094	1,067
Thai Baht	0.02411	41.470
Tunisian Dinar	0.79650	1.256
UAE Dirham	0.27224	3.673
Venezuelan Bolivar	0.00052	1,920
Vietnamese Dong	0.00006	15,760
Zimbabwe Dollar	0.00019	5,407

Four other governments call their currency the dollar-Australia, Canada, Hong Kong, and New Zealand. These dollars are not U.S. dollars; each is a separate currency. Several currencies share names, such as the franc, mark, peso, pound, and euro.

EXAMPLE A

A person planning a trip to Denmark wants to change $\$ 100$ U.S. dollars to Danish kroner. How many kroner will the person get for the $\$ 100$ U.S. dollars? (Round answer to nearest krone.)
$5.953 \times 100=595$ kroner

EXAMPLE B

A traveler from Argentina is planning a trip to the United States and wants to change 1,000 Argentine pesos to U.S. dollars. How many U.S. dollars will the traveler receive for the 1,000 pesos? (Round answer to nearest dollar.)
$1,000 \div 2.963=\$ 337$

EXAMPLE C

An American tourist shopping in a Canadian store purchased an item for 100 Canadian dollars. How much did his purchase cost him in U.S. dollars? (Round answer to nearest U.S. penny.)

100 Canadian dollars $\times 0.79586$ U.S. dollars per Canadian dollar $=\$ 79.59$

CONCEPT CHECK 20.1

Using the "Per US\$" column from Figure 20.1, compute the number of euros one would receive for $\$ 300$ U.S. dollars. (Round answer to nearest euro.)
$\$ 300 \times 0.80=240$ euros
Using the "In US\$" column from Figure 20.1, compute the number of U.S. dollars one would receive for 400 Japanese yen. (Round answer to nearest U.S. penny.)
$400 \times 0.00914=\$ 3.66$

Computing the Effects of Exchange Rate Changes

Learning Objective

Compute the effects of exchange rate changes.

One hazard of foreign trade is the uncertainty of future exchange rates between currencies. The relationship between the values of the U.S. dollar and a foreign currency can change between the time a contract is signed and the time payment is received. If a U.S. exporter agrees to accept foreign currency, a devaluation in the foreign currency could cause the exporter to lose money on the transaction.

EXAMPLE D

Global Industries, a U.S. company, sold merchandise to Europa, a company in Hungary. Europa agreed to pay 500,000 Hungarian forint for the goods. On the date of the sale, the Hungarian forint was valued at 198.3 per U.S. dollar, as noted in Figure 20.1. Global Industries expected to receive $\$ 2,521.43$. (500,000 Hungarian forint $\div 198.3$ per U.S. dollar $=\$ 2,521.43$.)

Between the date the sale was made and the date the goods were shipped and paid for by Europa, the value of the forint changed to 204.7 per U.S. dollar. How much did Global Industries lose by accepting the forint as the medium of payment?
Value of merchandise at time of sale: (500,000 Hungarian forint $\div 198.3$ per U.S. dollar $=$ $\$ 2,521.43$. Value of merchandise at time shipped and paid for: (500,000 Hungarian forint $\div 197.0=\$ 2,538.07$.) (Value of 500,000 forint at time of sale $\$ 2,521.43$ - value of 500,000 forint at time shipped and paid $\$ 2,442.60=$ loss to Global Industries $\$ 78.83$.)

EXAMPLE E

Global Industries investigated a purchase of raw materials from a company in England. The price of the materials was 150,000 British pounds. At the time, the value of the British pound was $\$ 1.652$. Three months later, when Global actually made the purchase, the value of the British pound was as shown in Figure 20.1. How many more dollars did Global have to pay as a result of the change in the value of the British pound?
$150,000 \times \$ 1.652=\$ 247,800$ cost when investigated
$150,000 \times \$ 1.7983=\$ 269,745$ cost when purchase was made
$\$ 269,745-\$ 247,800=\$ 21,945$ more dollars at time of purchase

CONCEPT CHECK 20.2

Global Industries contracts to sell a printing press to a company in Denmark. The Danish company agreed to pay $\$ 300,000$ U.S. dollars for the press.

On the date the agreement was made, the Danish krone was worth 0.16799 U.S. dollars. On the date payment was made, the krone had changed to 0.1592 U.S. dollars. How many more or less Danish kroner did the Danish company pay by stipulating a purchase price of $\$ 300,000$ U.S. dollars?
$\$ 300,000 \div 0.16799=1,785,821$ kroner at time of agreement
$\$ 300,000 \div 0.1592=1,884,422$ kroner at time of payment
$1,884,422-1,785,821=98,601$ more kroner at time of payment
If the Danish company had agreed to pay $1,785,821$ kroner instead of $\$ 300,000$ for the purchase, how many U.S. dollars would it have saved between the time of agreement and the time of payment?
$1,785,821$ kroner to be paid $\times 0.1592$ value of krone at payment $=\$ 284,302.70$ $\$ 300,000$ value of kroner at time of agreement $-\$ 284,302.70=15,697.30$ saved

Computing Duties on Imports

All items imported into the United States must go through the U.S. Customs Agency. Many imported items have a duty (charge or tax) imposed by the Customs Agency to

Learning Objective 3 protect U.S. manufacturers against foreign competition in domestic markets. Duties vary widely from item to item. A duty may be a set amount-such as $\$ 0.50$ per item-or an

Compute duties on imports. ad valorem duty, which is a percent of the value of the item.

EXAMPLE F

Assume that a wristwatch in a leather case with a metal band has four duty rates imposed: $\$ 0.40$ per wristwatch $+6 \%$ of the value of the case $+14 \%$ of the value of the metal band $+5.3 \%$ of the value of the battery. Anderson Jewelry Company imported four dozen wristwatches. The value of the case was $\$ 16$; the metal band, $\$ 10$; and the battery, $\$ 6$. How much duty did the Anderson Jewelry Company pay for the four dozen wristwatches? (Round answer to nearest cent.)

$$
\begin{array}{lr}
\text { Duty per wristwatch: } & \$ 0.40 \\
\text { Ad valorem duty on case: } \$ 16 \times 0.06 & =0.96 \\
\text { Ad valorem duty on metal band: } \$ 10 \times 0.14=1.40 \\
\text { Ad valorem duty on battery: } \$ 6 \times 0.053 & =\underline{\$ 0.318} \underset{\$ 3.078}{\quad \text { Total duty per watch }}
\end{array}
$$

$\$ 3.078$ per watch $\times 48$ watches $=\$ 147.74$ total duty paid

EXAMPLE G

A computer printer costs $\$ 150$ whether purchased from country A or country B. However, it has an ad valorem duty rate of 3.5% if purchased from country A and an ad valorem duty rate of 28% if purchased from country B. How much more would it cost a company to purchase the printer from country B than from country A?

$$
\begin{array}{ll}
\text { Country A: } & \$ 150 \times 0.035=\$ 5.25 \\
& \$ 150+\$ 5.25=\$ 155.25 \text { total cost } \\
& \\
\text { Country B: } & \$ 150 \times 0.28=\$ 42 \\
& \$ 150+\$ 42=\$ 192 \text { total cost }
\end{array}
$$

$\$ 192$ country B $-\$ 155.25$ country $A=\$ 36.75$ more

Foreign trade zones are domestic sites in the United States considered to be outside U.S. Customs territory. These foreign trade zones are used for import and export activities. No duty or federal excise taxes are charged on foreign goods moved into the zone until the goods or products made from them are moved into U.S. Customs territory. No duty is charged on imports that later are exported for sale, because they never entered U.S. Customs territory. Recently, there were more than 150 foreign trade zones in port communities in the United States. Operations in them include storage, repacking, inspection, exhibition, assembly, and manufacturing.

EXAMPLE H

A U.S. company located in a foreign trade zone imported $\$ 500,000$ worth of goods. The duty rate on the goods is 5%. If 30% of the goods were moved into U.S. Customs territory for sale and 70% were exported for sale, how much money did the company save by being located in a foreign trade zone?
$\$ 500,000 \times 5 \%$ duty $=\$ 25,000$ duty if goods are sold in U.S. Customs territory
$\$ 25,000 \times 70 \%$ exported $=\$ 17,500$ saved

CONCEPT CHECK 20.3

a. Downtown Toy Store ordered from a foreign country 400 dolls on which an ad valorem duty of 4.5% is charged. Payment is to be made in U.S. dollars. The price of each doll is $\$ 23$. What is the total cost to Downtown?
$400 \times \$ 23=\$ 9,200$ cost before duty
$\$ 9,200 \times 0.045$ duty $=\$ 414$
$\$ 9,200+\$ 414=\$ 9,614$ total cost to buyer
b. A company located in a foreign trade zone purchased $\$ 1$ million worth of electronic equipment having an ad valorem duty of 4.1%. Forty percent of the products were moved into U.S. Customs territory for sale, and 60% were repackaged and exported. How many dollars did the company save by being located in a foreign trade zone?
$\$ 1,000,000 \times 60 \%=\$ 600,000$
$\$ 600,000 \times 4.1 \%=\$ 24,600$ saved

Converting Between U.S. Weights and Measures and Metric Weights and Measures

Some businesses, especially in the area of import-export activities, must convert U.S. customary units of weight and measure to the metric system of weights and measures used in most other countries. Figure 20-2 shows the conversion values for the U.S./metric units used most frequently in business.

```
Learning Objective
4
```

Convert between U.S. weights and measures and metric weights and measures.

Figure 20-2 U.S./Metric Unit Conversions

To Convert U.S. to	Metric	Multiply by Number of Metric in U.S.	To Conver Metric	to	U.S.	Multiply by Number of U.S. in Metric
Inches	Meters	0.0254	Meters		Inches	39.37
Feet	Meters	0.305	Meters		Feet	3.281
Yards	Meters	0.914	Meters		Yards	1.09
Miles	Kilometers	1.609	Kilometers		Miles	0.621
Ounces	Grams	28.35	Grams		Ounces	0.035
Pounds	Grams	454	Grams		Pounds	0.0022
Pounds	Kilograms	0.454	Kilograms		Pounds	2.2
Pints	Liters	0.473	Liters		Pints	2.113
Quarts	Liters	0.946	Liters		Quarts	1.057
Gallons	Liters	3.785	Liters		Gallons	0.264

EXAMPLE I

Convert the following U.S. measures to metric measures.
a. Convert 30 inches to meters.
$30 \mathrm{in} . \times 0.0254=0.7620 \mathrm{~m}$
b. Convert 15 feet to meters. $15 \mathrm{ft} \times 0.305=4.5750 \mathrm{~m}$
c. Convert 10 yards to meters. $10 \mathrm{yd} \times 0.914=9.14 \mathrm{~m}$
e. Convert 15 ounces to grams. $15 \mathrm{oz} \times 28.35=425.25 \mathrm{~g}$
g. Convert 10 pounds to kilograms. $10 \mathrm{lb} \times 0.454=4.54 \mathrm{~kg}$
i. Convert 40 quarts to liters.
$40 \mathrm{qt} \times 0.946=37.84 \mathrm{~L}$
d. Convert 20 miles to kilometers. $20 \mathrm{mi} \times 1.609=32.18 \mathrm{~km}$
f. Convert 20 pounds to grams. $20 \mathrm{lb} \times 454=9,080 \mathrm{~g}$
h. Convert 20 pints to liters. $20 \mathrm{pt} \times 0.473=9.46 \mathrm{~L}$
j. Convert 20 gallons to liters. $20 \mathrm{gal} \times 3.785=75.7 \mathrm{~L}$

EXAMPLE J

Convert the following metric measures to U.S. measures.
a. Convert 20 meters to inches. $20 \mathrm{~m} \times 39.37=787.4 \mathrm{in}$.
c. Convert 30 meters to yards. $30 \mathrm{~m} \times 1.09=32.7 \mathrm{yd}$
e. Convert 20 grams to ounces. $20 \mathrm{~g} \times 0.035=0.7 \mathrm{oz}$
g. Convert 40 kilograms to pounds. $40 \mathrm{~kg} \times 2.2=88 \mathrm{lb}$
i. Convert 20 liters to quarts. $20 \mathrm{~L} \times 1.057=21.14 \mathrm{qt}$
b. Convert 20 meters to feet.
$20 \mathrm{~m} \times 3.281=65.62 \mathrm{ft}$
d. Convert 15 kilometers to miles. $15 \mathrm{~km} \times 0.621=9.315 \mathrm{mi}$
f. Convert 20 grams to pounds. $20 \mathrm{~g} \times 0.0022=0.044 \mathrm{lb}$
h. Convert 30 liters to pints. $30 \mathrm{~L} \times 2.113=63.39 \mathrm{pt}$
j. Convert 20 liters to gallons. $20 \mathrm{~L} \times 0.264=5.28 \mathrm{gal}$

CONCEPT CHECK 20.4

Using Figure 20-2, make the following conversions:
a. Convert 28 inches to meters. $28 \times 0.0254=0.7112$
c. Convert 3 meters to inches.
$3 \times 39.37=118.11$
e. Convert 3 ounces to grams. $3 \times 28.35=85.05$
g. Convert 36 grams to pounds.
$36 \times 0.0022=0.0792$
i. Convert 8 pints to liters.
$8 \times 0.473=3.784$

COMPLETE ASSIGNMENT 20.2.
b. Convert 17 feet to meters. $17 \times 0.305=5.185$
d. Convert 18 meters to feet. $18 \times 3.281=59.058$
f. Convert 7 pounds to grams. $7 \times 454=3,178$
h. Convert 18 kilograms to pounds.
$18 \times 2.2=39.6$
j. Convert 2 quarts to liters.
$2 \times 0.946=1.892$
ad valorem duty
duty
export
Export Administration Regulations
foreign trade zones
import
metric system

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

20.1

Compute currency exchange rates

Example

1. Using the In U.S.\$ column in Figure 20-1, compute the value in U.S. dollars of 5,000 units of each of the following foreign currencies. Round answers to the nearest cent.
a. Czech Republic's koruna \qquad b. Russian ruble \qquad
c. Korean won \qquad d. Thailand's baht \qquad
2. Using the Per U.S.\$ column in Figure 20-1, compute the amount of U.S. dollars necessary to buy 5,000 units of each of the following foreign currencies. Round answers to the nearest cent.
a. Sweden's krona \qquad b. Hungary's forint \qquad
c. Zimbabwe dollar \qquad d. Mexican peso \qquad
3. A U.S. company has contracted to sell certain goods to a company in Mexico. The Mexican company has contracted to pay 700,000 pesos for the goods. At the time the contract was signed, the In U.S. \$ column in the newspaper showed that the Mexican peso was worth $\$ 0.0812$. On the date payment was due, the peso changed to a value of $\$ 0.08716$ U.S. How much did the U.S. company gain or lose by having agreed to accept payment in pesos instead of U.S. dollars?

20.3

Compute duties on imports

20.4

Convert between U.S. weights and measures and metric weights and measures
4. Broadway Department Store ordered from a foreign country 300 sets of dishes on which an ad valorem duty of 5.8% is charged. The price of each set of dishes is $\$ 72$. Payment is to be made in U.S. currency. What is the total cost to Broadway?
5. Using Figure 20-2, make the following conversions.
a. Convert 100 inches to meters. b. Convert 1,000 meters to feet.
c. Convert 6 miles to kilometers.
d. Convert 100 grams to ounces.
e. Convert 3 gallons to liters.
f. Convert 7 liters to quarts.

SELF-CHECK

Review Problems for Chapter 20

(In all cases, round to the nearest U.S. penny.)

1 How many Thai baht can a person get for $\$ 15$ U.S. dollars?
2 How many U.S. dollars can a person get for 15 Thai baht?
3 How many South African rand can a person get for $\$ 540$ U.S. dollars?
4 How many U.S. dollars can a person get for 540 South African rand?
5 A U.S. exporter agrees to accept 300,000 South African rand in payment for goods. The South African rand is valued as shown in Figure 20-1. Compute the value in U.S. dollars that the U.S. exporter will receive.
6 In problem 5, suppose that the value of the South African rand changes to 7.185 per U.S. dollar. How much will the exporter gain or lose in this transaction?
7 Tonaka Manufacturing, Inc. contracted to sell goods to a company in Sweden for 630,000 Swedish kronor. Using the data in Figure 20-1, compute the U.S. dollar value that Tonaka expects to receive.
8 Assume that the value of the Swedish krona decreased by 20%; compute the U.S. dollar value that Tonaka would then expect to receive.

9 Princess Jewelry contracted to purchase 144 bracelets from a foreign manufacturer. The price of each bracelet is $\$ 40$. An ad valorem duty of 17% is charged on each bracelet. Compute the duty Princess Jewelry will pay for the shipment.

10 ABC, Inc., plans to purchase 250 units of computer components. ABC can buy the components from country Y at a price of $\$ 60$ each plus an ad valorem duty of 35% or from country YY at a price of $\$ 64$ plus an ad valorem duty of 13%. Compute the amount ABC will save by purchasing from the lowest-cost source.

11 Convert 8 pints to liters.
12 The length of trip A is stated as 300 miles. The length of trip B is stated as 300 kilometers. In miles, how much farther is trip A than trip B?

Assignment 20.1: Trading with Other Countries

Name

Date Score

A (44 points) Solve the following problems. (4 points for each correct answer)

1. Using the data in Figure 20-1, find the amount of U.S. dollars needed to buy 300 units of each foreign currency listed.

Foreign Currency \quad Price of $\mathbf{3 0 0}$ Units

a. Australian dollar
b. Bahraini dinar
c. Bolivian boliviano \qquad
d. Brazilian real
e. Canadian dollar \qquad
f. Chinese yuan
g. South African rand \qquad
2. Using the data in Figure 20-1, determine the value in U.S. dollars of 3,000 units of each foreign currency listed below. (Round answers to the nearest cent.)

Foreign Currency Value of 3,000 units

a. Argentinean peso
b. British pound
c. Danish krone
d. Indian rupee

B (56 points) Solve the following problems. Round pennies to the nearest dollar. (8 points for each correct answer)

3. Hadley Enterprises has contracted to sell certain goods to a company in Britain. The price agreed on for the goods is 80,000 British pounds. On the date the contract was signed, the financial section of the local paper showed that the British pound was valued at $\$ 1.6554$ U.S.
a. How much in U.S. dollars does Hadley Enterprises expect to receive for the goods? \qquad
b. If the value of the British pound fell from 1.6554 to 1.550 on the date of payment, how much would Hadley Enterprises lose by having contracted in British pounds instead of U.S. dollars? \qquad
c. If the British pound rose to 1.7500 on the date of payment, how much would Hadley Enterprises gain by having contracted in British pounds instead of U.S. dollars? \qquad
4. Miller Furniture Company imported 150 chairs from a Danish firm. Each chair is valued at 890 Danish kroner. What is the value of the chairs in U.S. dollars if the Danish krone is currently valued at 0.1694 ? \qquad
5. Oldtown Industries, Inc., is contracting to sell its product to a country whose currency is unstable and difficult to convert to U.S. currency. The value of the goods is $\$ 20,000$ U.S. The currency of the country to which the goods will be shipped is currently valued at 0.0040 per U.S. dollar. Oldtown Industries is willing to accept the currency of a third country. The Singapore dollar is agreed on. The Singapore dollar is shown as 0.6428 on the date the contract is signed.
a. How many Singapore dollars does Oldtown Industries expect to receive?
(Round the answer to the nearest dollar.) \qquad
b. If the Singapore dollar does not change before the date of payment, but the value of the currency of the receiving country falls from 0.0040 to 0.0003 , how much did Oldtown Industries save by using the Singapore dollar? \qquad
6. If the British pound is valued at 1.9000 per U.S. dollar and the Egyptian pound at 0.3700 , how many more Egyptian pounds than British pounds could a U.S. citizen buy for $\$ 1,000$ U.S.? (Round the answer to the nearest pound.) (10 points) \qquad

Assignment 20.2: Duties and Metric Conversion

Name
Date Score

A (56 points) Solve the following problems. (points for correct answers as marked)

1. Benjamin's Department Store ordered from a foreign country 150 music boxes on which an ad valorem duty rate of 3.2% is charged. Payment is to be made in U.S. dollars. The price of each music box is $\$ 18$. (2 points for each correct answer)
a. What is the price of the 150 music boxes before duty is added? \qquad
b. What is the amount of duty charged on the shipment? \qquad
c. What is the total cost to Benjamin's? \qquad
2. Gems International Company is purchasing from a foreign country one gross (144) of 20-inch gold necklaces at $\$ 75$ each and six dozen 18 -inch silver necklaces at $\$ 55$ each. The ad valorem duty rate for gold and silver jewelry is 7%. What is the total cost of the shipment to the buyer? (8 points) \qquad
3. Sutter's Department Store is going to buy four gross (one gross $=144$) of vases for the next Christmas season. It can buy porcelain vases or lead crystal vases for $\$ 45$ each. The duty on porcelain vases is 9%. The duty on lead crystal vases is 4%. How much will Sutter's save in total cost by purchasing lead crystal instead of porcelain? (8 points) \qquad
4. Melody Piano Store can purchase pianos domestically for $\$ 1,360$ each. It can purchase pianos from a foreign country for $\$ 1,300$ plus 5.3% ad valorem duty.
a. Melody Piano Store purchases the pianos with the lower total cost. Does it purchase from a domestic or a foreign manufacturer? (6 points) \qquad
b. How much does it save on each piano? (2 points) \qquad

Assignment 20.2 Continued

5. Broadway Office Equipment Company purchased the following equipment from a foreign country:

72 automatic typewriters at $\$ 150$ each $+2.2 \%$ duty
24 addressing machines at $\$ 30$ each $+4.2 \%$ duty
144 pencil sharpeners at $\$ 12$ each $+6 \%$ duty
24 check-writing machines at $\$ 60$ each, duty free
80 calculators at $\$ 24$ each $+\$ 3.9 \%$ duty
a. What was the cost of the order before duty? (8 points) \qquad
b. What was the cost of the order after duty? (Round each calculation to the nearest cent.) (8 points) \qquad
c. If the 144 pencil sharpeners had been purchased at $\$ 12$ each from a country with which trade was discouraged and the ad valorem duty rate was 50%, how much would the pencil sharpeners have cost? (4 points) \qquad
d. How much more duty would a buyer pay on the pencil sharpeners at the ad valorem rate of 50% than at an ad valorem duty rate of 6% ? (2 points) \qquad
6. Adams Industries could purchase $\$ 30,000$ worth of textiles from country A with an ad valorem duty rate of 2.5% or from country B with an ad valorem duty rate of 1.2%.
a. How much would the shipment cost if purchased from country A? (2 points) \qquad
b. How much would Adams Industries save by purchasing from country B? (2 points) \qquad

B (24 points) Solve the following problems. (points for correct answers as marked)

7. The Allied Computer Company imports some computer components and manufactures other components and then assembles computers for sale within the United States or for export to foreign countries. The company is located in a district that has been designated by the International Trade Administration as a foreign trade zone. The company imported $\$ 250,000$ worth of monitors having an ad valorem duty rate of $3.7 \%, \$ 300,000$ worth of power supplies having an ad valorem duty rate of 3.0%, and $\$ 500,000$ worth of printers having an ad valorem duty rate of 3.7%. All products were finished and sold 1 year later.
a. If all products were sold within U.S. Customs territories, how much duty-in U.S. dollars - did the company pay at the end of the year? (2 points) \qquad
b. If 40% of the finished products were moved into U.S. Customs territories for sale and 60% were exported for sale in foreign countries, how many dollars of duty did the company pay at the end of the year? (8 points) \qquad
c. If all products were exported for sale, how much duty did the company pay at the end of the year? (2 points) \qquad
8. The Allied Computer Company imported $\$ 260,000$ worth of portable computers having an ad valorem duty rate of 3.9% and kept 20% of them for exhibition and company use on the premises.
a. If the company repackaged and sold the remaining portable computers in U.S. Customs territories, how many dollars of duty did the company pay on the portable computers? (4 points) \qquad
b. If the company repackaged and exported 50% of the portable computers for sale in foreign countries and moved the remaining 30% into U.S. Customs territories for sale, how many dollars did the company pay in duty on the portable computers? (4 points) \qquad
9. A company imported $\$ 5$ million worth of laptop computers having an ad valorem duty rate of 3.9%. The company repackaged and exported all the computers for resale. How many dollars did the company save by being located in a foreign trade zone? (4 points) \qquad

Assignment 20.2 Continued

C (20 points) Solve the following problems using Figure 20-2. (1 point for each correct answer)

10. Make the following conversions from U.S. measures to metric:
a. Convert 15 inches to meters: \qquad
b. Convert 15 feet to meters: \qquad
c. Convert 15 yards to meters: \qquad
d. Convert 15 miles to kilometers: \qquad
e. Convert 25 ounces to grams: \qquad
f. Convert 25 pounds to grams: \qquad
g. Convert 25 pounds to kilograms: \qquad
h. Convert 30 pints to liters: \qquad
i. Convert 30 quarts to liters: \qquad
j. Convert 30 gallons to liters: \qquad
11. Make the following conversions from metric to U.S. measures:
a. Convert 15 meters to inches: \qquad
b. Convert 15 meters to feet: \qquad
c. Convert 15 meters to yards: \qquad
d. Convert 15 kilometers to miles: \qquad
e. Convert 25 grams to ounces: \qquad
f. Convert 25 grams to pounds: \qquad
g. Convert 25 kilograms to pounds: \qquad
h. Convert 30 liters to pints: \qquad
i. Convert 30 liters to quarts: \qquad
j. Convert 30 liters to gallons: \qquad

Notes

Part 6

Corporate

 and Special Applications21 Corporate Stocks
22 Corporate and Government Bonds
23 Annuities
24 Business Statistics

Corporate Stocks

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute the costs and proceeds of stock buy-and-sell transactions.

Learning Objective
2
Compute the costs and proceeds of round and odd lots.

Learning Objective

Learning Objective

Compute rates of yield and gains or losses on the purchase and sale of stocks.

Compute comparative earning potential of the major classes of corporate stocks.

Many companies operate as corporations. A corporation is a body that is granted a charter by a state legally recognizing it as a separate entity, having its own rights, privileges, and liabilities distinct from those of its owners. A corporation acquires assets, enters into contracts, sues or is sued, and pays taxes in its own name. Two primary reasons for forming a corporation are to limit liability and facilitate broadening the ownership base. A corporation raises capital by selling shares of ownership, which increases its assets without increasing its debt.

The general term applied to the shares of a corporation is capital stock. Each share of capital stock is a share of the ownership of the company's net assets (assets minus liabilities). The number of shares that a corporation is authorized to issue, or offer for sale, is set forth in its charter, the basic approval document issued by the state, under which the corporation operates. Ownership of stock is evidenced by a stock certificate.

Frequently, the shares of capital stock are assigned a value known as par, which is stated on the stock certificate. For example, a company incorporated with capital stock of $\$ 1,000,000$ and 100,000 shares has a par value of $\$ 10$ per share. Stock issued without par value is known as no-par stock. The par value may differ from the market price. In the marketplace, stock may be sold for any amount agreed upon by the buyer and seller.

Computing the Costs and Proceeds of Stock Transactions

Learning Objective

Compute the costs and proceeds of stock buy-and-sell transactions.

After purchasing stock, a buyer may sell that stock at any price on the open market, regardless of the par value. Stocks are usually bought and sold on stock exchanges, the formal marketplaces set up for the purpose of trading stocks. Major exchanges in the United States are the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and the National Association of Securities Dealers Automated Quotations (NASDAQ). A stockbroker usually handles stock transactions-the purchase and sale of stocks for clients. Today, many people also trade via the Internet.

The trading of shares of stock is published daily in newspapers. Figure 21-1 shows a sample stock market report, in which stocks are quoted in the traditional mannerdollars and fractions of a dollar. The NYSE, NASDAQ, and AMEX quote prices in hundredths. Consequently, the smallest increase or decrease in a stock price that will be reported is .01 .

Both the buyer and the seller of stock pay commissions to the stockbroker. The total amount paid by a buyer to purchase a stock includes the market price of the stock and the stockbroker's commission (charge). The total cost paid by the purchaser is equal to the purchase price plus a broker's commission. The proceeds received by the seller are equal to the selling price minus the commission.

Broker commissions may be a flat rate per transaction, a percent of the value of the stock, an amount per share traded, or an amount negotiated between the client and the broker. Generally, commissions for brokers are less than 1% of the value of the stock, ranging from $\$ 0.02$ to $\$ 0.50$ per share bought or sold. A number of discount brokerages operating on the Internet now charge $\$ 7.00$ to $\$ 22.99$ per transaction, normally for up to 5,000 shares. Figure 21-2 shows a broker's confirmation report of a stock purchase with a commission rate of $\$ 50$ and a transaction fee of $\$ 3$.

We use a transaction charge of $\$ 0.20$ per share or a flat fee of $\$ 19.95$ per transaction in computing the cost of commissions in this chapter.

Figure 21-1 \quad Daily Stock Report from the NYSE

52 weeks		Stock[3]	$\begin{aligned} & \text { Sym } \\ & {[4]} \\ & \hline \end{aligned}$				Vol		Low[10]	Close[11]	Chg.[12]
High [1]	$\begin{aligned} & \text { Low } \\ & {[2]} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Div } \\ & \text { [5] } \end{aligned}$	$\begin{gathered} \% \\ {[6]} \end{gathered}$	$\begin{aligned} & \text { PE } \\ & {[7]} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~s} \\ & {[8]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{H i} \\ & {[9]} \end{aligned}$			
60.45	50.45	WalMart	WMT	1.12	2.2	21	4672	51.7	51.12	51.45	+. 14
25.80	45.95	C Timber	CRT	2.11	6.42	19	242	44.35	43.80	44.29	-. 5
45.59	37.70	Kellogg	K	1.01	2.36	19	68146	43.61	42.60	42.81	$+.62$
8.3	3.36	SixFlags	PKS			dd*	9621	4.52	4.32	4.35	$-.12$
99.96	68.50	Caterpillar	CAT	1.56	1.7	17	44329	97.87	95.53	96.40	+ 1.05
58.94	38.04	Boeing	BA	0.77	1.75	25	36988	57.19	56.57	57.16	+ . 2
53.50	38.30	CocaCola	KO	1.00	2.7	21	156186	41.52	41.35	41.46	$-.18$
69.8	51.21	Deere Co	DE	1.06	1.02	12	25415	68.49	67.49	68.37	-. 4
59.39	31.21	Sears	S	0.92	1.62	37	53205	57.43	56.88	56.95	$+.13$

*dd $=$ Loss in the most recent four quarters.
[1] The highest price per share in the previous 52 weeks.
[2] The lowest price per share in the previous 52 weeks.
[3] Company names, often abbreviated to fit in stock tables, are listed alphabetically.
[4] The symbol is a stock's designation on databases and quote machines.
[5] The dividend shown usually is the annual rate based on the company's last payout.
[6] The dividend divided by the closing share price gives the stock's yield.
[7] One measure of a stock's value is its price/earnings ratio (\mathbf{P} / \mathbf{E}). It is based on the per-share earnings as reported by the company for the four most recent quarters. The PE number is found by dividing the current price by those most recent four-quarter earnings.
[8] Volume is the number of shares traded that day, shown in hundreds of shares.
[9] The high for the day's trading range.
[10] The low for the day's trading range.
[11] The closing price on that day.
[12] The net change in price lets you calculate something that isn't in the stock table: the previous day's closing price.

Figure 21-2 Confirmation Report of a Stock Purchase

EXAMPLEA

Jennifer Low bought 200 shares of Sears stock at 50 . What was her cost, including commission of $\$ 0.20$ per share?

$$
\begin{aligned}
& 200 \text { shares } \times \$ 50 \text { price }=\$ 10,000 \text { purchase price } \\
& 200 \text { shares } \times \$ 0.20 \text { commission }=\frac{+\quad 40}{\$ 10,040} \text { tommission }
\end{aligned}
$$

EXAMPLE B

Ken Yeager sold 800 shares of Applebee's International at 22.16, less commission of $\$ 0.20$ per share. What were the proceeds of the sale?

$$
\begin{array}{lll}
800 \text { shares } \times \$ 22.16 & =\$ 17,728 & \text { selling price } \\
800 \text { shares } \times \$ 0.20 \text { commission }=\frac{-160}{\$ 17,568} & \begin{array}{l}
\text { commission } \\
\text { proceeds }
\end{array}
\end{array}
$$

EXAMPLEC

Juan Hernandez bought 500 shares of PepsiCo stock at 45.38. What was his cost, including a flat fee of $\$ 19.95$?

500 shares $\times \$ 45.38$ price $=\$ 22,690.00 \quad$ purchase price

$$
\text { commission } \quad=\frac{+19.95}{\$ 22,709.95} \quad \begin{aligned}
& \text { flat fee } \\
& \text { total cost }
\end{aligned}
$$

CONCEPT CHECK 21.1

David Cooper purchased 300 shares of Safeway at 19.02. He later sold the stock at 21.5. What was his gain/loss on the purchase and sale, after counting commissions of $\$ 0.20$ per share on the purchase and the sale?

Purchase: 300 shares $\times \$ 19.02$ price	$=\$ 5,706$	purchase price
300 shares $\times \$ 0.20$ commission	$=\frac{+}{60}$	commission
$\$ 5,766$	total cost	
Sale: 300 shares $\times \$ 21.50$ price	$=\$ 6,450$	selling price
300 shares $\times \$ 0.20$ commission	$=\frac{-r 60}{\$ 6,390}$	commission proceeds
$\$ \$ 6,390$ proceeds $-\$ 5,766$ cost $=\$ 624$ gain		

Computing the Costs and Proceeds of Round and Odd Lots

Stocks are sold in round lots, odd lots, or a combination of the two. A round lot usually is 100 shares. An odd lot consists of any number of shares less than 100 (1 to 99 shares is an odd lot for a stock with a 100 -share round lot). When odd lots are purchased, a small extra charge, or odd-lot differential, is commonly added to the round-lot price. The differential is added to the price for a purchaser and deducted from the price for the seller. In this book, we use a differential of 12.5 cents as the odd-lot rate.

EXAMPLE D

Carson Grant bought 160 shares of U.S. Steel at 43 . What was his cost?
Odd-lot purchase price $=\$ 43+\$ 0.125=\$ 43.125$ per odd-lot share

100 shares $\times \$ 43.00$ round-lot price	$=\$ 4,300.00$	round-lot total cost
60 shares $\times \$ 43.125$ odd-lot price	$=2,587.50$	odd-lot total cost
160 shares $\times \$ 0.20$ commission	$=\frac{+32.00}{}$commission	
	$\$ 6,919.50$	total cost

EXAMPLE E

Carson sold 160 shares of U.S. Steel at 43 . What was the amount of his net proceeds?

Odd-lot selling price $=\$ 43-\$ 0.125=\$ 42.875$

100 shares $\times \$ 43.00$ round-lot price $=\$ 4,300.00$	round-lot price	
60 shares $\times \$ 42.875$ odd-lot price	$=2,572.50$	odd-lot price
160 shares $\times \$ 0.20$ commission	$=\frac{-32.00}{}$	commission
	$\$ 6,840.50$	net proceeds

Learning Objective 2

Compute the costs and proceeds of round and odd lots.

CONCEPT CHECK 21.2

James O'Brien bought 160 shares of PG\&E at 25.5. What was his total cost?
Odd-lot purchase price $=\$ 25.50+\$ 0.125=\$ 25.625$
100 shares $\times \$ 25.50$ round-lot price $=\$ 2,550.00$
60 shares $\times \$ 25.625$ odd-lot price $=1,537.50$
$\begin{aligned} & 160 \text { shares } \times \$ 0.20 \text { commission } \\ & \text { Total cost }\end{aligned}=\frac{+32.00}{\$ 4,119.50}$
Sarah Loeb sold 220 shares of Aetna at 153.25 . What was the amount of her net proceeds?
Odd-lot selling price $=\$ 153.25-\$ 0.125=\$ 153.125$
200 shares $\times \$ 153.25$ round-lot price $=\$ 30,650.00$
20 shares $\times \$ 153.125$ odd-lot price $=+3,062.50$
220 shares $\times \$ 0.20$ commission $\quad=\frac{-44.00}{\$ 33.668 .50}$

Computing the Rate of Yield and Gains or Losses

Learning Objective

Compute rates of yield and gains or losses on the purchase and sale of stocks.

THE RATE OF YIELD

The board of directors is a group of people elected by shareholders to oversee the operations of the corporation. The board has sole authority to distribute earnings to shareholders. When such action is taken, the directors are said to declare a dividend. The rate of dividend is either a certain percent of the par value of the stock or a flat amount of money per share. Thus a dividend of 8% on a stock with a par value of $\$ 100$ would be $\$ 8.00$ per share. Most large corporations pay dividends quarterly.

The rate of yield from an investment in stock is the ratio of the dividend to the total cost of the stock.

EXAMPLE F

Aaron Ramos bought 300 shares of Wells Fargo stock at 32 and paid a $\$ 19.95$ commission. A dividend of $\$ 2.15$ per share was paid this year. What was the rate of yield?
$300 \times \$ 32=\$ 9,600.00 \quad$ purchase price +19.95 commission $\overline{\$ 9,619.95}$ total cost
$300 \times \$ 2.15=\$ 645$ dividend for first year
$\$ 645 \div \$ 9,619.95=6.7 \%$ rate of yield

GAIN OR LOSS ON SALE OF STOCK

For income tax and accounting purposes, the amount of gain or loss on a sale of stock is determined by comparing the sale proceeds to the total cost.

EXAMPLE G

Refer back to example F. If Aaron sold his stock after 3 years at 36.5 , less $\$ 19.95$ commission, what were the amount and the percent of gain or loss?
$300 \times \$ 36.50=\$ 10,950.00$ selling price

$$
\frac{-\quad 19.95}{\$ 10,930.05} \text { commission } \text { proceeds }
$$

$\$ 10,930.05$ proceeds $-\$ 9,619.95$ cost (example F) $=\$ 1,310.10$ net gain
$\$ 1,310.10 \div \$ 9,619.95=13.6 \%$ gain on sale

EXAMPLE H

Suppose that Aaron held his stock for 3 years and received a $\$ 645$ dividend each year. Then to determine the total change in value (example G) he would need to add to his proceeds the $\$ 1,935$ in dividends received.

Proceeds	Total Dividends	Total Cost
$(\$ 10,930.05$	$\underline{\$ 1,935)}$	$-\$ 9,619.95=\$ 3,245.10$ total gain in value
$\$ 3,245.10$ total gain $\div \$ 9,619.95$ initial cost $=33.7 \%$ gain in value		

CONCEPT CHECK 21.3

a. Maria Sanchez owns 700 shares of stock with a par value of $\$ 100$. If she receives a dividend of 5%, how much will her total dividend be?
$\$ 100$ par value $\times 5 \%$ per share $=\$ 5.00$ per-share dividend
700 shares $\times \$ 5.00$ per share $=\$ 3,500$ total dividend
b. Maria also owns 300 shares of a stock without a stated par value. If she receives a dividend of $\$ 2.00$ per share, what will her total dividend be?
300 shares $\times \$ 2.00$ per share $=\$ 600$ total dividend
c. Magdalena Kaur bought 200 shares of Clorox at 32.25 . A dividend of $\$ 0.45$ per share was paid this year. What was the rate of yield?
$\begin{array}{ll}200 \text { shares } \times \$ 32.25=\$ 6,450 & \text { purchase price } \\ 200 \text { shares } \times \$ 0.20=\frac{+40}{\$ 6,490} & \text { commission } \\ \text { total cost }\end{array}$
200 shares $\times \$ 0.45$ dividend $=\$ 90$ for first year
$\$ 90$ dividend $\div \$ 6,490$ total cost $=1.39 \%$ rate of yield
d. After 4 years, Magdalena sold the Clorox stock for 32.50 . What were the amount and percent of gain or loss on the sale?

200 shares $\times \$ 32.50$ selling price $=\$ 6,500$ selling price
200 shares $\times \$ 0.20$ commission $=\frac{-40}{\$ 6,460} \begin{aligned} & \text { commission } \\ & \text { proceeds }\end{aligned}$
$\$ 6,460$ proceeds $-\$ 6,490$ total cost $=\$(30)$ loss
$\$(30)$ loss $\div \$ 6,490$ total cost $=0.46 \%$ loss
e. If Magdalena held the Clorox stock for 4 years, receiving the same $\$ 90$ dividend each year, what was the total change in the value over the 4 years?

Proceeds	+	Total Dividends (4 years)	-	Total Cost	$=$	Gain in Value
(\$6,460	+	\$360)		\$6,490		\$330

$\$ 330$ gain in value $\div \$ 6,490$ total cost $=5.08 \%$ gain

Computing Comparative Earning Potential

Common stock is the usual type of stock issued by a corporation. Another type frequently issued, preferred stock, gives holders a right to share in earnings and liquidation before common shareholders do. For example, a company that has a 7\% preferred stock must first pay dividends of 7% of the par value to the holders of preferred stock before anything is paid to the holders of common stock. Preferred stock may be designated as cumulative-that is, if the corporation doesn't pay the specified percentage, the unpaid amount, called a dividend in arrears, carries over to the following year or years. If dividends aren't paid on noncumulative preferred stock during one year, the unpaid amount doesn't carry over to the next year.

Compute comparative earning potential of the major classes of corporate stocks.

EXAMPLE I

The ABC Company earned $\$ 48,000$ last year. The capital stock of the company consists of 10,000 shares of 7% preferred stock, with a par value of $\$ 40$ per share, and 50,000 shares of no-par common stock. If the board of directors declared a dividend of the entire earnings, what amount would be paid in total to the preferred and common shareholders and how much would each common shareholder receive?

Preferred: 10,000 shares $\times \$ 40$ par value $=\$ 400,000$ total value
$\$ 400,000$ value $\times 0.07=\$ 28,000$ paid to preferred
Common: $\$ 48,000$ total earnings $-\$ 28,000$ paid to preferred $=\$ 20,000$
$\$ 20,000 \div 50,000$ shares $=\$ 0.40$ paid per share to common

EXAMPLE J

Assume in example I that the preferred stock is cumulative and that for the preceding year the company had declared a dividend of only $\$ 16,000$, or enough to pay a 4% dividend on preferred stock. The earnings of $\$ 48,000$ for this year would be divided as follows:

Unpaid dividend from preceding year: $7 \%-4 \%=3 \%$
$\$ 400,000$ preferred par value $\times 0.03 \quad=\$ 12,000$ cumulative (dividend in arrears)
$\$ 400,000 \times 0.07$ dividend for current year $=\$ 28,000$
Total paid on preferred stock $\quad=\$ 40,000$
$\$ 48,000$ total earnings $-\$ 40,000$ paid to preferred $=\$ 8,000$
$\$ 8,000 \div 50,000$ common shares $\quad=\$ 0.16$ dividend per common share

Another feature that sometimes makes preferred stock an attractive investment is the possibility of converting the preferred stock into common stock. Convertible preferred stock gives the owner the option of converting those preferred shares into a stated number of common shares. For example, a stated conversion of 1 to 3 means that 1 share of preferred stock could be changed into 3 shares of common stock. The conversion feature combines the safety of preferred stock with the possibility of growth through conversion to common stock.

EXAMPLE K

Joel Turner owned 200 shares of GM convertible preferred stock at $\$ 20$ par value. He converted each share of preferred into 3 shares of common. How many shares of common stock did Joel receive when he converted?
$200 \times 3=600$ shares of common stock
If common stock was selling at $\$ 22$ per share on the date of conversion, how much was Joel's common stock worth?
$\$ 22 \times 600$ shares $=\$ 13,200$ common stock value
If Joel paid \$42 per share for his preferred stock, how much had his investment increased?
$\$ 42 \times 200$ preferred $=\$ 8,400$ preferred stock value
$\$ 13,200-\$ 8,400=\$ 4,800$ increase in value

If the convertible stock pays 7% annually and the common stock usually pays $\$ 0.60$ per share, how much more dividend might Joel expect to receive annually?
$\$ 20$ par value $\times 200$ shares $=\$ 4,000$
$\$ 4,000 \times 0.07=\$ 280$ preferred stock dividend
600 shares $\times \$ 0.60=\$ 360$ common stock dividend
$\$ 360-\$ 280=\$ 80$ more dividend annually

CONCEPT CHECK 21.4

a. The XYZ Corporation had a net profit of $\$ 120,000$ in the fiscal year just ended. The capital stock consists of 8,000 shares of 8% convertible preferred stock with a par value of $\$ 50$ per share and 20,000 shares of no-par common stock. If the board of directors declared a dividend of the entire earnings, what amount would be paid to preferred and common shareholders?
Preferred: 8,000 shares $\times \$ 50$ per share $=\$ 400,000$ total par value
$\$ 400,000$ par value $\times 8 \%=\$ 32,000$ paid to preferred shareholders
Common: $\$ 120,000$ total earnings $-\$ 32,000$ paid to preferred $=\$ 88,000$ to be paid to common shareholders
b. Seth Ames owns 1,000 shares of convertible preferred stock in the XYZ Corporation, with a current market price of $\$ 52.00$ per share. The preferred stock is convertible to common stock at the rate of 2 shares of common for each share of preferred. After the end of the year in part (a), common stock was selling for $\$ 32$ per share. What would be the current market value of his stock before and after a conversion?
Preferred: 1,000 shares $\times \$ 52$ per share $=\$ 52,000$ current value
Common: 1,000 shares preferred $\times 2=2,000$ shares common
2,000 shares $\times \$ 32$ per share $=\$ 64,000$ current value
COMPLETE ASSIGNMENTS 21.1 AND 21.2.

Chapter Terms for Review

board of directors
capital stock
charter
common stock
convertible preferred stock
corporation
cumulative preferred stock
declare a dividend
dividend in arrears
no-par stock
odd lot
odd-lot differential
par
price/earnings ratio (P/E) preferred stock
proceeds (from sale of stock) rate of yield round lot
stockbroker
stock certificate
stock exchanges
stock transactions
total cost (for purchaser of stock)

Try Microsoft ${ }^{\circledR}$ Excel

Try working the following problems using the Microsoft Excel templates found on your Student CD. Solutions for the problems are also shown on the CD.

1. Insert formulas in the shaded cells that will calculate the column amounts for Total Cost, Total Proceeds, Amount of Gain or Loss, and Percent of Gain or Loss.
Hint: In calculating the total percent of gain or loss, be sure to use the total from the Amount of Gain or Loss column divided by the total from the Total Cost column.

Number of Shares	Cost Per Share to Purchase	Total Cost	Proceeds Per Share When Sold	Total Proceeds	Amount of Gain or Loss	Percent of Gain or Loss
200	$\$ 48.18$		$\$ 51.60$			
150	21.75		18.20			
190	15.00		28.85			
120	87.50		90.22			
550	16.10		15.90			
Total						

2. Add formulas to the following spreadsheet to calculate the PE (price to earnings) Ratio and the Dividend Yield for each stock.

Market Price	Earnings Per Share	Quarterly Dividends Per Share	PE Ratio	Percent of Dividend Yield
$\$ 65.80$	$\$ 4.82$	$\$ 0.95$		
21.00	1.75	0.15		
125.00	8.1	1.75		
12.75	0.55	0.12		
34.00	1.92	0.45		

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

21.1

Compute the costs and proceeds of stock buy-and-sell transactions

Example

For calculations throughout, use $\$ 0.20$ a share for commissions and $\$ 0.125$ for the odd-lot differential. Round all percents to two places.

1. Ahmad Ansari bought 100 shares of Disney at 26.59. What was the total cost of the purchase of common stock?
2. Ahmad sold 200 shares of Hasbro at 16.5 . What were the proceeds of the sale?

21.2

Compute the costs and proceeds of round and odd lots

21.3

Compute rates of yield and gains or losses on the purchase and sale of stocks

Elaine Fisher purchased 1,000 shares of Sysco common stock at 46 and 340 shares of preferred stock at 92.
3. What was the total cost of the purchase of common stock?
4. What was the total cost of the purchase of preferred stock?
5. Douglas Mason purchased 320 shares of MMM at 81 and sold them 1 year later at 92.35 . What were his total cost, net proceeds, and amount of gain on these two transactions?

21.4

Compute comparative earning potential of the major classes of corporate stocks

The MB Leasing Corporation earned $\$ 350,000$ last year. The capital stock of the company consists of 20,000 shares of 6% preferred stock, with a par value of $\$ 50$ per share, and 40,000 shares of no-par common stock. The board of directors declared a dividend of $\$ 280,000$.
6. What amount will be paid to the preferred shareholders?
7. What amount per share will be paid to the common shareholders?
8. Sam Sosa owned 250 shares of Dow Chemical convertible preferred stock with a $\$ 50$ par value. He converted each share of preferred into 3 shares of common. How many shares of common stock did he receive?
9. If the Dow Chemical common stock was selling at 26.50 on the day of the conversion, how much was his common stock worth?

Review Problems for Chapter 21

(1) Use the following stock quotes from the NYSE to answer questions (a) through (e) below.

52 Weeks										
High	Low	Stock	Div	\% Yld	PE	Vol 100s	Hi	Low	Close	Chg.
58	41	Boeing	1.06	2.2	21	2880	48.25	46	48.22	+2.21
96	80	Chevron	2.60	4.5	18	3267	83	81	82.45	-1.16

a. How many shares of Boeing were traded?
b. What was the closing price per share of Chevron in dollars and cents?
c. What was the previous day's closing price for each stock?
d. By how much has the price of 1 share of Boeing stock changed over the last 52 weeks?
e. Use the P / E ratio to calculate the earnings per share for the last four quarters for Chevron.
(2) Determine the total cost or proceeds of each purchase or sale. Include regular commission of $\$ 0.20$ per share and an odd-lot differential of $\$ 0.125$ per share.
a. Purchased 300 shares of Caterpillar at 89.85 .
b. Purchased 550 shares of Hershey at 32.
c. Sold 200 shares of Avon at 27.50 .
(3) Jason purchased 500 shares of $X Y Z$ stock at 17.12 . One year later he sold the 500 shares at 18 . He paid a transaction fee of $\$ 19.95$ for each transaction.
a. What was the amount of gain or loss on the sale?
b. What was the rate of gain or loss?

4 Jason from question 3 received dividends of $\$ 0.65$ per share during the year that he owned the stock.
a. What was the rate of dividend yield?
b. What was the total rate of gain or loss including the dividend?

5 Audrey owned 400 shares of Znix convertible preferred stock with a $\$ 20$ par value. She converted all 400 shares into common stock at the rate of 4 to 1 (4 shares of common stock for each share of preferred). How many shares of common stock did she receive?
6 The Znix preferred stock from question 5 paid an annual dividend of 8%. Znix paid annual dividends on its common stock of $\$ 0.60$ per share. How much more will Audrey receive each year in dividends by converting her stock from preferred to common?
7 Alpha Company's capital consists of 8,000 shares of $\$ 50$ par 7.5% preferred stock and 50,000 shares of no-par common stock. The board of directors declared a dividend of $\$ 85,000$. What is the dividend per share for preferred and common stock?
8 Assume the preferred stock in question 7 is cumulative and no dividends were declared the year before. Determine the dividend to be paid for each share of preferred and common if the board declares a total dividend of $\$ 90,000$ the current year.

Assignment 21.1: Buying and Selling Stock

Name

A (41 points) For calculations, use $\$ \mathbf{0 . 2 0}$ a share for commissions unless the problem gives a flat fee and $\mathbf{\$ 0 . 1 2 5}$ for the odd-lot differential. Round all percents to two places. (5 points for a correct answer to problem 3; 4 points for each other correct answer)

1. Gail Sanders purchased 2,000 shares of JMK common stock at 18 and 180 shares of preferred stock at 60 .
a. What was the total cost of the purchase of common stock? \qquad
b. What was the total cost of the purchase of preferred stock? \qquad
2. Three months later, Gail sold her 2,000 shares of JMK common stock at $\$ 21$ and her 180 shares of preferred stock at $\$ 58.50$.
a. What were the proceeds on the sale of common stock? \qquad
b. What were the proceeds on the sale of preferred stock? \qquad
c. How much did Gail gain or lose on the purchase and sale of all of her JMK stock? \qquad
3. Susan Lu purchased 200 shares of Telmart common stock at $\$ 88.50$ and paid a $\$ 19.95$ transaction fee. A dividend of $\$ 7.00$ per share was paid the first year. What was the rate of yield? \qquad

Assignment 21.1 Continued

4. Sheri Jeffers purchased stock for a total cost of $\$ 12,600$, including commission. She sold the stock a month later for $\$ 13,960$, after commission.
a. What was her net gain on the sale? \qquad
b. What was her percent of gain on the sale? \qquad
c. If Sheri had held her stock another week and sold for $\$ 12,280$ after commission, what would her percent of loss on the sale have been? \qquad
5. If Sheri hadn't sold her stock for $\$ 12,280$ but had waited another 3 months while the stock fell to a price where she could have realized net proceeds of $\$ 11,275$, what would have been her percent of loss? \qquad

Score for A (41)

B (59 points) Solve the following problems. (points for correct answers as marked)

6. Peter Roncalio, Paul Stevens, and Mary Petrakas each invested $\$ 10,000$ in different areas. Calculate the value of each $\$ 10,000$ investment at the end of 2 years. (5 points for each correct answer)
a. Peter put his $\$ 10,000$ in a savings account that paid 6.2% interest annually. (Add interest on the savings account the first year to the principal before figuring interest for the second year.) \qquad
b. Paul bought $9 \%, \$ 50$ par value preferred stock at $\$ 62.50$ a share, including commission. He received his full dividend at the end of each year. He sold his stock at the end of the second year. The sales proceeds, after commission, were $\$ 62.50$ a share. \qquad

Assignment 21.1 Continued

c. Mary bought common stock at $\$ 40$ a share, including commission. Her stock paid quarterly dividends of 90 cents per share. In 2 years, the stock decreased to a value of $\$ 38.50$ a share.
7. Find the amount of the dividend per share and the rate of yield per share for each of the following preferred stocks. The cost per share includes all commissions. (2 points for each correct answer)
a. Cost per share $\$ 32$; dividend declared $\$ 2.10$.

Amount of dividend \qquad
Rate of yield \qquad
b. Cost per share $\$ 80$; par value $\$ 100$; dividend declared 6%.

Amount of dividend \qquad
Rate of yield \qquad
c. Cost per share $\$ 44.50$; dividend declared $\$ 2.00$.

Amount of dividend \qquad
Rate of yield \qquad
d. Cost per share $\$ 90$; par value $\$ 100$; dividend declared 5.5%.

Amount of dividend \qquad
Rate of yield \qquad
e. Cost per share $\$ 58$; par value $\$ 50$; dividend declared 6.5%.

Amount of dividend \qquad
Rate of yield \qquad

Assignment 21.1 Continued

8. Determine the amount and percent of gain or loss for each of the following transactions. Show an amount of loss in parentheses (). The purchase costs and the sale proceeds include commissions. Round percents to two decimal places. (3 points for each correct answer)
$\left.\begin{array}{lllll}\begin{array}{l}\text { Number } \\ \text { of }\end{array} & \begin{array}{l}\text { Per-Share } \\ \text { Purchase } \\ \text { Cost }\end{array} & \begin{array}{l}\text { Per-Share } \\ \text { Sale }\end{array} & \begin{array}{l}\text { Amount } \\ \text { Pr Gain }\end{array} & \begin{array}{l}\text { Percent } \\ \text { of Gain } \\ \text { Proceeds }\end{array} \\ \hline \text { or Loss }\end{array}\right]$

Assignment 21.2: Capital Stock

Name
Date Score

A (34 points) The information in problem 1 also applies to problems 2 and 3. (2 points for each correct answer)

1. The Duval Company was incorporated with 7% preferred capital stock of $\$ 500,000$ and common stock of $\$ 1,800,000$. The par value of the preferred stock was $\$ 100$, and the par value of the common stock was $\$ 20$. How many shares of each kind of stock were there?

Preferred stock \qquad
Common stock \qquad
2. Last year, dividends were declared by the Duval Company, which had earnings totaling $\$ 359,000$.
a. What was the total amount of the preferred stock dividend? \qquad
b. What amount would have been paid on each share of common stock if all the earnings had been distributed?
3. The directors of the Duval Company actually declared four quarterly dividends of $\$ 0.75$ a share on the common stock and $\frac{1}{4}$ of the amount due annually on the preferred stock.
a. What was the total amount paid by Duval to all common shareholders for each quarterly dividend? \qquad
b. What was the total amount paid to preferred shareholders each quarter? \qquad
c. What was the quarterly per-share payment to preferred shareholders? \qquad
d. What was the year's total amount of the common stock dividends? \qquad
e. What was the total amount of all dividends paid by Duval during the year? \qquad
f. How much more in dividends was paid to each share of preferred than to each share of common? \qquad

Assignment 21.2 Continued

4. The capital stock of the Shubert Company consists of 300,000 shares of preferred stock and $5,500,000$ shares of common stock. Last year, a dividend of $\$ 3.60$ a share was declared on preferred stock and four quarterly dividends of $\$ 0.35$ a share on common stock. How much was the total dividend for the year on each class of stock?
Preferred stock \qquad
Common stock \qquad
5. ComputerMart has 150,000 shares of 6.5% preferred stock at $\$ 1$ par value and $1,500,000$ shares of common stock. ComputerMart declared total dividends of $\$ 250,000$ for the current year. How much was the total dividend for preferred stock and how much was the dividend per share on the common stock?
Preferred stock \qquad
Common stock \qquad
(per share)
6. Michael Wu bought 300 shares of XRT 8% preferred stock, $\$ 10$ par value, when it was selling at $\$ 11$ per share, including commission.
a. What was Michael's stock worth at the time of purchase? \qquad
b. What was the amount of Michael's quarterly dividend? \qquad
c. What was Michael's dividend yield? \qquad

B (66 points) Do not consider commission in the following problems. (points for correct answers as marked)

7. Inland Sales, Inc., has issued 25,000 shares of $8 \%, \$ 20$ par, cumulative preferred stock and 50,000 shares of common stock. The board of directors declares 50% of net income each year as dividends. Inland Sales had net income of $\$ 76,000$ for $2000, \$ 112,000$ for 2001 , and $\$ 130,000$ for 2002 . Compute the annual dividends per share for preferred and common stock for each of the 3 years. (2 points for each correct answer)

Year	Preferred Dividends/Share	Common Dividends/Share
2000	-	-
2001	-	
2002	-	

8. Dan Baxter owned 200 shares of Sony 6.5% convertible preferred stock, $\$ 50$ par value, for which he paid $\$ 56$ per share, including commission. Two years later, after receiving preferred dividends each year, he converted to 600 shares of Sony common stock, valued at $\$ 23.50$ a share at the time of conversion. (4 points for each correct answer)
a. What was the cost to Dan of the preferred stock? \qquad
b. How much did Dan receive in dividends from the preferred stock? \qquad
c. What was the value of the common stock that Dan received? \qquad
d. If he sells the 600 common shares immediately, how much gain will Dan realize, including his dividend?
e. What would be Dan's percent of gain? \qquad
9. Texas Air Corporation issued $5,000,000$ shares of 7% preferred stock at $\$ 100$ par value and $10,000,000$ shares of no-par common stock. Bob Thruston owned 100 shares of preferred. Barbara Beck owned 500 shares of common. In 2005, Texas Air paid $\$ 25,000,000$ in dividends to its common shareholders. How much more than Bob did Barbara receive? (10 points) \qquad
10. Sonia Revas owned 700 shares of PIE 6% convertible stock, $\$ 50$ par value, for which she paid $\$ 42$ a share. She received a dividend for 1 year. She then converted the preferred stock to 400 shares of common stock valued at $\$ 98.50$ a share. (4 points for each correct answer)
a. What was the cost to Sonia for her preferred stock? \qquad
b. How much did Sonia receive as a dividend for her preferred stock? \qquad
c. What was the value of her common stock at the time of conversion? \qquad
d. If the common stock paid an annual dividend of $\$ 6.00$ a share, how much more dividend would she receive annually? \qquad
e. What was Sonia's percent of increase in annual return as a result of conversion to common stock? \qquad

Assignment 21.2 Continued

11. Determine the price/earnings ratio (P/E) of each of the following stocks: (2 points for each correct answer)
a. JBC common stock has a current market price of $\$ 49$ and has had earnings per share of $\$ 0.72$ each quarter for the last four quarters. \qquad
b. The current market price of Cannon common stock is $\$ 72.88$. Cannon has paid dividends of $\$ 1.20$ per quarter for each of the last four quarters.

Corporate and Government Bonds

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Compute gains and losses on convertible and callable corporate bond transactions.

Learning Objective
2
Compute annual interest on bonds.

Learning Objective
3

Learning Objective
5

Learning Objective 4 Compute annual yield on bonds selling at a premium or a discount.
Compute accrued interest on bond transactions made between interest payment dates.

Compute a rate of yield to maturity.

When a corporation or government entity needs cash for a long period of time, usually 10 years or more, it often will issue long-term notes known as bonds. Bonds are bought and sold on the open market, much like stocks.

Two main types of government bonds are treasury bonds and municipal bonds. Treasury bonds are issued by the United States government. These bonds are fully guaranteed by the full faith and credit of the United States government. Bondholders are protected against default unless the federal government becomes insolvent. Municipal bonds are issued by states, cities, school districts, and other public entities. Unlike treasury bonds, municipal bonds pose a risk that the issuer might fail to repay the principal. Interest paid on municipal bonds generally is exempt from federal and state income taxes.

There are many kinds of corporate bonds, two of which are convertible bonds and callable bonds. Convertible bonds have a provision that they may be converted to a designated number of shares or a designated value of the corporation's stock. Callable bonds have a provision that the issuer can repurchase, or call in the bonds, at specified dates if the board of directors authorizes the retirement (payoff) of the bonds before their maturity date. Such action by the board of directors would be appropriate if interest rates fell significantly below the interest rate of the callable bond.

Computing Gains and Losses on Corporate Bonds

Compute gains and losses on convertible and callable corporate bond transactions.

EXAMPLEA

Steve Bando bought one ABC Corporation convertible bond for $\$ 1,000$. The bond was convertible to 100 shares of stock. At the time of the purchase, the stock was selling for $\$ 10$ per share. At the end of 1 year, the stock was selling for $\$ 15$ per share. Steve converted his bond. Assuming that the market value of the bond hadn't changed, how much profit did Steve realize by converting?

100 shares of stock $\times \$ 15$ per share $=\$ 1,500$
$\$ 1,500$ stock value $-\$ 1,000$ bond value $=\$ 500$ profit

EXAMPLE B

XYZ Corporation issued $\$ 1,000,000$ worth of callable bonds paying 8% interest. The maturity date for the bonds was in 10 years. Two years later, interest rates fell to 6%. The bonds were called, and new bonds were sold at the 6% rate. How much did XYZ Corporation save by calling the bonds?

10 years to maturity at issue -2 years $=8$ years remaining to maturity
$8 \%-6 \%=2 \%$ savings per year
$\$ 1,000,000 \times 2 \%=\$ 20,000$ interest saved per year
$\$ 20,000 \times 8$ years $=\$ 160,000$ saved

CONCEPT CHECK 22.1

a. What would be the "stock" value of a bond that was convertible to 40 shares of stock if the stock was priced at 37.62 ?
40 shares $\times \$ 37.62=\$ 1,504.80$
b. If a company issued a callable bond at $7 \frac{1}{2} \%$ interest, would it be likely to call the bond if the current rate of interest was 8% ?
No, because it could invest the cash at an extra $\frac{1}{2} \%$ interest.

Computing Annual Interest on Corporate and Government Bonds

When first issued, bonds are sold either through brokerage houses or directly to investors at or near the price of $\$ 1,000$, called face value. Face value represents the amount that will be paid to the holder when the bonds are redeemed at maturity. If the market value becomes less than the face value, the bond sells at a discount. If the market value becomes more than the face value, the bond sells at a premium. (The discount or premium amount is the difference between the market value and the face value.)

Bonds are rated. By checking a bond's rating, buyers can have some indication of how safe their bond investment is. Bond ratings are information based on experience and research; they are not a guarantee. One major firm rating bonds is Standard \& Poor's.

In Standard \& Poor's system, the ratings include AAA (the highest rating), AA, A, $\mathrm{BBB}, \mathrm{BB}, \mathrm{B}, \mathrm{CCC}, \mathrm{CC}, \mathrm{C}$, and D . A bond with a low rating is a higher-risk bond and sometimes is known as a junk bond. The lower a bond's rating, the higher are its yield and its risk.

EXAMPLEC

Kiley Moore purchased a $\$ 1,000$ bond with a rating of B, paying 14% per year. Mary Baker purchased a $\$ 1,000$ bond with a rating of AAA, paying 5\% per year. Jean Carlson purchased a $\$ 1,000$ junk bond, paying 25% per year. Each bond was to mature in 10 years.

Kiley's B-rated bond paid faithfully for 4 years. Then the company filed for bankruptcy and paid 60 cents on the dollar. Mary's AAA-rated bond paid interest during its entire 10-year life and paid face value on maturity. Jean's junk bond paid interest for 3 years. Then the company filed for bankruptcy and paid 30 cents on the dollar.

Compute how much each investor received for her $\$ 1,000$ investment.
Kiley: $\quad \$ 1,000 \times 14 \%=\$ 140$ annual interest
$\$ 140 \times 4$ years $=\$ 560$ interest
$\$ 560$ interest $+(0.60 \times \$ 1,000)$ redemption $=\$ 1,160$ total

Learning Objective
2

Compute annual interest on bonds.

© PHOTODISC COLLECTION
How much would Kiley and Jean have received on their investments if the bonds had paid full interest for the 10-year period and face value on maturity?

Kiley: $\quad \$ 1,000 \times 14 \% \times 10$ years $=\$ 1,400$
$\$ 1,400+\$ 1,000=\$ 2,400$
Jean: $\quad \$ 1,000 \times 25 \% \times 10$ years $=\$ 2,500$
$\$ 2,500+\$ 1,000=\$ 3,500$

NEWSPAPER INFORMATION ON BONDS

Information about the market value and sale of bonds on the major exchanges is reported daily in financial newspapers. Figure 22-1 shows information usually included in a bond report.

Figure 22-1 \quad Bond Market Report

	Current Yield	Volume	Close	Net Change
ATT $7 \frac{1}{2} \mathrm{~s} 09$	7.2	10	104	+1
Aetna $6 \frac{3}{8} \mathrm{~s} 12$	6.6	25	96.80	\ldots
ClrkOil $9 \frac{1}{2} \mathrm{~s} 06$	9.1	33	104.25	+.25
Hertz 7s12	7.0	13	99.70	+.70
IBM 7s25	7.4	102	94.50	+.80
RJR Nb 8s 10	7.9	15	101.50	\ldots

Prices of bonds are quoted in percents of face value. For example, a $\$ 1,000$ bond quoted at 104 would sell at a premium price of $\$ 1,040(\$ 1,000 \times 104 \%)$. If quoted at 87 , the bond would sell at a discounted price of $\$ 870(\$ 1,000 \times 87 \%)$.

Rule: Prices over 100 (100\%) include a premium. Those under 100 (100\%) include a discount.

The two main factors that influence the market price are the interest rate and the bond rating. For example, if a bond pays 8% interest and the current market rate of interest is greater than 8% for similarly rated bonds, the bonds will sell at a discount sufficient to make up for the difference in interest rates over the term of the bond.

Printed bond reports generally give a letter abbreviation for the company, the interest rate, a small s to designate semiannual (every 6 months) interest payments, and the maturity date, followed by the current yield, the number of bonds sold that day, the closing price of the bond, and the net change in price from the prior day.

The first line of the bond market report in Figure 22-1 would be interpreted as ATT (designating American Telephone and Telegraph), a $7 \frac{1}{2}$ interest rate based on the face value of the bond, and interest paid semiannually. The bond matures in 2009. The current yield (average annual interest rate based on the current price of the bond) is 7.2%. The day's volume of bonds sold was 10 . The closing price was 104 , up 1 from the prior day.

EXAMPLE D

Calculate the amount of the semiannual interest check for a $\$ 1,000$ bond reported in a financial paper as R\&S Corp $7 \frac{1}{2}$ s21.
$\$ 1,000$ face value $\times 7 \frac{1}{2} \%=\$ 75 \$ 75 \div 2=\$ 37.50$ semiannual interest payment

COMMISSIONS FOR BUYING AND SELLING BONDS

The charge for buying and selling bonds varies among brokers, but there is no standard commission. Commissions are very small and thus comprise only a negligible part of the bond transaction. We do not use commission costs for problems in this textbook.

CONCEPT CHECK 22.2

If James Kun purchased 27 triple-A bonds that pay 7.1% and mature in 8 years, what amount of interest income could he expect annually?
$\$ 1,000 \times 0.071 \times 27=\$ 1,917$
If James holds the bonds until maturity, how much will he receive on redemption of the bonds?
$\$ 1,000 \times 27=\$ 27,000$ total face value

Computing Accrued Interest on Bond Transactions

Most bonds specify that interest is payable quarterly, semiannually, or annually. The interest payment dates-such as January 1 (for interest through December 31) and July 1 (for interest through June 30)—are stated on the bond. When a bond is purchased between these dates, it is customary to add the accrued interest (interest earned from the last payment date to the purchase date). This interest is calculated by finding the number of days from the day on which interest was last paid through the day before the purchase and dividing this number by 360 .

The buyer pays the seller for the interest accumulated or accrued on the bond since the last interest payment date. On the next regular interest payment date, the new owner receives the interest for the full interest period. This procedure allocates the interest correctly between the buyer and the seller for the split interest period because the corporation that issued the bond will pay the entire amount to whoever owns the bond as of each interest date.

Learning Objective

Compute accrued interest on bond transactions made between interest payment dates.

EXAMPLE E

A \$1,000 bond, with interest at 8\% payable semiannually on January 1 and July 1, was purchased on October 8 at 104 plus accrued interest. What is the number of days for which the accrued interest is paid?

Purchase date: October 8
Days of accrued interest: (July) $31+$ (August) $31+$ (September) $30+$ (October) $7=99$
What is the purchase payment for the bond?
$\$ 1,000 \times 104 \%=\$ 1,040$ market value
$\$ 1,000 \times 0.08$ interest $\times \frac{99}{360}$ accrued days $=\$ 22$ accrued interest
$\$ 1,040+\$ 22=\$ 1,062$ purchase payment for bond

In example E , although the accrued interest is an additional payment by the buyer, the buyer will get it back in the $\$ 40\left(\$ 1,000 \times 8 \% \times \frac{1}{2}\right)$ interest payment on January 1.

CONCEPT CHECK 22.3

Ann Ahn purchased two Hertz 7s08 bonds at 95.6 on March 15. What amount did she pay her broker?
$\$ 2,000 \times 0.956=\$ 1,912.00$
Purchase date: March 15
(January) $31+$ (February) $28+$ (March) $14=73$ days
$\$ 2,000 \times 0.07 \times \frac{73}{360}=\$ 28.39$ accrued interest
$\$ 1,912.00+\$ 28.39=\$ 1,940.39$ paid to her broker

Computing the Rate of Yield for Bonds

Learning Objective

Compute annual yield on bonds selling at a premium or a discount.

Interest on bonds provides income to bondholders. This income is referred to as yield. Newspapers and bond brokers refer to the annual yield of a bond as its current yield. Many newspaper bond reports include a column showing current yield. To calculate the current yield from an investment in bonds, use the following formula:

$$
\text { Annual interest } \div \text { Current purchase price }=\text { Current yield }
$$

When a bond is purchased at a discount, the current yield is greater than the face rate. For example, a $\$ 1,000$ bond, purchased at 90 , pays 7% interest and matures in 10 years. Interest of $\$ 70(\$ 1,000 \times 7 \%)$ is paid annually, but as the bond was purchased for $\$ 900(\$ 1,000 \times 90 \%)$, the effective rate, or yield, as a percent of cost is 7.8% (\$70 $\div \$ 900$).

When a bond is purchased at a premium, the current yield is less than the face rate. The reason is that the interest paid is calculated on the face value, and the yield is based on the higher market price.

EXAMPLE F

Five $\$ 1,000$ Levi Straus $9 \frac{1}{2}$ s 19 bonds were purchased at 80 . What was the current yield on the bonds?
$\$ 1,000 \times 5=\$ 5,000$ face value
$\$ 5,000 \times 80 \%=\$ 4,000$ purchase price
$\$ 5,000 \times 0.095=\$ 475$ annual interest
$\$ 475 \div \$ 4,000=0.11875=11.9 \%$ current yield
or $9.5 \div 0.80=11.875=11.9 \%$ current yield
In example F, the bonds sold at a discount of $\$ 1,000(\$ 5,000-\$ 4,000)$ because the investor paid that much less for them than the maturity (face) value. Therefore, the current yield of 11.8% is more than the stated interest rate of $9 \frac{1}{2} \%$.

CONCEPT CHECK 22.4

The RJR Nb bonds listed in Figure 22-1 recently rose to a price of 109. Zelda Morantz purchased four at 109. What will be her annual current yield?

$$
\begin{aligned}
& \$ 4,000 \times 109 \%=\$ 4,360 \text { purchase price } \\
& \$ 4,000 \times 0.08=\$ 320 \text { annual interest } \\
& \$ 320 \div \$ 4,360=0.0734 \text {, or } 7.34 \% \\
& \text { or } 0.08 \div 1.09=0.0734, \text { or } 7.34 \%
\end{aligned}
$$

Computing the Rate of Yield to Maturity

Careful investors calculate the rate of yield to maturity, or the rate of interest they will earn if they hold the bond to its maturity date. The yield to maturity calculation involves use of the true annual interest by adding a part of the discount or subtracting a part of the premium and basing the rate on the average principal invested (the average of the

Learning Objective

Compute a rate of yield to maturity. investor's purchase price and the bond's maturity value).

STEP S to Compute the Rate of Yield to Maturity

1. Compute the annual interest: multiply the face value by the stated (face) rate.
2. Determine the annual discount (or premium) amortization: Divide the discount (or premium) by the number of years from purchase to maturity.
3. Determine the average principal invested: Add the maturity value and the cost price and then divide by 2.
4. The following formula computes the rate:

Annual interest + Annual discount amortization
(or - Annual premium amortization)
Average principal invested
Again, because brokerage charges are such a small part of the cost, they usually are omitted from the calculations of yield to maturity.

EXAMPLE G

Assume that the Levi Straus bonds in example F matured 20 years after the purchase date.
STEP 1
$\$ 5,000 \times 0.095=\$ 475$ annual interest
STEP 2
$\$ 1,000 \div 20$ years $=\$ 50$ annual discount amortization
STEP 3
$(\$ 5,000+\$ 4,000) \div 2=\$ 4,500$ average principal invested
STEP 4
$(\$ 475+\$ 50) \div \$ 4,500=0.1167=11.67 \%$ yield to maturity
This rate is somewhat less than the 11.9% current yield, but it is more accurate with respect to actual income if the bond is held to maturity.

EXAMPLE H

To calculate the yield to maturity on bonds sold at a premium, assume that five IntTT $9 \frac{1}{2} \mathrm{~s} 20$ bonds were bought at a premium price of 124 and that the bonds will mature in 15 years. The market value of the five bonds is $\$ 6,200(\$ 5,000 \times 124 \%)$.

STEP 1 $\$ 5,000 \times 0.095=\$ 475$ annual interest

STEP 2
$(\$ 6,200-\$ 5,000) \div 15$ years $=\$ 80$ annual premium amortization
STEP 3
$(\$ 5,000+\$ 6,200) \div 2=\$ 5,600$ average principal invested
STEP 4
$(\$ 475-\$ 80) \div \$ 5,600=0.0705=7.05 \%$ yield to maturity
This rate is less than the stated rate of $9 \frac{1}{2} \%$ on the premium bonds.

CONCEPT CHECK 22.5

If the four RJR Nb 8s10 bonds Zelda Morantz purchased at 109 (Concept Check 22.4) had 5 years to maturity, what would be her rate of yield to maturity?
$\$ 4,000 \times 0.08=\$ 320$ annual interest
$\$ 360$ premium $\div 5$ years $=\$ 72$ annual premium amortization
$(\$ 4,000+\$ 4,360) \div 2=\$ 4,180$ average principal invested
$(\$ 320-\$ 72) \div \$ 4,180=0.0593=5.93 \%$ yield to maturity

COMPLETE ASSIGNMENTS 22.1 and 22.2.

Chapter Terms for Review

accrued interest

annual discount amortization
annual premium amortization
average principal invested
bond ratings
bonds
callable bonds
convertible bonds
corporate bonds
current yield
discount
face value
government bonds
junk bond
municipal bonds
premium (bond)
rate of yield to maturity
treasury bonds
yield

Try Microsoft ${ }^{\circledR}$ Excel

Try working the following problems using the Microsoft Excel templates found on your Student CD. Solutions for the problems are also found on the CD.

1. Complete the following Excel worksheet by entering formulas in the shaded cells to calculate the Total Cost and Premium or (Discount) for each bond purchase. Hint: Remember that each bond has a face value of $\$ 1,000$.

Number Purchased	Price Paid	Total Cost	Premium (Discount)
5	92		
12	108		
8	112		
2	88		
16	92		

2. Complete the following Excel worksheet by entering formulas in the shaded cells to calculate the Annual Interest, Current Purchase Price, and Current Yield for each bond.
Hint: Calculations are for one bond (face value \$1,000). Current yield should be shown as a percent.

Bond	Price	Annual Interest	Current Purchase Price	Current Yield
IBM 7s12	90			
SBC 9s08	107			
$C X L 6.2 s 09$	86.5			

3. Complete the following Excel worksheet by entering formulas in the shaded cells to calculate the Yield to Maturity for six InTT 8.2 s18 bonds purchased at a premium price of 120 . The bonds will mature in 12 years.
Hint: Use parentheses to do addition or subtraction before multiplication or division. Yield to maturity should be shown as a percent.

Market Value of Bonds	
Annual Interest	
Annual Premium Amortization	
Average Principal Invested	
Yield to Maturity	

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective Example

22.1

Compute gains and losses on convertible and callable corporate bond transactions

22.2

Compute annual interest on bonds

22.3

Compute accrued interest on bond transactions made between interest payment dates

22.4

Compute annual yield on bonds selling at a premium or a discount

22.5

Compute a rate of yield to maturity
3. Amy Coles purchased three 12 -year, $\$ 1,000$ bonds: one Boeing at 7%, one U.S. Treasury at 4.5%, and one Water World Sports at 12%. If the Water World Sports bond defaulted after 5 years and paid holders 60%, which bond produced the most income in the 5 -year period, assuming that the $\$ 400$ loss on the WWS bond was considered to be a reduction in income? How much did it produce?

1. John Jacobs bought five DVC bonds at $\$ 1,000$ per bond. Each bond was convertible after 3 years to 50 shares of stock. At the end of 3 years, shares of DVC stock were selling at $\$ 32$. The bond price had risen to 120 . Should Mark exercise his option to convert?
2. Colton Mfg. Corp. issued $\$ 2,000,000$ worth of callable bonds paying 9% interest. The maturity date for the bonds was in 20 years. Four years later, interest rates fell to $7 \frac{1}{2} \%$. The bonds were called, and new bonds sold at the $7 \frac{1}{2} \%$ rate. How much did Colton Mfg. Corp. save by calling the bonds?
3. One BLM 9s 18 bond was purchased at 102 on February 12. What was the amount of accrued interest if interest is paid January 1 and July 1 ?
4. Six Khol 7.4 s 25 bonds were purchased at 92 . What was the current yield?
5. Three NYR 8 s 20 bonds were purchased at 120 . The bonds will mature in 14 years. What is the rate of yield to maturity?

Review Problems for Chapter 22

1 Alfred Tennyson purchased 15 IBM $7 / 1 / 218$ bonds at 104 .
a. What was the cost of the bonds?
b. How often will interest be paid?
c. How much interest will Alfred receive each interest period?
d. Assuming the bonds pay interest on April 1 and October 1, calculate the accrued interest if the bonds were purchased June 6 .
e. What is the total amount Alfred paid for the bonds including accrued interest?
f. Were the bonds purchased at a premium or a discount?
g. What was the amount of the premium or discount?
h. When do the bonds mature?
i. What is the current yield on the bonds?
j. Assume the bonds mature in 12 years. Calculate the yield to maturity.

2 Marta Samuals purchased six Xerox $\$ 1,000$ convertible bonds at 95 . Each bond was convertible into 30 shares of common stock. After 5 years, when the stock was selling at 42 , Marta converted all six bonds.
a. How many shares of stock did she receive?
b. What was the value of the stock upon conversion?
c. What was Marta's gain upon conversion of the bonds?
d. Should Marta convert her bonds into stock if the stock's current market price is $\$ 45$ per share? Why or why not?

3 Avis, Inc., issued $\$ 50,000,000$ of $9 \frac{1}{2} \%, 20$-year, callable bonds. After 6 years, the interest rate fell to 8%. How much interest would Avis save by calling the bonds and reissuing bonds at the lower rate?

4 Ron Nelson is considering purchasing one of the following bonds:
MCD 7s15 at a market price of 90
AOC 8 s 15 at a market price of 100
JBC 9 s 15 at a market price of 110
Calculate the annual yield and yield to maturity for each bond assuming there are 10 years to maturity for each bond. Which bond would you recommend Ron purchase based on your computations?

Assignment 22.1: Corporate and Government Bonds

Name
Date Score

A (38 points) Solve the following problems. (points for correct answers as marked)

1. Jean Francis purchased seven IBM $\$ 1,000$ convertible bonds at 105 . Each bond was convertible to 25 shares of IBM stock in 5 years. At the end of 5 years, IBM stock was selling at 52 . If Jean converted, what would be her 5-year capital gain? (4 points) \qquad
2. Return to problem 1 and assume that the stock price after 5 years was 35 . How much more money would Jean get by cashing in the bonds rather than converting to stock? (4 points) \qquad
3. The city of Jamestown, Virginia, issued $\$ 27,000,000$ worth of callable bonds at 9% on January $1,2000$. The bonds were due in 2015 . If interest rates were to fall to 6.5% on January 1,2007 , how much could Jamestown save by reissuing the bonds at the 6.5% rate on January 1, 2007? (4 points) \qquad
4. Assume that an investor had purchased $\$ 500,000$ worth of the Jamestown bonds referred to in problem 3 . How much interest would he lose from having the bonds called if he reinvested in the new bond issue? (4 points) \qquad
5. Devi Sharma purchased 22 corporate bonds, as shown. What was her total cost, and how much interest income would she realize annually? (1 point for each correct answer)

\quadNumber Purchased	Price	Total Cost	Annual Interest	
a. Apex $7 \frac{1}{2} \mathrm{~s} 09$	4	100		
b. DukeP $7 \frac{7}{8} \mathrm{~s} 02$	3	98	-	-
c. PGE $10 \frac{1}{8} \mathrm{~s} 12$	9	86	-	-
d. IBM $9 \frac{3}{8} \mathrm{~s} 08$	$\boxed{22}$	109	-	
Total		-	-	

6. What is the dollar amount of interest per year and the maturity date for each of the following $\$ 1,000$ bonds? (1 point for each correct answer)

B (50 points) Solve the following problems. (points for correct answers as marked)

7. In each of the following problems, determine the number of days for which accrued interest is paid and the total purchase payment made for the bonds. (5 points for each correct answer)
a. On September 12, Tracy Dean bought, at 103 plus accrued interest, two IBM 9s10 bonds with interest paid on January 1 and July 1.
Number of days accrued interest: \qquad Total payment: \qquad
b. On October 9, Ben Blue bought, at 93 plus accrued interest, three IBM $7 \frac{1}{2} \mathrm{~s} 09$ bonds with interest paid on January 1 and July 1.
Number of days accrued interest: \qquad Total payment: \qquad
8. Jack Mueller purchased a $\$ 1,000$ corporate bond with a rating of AAA, paying 8% per year. Tom Bronkowski purchased a $\$ 1,000$ junk bond paying 20%. Each bond was to mature in 10 years. Jack's bond paid interest for the 10-year period and face value at maturity. Tom's junk bond paid interest for 3 years before the company filed for bankruptcy and paid 45 cents on the dollar to its bondholders. How much more did Jack receive from his investment than Tom received from his? (10 points)
9. Compute the current yield for the following bonds. (5 points for each correct answer)

\quad Bond	Price	Current yield
a. PepsiCo 9 s 08	108	
b. IBM $7 \frac{3}{8} \mathrm{~s} 08$	93.5	-
c. Avitar 10 s 12	112	-
d. ABM 6 s 08	82	-

Assignment 22.2: Bond Rate of Yield

Name

Date Score

A (52 points) Solve the following problems. (points for correct answers as marked)

1. An investor bought a 7.4% bond at 90 . The bond would mature in 8 years. Round answers to two decimal places. (4 points for each correct answer)
a. What was the average annual yield? \qquad b. What was the rate of yield to maturity? \qquad
2. In 2002, Jim Ayers bought six LTV 5s17 bonds for which he paid 82. Three years later, he sold the bonds at 84 and bought six Southern Electric $9 \frac{1}{2}$ s 24 bonds at 93 . Did he increase or decrease the original rate of yield to maturity, and, if so, by how much? Round yields to one decimal place. (14 points) \qquad
3. On July 29, Ann McCoy purchased four GMC $8 \frac{1}{2} \mathrm{~s} 09$ bonds at 88 . Interest was payable March 1 and September 1. Included in Ann's cost was accrued interest for 150 days. (4 points for each correct answer)
a. What was the total purchase cost? \qquad
b. What was the average annual yield? Do not consider accrued interest when calculating this rate of yield.
4. In 2005, Benito Cooper planned to purchase $20 \$ 1,000$ bonds and hold them to maturity. He had two choices: The first was EM\&E $8 \frac{1}{2}$ s18 at 106.50. The second was Standard of California $6 s 15$ at 80 . Benito purchased the issue that provided the higher rate of yield to maturity.
a. Which issue did Benito purchase? (12 points) \qquad

Assignment 22.2 Continued

b. How much income would Benito have earned monthly if Standard of California had been purchased? (3 points)
c. If, in 2008 , Benito had purchased EM\&E $8 \frac{1}{2}$ s 18 bonds at a price of 97.5 , what would have been the yield to maturity? (6 points) \qquad
d. Which company's bonds would be the better buy: EM\&E at 97.5 or Standard of California? (1 point)
\qquad

Score for A (52)
B (48 points) Complete the following table. Show yield to maturity to one decimal place. (2 points for each correct answer)

Number Purchased	Price Paid	Discount or Premium	Years to Maturity	Interest Rate	Annual Interest	+Discount -Premium Amortization	Average Principal Invested	Yield to Maturity
a. 8	105	\$-400	5	8\%				
b. 10	97	+300	10	6\%				
c. 12	86	+1,680	8	7.50\%				
d. 5	112	-600	3	10.20\%				
e. 1	90	+100	5	7\%				
f. 20	102.5	-500	8	9.75\%				

Annuities

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective 1 Compute the future value of an annuity.

Learning Objective 2
Compute the regular payments of an annuity from the future value.

Learning Objective 3 Compute the present value of an annuity.

Learning Objective 4 Compute the regular payments of an annuity from the present value.

Learning Objective 5 Compute the loan payment required to amortize a loan.

Learning Objective 6 Create a loan amortization schedule.

John and Joan Popplewell just won their state's lottery and the prize was listed as $\$ 5,000,000$. When they purchased the winning ticket, they had a choice of taking the prize over 20 years or taking one cash payment now. The $\$ 5,000,000$ represents the sum of 20 annual payments of $\$ 250,000$ each. The series of equal payments is called an annuity. Because they chose the single cash payment, they do not actually receive $\$ 5,000,000$ in cash. The amount that they receive is the present value of an annuity.

In Chapter 22, we discussed corporate and government bonds. When a corporation issues $\$ 10,000,000$ worth of $8 \%, 20$-year bonds, the corporation is simply borrowing money from the public for 20 years. Each $\$ 1,000$ bond pays 8% (or $\$ 80$) each year. The $\$ 80$ is paid out in two $\$ 40$ payments every 6 months for 20 years. The series of $\$ 40$ interest payments is an annuity. The amount that someone pays for the bond is the present value of the annuity. Some investors may worry that the corporation won't have $\$ 10,000,000$ available in 20 years to repay the bonds. Therefore, the corporation may decide to make 20 equal annual payments into a separate account managed by a neutral third party. At the end of the 20 years, the deposits plus accumulated interest will be worth the $\$ 10,000,000$. This fund of deposits is called a sinking fund. Equal deposits into a sinking fund form an annuity. The total amount is the future value of an annuity.

Computing the Future Value of an Annuity

Learning Objective

Compute the future value of an annuity.

An annuity is made up of a series of equal payments that occur at regular time intervals. The payments go into-or come out of-an interest-bearing account or investment. The constant interest rate is compounded at the same time the payments are made. (Perhaps obviously, the number of periods in an annuity is the same as the number of payments.)

We can illustrate an annuity by drawing a straight line, called a time line. On the time line, we insert equal marks and the payment dates and write in the payment amount.

EXAMPLE A

An annuity has four annual payments of \$1,000, always on December 31. The date of the first $\$ 1,000$ payment is December 31, 2005. Draw a time line showing the four years2005, 2006, 2007, and 2008—and the four payments.

The annuity illustrated in Figure 23-1, with the payments occurring at the end of each period, is called an ordinary annuity. In this book, every annuity will have its payments at the end of each period. The date December 31, 2004, is the beginning of the annuity, and the date December 31, 2008, is the end of the annuity.

Figure 23-1 \quad Diagram of an Ordinary Annuity

Date	12/31/04		12/31/05		12/31/06		12/31/07		12/31/08
Period		1		2		3		4	
Payment	\$0		\$1,000		\$1,000		\$1,000		\$1,000

Again, the value of the annuity at the end of the annuity is called the future value of the annuity. In example A, it is the total value of all payments plus the compound
interest from the date of each payment until December 31, 2008. When a business or individual decides to deposit the same amount of money every year (or month or quarter) into an interest-bearing account for a specified amount of time, the future value of the annuity is the amount that will be in the account when the last deposit is made.

EXAMPLE B

In December, 2004, Mary Currie accepted a job with a manufacturing company. Mary decided to save $\$ 1,000$ at the end of each year for 4 years. The company credit union allowed Mary to open a savings account on December 31, 2004, but Mary will not make any deposit until December 31, 2005. She also will make deposits on December 31 of 2006, 2007, and 2008. The credit union pays interest of 10% compounded annually. How much will be in the account after the last deposit? (Hint: Make a time line diagram and compute the future value of each of the four deposits.)

To find the future value of the annuity on December 31, 2008, first use Table 16-1 (see Chapter 16) to determine the future value of each of the four payments as of December 31, 2008. Then compute the total.

| Amount of
 Payment | Date of
 Payment | Years of
 Interest | |
| :--- | :--- | :--- | :--- | | Future Value on 12/31/08 |
| :--- |

Figure 23-2 illustrates how each of the four payments moves forward in time to
December 31, 2008.

Figure 23-2 \quad Future Value of an Ordinary Annuity

Future value of the annuity on $12 / 31 / 08=\$ 4,641$

ANNUITY TABLES

Annuity calculations can be time-consuming, even with just four payments. With 20 or 30 payments, the calculations could be tiresome. Computers, financial calculators, and tables eliminate tedious computations. Table 23-1 on pages 490-491 is an abbreviated sample of
a table of future value of annuity factors (FVAF). It is used the same way as Table 16-1. As in Chapter 16, the columns indicate the periodic interest rate and the rows indicate the number of periods.

STEPS to Use Table 23-1 to Compute Future Value and Total Interest Earned

1. Locate the annuity factor (FVAF) in the correct row and column of Table 23-1, on pages 490-491.
2. Multiply the payment amount by the annuity factor (FVAF). The product is the future value of the annuity (FVA).
3. Multiply the payment amount by the number of payments. The product is the total of all payments.
4. Subtract the total of all payments from the future value of the annuity. The difference is the total interest earned.

FUTURE VALUE OF AN ANNUITY FORMULA

If you prefer, Step 2 above may be summarized as a formula, in words or in symbols:
Future value of an annuity $=$ Periodic payment \times Future value of annuity factor (Table 23-1) or $F V A=P m t \times F V A F$

EXAMPLEC

Find the future value of an annuity of four annual payments of $\$ 1,000$. Each payment is made at the end of the year, and 10% interest is compounded each year. Also find the total interest earned over the 4 years.

STEP 1	The annuity factor (FVAF) from Table 23-1 is 4.64100.
STEP 2	Future value of the annuity $=\$ 1,000 \times 4.64100=\$ 4,641$
STEP 3	Total of the payments $=4 \times \$ 1,000=\$ 4,000$
STEP 4	Total interest $=\$ 4,641-\$ 4,000=\$ 641$

VARIOUS PAYMENT PERIODS

Payments may be made more often than once a year. The only additional requirement for an ordinary annuity is that the interest be compounded at the same time the payments are made-semiannually, quarterly, or monthly. We described the method in Chapter 16, and also use Steps i, ii, and iii in this chapter. However, in this chapter, the number computed in Step iii represents both the number of payments and the number of compounding periods.

Just as in Chapter 16, we use Steps i, ii, and iii in Chapter 23 to find
STEP i $\quad m=$ the number of compounding periods (and payments) in one year;
STEP ii
$i=$ periodic interest rate $=$ annual rate $\div m$; and
STEP iii $n=$ number of periods (payments) in the entire annuity $=$
$m \times$ number of years.
These three steps are required whether we use Table $23-1$ or a calculator to find the FVAF.

EXAMPLE D

Find the future value of an annuity in which $\$ 200$ is deposited at the end of each quarter for 5 years. Interest is 6% compounded quarterly.

STEP i There are $m=4$ compounding periods in 1 year.
STEP ii
STEP iii
STEP 1
STEP 2
Periodic interest rate $i=6 \% \div 4=1.5 \%$ per period
Number of payments $n=4 \times 5$ years $=20$ payments
Use Table 23-1, 1.5\% column and row 20: annuity factor $=23.12367$
Future value $=\$ 200 \times 23.12367=\$ 4,624.734$, or $\$ 4,624.73$

$$
\begin{aligned}
& {[m=4]} \\
& {\left[i=\frac{0.06}{4}=0.015\right]} \\
& {[n=4 \times 5=20]}
\end{aligned}
$$

CONCEPT CHECK 23.1

Assume that $\$ 2,000$ is invested every 6 months for 5 years in an account that pays 6% compounded semiannually. Compute the future value of the investment. Then compute the total interest earned by the investment.

Semiannual means $m=2$ periods per year.

$$
\begin{aligned}
& {[m=2]} \\
& {\left[i=\frac{0.06}{4}=0.03\right]}
\end{aligned}
$$

Periodic rate $=6 \% \div 2=3 \%$ per period
Number of payments 2×5 years $=10$ payments
The future value annuity factor from row 10 of the 3.00% column in Table 23-1 is 11.46388.
Future value of the annuity $=\$ 2,000 \times 11.46388=\$ 22,927.76$
Total of all payments $=\$ 2,000 \times 10$ payments $=\$ 20,000$
Total interest earned $=$ Future value - Total payments $=\$ 22,927.76-\$ 20,000.00=$
\$2,927.76

USING A CALCULATOR TO COMPUTE ANNUITY FACTORS (OPTIONAL)

Recall from Chapter 16 on Compound Interest that Tables 16-1 and 16-2 had the "future value factors" (FVF) and the "present value factors" (PVF), respectively. Recall also that you could use a calculator to find the FVF and PVF with these simple formulas: $\mathrm{FVF}=(1+i)^{n}$ and $\mathrm{PVF}=1 \div(1+i)^{n}\left(\right.$ or PVF $\left.=(1+i)^{-n}\right)$, where \boldsymbol{i} is the periodic interest rate and \boldsymbol{n} is the total number of periods. To find the future value of $\$ 5,000$ invested at 8% compounded quarterly for 3 years, you used either Table 16.1 or a calculator to find $\mathrm{FVF}=1.268$. The future value is $\mathrm{FV}=\mathrm{PV} \times \mathrm{FVF}=\$ 5,000 \times 1.26824$ $=\$ 6,341.20$.

Earlier, we learned that the terms in Table 23-1 are "future value of an annuity factors" (FVAFs). Just as there was a calculator formula for FVF, there is a formula for FVAF. It is

$$
\mathrm{FVAF}=\frac{(1+i)^{n}-1}{i}
$$

where
i is the periodic interest rate written as a decimal (as in Chapter 16), and n is the total number of payments (or the number of periods)

Applying the formula to example C where $n=4$ years and $i=10 \%$ compounded annually, we find the same FVAF $=4.46100$ as in row 4 , column 10%, of Table 23-1:

$$
\begin{aligned}
\text { FVAF } & =\frac{(1+i)^{n}-1}{i}=\frac{(1+0.10)^{4}}{0.10}=\frac{1.46410000-1}{0.10} \\
& =\frac{0.46410000}{0.10}=4.6410000
\end{aligned}
$$

Depending on your calculator, one set of calculator keystrokes to calculate this FVAF is

$$
1[+] .1[=]\left[y^{x}\right] 4[=][-] 1[=][\div] .1[=]
$$

To compute the future value of an annuity with a calculator, the formula is

$$
F V A=P m t \times F V A F \quad \text { or } \quad F V A=P m t \times\left[\frac{(1+i)^{n}-1}{i}\right]
$$

In example $C, F V A=P m t \times F V A F=\$ 1,000 \times 4.64100=\$ 4,641$.
In example D, Steps i, ii, iii give $m=4, i=6 \% \div 4=1.5 \%$ or 0.015 , and $n=4 \times 5$ years $=20$. Using the formula and a calculator, we get

$$
\begin{aligned}
F V A & =P m t \times F V A F=P m t \times\left[\frac{(1+i)^{n}-1}{i}\right]=\$ 200 \times\left[\frac{(1+0.015)^{20}-1}{0.015}\right] \\
& =\$ 200 \times 23.1236671=\$ 4,624.73
\end{aligned}
$$

After first calculating $i=0.015$ and $n=20$, one typical set of calculator keystrokes to find the future value is

$$
1[+] .015[=]\left[y^{x}\right] 20[=][-] 1[=][\div] .015[=][\times] 200[=]
$$

Calculators differ. If your calculator has parentheses, you could use one or more pairs of parentheses to make an expression that you think is simpler. Use the keystrokes that seem simplest to you.

Computing Regular Payments of an Annuity from the Future Value

Learning Objective

Compute the regular payments of an annuity from the future value.

In examples A-D, the amounts of the payments were known and the future values were unknown. If, however, the future value is known, then you can compute the amount of each payment. The procedure is identical whether you use Table 23-1 or a calculator to find the FVAF.

STEPS to Find the Size of the Payment in an Annuity, Given Its

 Future Value1. Determine the annuity factor (FVAF) using Table 23-1 or a calculator.
2. Divide the future value by the annuity factor. The quotient is the amount of each payment in the annuity.

As a formula, Step 2 could be written as $P m t=F V A \div F V A F$.

EXAMPLE E

Nate and Nan Roth want to have $\$ 35,000$ in their credit union account when their son Danny starts college. They will make equal payments every month for 4 years. The credit union will pay 6% compounded monthly. What should their payment amount be?

The value of the annuity at the end, or the future value of the annuity, is $\$ 35,000$. Use Table 23-1.

STEP i

STEP ii

STEP iii

STEP 1

STEP 2

There are $m=12$ compounding periods in 1 year.
Periodic interest rate $=6 \% \div 12=0.5 \%$ per period
Number of deposits $=12 \times 4$ years $=48$ deposits
Use Table 23-1, 0.5% column and row 48: annuity factor $=54.09783$
Future value of the annuity $=\$ 35,000$
Payment amount $=\$ 35,000 \div 54.09783=\$ 646.976$, or $\$ 646.48$

$$
\begin{aligned}
& {[m=12]} \\
& {\left[i=\frac{0.06}{12}=0.005\right]} \\
& {[n=12 \times 4=48]} \\
& {\left[\begin{array}{l}
\text { FVAF }
\end{array}=\frac{(1+0.005)^{48}-1}{0.005}\right.} \\
& \quad=54.09783222
\end{aligned}
$$

SINKING FUNDS

At the beginning of this chapter, we mentioned that a $\$ 10,000,000$ corporate bond issue may include a sinking fund feature. Sometimes a sinking fund means that the corporation will set aside an equal amount of money each year so that by the end of the 20 years, the corporation will have accumulated the $\$ 10,000,000$. At other times, perhaps, a sinking fund may be used by the corporation to buy back $\$ 500,000$ worth of the bonds each year.

Although the term sinking fund may be most often associated with the repayment of a bond issue, its use isn't restricted to bonds. A corporation may set up a sinking fund to save money for an expensive piece of equipment that it knows it must replace in the future. The college fund set up by Nate and Nan Roth in example E was essentially a sinking fund.

EXAMPLE F

Micromedia Corporation is preparing a $\$ 10,000,000$ bond issue. The company wants to make 25 equal payments into a sinking fund so that it will have a total of $\$ 10,000,000$ available in 25 years to repay the bonds. What size should each of the payments be if the company can earn 5% per year on the payments?

STEP $\mathrm{i} \quad$ There is $m=1$ compounding period in 1 year.
STEP ii
Periodic interest rate $=5 \% \div 1=5 \%$ per period
STEP iii
Number of deposits $=1 \times 25$ years $=25$ deposits
STEP 1
Use Table 23-1, 5% column and row 25: annuity factor $=47.72710$
STEP 2
Future value of the annuity $=\$ 10,000,000$
Payment amount $=\$ 10,000,000 \div 47.72710=\$ 209,524.57$

$$
\begin{aligned}
& {[m=1]} \\
& {\left[i=\frac{0.05}{1}=0.05\right]} \\
& {[n=1 \times 25=25]} \\
& {\left[\text { FVAF }=\frac{(1+0.05)^{25}-1}{0.05}\right.} \\
& \quad=47.72709882
\end{aligned}
$$

CONCEPT CHECK 23.2

Assume that an equal amount is invested every quarter for 7 years. After the last payment, the future value is $\$ 75,000$. If the interest rate is 8% compounded quarterly, compute the size of each regular quarterly payment.

Quarterly means $m=4$ periods per year.
Periodic rate $=8 \% \div 4=2 \%$ per period
Number of payments is 4×7 years $=28$ payments
The future value annuity factor from row 28 of the 2% column in Table $23-1$ is 37.05121 .

Regular quarterly payment $=\$ 75,000 \div 37.05121=\$ 2,024.2254$, or $\$ 2,024.23$

COMPLETE ASSIGNMENT 23.1.

$$
\begin{aligned}
& {[m=4]} \\
& {\left[i=\frac{0.08}{4}=0.02\right]} \\
& {[n=4 \times 7=28]} \\
& {\left[\text { FVAF }=\frac{(1+0.02)^{28}-1}{0.02}\right.} \\
& \quad=37.05121031]
\end{aligned}
$$

Computing the Present Value of an Annuity

Learning Objective

Compute the present value of an annuity.

The annuity shown in Figure 23-3 begins December 31, 2004. Again, the value of the annuity on this date is called the present value of the annuity. For example, when a person deposits a large amount in a bank account and then makes a series of equal withdrawals from the account until it is empty, the series of withdrawals (the equal payments) is the annuity and the amount deposited is the present value. The interest earned equals the difference between the total amount withdrawn and the amount deposited.

Figure 23-3 \quad Present Value of an Ordinary Annuity

EXAMPLE G

In November 2004, Ashley Hamilton inherited some money. She planned to donate part of the money immediately to the American Cancer Society and then to make four equal donations of $\$ 1,000$ each on December 31 of 2005, 2006, 2007, and 2008. To prepare for the four future payments, Ashley went to her bank on December 31, 2004 and deposited money into a new account. The account paid 10% compounded annually. Ashley would withdraw $\$ 1,000$ each year; after the last withdrawal on December 31, 2008, the account would be empty.

How much must Ashley deposit on December 31, 2004? (Hint: Make a time line diagram, and compute the present value of each of the four withdrawals.)

To find the present value of the annuity on December 31, 2004, first use Table 16-2 to find the present value of each of the four payments on December 31, 2004. Then compute the total.

Figure 23-3 illustrates example G. The time line shows the equal withdrawals as each payment is moved from the future backward to the present (to December 31, 2004). Compare Figure 23-3 with Figure 23-2 where each payment was projected forward into the future.

The method shown in Figure 23-3 aids instruction but is too time-consuming to be practical. To get the same solution quickly, use Table 23-2 on pages 492-93.

S T E P S to Use Table 23-2 to Compute Present Value and Total Interest Earned

1. Locate the present value of annuity factor (PVAF) in the correct row and column of Table 23-2 on pages 492-93.
2. Multiply the payment amount by the annuity factor (PVAF). The product is the present value of the annuity.
3. Multiply the payment amount by the number of payments. The product is the total of all payments.
4. Subtract the present value of the annuity from the total of all payments. The difference is the total interest earned.

PRESENT VALUE OF AN ANNUITY FORMULA

If you prefer, Step 2 may be summarized as a formula, in words or in symbols:
Present value of an annuity $=$ Periodic payment \times Present value of annuity factor (Table 23-2), or PVA $=P m t \times P V A F$

For example G, the factor in the 10.00% column and row 4 of Table $23-2$ is 3.16987 (Step 1), and $\$ 1,000 \times 3.16987=\$ 3,169.87$ (Step 2).

The application in example H may not sound complicated, but even it would be tedious to do without Table 23-2. As the payments and compounding are quarterly, use Steps i, ii, and iii to find the periodic rate and the number of periods.

EXAMPLE H

Nanda Cerrado just won first prize in a fund-raising raffle. Nanda has a choice: She can receive quarterly payments of $\$ 750$ each for 6 years, with the first payment 3 months (one quarter) from now, or she can receive 1 lump sum today. Assuming an interest rate of 6% compounded quarterly, what lump sum today equals the future payments? (Hint: The series of $\$ 750$ payments is an annuity, and the lump sum is the present value of the annuity.)

$$
\begin{aligned}
& {[m=4]} \\
& {\left[i=\frac{0.06}{4}=0.015\right]} \\
& {[n=4 \times 6=24]}
\end{aligned}
$$

STEP i There are $m=4$ compounding periods in 1 year.
STEP ii Periodic interest rate $=6 \% \div 4=1.5 \%$ per period
STEP iii \quad Number of payments 4×6 years $=24$
STEP 1
Using Table 23-2, 1.50\% column and row 24: the PVAF $=20.03041$
STEP 2

Present value $=\$ 750 \times 20.03041=\$ 15,022.8075$, or $\$ 15,022.81$

CONCEPT CHECK 23.3

What present value (principal) must be invested today in an account to provide for 7 equal annual withdrawals (an annuity) of $\$ 5,000$ each? The interest rate is 8% compounded annually.

Annual means $m=1$ period per year.
Periodic rate $=8 \% \div 1=8 \%$ per year
Number of payments $=1 \times 7$ years $=7$ payments
From row 7 of the 8.00% column of Table 23-2, the PVAF $=5.20637$.

$$
\begin{aligned}
& {[m=1]} \\
& {\left[i=\frac{0.08}{1}=0.08\right]} \\
& {[n=1 \times 7=7]}
\end{aligned}
$$

Present value of the annuity $=\$ 5,000 \times 5.20637=\$ 26,031.85$

USING A CALCULATOR TO COMPUTE THE PRESENT VALUE OF AN ANNUITY (OPTIONAL)

Just as there is a calculator formula to compute the future value of an annuity factor (FVAF), there is also a calculator formula to compute the present value of an annuity factor (PVAF). The formula can be written several ways. Use whichever one you think is easier to understand.

$$
\begin{aligned}
\operatorname{PVAF}=\frac{1-(1+i)^{-n}}{i} & \text { or } \quad \text { PVAF }
\end{aligned}=\frac{1-\left(1 \div(1+i)^{n}\right)}{i}
$$

where i is the periodic interest rate written as a decimal (as in Chapter 16), n is the number of payments (or the number of periods)
To compute the present value of an annuity (PVA) with a calculator, the formula is

$$
P V A=P m t \times P V A F \quad \text { or } \quad P V A=P m t \times\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

where $P m t$ is the periodic payment
i is the periodic interest rate written as a decimal n is the number of payments (or the number of periods)
$P V A$ is the present value of the annuity
Return to example H and use the formulas for PVA and PVAF to compute the present value of the annuity in example H : quarterly payments of $\$ 750$ each for 6 years at an interest rate of 6% compounded quarterly.

$$
\begin{aligned}
\text { Pmt } & =\$ 750 \\
m & =4 \text { compounding periods in } 1 \text { year } \\
i & =6 \% \div 4=1.5 \%, \text { or } 0.015, \text { is the periodic interest rate } \\
n & =4 \times 6 \text { years }=24 \text { is the number of compounding periods }
\end{aligned}
$$

$$
\begin{aligned}
P V A & =P m t \times\left[\frac{1-(1+i)^{-n}}{i}\right]=\$ 750 \times\left[\frac{1-(1+0.015)^{-24}}{0.015}\right] \\
& =\$ 750 \times\left[\frac{1-0.69954392}{0.015}\right]=\$ 750 \times\left[\frac{0.30045608}{0.015}\right] \\
& =\$ 750 \times(20.03040537)=\$ 15,022.80402, \text { or } \$ 15,022.80
\end{aligned}
$$

After first calculating $i=0.015$ and $n=24$, one typical set of calculator keystrokes to find the present value is $1[+] .015[=]\left[\nu^{x}\right] 24[+/-][=][+/-][+] 1[=][\div] .015$ [$=$] [x] 750 [=]

And remember: Your calculator may be different. You may have to use different keystrokes and you may be able to find a more efficient sequence of keystrokes.

Computing Regular Payments of an Annuity from the Present Value

In examples G and H , the amounts of the payments were known and the present values were unknown. If, however, the present value is known, then you can compute the amount of the payments. The procedure is identical whether you use Table 23-1 or a calculator to find the PVAF.

STEPS to Find the Size of the Payment in an Annuity, Given the Present Value

1. Determine the annuity factor (PVAF) using Table 23-1 or a calculator.
2. Divide the present value by the annuity factor (PVAF). The quotient is the amount of the payments in the annuity.

Learning Objective 4

Compute the regular payments of an annuity from the present value.

EXAMPLE I

Jim Schremp received a $\$ 25,000$ bonus from his employer. Rather than spend it all at once, he decided to deposit it in a bank account that pays 9% compounded monthly. He will make equal monthly withdrawals for 4 years. After the last withdrawal, the account will be empty. How much will he withdraw each month?

The value of the annuity in the beginning (present value of the annuity) is $\$ 25,000$.

$$
\begin{aligned}
& {[m=12]} \\
& {\left[i=\frac{0.09}{12}=0.0075\right]} \\
& {[n=12 \times 4=48]} \\
& {\left[\text { PVAF }=\frac{1-(1+0.0075)^{-48}}{0.0075}\right.} \\
& \quad=40.18478189]
\end{aligned}
$$

Use Table 23-2.
STEP $\mathrm{i} \quad$ There are $m=12$ compounding periods in 1 year.
STEP ii Periodic interest rate $=9 \% \div 12=0.75 \%$ per period
STEP iii \quad Number of withdrawals $=12 \times 4$ years $=48$ withdrawals
STEP 1

STEP 2

Using Table 23-2, 0.75% column and row 48: the PVAF $=40.18478$
Each withdrawal $=\$ 25,000 \div 40.18478=\$ 622.126$, or $\$ 622.13$

CONCEPT CHECK 23.4

Assume that $\$ 50,000$ is deposited today (the present value) to provide for 44 equal quarterly withdrawals (an annuity) over the next 11 years. If the interest rate is 8% compounded quarterly, what is the size of each regular quarterly payment? What is the total interest earned during the term of the annuity?

$$
\begin{aligned}
& \text { Quarterly means } m=4 \text { periods per year. } \\
& \text { Periodic rate }=8 \% \div 4=2 \% \text { per quarter } \\
& \text { Number of payments }=4 \times 11 \text { years }=44 \text { payments } \\
& \text { From row } 44 \text { of the } 2.00 \% \text { column in Table } 23-2 \text {, the PVAF }=29.07996 \\
& \text { Regular quarterly payment }=\$ 50,000 \div 29.07996=\$ 1,719.3971, \text { or } \$ 1,719.40 \\
& \text { Total of all payments }=\$ 1,719.40 \times 44 \text { payments }=\$ 75,653.60 \\
& \text { Total interest earned } \\
& \qquad \begin{aligned}
& =\$ 75,653.60-\$ 50,000.00=\$ 25,653.60
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& {[m=4]} \\
& {\left[i=\frac{0.08}{4}=0.02\right]} \\
& {[n=4 \times 11=44]} \\
& {\left[\text { PVAF }=\frac{1-(1+0.02)^{-44}}{0.02}\right.} \\
& \quad=29.07996307]
\end{aligned}
$$

Computing the Payment to Amortize a Loan

Recall from your study of loan amortization in Chapter 14 that the borrower repays the loan by making equal monthly payments and that the interest is computed on the unpaid balance each month. Loan amortization creates an annuity because there is a series of equal periodic payments. Computing the interest each month makes it compound interest. The amount of the loan is the present value of the annuity.

Stated another way, in amortization, when the amount of the loan is known, the present value of the annuity is known. As in example J, you can use Table 23-2 to compute the amount of the monthly payments.

Compute the loan payment required to amortize a loan.

STEPS to Find the Size of the Payment to Amortize a Loan

1. Determine the annuity factor (PVAF) using Table 23-2 or a calculator.
2. Divide the loan amount by the annuity factor (PVAF). The quotient is the amount of the monthly loan payments.

EXAMPLE J

Barbara Luzardi wants to buy a new piano. Barbara pays \$3,000 and also trades in her old piano. The balance is $\$ 2,400$, and the piano dealer will amortize the $\$ 2,400$ over 4 months at 12%. Find the size of the required monthly payments.

STEP i
There are 12 compounding periods in 1 year.
STEP ii
Periodic interest rate $=12 \% \div 12=1 \%$ per period
STEP iii
Number of monthly payments $=4$
STEP 1 Because the borrowing occurs at the beginning of the annuity, this is a present value problem and $\$ 2,400$ is the present value of the annuity; use Table 23-2. In the 1.00% column and row 4 , the PVAF $=3.90197$.

STEP 2
Size of each payment $=\$ 2,400 \div 3.90197=\$ 615.07392$, or $\$ 615.07$

CONCEPT CHECK 23.5

A bank loans $\$ 40,000$ at an interest rate of 9% compounded monthly. Find the loan payment necessary to amortize the loan with monthly payments over 3 years.

Loan amortization involves an annuity. The amount borrowed is the present value of the annuity, and the monthly loan payment is the regular annuity payment.

Monthly means 12 periods per year.
Periodic rate $=9 \% \div 12=0.75 \%$ per period
Number of payments $=12 \times 3$ years $=36$ payments
From row 36 of the 0.75% column of Table $23-2$, the PVAF $=31.44681$.
Loan payment $=\$ 40,000 \div 31.44681=\$ 1,271.98911$, or $\$ 1,271.99$

$$
\begin{aligned}
& {[m=12]} \\
& {\left[i=\frac{0.09}{12}=0.0075\right]} \\
& {[n=12 \times 3=36]} \\
& {\left[\text { PVAF }=\frac{1-(1+0.0075)^{-36}}{0.0075}\right.} \\
& \quad=31.44680525
\end{aligned}
$$

Creating a Loan Amortization Schedule

Learning Objective

Create a loan amortization schedule.

Recall from Chapter 14 that the following procedure is used to create an amortization schedule.

STEPS to Create an Amortization Schedule

For each row except the last:

1. Interest payment $=$ Unpaid balance \times Monthly interest rate
2. Principal payment $=$ Monthly payment - Interest payment
3. New unpaid balance $=$ Old unpaid balance - Principal payment

For the last row:

1. Interest payment $=$ Unpaid balance \times Monthly interest rate
2. (Then ADD) Monthly payment $=$ Unpaid balance + Interest payment
3. Principal payment $=$ Unpaid balance

EXAMPLE K

Create an amortization schedule for the loan in example J: \$2,400 to be amortized over 4 months with interest of 12% compounded monthly charged on the unpaid balance.

Month		STEP 1		STEP 2	STEP 3
	Beginning	(1\%)			
	Unpaid	Interest	Principal	Total	New
	Balance	Payment	Payment	Payment	Balance
1	\$2,400.00	\$24.00	\$591.07	\$615.07	\$1,808.93
2	1,808.93	18.09	596.98	615.07	1,211.95
3	1,211.95	12.12	602.95	615.07	609.00
4	609.00	6.09	609.00	615.09	

In example J, note that each month's beginning unpaid balance is multiplied by the monthly interest rate (1%) and rounded to the nearest cent.

CONCEPT CHECK 23.6

Amortize a $\$ 1,500$ purchase over 3 months at an annual rate of 12%. First, use Table 23-2 or a calculator to calculate the first two monthly payments. Then show the calculations to construct a 3-month amortization schedule.

The periodic interest rate is $12 \% \div 12=1 \%$, and the number of periods is 3 . The present value annuity factor from row 3 of the 1.00% column of Table 23-2 is 2.94099. The loan payment is $\$ 1,500 \div 2.94099=\$ 510.03$.

$$
\begin{aligned}
& {[m=12]} \\
& {\left[i=\frac{0.12}{12}=0.01\right]} \\
& {[n=3]} \\
& {\left[\operatorname{PVAF}=\frac{1-(1+0.01)^{-3}}{0.01}\right.} \\
& \quad=2.94098521]
\end{aligned}
$$

Month 3

Month 2		Month 3	
From month 1	$\$ 1,004.97$	From month 2	$\$ 504.99$
$\$ 1,004.97 \times 0.01=$	$\$ 10.05$	$\$ 504.99 \times 0.01=$	$\$ 5.05$
From above	$\$ 510.03$	$\$ 504.99+\$ 5.05=\$ 510.04$	
$\$ 510.03-\$ 10.05=$	$\$ 499.98$	$($ Unpaid balance)	$\$ 504.99$
$\$ 1,004.97-\$ 499.98=\$ 504.99$	$\$ 504.99-\$ 504.99=\$ 0.00$		

COMPLETE ASSIGNMENT 23.2.

USING THE TEXAS INSTRUMENTS BA II PLUS BUSINESS CALCULATOR FOR ANNUITY CALCULATIONS (OPTIONAL)

Several inexpensive calculators are available to perform annuity calculations, as well as many other business and financial functions. A typical calculator is the Texas Instruments BA II Plus, shown in the photograph. Although we do not endorse this calculator above any others, it has the typical features for annuities. If you have a business or financial calculator, you should study the manual that came with it. We will give some very brief instruction on how to use the BA II Plus to do the revisited examples D, E, H and I beginning on the next page.

The Basic Annuity Keys

Examine the picture of the BA II Plus. Notice especially the third row of keys labeled [N], [I/Y], [PV], [PMT], and [FV], and the [CPT] key in the upper left corner. These are the primary keys that are used to perform various annuity calculations. [\mathbf{N}] is for the number of payments. [IY] ${ }^{*}$ is for the periodic interest rate written as a percent, NOT a decimal. [PV] is the present value of the annuity. [PMT] is Pmt, the size of
 the equal payment each period. [FV] is the future value of the annuity. [CPT] is the "compute" key, which makes the final calculation.

[^1]
Additional Annuity Keys

Examine the notation above the line of annuity keys in row 3 . You see second function keys that are used with the yellow [2nd] key. The most important second functions for annuities are $[\mathrm{xP} / \mathrm{Y}],[\mathrm{P} / \mathrm{Y}],[\mathrm{BGN}]$ and [CLR TVM].
$[\mathrm{P} / \mathrm{Y}]$ stands for "Payments per Year." $[\mathrm{P} / \mathrm{Y}]$ represents the same thing as m in Step i of example D. When the BA II Plus comes from the factory, $[\mathrm{P} / \mathrm{Y}]$ is preset at 12 for monthly compounding. The calculator could then determine the monthly interest rate and the number of months. Since we will also want to use annual, semiannual, or quarterly compounding, we are going to change $[\mathrm{P} / \mathrm{Y}]$ to 1 and leave it at 1 . This will allow us to always determine for ourselves the periodic interest rate and number of periods without having to reset $[\mathrm{P} / \mathrm{Y}]$ for every new problem.

First, to change $[\mathrm{P} / \mathrm{Y}]$ to 1 (assuming that $[\mathrm{P} / \mathrm{Y}]$ is preset to 12):

Instructions:	Calculator	
Press [2nd] $[\mathrm{P} / \mathrm{Y}]$.	$\mathrm{P} / \mathrm{Y}=$	12
Press 1	P / Y	1
Press [ENTER]	$\mathrm{P} / \mathrm{Y}=$	1
Press [2nd] [QUIT]		0

Second, the [BGN] key is used to change between an annuity where the payments are at the "end" of each period and an annuity where the payments are at the "beginning" of each period. [BGN] is preset to "END," which is what we want for Chapter 23. To check,

Instructions:	Calculator Display
Press [2nd] [BGN].	END
Press [2nd] [QUIT]	0
NOTE: The [BGN] key may be set on "BGN" and, if so, it must be changed.	

Instructions:	Calculator Display
Press [2nd] [BGN].	BGN
Press [2nd] [SET]	END
Press [2nd] [QUIT]	

Finally, the annuity memories are usually called the "Time Value of Money" memories and they can be cleared using [2nd] [CLR TVM]. Now, we are ready to revisit examples D, E, H and I.

EXAMPLE D

Payments of $\$ 200$ each are invested at the end of each quarter for 5 years at 6% compounded quarterly. Find the future value of the annuity.

In example D, Steps i, ii, iii give $m=4, i=6 \% \div 4=1.5 \%$, and $n=4 \times 5$ years $=$ 20 payments. Using the Texas Instruments BA II Plus calculator,

Instructions:	Calculator Display	
Press [2nd] [CLR TVM]		
Press $20[\mathrm{~N}]$	$\mathrm{N}=$	20
Press $1.5[\mathrm{I} / \mathrm{Y}]$	$\mathrm{I} / \mathrm{Y}=$	1.5
Press $0[\mathrm{PV}]$	$\mathrm{PV}=$	0
Press 200 [PMT]	PMT $=$	200
Press [CPT] [FV]	$\mathrm{FV}=-4,624.733421$	

The future value of the annuity is $\$ 4,624.73$. Note: The calculator shows a "negative" answer because of a normal calculator convention: If the amounts going INTO the bank account are "positive" $\$ 200$ each quarter, then the amount of money that can come OUT OF the bank account is opposite in sign. If PMT had been set at -200 , then FV would have been a positive $4,624.733421$.

EXAMPLE E

What size monthly payment is required to reach a total future value of \$35,000 after 4 years if the interest rate is 6% compounded monthly?

In example E, Steps i, ii, iii give $m=12, i=6 \% \div 12=0.5 \%$, and $n=12 \times 4$ years $=48$ payments. Using the Texas Instruments BA II Plus calculator,

Instructions:	Calculator Display	
Press [2nd] [CLR TVM]		
Press $48[\mathrm{~N}]$	$\mathrm{N}=$	48
Press $.5[\mathrm{I} / \mathrm{Y}]$	$\mathrm{I} / \mathrm{Y}=$	0.5
Press $0[\mathrm{PV}]$	$\mathrm{PV}=$	0
Press 35000 [FV]	$\mathrm{FV}=$	35,000
Press [CPT] [PMT]	PMT $=-646.9760167$	

The amount of each monthly payment is $\$ 646.98$.

EXAMPLE H

Payments of $\$ 750$ each are paid at the end of each quarter for 6 years at 6% compounded quarterly. Find the present value of the annuity.

In example H, Steps i, ii, iii give $m=4, i=6 \% \div 4=1.5 \%$, and $n=4 \times 6$ years $=$ 24 payments.

Instructions:	Calculator Display	
Press [2nd] [CLR TVM]		
Press $24[\mathrm{~N}]$	$\mathrm{N}=$	24
Press $1.5[\mathrm{I} / \mathrm{Y}]$	$\mathrm{I} / \mathrm{Y}=$	1.5
Press $750[\mathrm{PMT}]$	$\mathrm{PMT}=$	750
Press $0[\mathrm{FV}]$	$\mathrm{FV}=$	0
Press [CPT] [PV]	$\mathrm{PV}=-15,022.80402$	

The present value of the annuity is $\$ 15,022.80$.

EXAMPLE I

$\$ 25,000$ is invested into an account that pays 9% compounded monthly. What equal amount can be withdrawn at the end of each month for 4 years? The account will be empty at the end of the 48th withdrawal. In example I, Steps i, ii, iii give $m=12, i=9 \%$ $\div 12=0.75 \%$, and $n=12 \times 4$ years $=48$ payments.

Instructions:	Calculator Display	
Press [2nd] [CLR TVM]		
Press $48[\mathrm{~N}]$	N	$=$
Press $.75[\mathrm{I} / \mathrm{Y}]$	I / Y	$=$
Press $25000[\mathrm{PV}]$	$\mathrm{PV}=$	48
Press $0[\mathrm{FV}]$	$\mathrm{FV}=$	0.75
Press [CPT] [PMT]	PMT $=-622.1260593$	

The amount of each monthly withdrawal is $\$ 622.13$.

Chapter Terms for Review

annuity
future value of an annuity
ordinary annuity
future value of an annuity factor (FVAF)
present value of an annuity factor (PVAF)
present value of an annuity sinking fund
time line

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective
 Example

23.1

1. Compute the future value of $\$ 900$ invested every month for 2.5 years, with interest at 6% compounded monthly.

Compute the future value of an annuity

23.2

Compute the regular payments of an annuity from the future value
2. Compute the regular annuity payment that is required to accumulate $\$ 6,000$ after 17 quarterly payments at an interest rate of 8% compounded quarterly.
3. Compute the present value of $\$ 1,500$ withdrawn every half-year for $7 \frac{1}{2}$ years, with interest at 6% compounded semiannually.

23.3

Compute the present value of an annuity

23.4

Compute the regular payments of an annuity from the present value
4. An account starts at $\$ 4,000$. Compute the regular annual withdrawal that is required to empty the account in 6 years if the interest is 10% compounded annually.

23.5

Compute the loan payment required to amortize a loan

23.6

Create a loan amortization schedule
5. Compute the loan payment that is required to amortize a $\$ 20,000$ loan in 24 monthly payments, with an interest rate of 9% compounded monthly.
6. A $\$ 10,000$ loan at a rate of 12% compounded monthly is amortized in 15 monthly payments of $\$ 721.24$. Compute the entries for the first line of the amortization schedule.

Review Problems for Chapter 23

(1) For each annuity, find either the future value (compound amount) or the payment, as indicated. Then compute the compound interest earned by the annuity. (Use Table 23-1)

Payment	Rate	Period	Time	Future Value	Interest
$\$ 3,500$	6%	monthly	3.5 yr	a.	b. -
$\$ 5,000$	8%	semiannually	20 yr	c.	d.
Future Value	Rate	Period	Time	Payment	Interest
$\$ 30,000$	5%	annually	18 yr	e.	f. -
$\$ 28,000$	6%	quarterly	6 yr	g.	h.

2 For each annuity, find either the present value or the payment, as indicated. Then compute the compound interest earned by the annuity. (Use Table 23-2)

Payment	Rate	Period	Time	Present Value	Interest
$\$ 1,750$	12%	semiannually	2 yr	a.	b. -
$\$ 2,875$	6%	quarterly	11 yr	c.	d.
Present Value	Rate	Period	Time	Payment	Interest
$\$ 24,000$	10%	annually	17 yr	e.	f.
$\$ 60,000$	9%	monthly	2.5 yr	g.	h.

(3) Sharon Wilder planned to save money for retirement. She put $\$ 750$ every month in an investment that paid a return of 6% compounded monthly. How much would Sharon have in her account after 4 years?

4 Med-West wanted to set up a sinking fund to have $\$ 15,000,000$ in 20 years. The company would make annual payments that would pay a return of 6% per year. What size should the payments be?

5 Nancy Duncan received a payment of $\$ 75,000$ from a life insurance company. She put it in an account that would pay 6% compounded quarterly. Nancy wanted to make equal quarterly withdrawals from the account for 10 years, when the account would be empty. What size withdrawals can Nancy make?

6 Wayne Runn read about an investment opportunity on the Internet. The Website explained that Wayne would receive payments of $\$ 1,000$ every 6 months for 14 years. If the returns are based on 8% compounded semiannually, what is the present value of this investment opportunity?

Assignment 23.1: Annuities-Future Value

Name
Date Score

A (28 points) For each of the following annuities, find the future value or the amount of the periodic payment. Round answers to the nearest cent. (4 points for each correct answer)

Payment Amount	Payment Periods	Interest Rate	Length of Annuity	Future Value
$\$ 2,200$	monthly	9% compounded monthly	2 years	

2. \qquad
quarterly
6\% compounded quarterly
7 years
\$24,000
3. $\$ 3,500$
semiannually
8\% compounded semiannually
10 years
4. \qquad annually
5\% compounded annually
15 years
\$100,000
5. $\$ 500$
monthly
15% compounded monthly
3 years
6. \qquad quarterly
5\% compounded quarterly
10 years
\$30,000
7. $\$ 1,000$ semiannually 10% compounded semiannually 16 years

B (32 points) For each of the following annuities, find the future value, the amount of the periodic payment, or the total amount of interest paid. Round answers to the nearest cent. (4 points for each correct answer)

8. Calculate the future value of a 25 -year annuity with payments of $\$ 3,000$ each year and an interest rate of 5% compounded annually.
9. How much total interest is earned on an annuity with payments of $\$ 300$ per month for 4 years and an interest rate of 6% compounded monthly?
10. An annuity consists of quarterly payments of $\$ 1,600$ each for 10 years at an interest rate of 6% compounded quarterly. Compute the future value of the annuity.
11. A 7 -year annuity has semiannual payments of $\$ 8,000$ each and an interest rate of 8% compounded semiannually. What will be the total amount of interest earned?
12. A sinking fund has 7 annual payments, has an interest rate of 8% compounded annually, and has a future value of $\$ 15,000$. Compute the amount of each annual payment.
13. An 8 -year annuity with quarterly payments and an interest rate of 5% compounded quarterly has a future value of $\$ 45,000$. How much total interest does the annuity earn?
14. Calculate the amount of each monthly payment in a 1-year annuity that has a future value of $\$ 5,000$ and an interest rate of 9% compounded monthly.
15. Determine the total interest earned by an annuity with semiannual payments for 18 years, an interest rate of 10% compounded semiannually, and a future value of $\$ 25,000$.

C (40 points) In each of the following applications, find the future value of the annuity, the amount of the periodic payment, or the total amount of interest earned. Round answers to the nearest cent. (4 points for each correct answer)

16. Jim Walter decides to make semiannual deposits in his credit union account because it is guaranteeing a rate of 8% compounded semiannually for the next 5 years. How much will Jim have after making equal semiannual deposits of $\$ 2,500$ for 5 years?
17. Calvin White is planning for his daughter's college education. An investment advisor recommends an investment whose prospectus claims it will return 9% compounded monthly. If the investment does return 9% compounded monthly, how much must Calvin invest each month for 4 years if he wants to have a total of \$50,000 after the last deposit?
18. Maxfield International is raising $\$ 25,000,000$ by selling bonds that will mature in 20 years. Maxfield plans to make equal annual payments in a sinking fund to repay the bonds. If Maxfield can earn 6% per year, what amount should it deposit each year in order to have $\$ 25,000,000$ at the end of 20 years?
19. Ruben Mendoza is quite certain he will need to replace some construction equipment in 2 years. He decides to set up a sinking fund now to help buy the equipment. Ruben estimates that he can deposit $\$ 1,100$ each month for 2 years in a sinking fund that will pay 9% compounded monthly. How much will Ruben's sinking fund be worth after the last deposit?
20. Bill Starnes is planning that his twin daughters could get married in 6 years. He thinks that he should start saving now to try to accumulate $\$ 30,000$ by the end of the 6 years. Assuming that Bill can find an investment that will pay 8% compounded quarterly, what amount must Bill deposit each quarter to have the necessary $\$ 30,000$ at the end of the 6 years?
21. Joseph Woo imports patio furniture from various countries. He prefers to have cash available when he goes on buying trips. Suppose that Joseph makes equal monthly deposits into a risky investment that promises to pay 12% compounded monthly. If he deposits enough each month to accumulate $\$ 60,000$ by the end of 2 years, and if the investment pays as promised, how much of the $\$ 60,000$ will the bank have paid in interest?
22. Jeanne Knowles will graduate from high school in a few months. She has found a part-time job and is trying to determine how much money she can save in 6 years. Calculate the future value after 6 years if Jeanne makes semiannual deposits of $\$ 600$ each in an investment account that promises a return of 8% compounded semiannually.
23. Musical Instrument Manufacturing, Inc., (MIMI) just sold $\$ 40,000,000$ in bonds. The bonds will mature in 20 years. MIMI will make equal semiannual payments into a sinking fund that will earn 10% compounded semiannually. If MIMI has the $\$ 40,000,000$ after 20 years, what amount of the total was earned from the interest?
24. Every three months, Katie Webb sends $\$ 750$ to her granddaughter, Jenny. To encourage Jenny to save money, Jenny's father promises to give her interest of 12% compounded quarterly on everything that she saves. If Jenny always saves the entire $\$ 750$ each quarter, and receives these payments every quarter for 7 years, how much money will Jenny's father pay her in interest?
25. This year, Doug McCombs charged all his family's Christmas gifts on a credit card, and the result was a minor financial disaster. Planning for next year, Doug decides to save money each month from January through November and put it into an account that will pay 9% compounded monthly. He plans to make 11 equal deposits, and he wants to have accumulated $\$ 2,000$ once he makes the eleventh deposit. Calculate the size of each deposit.

Assignment 23.2: Annuities-Present Value

Name
Date Score

Learning Objectives

A (28 points) For each of the following annuities, find the present value or the amount of the periodic payment. Round answers to the nearest cent. (4 points for each correct answer)

Payment Amount	Payment Periods	Interest Rate	Length of Annuity	Present Value
1. $\underline{\$ 1,500}$	semiannually	8% compounded semiannually	9 years	-

3. $\$ 800$
monthly
6% compounded monthly
4 years
4. \qquad
annually
6\% compounded annually
17 years
\$50,000
5. $\$ 2,500$
quarterly
8% compounded quarterly
8 years
6. \qquad
semiannually
6% compounded semiannually
25 years
\$100,000
7. $\$ 750$
monthly
9\% compounded monthly
3 years

B (32 points) For each of the following annuities, find the present value, the amount of the periodic payment, or the total amount of interest paid. Round answers to the nearest cent. (4 points for each correct answer)

8. An annuity consists of quarterly payments of $\$ 1,200$ each for 10 years at an interest rate of 5% compounded quarterly. Determine the present value of the annuity.
9. Compute the amount of each payment in an annuity that has a present value of $\$ 10,000$ with 9 years of semiannual payments at an interest rate of 16% compounded semiannually.
10. In a 20 -year annuity, the annual payments are $\$ 5,000$ each and the interest rate is 5% compounded annually. What is the present value of the annuity?
11. What is the total interest earned by an annuity that has a present value of $\$ 16,000$ with monthly payments over a 2 -year period at an interest rate of 9% compounded monthly?
12. Calculate the size of the regular quarterly payments in a 10 -year annuity that has a present value of $\$ 100,000$ and an interest rate of 8% compounded quarterly.
13. An annuity has a present value of $\$ 75,000$. Compute the total interest earned by the annuity if there are annual payments over 10 years at an interest rate of 12% compounded annually.
14. Find the present value of a 12 -year annuity with semiannual payments of $\$ 6,000$ each, which earns interest at a rate of 8% compounded semiannually.
15. Compute the amount of the regular monthly payments in a 1-year annuity that has a present value of $\$ 20,000$ and an interest rate of 12% compounded monthly.

Score for B (32)

C (28 points) In each of the following applications, find the present value of the annuity, the amount of the periodic payment, or the total amount of interest earned. Round answers to the nearest cent. (4 points for each correct answer)

16. Walt Pierce is making a budget for the next 18 months. He estimates that his rent will be about $\$ 650$ per month. For calculations, Walt considers his housing expense to be an annuity of 18 payments. If he uses an interest rate of 9% compounded monthly, what will be the present value of the annuity?
17. After their children moved away from home, Barbara Cain and her husband sold their large house and bought a smaller condominium. Barbara invested $\$ 25,000$ of their after-tax profit in an annuity that would give them equal quarterly payments for 10 years. The fund will pay a return of 8% compounded quarterly. At the end of the 10 years, their annuity will be finished. What amount will they receive each quarter?
18. Joe Littrell is considering an investment that is somewhat like a bond. The investment is an annuity that would pay Joe $\$ 800$ every 6 months for 15 years. He is trying to determine how much the investment is worth today. If he uses an interest rate of 12% compounded semiannually, what is the present value of the annuity?
19. Bonnie Bomar will receive a retirement bonus of $\$ 80,000$. She has the option of either receiving the $\$ 80,000$ now in one lump sum or having it invested and then receiving 15 equal annual annuity payments, the first payment arriving 1 year after retirement. If she selects payments over 15 years, the $\$ 80,000$ is invested at a guaranteed rate of 8% compounded annually. Compute the amount of interest that Bonnie would earn by choosing the payments over 15 years instead of the lump sum.
20. Nellie Van Calcar inherited money from her grandfather. Nellie's daughter is in her second year of college, and Nellie wants to give her \$1,600 every quarter for 3 years. Nellie can invest the money for her daughter at 6% compounded quarterly. How much should she invest now to provide for all the quarterly withdrawals and have an empty account after the last withdrawal?
21. Joyce Bodley plans to buy a pre-owned car. She can either finance the car through the dealer or borrow the money from the bank. Either way, the amount borrowed will be amortized in equal payments over 4 years. If the bank's 12% annual interest rate for pre-owned cars is compounded monthly, compute Joyce's monthly payments for a bank loan of $\$ 15,000$.
22. Burton Hansen wanted to protect his home from fire and burglars, so he purchased a home security system. The total price including installation was $\$ 3,240$. The alarm company convinced Burton to amortize the cost over 21 months at an interest rate of 1.25% per month (which is 15% compounded monthly). Determine the amount of each of the equal monthly payments.

Score for C (28)
D (12 points) Gary Robinson purchased some new equipment and furniture for his office. Instead of charging it on a credit card, which had an 18% interest rate, Gary negotiated financing with the office supply dealer. The total purchase amount was $\$ 6,450$ and it was amortized over 4 months. The interest rate was 6% per year, or 0.5% per month. The first three monthly payments were each $\$ 1,632.70$. Complete the first three lines of the following amortization schedule. Round answers to the nearest cent. (1 point for each correct answer)

	Unpaid Month	Monthly Balance		Mrincipal Interest		Total Payment

Notes

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
2	2.00500	2.00750	2.01000	2.01250	2.01500	2.02000	2.03000	2.04000	2.05000	2.06000	2.08000	2.09000	2.10000	2.12000
3	3.01502	3.02256	3.03010	3.03766	3.04522	3.06040	3.09090	3.12160	3.15250	3.18360	3.24640	3.27810	3.31000	3.37440
4	4.03010	4.04523	4.06040	4.07563	4.09090	4.12161	4.18363	4.24646	4.31013	4.37462	4.50611	4.57313	4.64100	4.77933
5	5.05025	5.07556	5.10101	5.12657	5.15227	5.20404	5.30914	5.41632	5.52563	5.63709	5.86660	5.98471	6.10510	6.35285
6	6.07550	6.11363	6.15202	6.19065	6.22955	6.30812	6.46841	6.63298	6.80191	6.97532	7.33593	7.52333	7.71561	8.11519
7	7.10588	7.15948	7.21354	7.26804	7.32299	7.43428	7.66246	7.89829	8.14201	8.39384	8.92280	9.20043	9.48717	10.08901
8	8.14141	8.21318	8.28567	8.35889	8.43284	8.58297	8.89234	9.21423	9.54911	9.89747	10.63663	11.02847	11.43589	12.29969
9	9.18212	9.27478	9.36853	9.46337	9.55933	9.75463	10.15911	10.58280	11.02656	11.49132	12.48756	13.02104	13.57948	14.77566
10	10.22803	10.34434	10.46221	10.58167	10.70272	10.94972	11.46388	12.00611	12.57789	13.18079	14.48656	15.19293	15.93742	17.54874
11	11.27917	11.42192	11.56683	11.71394	11.86326	12.16872	12.80780	13.48635	14.20679	14.97164	16.64549	17.56029	18.53117	20.65458
12	12.33556	12.50759	12.68250	12.86036	13.04121	13.41209	14.19203	15.02581	15.91713	16.86994	18.97713	20.14072	21.38428	24.13313
13	13.39724	13.60139	13.80933	14.02112	14.23683	14.68033	15.61779	16.62684	17.71298	18.88214	21.49530	22.95338	24.52271	28.02911
14	14.46423	14.70340	14.94742	15.19638	15.45038	15.97394	17.08632	18.29191	19.59863	21.01507	24.21492	26.01919	27.97498	32.39260
15	15.53655	15.81368	16.09690	16.38633	16.68214	17.29342	18.59891	20.02359	21.57856	23.27597	27.15211	29.36092	31.77248	37.27971
16	16.61423	16.93228	17.25786	17.59116	17.93237	18.63929	20.15688	21.82453	23.65749	25.67253	30.32428	33.00340	35.94973	42.75328
17	17.69730	18.05927	18.43044	18.81105	19.20136	20.01207	21.76159	23.69751	25.84037	28.21288	33.75023	36.97370	40.54470	48.88367
18	18.78579	19.19472	19.61475	20.04619	20.48938	21.41231	23.41444	25.64541	28.13238	30.90565	37.45024	41.30134	45.59917	55.74971
19	19.87972	20.33868	20.81090	21.29677	21.79672	22.84056	25.11687	27.67123	30.53900	33.75999	41.44626	46.01846	51.15909	63.43968
20	20.97912	21.49122	22.01900	22.56298	23.12367	24.29737	26.87037	29.77808	33.06595	36.78559	45.76196	51.16012	57.27500	72.05244
21	22.08401	22.65240	23.23919	23.84502	24.47052	25.78332	28.67649	31.96920	35.71925	39.99273	50.42292	56.76453	64.00250	81.69874
22	23.19443	23.82230	24.47159	25.14308	25.83758	27.29898	30.53678	34.24797	38.50521	43.39229	55.45676	62.87334	71.40275	92.50258
23	24.31040	25.00096	25.71630	26.45737	27.22514	28.84496	32.45288	36.61789	41.43048	46.99583	60.89330	69.53194	79.54302	104.60289
24	25.43196	26.18847	26.97346	27.78808	28.63352	30.42186	34.42647	39.08260	44.50200	50.81558	66.76476	76.78981	88.49733	118.15524
25	26.55912	27.38488	28.24320	29.13544	30.06302	32.03030	36.45926	41.64591	47.72710	54.86451	73.10594	84.70090	98.34706	133.33387

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
26	27.69191	28.59027	29.52563	30.49963	31.51397	33.67091	38.55304	44.31174	51.11345	59.15638	79.95442	93.32398	109.18177	150.
27	28.83037	29.80470	30.82089	31.88087	32.98668	35.34432	40.70963	47.08421	54.66913	63.70577	87.35077	102.72313	121.09994	169.37401
28	29.97452	31.02823	32.12	33.27	34.	37.0	2.93092	9.96758	58.40258	退	5.33883	112.96822	34.20994	90.6
29	31.12439	32.26	33.45	34.69	35.9	38.79	5.2	52.96629	62.32271	73.63980	103.9	124.13536	093	214.58275
30	32.28002	33.5029	34.78	36.12	37.53	40.56808	47.5	56.0	66.4	79.0	113.283	136.30	164.49402	24
31	33.44142	34.7541	36.1327	37.58068	39.	42.37944	50.00268	9.32834	70.76079	4.80168	123.34587	149.57522	181.94342	271.29261
32	34.60862	36.01483	37.4940	39.05	40.68829	44.22703	2.50276	2.70147	75.29883	90.88978	134.21354	164.03699	201.13777	304.84772
33	35.78167	37.284	38.8690	40.53	42.29	46.11157	55.07	66.20953	80.06377	97.34316	145.950	179.80032	222.25154	342.42945
34	36.96058	38.564	40.25	42.045	43.93	48.0338	57.73	69.85	85.0669	104.18375	158.626	196.982	245.47670	384.
35	38.14538	39.85	41.66	43.5	45.59	49	0.4	73.65222	90.32031	111.43478	172.31680	215.71075	271.02437	431
36	39.33610	41.15272	43.0	45.11	47.275	51.99437	63.27594	, 59831	95.8	119.12087	187.10215	236.12472	99.12681	484.46312
37	40.53	42.46	44.5076	46.67	48.98	54.03425	6.17422	81.70225	101.62814	127.26812	203.07032	258.37595	330.03949	543.59869
38	41.73545	43.77982	45.95272	48.26294	50.71989	56.11494	69.15945	85.97034	107.70955	135.90421	220.31595	282.62978	364.04343	609.83053
39	42.94413	45.1081	47.41225	49.86623	52.48068	58.2	72.23	90.40915	114.09502	145.05846	238.94122	309.06646	401.44778	684
40	44.15	46.4	48.88	51.	54.26	60	75	95.02	120.79	154.76	259.05	337.882	442.59256	767
41	45.37	47.79	50.37	53.13	56.08	2.61002	8.66	99.826	127.8397	5.0476	280.781	369.2918	87.8518	860.
42	46.6065	49.1532	51.8789	54.79	57.92	64.86222	82.02320	104.81960	135.23175	175.95054	304.24352	403.52813	37.63699	964.35948
43	47.83957	50.5219	53.39778	56.48231	59.79199	67.15947	85.48389	110.01238	142.99334	187.50758	329.58301	440.84566	592.40069	1081.08262
44	49.0787	51.9008	54.93	58.18	61.68887	69.50266	89.04	115.41288	151.14301	199.75803	356.9496	481.52177	652.64076	1211.81253
45	50.32	53.	56.48	59.	63.	71	92	121.02	159.70	212.7	386.505	525.858	18.904	1358.
46	51.57578	54.6897	58.0458	61.664	65.56841	74.33056	96.50146	126.87057	168.68516	226.50812	418.42607	574.18602	791.79532	1522.2176
47	52.83366	56.09996	59.62634	63.43545	67.55194	76.81718	100.39650	132.94539	178.11942	241.09861	452.90015	626.86276	871.97485	1705.88375
48	54.09783	57.52071	61.22261	65.22839	69.56522	79.35352	104.40840	139.26321	188.02539	256.56453	490.13216	684.28041	960.17234	1911.58980
49	55.36832	58.95212	62.83483	67.04374	71.60870	81.94059	108.54065	145.83373	198.42666	272.95840	530.34274	746.86565	1057.18957	2141.98058
50	56.64516	60.3942	64.46318	68.88179	73.68283	84.57940	112.79687	152.66708	209.34800	290.33590	573.77016	815.08356	1163.90853	2400.0

Period	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00\%	6.00\%	8.00\%	9.00\%	10.00\%	12.00\%
1	0.99502	0.99256	0.99010	0.98765	0.98522	0.98039	0.97087	0.96154	0.95238	0.94340	0.92593	0.91743	0.90909	0.89
2	1.98510	1.97772	1.97040	1.96312	1.95588	1.94156	1.91347	1.88609	1.85941	1.83339	1.78326	1.75911	1.73554	1.69005
3	2.97025	2.95556	2.94099	2.92653	2.91220	2.88388	2.82861	2.77509	2.72325	2.67301	2.57710	2.53129	2.48685	2.40183
4	3.95050	3.92611	3.90197	3.87806	3.85438	3.80773	3.71710	3.62990	3.54595	3.46511	3.31213	3.23972	3.16987	3.03735
5	4.92587	4.88944	4.85343	4.81784	4.7826	4.7	4.5	4.45182	4.32948	4.21236	3.99	3.88965	3.79079	. 60478
6	5.89638	84560	79548	5.74601	5.69719	. 60143	5.41719	5.24214	5.07569	4.91732	2288	2	5526	4.11141
7	6.86207	6.79464	6.72819	6.66273	6.59821	6.47199	6.23028	6.00205	5.78637	5.58238	5.20637	5.03295	4.86842	4.56376
8	7.82296	7.73661	7.65168	7.56812	7.48593	7.32548	7.01969	6.73274	6.46321	6.20979	5.74664	5.53482	5.33493	4.96764
9	8.77906	8.6715	8.56602	8.46234	8.36052	8.1622	7.786	7.43533	7.10782	6.80169	6.24689	5.99525	5.75902	5.32825
10	9.7304	9.5995	9.47130	9.34553	9.22218	8.9825	8.53020	8.11090	7.72173	7.36009	6.71008	6.41766	6.14457	5.65022
11	10.67703	10.52067	10.36763	10.21780	10.07112	9.7868	9.25262	. 76048	8.30641	7.88687	7.13896	6.80519	6.49506	5.93770
12	11.61893	11.43491	11.25508	11.07931	10.90751	10.57534	9.95400	9.38507	8.86325	8.38384	7.53608	7.16073	6.81369	6.19437
13	12.55615	12.34235	12.13374	11.93018	11.73153	11.34837	10.63496	9.98565	9.39357	8.85268	7.90378	7.48690	7.10336	6.42355
14	13.48871	13.24302	13.00370	12.77055	12.54338	12.10625	11.29607	10.56312	9.89864	9.29498	8.24424	7.78615	7.36669	6.62817
15	14.41662	14.1369	13.86505	13.60055	13.3432	12.8492	11.9379	11.11839	10.37966	9.71225	8.55948	8.06069	7.60608	6.81086
16	15.33993	15.02431	14.71787	14.42029	14.13126	13.57771	12.56110	11.65230	10.83777	10.10590	8.85137	8.31256	7.82371	6.97399
17	16.25863	15.90502	15.56225	15.22992	14.90765	14.29187	13.16612	12.16567	11.27407	10.47726	9.12164	8.54363	8.02155	7.11963
18	17.17277	16.77918	16.39827	16.02955	15.67256	14.99203	13.75351	12.65930	11.68959	10.82760	9.37189	8.75563	8.20141	7.24967
19	18.08236	17.64683	17.22601	16.81931	16.42617	15.67846	14.32380	13.13394	12.08532	11.15812	9.60360	8.95011	8.36492	7.36578
20	18.98742	18.5080	18.04555	17.59932	17.1686	16.3514	14.87747	13.59033	12.46221	11.46992	9.81815	9.12855	8.51356	7.46944
21	19.88798	19.36280	18.85698	18.36969	17.90014	17.01121	15.41502	14.02916	12.82115	11.76408	10.01680	9.29224	8.64869	7.56200
22	20.78406	20.21121	19.66038	19.13056	18.62082	17.65805	15.93692	14.45112	13.16300	12.04158	10.20074	9.44243	8.77154	7.64465
23	21.67568	21.05331	20.45582	19.88204	19.33086	18.29220	16.44361	14.85684	13.48857	12.30338	10.37106	9.58021	8.88322	7.71843
24	22.56287	21.88915	21.24339	20.62423	20.03041	18.91393	16.93554	15.24696	13.79864	12.55036	10.52876	9.70661	8.98474	7.78432
25	23.44564	22.71876	22.02316	21.35727	20.71961	19.52346	17.41315	15.62208	14.09394	12.78336	10.67478	9.82258	9.07704	7.84314

Table 23-2 Present Value Annuity Factors (continued)

Perio	0.50\%	0.75\%	1.00\%	1.25\%	1.50\%	2.00\%	3.00\%	4.00\%	5.00	6.00\%	8.00\%	9.00\%	10.00\%	\%
26	24.32402	23.54219	22.79520	22.08125	21.39863	20.12104	17.87684	15.98277	14.37519	13.00317	10.80998	9.92897	9.16095	7.89566
27	25.19803	24.35949	23.55961	22.79630	22.06762	20.70690	18.32703	16.32959	14.64303	13.21053	10.93516	10.02658	9.23722	7.94255
28	26.06769	25.17071	24.31644	23.50252	22.72672	21.28127	18.7641	16.66306	14.89813	13.40616	11.05108	10.11613	9.30657	7.98442
29	26.93302	25.97589	25.06579	24.20002	23.37608	21.84438	19.18845	16.98371	15.14107	13.59072	11.15841	10.19828	9.36961	8.02181
30	27.79405	26.77508	25.80771	24.88891	24.01584	22.39646	19.6004	17.29203	15.37245	13.76483	11.25778	10.27365	9.42691	8.05518
31	28.65080	27.56832	26.54229	25.56929	24.6461	2.937	20.0004	17.58849	15.59281	13.929	11.34980	10.34280	9.47901	8.08499
32	29.50328	28.35565	27.26959	26.24127	25.2671	23.46833	20.3887	17.87355	15.80268	14.0840	11.43500	10.40624	9.52638	8.11159
33	30.35153	29.13712	27.98969	26.90496	25.87895	23.98856	20.76579	18.14765	16.00255	14.23023	11.51389	10.46444	9.56943	8.13535
34	31.19555	29.91278	28.70267	27.56046	26.48173	24.49859	21.13184	18.41120	16.19290	14.36814	11.58693	10.51784	9.60857	8.15656
35	32.03537	30.68266	29.40858	28.20786	27.07559	24.99862	21.48722	18.66461	16.37419	14.49825	11.65457	10.56682	9.64416	8.17550
36	32.87102	31.4468	30.1075	28.8472	27.6606	25.4888	21	18.9082	16	14	11.71719	6	651	8.19241
37	33.70250	32.20527	30.79951	29.47878	28.23713	25.9694	22.1672	19.14258	16.71129	14.73678	11.77518	10.65299	9.70592	8.20751
38	34.52985	32.95808	31.48466	30.10250	28.80505	26.4406	22.49246	19.36786	16.86789	14.84602	11.82887	10.69082	9.73265	8.22099
39	35.35309	33.70529	32.16303	30.71852	29.36458	26.90259	22.80822	19.58448	17.01704	14.94907	11.87858	10.72552	9.75696	8.23303
40	36.17223	34.4469	32.83469	31.32693	29.91585	27.35548	23.11477	19.79277	17.15909	15.04630	11.92461	10.75736	9.77905	8.24378
41	36.98729	35.18307	33.49969	31.9278	30.4589	27.79	23.41240	19.99305	17.29437	15.1380	11.96723	10.78657	9.79914	8.25337
42	37.79830	35.91371	34.15811	32.52132	30.99405	28.23479	23.70136	20.18563	17.4232	15.224	12.00670	10.81337	9.81740	8.26194
43	38.60527	36.63892	34.81001	33.10748	31.52123	28.66156	23.98190	20.37079	17.54591	15.30617	12.04324	10.83795	9.83400	8.26959
44	39.40823	37.35873	35.45545	33.68640	32.04062	29.07996	24.25427	20.54884	17.66277	15.38318	12.07707	10.86051	9.84909	8.27642
45	40.20720	38.07318	36.09451	34.25817	32.55234	29.49016	24.51871	20.72004	17.77407	15.45583	12.10840	10.88120	9.86281	8.28252
46	41.00219	38.78231	36.72724	34.82288	33.05649	29.89231	24.77545	20.88465	17.88007	15.52437	12.13741	10.90018	9.87528	8.28796
47	41.79322	39.48617	37.35370	35.38062	33.55319	30.28658	25.02471	21.04294	17.98102	15.58903	12.16427	10.91760	9.88662	8.29282
48	42.58032	40.18478	37.97396	35.93148	34.04255	30.67312	25.26671	21.19513	18.07716	15.65003	12.18914	10.93358	9.89693	8.29716
49	43.36350	40.87820	38.58808	36.47554	34.52468	31.05208	25.50166	21.34147	18.16872	15.70757	12.21216	10.94823	9.90630	8.30104
50	44.14279	41.56645	39.19612	37.01288	34.99969	31.42361	25.72976	21.48218	18.25593	15.76186	12.23348	10.96168	9.91481	8.30450

Business Statistics

Learning Objectives

By studying this chapter and completing all assignments you will be able to:

Learning Objective

Compute the mean.

Determine the median.

Learning Objective
 Determine the mode.

Learning Objective 4 Construct frequency tables.

Learning Objective5

Construct histograms.

Learning Objective 6 Construct bar graphs.

Construct line graphs.

Burger King has sold billions of hamburgers. Housing prices are higher in Boston than in Atlanta. The United States has a trade deficit, which means that the country has been importing more goods than it has been exporting. Families tend to spend more in retail stores during December than during any other single month of the year. These examples are based on collections of information about businesses. The information is called business statistics. The word statistics also refers to a field of study that includes the collection, organization, analysis, and presentation of data. Businesses use statistics for two primary purposes: (1) to summarize and report the performance of the business and (2) to analyze their options in making business decisions.

Individuals and groups who want information about the business performance of a company include the company's management, board of directors, investors, and government agencies like the IRS. Once statistics have been reported, individuals and groups use the statistics to make business decisions. For example, depending on the amount of profits, the board of directors decides how much dividend to pay the shareholders. Likewise, after hearing about current profits and projected profits, investors decide whether to purchase or sell shares of the company's stock. After studying sales figures for its products and those of competitors, management makes decisions about which markets to enter, what products to emphasize, and how to advertise.

If a Burger King analyst wants to report data on sales of hamburgers, she could list the number of hamburgers sold at every restaurant. But Burger King has so many restaurants that there would be too many numbers to be meaningful. To make the data meaningful, the analyst can make some summary calculations and/or organize the data in tables. To make her presentations of the data more meaningful and easier to interpret, she may draw charts, diagrams, and/or graphs.

Statistical Averages: Computing the Mean

Compute the mean.

The objective in reporting statistics is to summarize the data in a simple, yet meaningful manner. One way to simplify data is to compute an average. An average is a single number that is supposed to be "typical" or "representative" of the group. The most common way to find an average is to add all the data values and divide by the number of values. In statistics, this particular average is called the mean. When the mean isn't typical or representative of an entire group of data, another average might be more representative. We also discuss two other averages: the median and the mode.

The mean of a group of values is computed by dividing the sum of the group of values by the number of values in the group.

EXAMPLE A

Find the mean salary of five employees whose actual salaries are $\$ 51,500, \$ 54,400$, $\$ 57,600, \$ 62,000$, and $\$ 64,500$.

Sum $=\$ 51,500+\$ 54,400+\$ 57,600+\$ 62,000+\$ 64,500=\$ 290,000$
Mean $=\$ 290,000 \div 5=\$ 58,000$

CONCEPT CHECK 24.1

Find the mean for the following set of numbers: $14,11,12,15,10,16,15,12,13,11,15$, $17,13,14,15,12,18$

There are 17 numbers. The mean equals their sum divided by 17 .
Sum $=233$
Mean $=233 \div 17=13.706$, or 13.7 rounded to one decimal place

Determining the Median

The median of a group of numbers is determined by arranging the numbers in numerical order and finding the middle number. The median is useful when one value in the group is much larger or much smaller than the rest of the numbers.

Determine the median.

EXAMPLE B

Find the median salary of five employees whose salaries are $\$ 51,500, \$ 54,400, \$ 57,600$, $\$ 62,000$, and $\$ 254,500$.

The salaries are already in numerical order; the median is $\$ 57,600$ because it is the middle number of the five numbers arranged in order.

In example B, the mean is $\$ 480,000 \div 5=\$ 96,000$, but $\$ 96,000$ is not representative of the salaries of the five employees. The mean is large because one employee (perhaps the owner) has a very large salary compared to the rest of the group. The median salary, $\$ 57,600$, is more typical of the group.

If the number of values is even, the median will be halfway between the two middle values. (It is the mean of the middle two values.)

EXAMPLEC

Find the median salary of six employees whose salaries are $\$ 57,600, \$ 64,500, \$ 51,500$, $\$ 254,500, \$ 62,000$, and $\$ 54,400$.

Rearranged in numerical order, the salaries are $\$ 51,500, \$ 54,400, \$ 57,600, \$ 62,000$, \$64,500, and \$254,500.

The median is halfway between the middle two numbers, $\$ 57,600$ and $\$ 62,000$. It is $(\$ 57,600+\$ 62,000) \div 2$, or $\$ 119,600 \div 2=\$ 59,800$.

CONCEPT CHECK 24.2

Find the median for the following set of numbers: $14,11,12,15,10,16,15,12,13,11,15$, $17,13,14,15,12,18$

The median is the middle number, after all the numbers have been arranged by order of size:
$10,11,11,12,12,12,13,13,14,14,15,15,15,15,16,17,18$
The median is the ninth number, or 14 .

Determining the Mode

Learning Objective

The mode of a group of numbers is the number that occurs most often. None of examples A, B, and C has a mode because each number occurs only once. The mode is useful when the word average implies "most typical" or "happening most often." Retail businesses keep track of the items that sell most frequently so that they can avoid shortages of those items.

EXAMPLE D

Find the mode shoe size of 12 pairs of ASICS running shoes, sizes $6,6,7 \frac{1}{2}, 7 \frac{1}{2}, 8,8 \frac{1}{2}, 9,9$, $9,9,9$, and $9 \frac{1}{2}$.

The mode is size 9 , because 9 occurs most frequently.

Note that in example D neither the mean nor the median makes any sense. The mean is $98 \div 12=8.17$, or $8 \frac{1}{6}$. The median is halfway between sizes $8 \frac{1}{2}$ and 9 , which would be 8.75 , or $8 \frac{3}{4}$. The store owner could not buy any shoes in either size $8 \frac{1}{6}$ or size $8 \frac{3}{4}$ because those sizes don't exist. However, the store owner does want to stock enough shoes in size 9 .

CONCEPT CHECK 24.3

Find the mode for the following set of numbers: $14,11,12,15,10,16,15,12,13,11,15$, $17,13,14,15,12,18$

The mode is the number that occurs most often. It is easier to find if you arrange the numbers by size first:
$10,11,11,12,12,12,13,13,14,14,15,15,15,15,16,17,18$
There are four 15 s , so the mode is 15 .

Constructing Frequency Tables

Learning Objective 4

Construct frequency tables.

The data in examples A-D are sometimes called ungrouped data because the numbers are listed individually. Business applications, such as sales results for all Burger King restaurants, often involve hundreds or thousands of numbers. Interpreting data that are literally pages of raw numbers is impossible. To make sense of such data, we organize the individual values into groups called classes of data or data classes. Adjacent classes "touch each other," but cannot overlap, not even by one cent. Also, classes are normally the same width. In example E, the width of each class is $\$ 5,000$. The number of values in each class, called the frequency of the class, is summarized in a table called a frequency table.

STEPS to Develop a Frequency Table

1. Determine the classes of data, and list the classes in one column.
2. Tally the data by making one mark for each data item in the column next to the appropriate class.
3. Count the tally marks for each class and write the number in the column next to the tally marks.

EXAMPLE E

Listed are the salaries of 25 full-time employees of a large advertising agency. Make a frequency table with five classes: $\$ 40,000$ up to but not including $\$ 45,000, \$ 45,000$ up to but not including $\$ 50,000$, and so on.

$\$ 42,500$	$\$ 41,300$	$\$ 53,500$	$\$ 62,400$	$\$ 47,500$
45,400	54,600	41,000	44,400	59,100
48,000	52,000	57,500	62,500	44,000
53,600	46,200	53,500	51,800	56,400
55,500	46,000	45,200	46,000	60,800

The frequency table for these salaries appears in Figure 24-1.

Figure 24-1 \quad Frequency Table

Class	Tally	Frequency (F)
$\$ 40,000$ up to $\$ 45,000$	WH	5
$\$ 45,000$ up to $\$ 50,000$	HH II	7
$\$ 50,000$ up to $\$ 55,000$	WH I	6
$\$ 55,000$ up to $\$ 60,000$	IIII	4
$\$ 60,000$ up to $\$ 65,000$	III	$\frac{3}{25}$
Total		

COMPUTING THE MEAN OF LARGE DATA SETS

When a data set contains many numbers, as in example E, a computer spreadsheet can be used to compute the mean. If you use a calculator, be sure to check your work. One way to do so is to add all the numbers twice; one way to add them twice, but in different order, is the following.

S T E P S to Compute the Mean for a Large Data Set

1. Add all the numbers in each column.
2. Add all the numbers in each row.
3. Compute the grand total by adding all the column totals.
4. Check the grand total by adding all the row totals.
5. Divide the grand total by the number of values to get the mean.

EXAMPLE F

Compute the mean of the 25 salaries in example E.

| $\$ 42,500$ | $\$ 41,300$ | $\$ 53,500$ | $\$ 62,400$ | $\$ 47,500$ | $\$ 247,200$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 45,400 | 54,600 | 41,000 | 44,400 | 59,100 | 244,500 |
| 48,000 | 52,000 | 57,500 | 62,500 | 44,000 | 264,000 |
| 53,600 | 46,200 | 53,500 | 51,800 | 56,400 | 261,500 |
| 55,500 | 46,000 | 45,200 | 46,000 | 60,800 | 253,500 |
| $\$ 245,000$ | $\$ 240,100$ | $\$ 250,700$ | $\$ 267,100$ | $\$ 267,800$ | $\$ 1,270,700$ |

The sum of the row totals and the sum of the column totals are both $\$ 1,270,700$.
Mean $=\$ 1,270,700 \div 25=\$ 50,828$

CONCEPT CHECK 24.4

Make a frequency table for the following set of data. Use the classes 1,500 up to 2,000, 2,000 up to 2,500 , and so on.

2,550	3,275	3,410	2,650	3,140	Class	Tally	Frequency
3,480	3,400	2,860	3,810	3,480	1,500 up to 2,000	II	2
1,660	3,280	2,940	2,480	3,325	2,000 up to 2,500	HW	5
1,975	4,270	3,520	2,440	2,325	2,500 up to 3,000	HI II	7
4,110	3,300	2,290	4,140	3,990	3,000 up to 3,500	HI IIII	9
2,570	2,150	2,840	4,325	2,720	3,500 up to 4,000	III	3
			4,000 up to 4,500	IIII	$\frac{4}{30}$		
COMPLETE ASSIGNMENT 24.1.		Total		3			

Charts and Graphs: Constructing Histograms

Learning Objective

Construct histograms.

In business, statistical information is first summarized clearly in tables. For presentation, the results are then often displayed in charts or graphs. Popular graphs include the histogram, the bar graph, and the pie chart (circle graph). Histograms, bar graphs, and line graphs all have a rectangular shape. Labels are placed at the left (the vertical axis) and bottom (the horizontal axis).

A histogram is a diagram that presents the grouped data from a frequency table. The classes are positioned adjacent to each other along the horizontal axis, and the frequencies are written along the vertical axis. Figure 24-2 shows the histogram for the frequency table in Figure 24-1. The numbers on the horizontal axis increase from left to right. The numbers on the vertical axis increase from bottom to top.

CONCEPT CHECK 24.5

Construct a histogram from the following frequency table.

Constructing Bar Graphs

A bar graph, or bar chart, resembles the histogram except that there may not be a numeric
scale on the horizontal axis and the bars normally do not touch each other. Sosa's Markets has grocery stores in four different towns: Warren, Hubbard, Bay City, and Easton, although the Warren store just opened last year in July. The table in Figure 24-3 shows the

Learning Objective

 annual sales revenue, cost of goods sold, operation expenses, and net profits for the current year and the net profits for last year. The bar graph in Figure 24-4 illustrates the data from the current year. Data from the table in Figure 24-3 are used throughout the remainder of this chapter.Note: It does not make sense to have the vertical bars "touch each other" as in a histogram. The four stores are distinct objects. If the horizontal axis were "time," like consecutive months of the year, then you could make a bar graph. But it would also make

Construct bar graphs.

SOSA'S MARKETS SALES DATA FOR THE CURRENT YEAR (IN MILLIONS OF DOLLARS)

Location	Sales Revenue	Cost of Good Sold	Operating Expenses	Net Profit (This Year)	Net Profit (Last Year)
Warren	1.50	0.75	0.50	0.25	0.15
Hubbard	3.25	1.75	1.00	0.50	0.75
Bay City	2.00	1.00	0.75	0.25	0.50
Easton	4.00	2.00	1.25	0.75	0.50

sense to use a histogram because January could touch February at midnight on January 31. However, as you will see, we can make some useful variations of bar graphs that we really cannot do with histograms.

Figure 24-4 \quad Bar Graph

COMPARATIVE BAR GRAPH

Two bar graphs can be combined on one grid to make a comparative bar graph. This permits the statistician to make a graph that will compare two different sets of comparable data. The graph for Sosa's Markets in Figure 24-5 compares each store's net profit this year with its net profit last year. Each store has one pair of bars and the bars need to be colored or shaded differently to help the reader distinguish the two years.

COMPONENT BAR GRAPH

A bar graph constructed to show how certain data are composed of various parts is a component bar graph. Figure 24-6 shows how the current sales revenue is composed of cost of goods sold, operating expenses, and net profit. As in the comparative bar graph, the component parts are colored or shaded differently to permit easier reading.

CONCEPT CHECK 24.6

A real estate firm has three offices, all of which sell some homes. The Shopping Mall Office sells homes almost exclusively; last year it sold 150 homes. The Downtown Office handles mostly commercial property, but it sold 60 homes last year. The Mountain Office primarily manages various resort properties, but it did sell 30 homes. Following are the numbers of homes sold in each quarter of last year. The first quarter is January through March; the second quarter is April through June; the third quarter is July through September; and the fourth quarter is October through December.

b. Construct a comparative bar graph showing quarterly home sales for last year and the prior year.

c. Construct a component bar graph showing quarterly home sales for each office last year.

Home Sales by Office—Last Year

Constructing Line Graphs

Learning Objective

Construct line graphs.

Businesses very often want to view data over time, perhaps monthly or annually. As we mentioned earlier, both a histogram and a bar graph can be used when time is on the horizontal axis. However, another useful graph for illustrating data over time is the line graph. Plot the midpoint of each vertical bar and then connect consecutive points with straight line segments. Notice that it would not make sense to put time on the vertical axis.

Following are five months of expenses for materials for the residential and commercial divisions of New Age Metals, a custom metal fabricating business.

	Jan.	Feb.	Mar.	Apr.	May
Residential	12,000	15,000	13,000	18,000	16,000
Commercial	23,000	20,000	25,000	23,000	27,000

Figure $24-7$ shows a comparative bar graph and Figure $24-8$ shows a line graph with one line for the Residential Division and the other for the Commercial Division.

As we mentioned earlier, there is not a convenient, unconfusing method to make one histogram show all of the information. If you simply take the comparative bar graph, but draw the vertical bars all adjacent, the result is NOT a histogram. Histograms are simply not normally used for this kind of data. Histograms for the two divisions are shown in Figures 24-9 and 24-10, but their purpose is for you to see that the line graph and the comparative bar graph are better suited to illustrate the data.

Figure 24-8 \quad Line Graph

Figure 24-10 Histogram-Commercial Division

Dollars (thousands)

New Age Metals - Materials Expense

CONCEPT CHECK 24.7

The real estate firm's quarterly home sales for last year and the prior year are as follows.

Constructing Pie Charts

A pie chart, sometimes called a circle graph, resembles a component bar graph because it shows how one quantity is composed of different parts. In a pie chart, however, the parts normally are written as percents. Figure 24-12 shows a version of the data from Bay City Market in Figure 24-11. The pie chart shown in Figure 24-12 indicates how sales revenue for March is composed of cost of goods sold, operating expenses, and net profit.

Before the graph is drawn, the data are changed into percents, as shown in Figure 24-11. The size of each part of the circle can be reasonably estimated by using the fractional equivalents of the percents. In Figure 24-12, cost of goods sold is 50%, or $\frac{1}{2}$, of the circle. Operating expenses make up 37.5%, or $\frac{3}{8}$, of the circle. The remaining $\frac{1}{8}$ represents net profit.

Figure 24-11 \quad Sales Revenue for Bay City Market

	Amount	Percent
Cost of Goods Sold	$\$ 1,000,000$	50.0%
Operating Expenses	750,000	37.5%
Net Profit Last Year	$\underline{250,000}$	$\underline{12.5 \%}$
Sales Revenue	$\$ 2,000,000$	100.0%

$$
\begin{aligned}
& \$ 1,000,000 \div \$ 2,000,000=50.0 \% \\
& \$ 750,000 \div \$ 2,000,000=37.5 \% \\
& \$ 250,000 \div \$ 2,000,000=12.5 \%
\end{aligned}
$$

Figure 24-12 \quad Pie Chart

Bay City Market Sales Revenue

Learning Objective

Construct pie charts.

CONCEPT CHECK 24.8

The total home sales by three real estate offices for the past year are shown. Calculate the percent of total sales for each office, and make a pie chart showing each office's share of the sales.

Chapter Terms for Review

average
bar graph
business statistics
classes of data
comparative bar graph
component bar graph
frequency
frequency table
histogram
line graph
mean
median
mode
pie chart
statistics
ungrouped data

THE BOTTOM LINE

Summary of chapter learning objectives:

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

24.6

Construct bar graphs

Example

6. The monthly car sales for one car salesperson for April, May, June and July of this year are arranged as follows by type of vehicle. The total sales for these same 4 months of last year are also given.

Vehicle Type	April	May	June	July
Two-door coupe	9	6	9	8
Four-door sedan	12	8	6	9
Sport utility vehicle	$\frac{3}{24}$	$\underline{12}$	$\underline{5}$	$\underline{20}$
\quad Totals this year	15	20	16	22

Construct a bar graph showing the four monthly totals for this year. Make a vertical scale from 0 to 30 , and mark the horizontal scale April, May, June, and July
7. Construct a comparative bar graph showing the four monthly totals for this year and last year.
8. Construct a component bar graph showing car sales by model for April through July of this year.

THE BOTTOM LINE

Summary of chapter learning objectives:

Learning Objective

24.7

Construct line graphs

Example

9. The monthly car sales for April, May, June, and July of this year and last year for one salesperson are as follows.

Period	April	May	June	July
This year	24	26	20	27
Last year	15	20	16	22

On one grid, construct line graphs showing sales for these 4 months during this year and last year.

24.8

Construct pie charts
10. In April of this year, one car salesperson sold the following numbers of cars, arranged by type of vehicle.

Vehicle Type	Sales	Percent
Two-door coupe	9	
Four-door sedan	12	
Sport utility vehicle	$\underline{3}$	
Totals		24

Calculate the percent for each model, and make a pie chart showing each model.

Review Problems for Chapter 24

11 For the data $65,53,77,88,58,82,66,52,57,62,47,68,57,78,59,45$, and 57 , find (a) the mean, (b) the median, and (c) the mode.

2 Use the data given to complete the following frequency distribution:
86, 67, 85, 57, 72
61, 77, 53, 85, 67
69, 83, 79, 68, 71
$59,62,88,64,81$

Class	Tally	
50 up to 60	-	Frequency
60 up to 70	-	b. -
70 up to 80	-	c. -
80 up to 90	-	d.

(3) Use the frequency distributions from problem 2(a)-(d) to create the appropriate histogram. (Each vertical bar should represent one part of the problem.

4 Kevin and Al Bianchini own two markets, Bianchini's and Foodville. In a typical week, each store sells approximately $2,4001 \mathrm{~b}$ of meat, fish, and poultry. Typical amounts are as follows:

Location	Meat	Fish	Poultry
Bianchini's	900	900	600
Foodville	1200	300	900

a. Draw a comparative bar graph showing the sales of the two markets (two vertical bars for each type of product).
b. Draw a component bar graph showing the sales of the two markets. Make one vertical bar for each store, and each bar should show the amount of each product sold in that store.
c. Draw a pie chart for the sales for Bianchini's market only.

Assignment 24.1: Statistical Averages

Name
Date Score

A (52 points) Solve the following problems. (points for correct answers as marked)

1. A department store has three local locations: Mason Plaza, Corbin Center, and Balbo Mall. The store gives every applicant for any type of managerial job a test of basic business skills. Listed here are the scores from the tests given to applicants at the three locations last week.

Mason Plaza	Corbin Center	Balbo Mall	b. Combine all the scores into one frequency distribution with the classes as shown. (1 point		
59	46	65	for each co	answer)	
88	60	44	Class	Tally	Frequency
62	89	53	40 up to 50		
47	55	66	$50 \text { up to } 60$		
68	46	58	60 up to 70		
88	74	43	70 up to 80		
78	64	77	80 up to 90		
59	89	82			
45	46	66			
59		62			
$\underline{87}$					

a. Find the mean, median, and mode for each location. (3 points for each correct answer)

	Mason	Corbin	Balbo
Mean	-	-	-
Median	-	-	-
Mode	-		

2. Cirano Aguilar operates a popular coffee cart from which he also sells sandwiches. He has the opportunity to open another cart in the inner patio of a complex of office buildings, but he won't be allowed to sell sandwiches. Perform a statistical analysis on Cirano's sales receipts for nonsandwich items for the first 15 work days of April and October. (3 points for each correct answer)

April	October				
$\$ 430$	$\$ 470$	$\$ 450$	$\$ 200$	$\$ 320$	$\$ 430$
240	350	240	340	240	295
280	260	340	280	230	360
305	360	370	320	370	420
310	190	250	220	250	180

a. Find the mean for April.
b. Find the mean for October. \qquad
c. Find the median for April.
d. Find the median for October. \qquad
e. Find the combined mean for all 30 days. (Hint: Add the two sums and divide by 30.)

B (48 points) Solve the following problems. (points for correct answers as marked)
3. La Morra Bank \& Trust Co. has several retail branches. Bank management wants to compare the ages of personal banking customers at two specific branches-the Financial District Branch, downtown, and the University Branch, located in a residential area between the local university and a retirement community. The bank's analyst randomly selects 30 personal banking customers from each bank and writes down their ages. The following two tables show the results.

Financial District Branch					University Branch				
43	30	43	51	60	74	82	46	19	20
68	32	72	52	27	21	36	73	57	18
28	73	43	19	64	54	17	18	75	84
70	35	56	55	31	76	22	24	19	68
63	24	47	44	34	27	21	75	34	18
52	61	66	57	58	81	64	22	60	70

a. Compute the mean age of the group of customers from the Financial District Branch. (8 points) \qquad
b. Compute the mean age of the group of customers from the University Branch. (8 points) \qquad
c. Make two frequency tables of customer ages, one for the Financial District Branch and one for the University Branch. For each table, use frequency classes 10 up to 20,20 up to $30, \ldots, 80$ up to 90 . (2 points for each correct row in each table)

Financial District Branch
Class Tally Frequency

University Branch
Class Tally Frequency

Assignment 24.2: Graphs and Charts

Name

Date Score

\section*{| Learning Objectives | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

A (18 points) Complete the following problem as directed. (9 points for each correct graph)

1. After doing the initial research in problem 3 of Assignment 24.1, the analyst from La Morra Bank randomly selected 100 customers from the Financial District Branch and 100 customers from the University Branch. She found the age of each customer and summarized the data in the following two frequency tables.

Financial District Branch	
Class	Frequency

a. Draw a histogram for the Financial District

Branch. Label each axis, and write a title under the graph.

University Branch

Class	Frequency
10 up to 20	19
20 up to 30	21
30 up to 40	11
40 up to 50	8
50 up to 60	6
60 up to 70	8
70 up to 80	15
80 up to 90	$\underline{12}$
Total	100

b. Draw a histogram for the University Branch.

Label each axis, and write a title under the graph.

Assignment 24.2 Continued

B (54 points) Complete the following problems as directed. (18 points for each correct graph)

2. Carla Cortez owns two printing/copying businesses: Cortez Printing and Carla's Copies. Cortez Printing is near City Hall and does most of its work for corporations. Carla's Copies is in a residential district and does primarily printing and copies for individuals and small businesses. The following table shows sales revenues for the two shops for the last 4 months of the year.

Shop	September	October	November	December
Cortez Printing	$\$ 300,000$	$\$ 225,000$	$\$ 275,000$	$\$ 200,000$
Carla's Copies	125,000	150,000	100,000	175,000

a. Make a comparative bar graph showing the monthly sales revenue for each shop. Label each axis, and write a title under the graph. Shade the bars for each shop differently.

b. On the same grid, make line graphs showing the monthly sales revenue for each shop. Label each axis, and write a title under the graph. Use a solid line for Cortez Printing and a dashed line for Carla's Copies.

3. New England Insurance Agency records the totals of residential (as opposed to commercial) insurance policy premiums billed each month. The results for the first 4 months of the year are shown classified by automobile insurance, homeowner's insurance, and life insurance. Construct a component bar graph showing the premiums for each insurance type each month. Label each axis, and write a title under the graph. Shade the three types of insurance differently.

Insurance Type	January	February	March	April
Auto	$\$ 200,000$	$\$ 200,000$	$\$ 160,000$	$\$ 240,000$
Home	360,000	320,000	440,000	360,000
Life	160,000	$\underline{120,000}$	$\underline{200,000}$	$\underline{160,000}$
Total	$\$ 720,000$	$\$ 640,000$	$\$ 800,000$	$\$ 760,000$

C (28 points) Complete the following problem. (points for correct answers as marked)

4. Mobile Media Warehouse is a large discount store selling audio and video products. For its internal analysis, the store classifies all music sales as Rock, Folk, Classical, or Jazz. Every music sale is included in one of these four categories. In November, the store recorded the sales shown.
a. Compute the percent of the total and the fraction of the total represented by each category of music. (2 points for each correct percent, 1 point for each correct fraction)

Music Type	Sales	Percent	Fraction
Rock	$\$ 276,000$	-	-
Folk	138,000	-	-
Classical	69,000	-	-
Jazz	69,000	-	-
Total		100.0%	$\frac{8}{8}$, or 1

Assignment 24.2 Continued

b. Complete the pie chart to approximate the percent of total November sales for each category of music. Label each section with the category and percent and write a title under the graph. (8 points)

c. The percents of music sales at Mobile Media Warehouse for October are shown. Complete the pie chart to approximate the percent of total October sales for each category of music. Label each section with the category and percent, and write a title under the graph. (Hint: 37.5% is $\frac{3}{8} ; 12.5 \%$ is $\frac{1}{8} ; 30 \%$ is somewhere between 25% and $37.5 \% ; 20 \%$ is between 12.5% and 25%.) (8 points)

Music Type	Percent
Rock	37.5%
Folk	30.0%
Classical	12.5%
Jazz	$\underline{20.0 \%}$
	100.0%

Answers to Odd-Numbered Problems

Chapter 1

Assignment 1.1

1. 300
2. 377
3. 491
4. 639
5. 337
6. 1,215
7. 2,437
8. 1,626
9. 1,589
10. 2,362
11. $1,897.20$
12. $1,286.33$
13. 829.90
14. $1,904.78$
15. $7,269.37$
16. 175.93
17. 132.44
18. 265.86
19. 296.36
20. 224.25

Assignment 1.2

1. 61
2. 47
3. 36
4. 76
5. 60
6. 7
7. 59
8. 29
9. 14
10. 584
11. 103
12. 616
13. $\$ 73.98$
14. $\$ 60.82$
15. $\$ 38.61$
16. $\$ 4,642.81$
17. $\$ 8,216.01$
18. $\$ 3,151.61$
19. $\$ 6,983.78$
20. $\$ 48.80$
21. $\$ 1,790,906.69$

Assignment 1.3

1. 24
2. 520
3. 90
4. 240
5. 72
6. 144
7. 48
8. 80
9. 36
10. 88
11. 28
12. 136
13. 72,576
14. 317,327,062
15. 1,080,000
16. $4,184,998$
17. 548,784
18. $2,266,875$
19. 184,200
20. 166,050
21. 37,500
22. 52,640
23. 9,800
24. 1,000
25. 585,514
26. 144.00
27. 366.08
28. $1,787.50$
29. 2,352
30. 3,234
31. 26,400

Assignment 1.4

1. 12
2. 3
3. 42
4. 4
5. 18
6. 30
7. 13
8. 99
9. 52
10. 17
11. 5 (153)
12. 976
13. 390
14. 90 (5)
15. 7 (600)
16. 22 (16)
17. 612
18. 178 (28)
19. 184 (137)
20. 1,000 (7)
21. 20 (118)
22. 517 (597)
23. 1,111 (49)
24. $\$ 2.20$
25. 1 (49)
26. 1,112 (36)
27. 260 (49)
28. $2,000,148(24)$
29. 45
30. 105 (9)

Assignment 1.5

1. 400,000
2. $2,400,000$
3. $5,400,000$
4. 30,000
5. $2,000,000$
6. 640,000
7. $7,000,000$
8. 1,000,000
9. 4,000
10. 4000
11. 270,000; 259,602
12. 10,000,000; 9,822,780
13. 160,000; 157,807
14. 60; 51
15. 200; 208

Chapter 2

Assignment 2.1

1. $2 \frac{1}{6}$
2. 3
3. $1 \frac{4}{7}$
4. $\frac{37}{10}$
5. $\frac{21}{8}$
6. $\frac{33}{5}$
7. $\frac{2}{5}$
8. $\frac{5}{6}$
9. $\frac{2}{3}$
10. $\frac{7}{10}$
11. $\frac{13}{18}$
12. $\frac{15}{24}$
13. $\frac{88}{48}$
14. $\frac{36}{45}$
15. $\frac{6}{10}=\frac{3}{5}$
16. $3 \frac{17}{12}=4 \frac{5}{12}$
17. $7 \frac{12}{6}=9$
18. $6 \frac{58}{45}=7 \frac{13}{45}$
19. $1 \frac{6}{12}=1 \frac{1}{2}$
20. $1 \frac{8}{12}=1 \frac{2}{3}$
21. $1 \frac{17}{20}$
22. $2 \frac{17}{30}$
23. $7 \frac{17}{36}$ gallons
24. $\frac{7}{8}$ in.

Assignment 2.2

1. $\frac{4}{9}$
2. $\frac{5}{8}$
3. 7
4. $6 \frac{3}{4}$
5. $1 \frac{1}{6}$
6. $\frac{6}{7}$
7. $1 \frac{3}{7}$
8. $4 \frac{1}{6}$
9. $13 \frac{1}{3} \mathrm{cu} \mathrm{yd}$
10. $1 \frac{1}{2} \mathrm{qt}$
11. $14 \frac{2}{3}$ times

Chapter 3

Assignment 3.1

1. 0.0613
2. 0.64
3. 860.00098
4. twenty-six and eighty-five thousandths
5. four hundred ninety-two and three tenths
6. forty-two and four hundred eighty-one ten-thousandths
7. one thousand seven and four tenths
8. 48.8 mi
9. 374.3 lb
10. 6.4 oz
11. $\$ 0.10$
12. $\$ 8.10$
13. $\$ 51.38$
14. 0.005 gal
15. 5.041 ft
16. 0.200 lb
17. $\$ 0.16$
18. $\$ 2.10$
19. $\$ 0.66$
20. 22.2363
21. 104.4996
22. 29.281
23. 249.202
24. 0.364
25. 17.415
26. 7.63
27. 0.4095
28. 0.176
29. 1.677

Assignment 3.2

1. $\$ 1,072.00$
2. $\$ 338.52$
3. 79.3354
4. 79,9969128
5. $\$ 1.85$
6. $\$ 45.25$
7. 6.12
8. 62.5
9. 470
10. 0.632
11. $\$ 21,723.00$
12. $\$ 280.00$
13. \$0.43
14. c. 0.04
15. c. 28
16. b. 0.048
17. c. 270
18. d. 120,000
19. a. 0.004
20. a. 0.14
21. a. 70

Assignment 3.3

1. 6.75 ft
2. $\quad 16.85 \mathrm{mi}$
3. $\$ 302.13$
4. $\$ 285$
5. $\$ 125$
6. $\$ 0.08$
7. 7.8 gal

Chapter 4

Assignment 4.1

1. 28
2. 2
3. 1
4. 60
5. 23
6. 15
7. 9
8. 114
9. 253
10. 1,000
11. $\$ 16.40$
12. 2
13. 11
14. $\$ 400$
15. $\$ 310$
16. $\$ 28$
17. $\$ 62.50$
18. $\$ 114$
19. 22
20. 385
21. 11
22. 7
23. 3
24. $\quad 16$
25. 21
26. 50
27. 5
28. 15
29. a. 30,25
b. 36,31
c. 66,60
30. a. 25,5
b. 9,3
c. 100,20

Assignment 4.2

1. $\$ 0.72$
2. $\$ 6.12$
3. 103 lb
4. $\$ 1.50$
5. 900 mi
6. $\$ 9.95$
7. $\$ 79.92$
8. $\$ 14.85$
9. $\$ 23.70$
10. $\$ 760$
11. $\$ 801$
12. $\$ 799.60$
13. \$240
14. $\$ 55.79$
15. $\$ 89.40$
16. $6+4+2=17-5$
17. $9-3-1=2+3$
18. $20+1+2=16+7$
19. $12+3-3=7+5$
20. $64-32-8=8+16$

Chapter 5

Assignment 5.1

1. 0.31
2. 0.0333
3. 300%
4. 15%
5. 175%
6. 2.245
7. 52%
8. 8.25%
9. 400%
10. 0.001
11. 0.21
12. 11.17
13. 0.34
14. $\$ 0.29$
15. $\$ 1.65$
16. 16
17. 75
18. 0.96
19. 20%
20. 200%
21. $\$ 1.20$
22. 150%
23. $\$ 48$
24. $\$ 8,000$
25. 56
26. 480
27. 40%
28. $\$ 21.00$
29. 160%
30. 25

Assignment 5.2

1. 210
2. 30
3. $\$ 8,320$
4. 544
5. $\$ 170$
6. 16%
7. 25%
8. 20%
9. (25); (4.6\%)
10. $+230 ;+12.7 \%$
11. (1,318); (8.9\%)
12. (189); (17.4\%)
13. $+310 ;+17.2 \%$
14. (\$63.53); (9.4\%)
15. $+55.60 ;+14.9 \%$
16. $+22.74 ;+15 \%$
17. $+193.39 ;+4.0 \%$
18. (216.61); (4.7\%)

Assignment 5.3

1. 220
2. 6,500
3. 25%
4. 280,000
5. $\$ 720$
6. $\$ 3,250$
7. $\$ 52,942$
8. 10%
9. $\$ 62,500$
10. 100%

Assignment 5.4

1. a. 2,$400 ; 32 \% ; \$ 5,120$
b. 1,$800 ; 24 \% ; 3,840$
c. 2,$100 ; 28 \% ; 4,480$
d. 1,$200 ; 16 \% ; 2,500$
2. $\$ 6,400 ; \$ 3,200 ; \$ 4,800$; \$5,600
3. $\$ 8,840 ; \$ 6,760 ; \$ 4,940$; \$5,460

Chapter 6

Assignment 6.1

1. $\$ 3,600 ; \$ 3,600$
2. 2,$100 ; 3,600$
3. 3,$840 ; 5,640$
4. $\$ 3,040$
5. 3,720
6. $\$ 4,900$
7. $\$ 1,152 ; \$ 36,995.75$
8. $\$ 504 ; \$ 7,612.00$
9. $\$ 196 ; \$ 5,207.00$
10. $\$ 539 ; \$ 5,634.00$
11. $\$ 388 ; \$ 5,456.00$

Assignment 6.2

1. $\$ 5,340$
2. $\$ 3,450$
3. $\$ 3,680$
4. $\$ 1,298.15$
5. $\$ 952$
6. $\$ 10,800$

Chapter 7

Assignment 7.1

1. $\$ 441 ; \$ 819$
2. $\$ 2,120 ; \$ 6,360$
3. $60 \% ; \$ 2,250$
4. $\$ 720 ; \$ 420 ;$-; $\$ 1,260$
5. $70 \% ; 85 \%$; ; $\$ 1,071$
6. $70 \% ; 80 \% ; 95 \% ; 46.8 \%$
7. $\$ 466$

Assignment 7.2

1. June 1; June 21; $\$ 18.68$; \$603.88
2. Sept. 4; Oct. 4; \$6.75; \$443.25
3. Apr. 8; 98\%; $\$ 570.85$
4. $\$ 412.37 ; \$ 251.90$

Chapter 8

Assignment 8.1

1. $\$ 655.95$
2. $\$ 455.48$
3. $\$ 280.99$
4. $\$ 340 ; \$ 1,190$
5. $\$ 1,050 ; \$ 2,550$
6. $\$ 480 ; \$ 1,120$
7. $\$ 2,250 ; \$ 3,750$
8. 160%; $\$ 775$
9. 200%; $\$ 55$
10. 135%; $\$ 440$
11. 250%; $\$ 420$
12. $\$ 1,575 ; \$ 3,675$
13. $\$ 1,116 ; 55 \%$

Assignment 8.2

1. $\$ 149.49$
2. $\$ 1,819$
3. $\$ 37.49$
4. $\$ 66 ; \$ 54$
5. $\$ 144 ; \$ 216$
6. $\$ 999 ; \$ 999$
7. $\$ 494.40 ; \$ 329.60$
8. $60 \% ; \$ 1,425$
9. 55\%; $\$ 260$
10. $70 \% ; \$ 3,600$
11. 65%; $\$ 820$
12. $\$ 174 ; \$ 174$
13. $\$ 72.96 ; 60 \%$

Chapter 9

Assignment 9.1

1. $585.00 ; 4,782.50 ; 3,262.50 ;$

2,272.50; 2,207.50;
1,917.50; 5,762.75;
5,636.33; 4,671.33; 4,021.33
3. $1,190.85 ; 1,190.85$;

1,190.85; 878.05
5. 877.76; $3,037.76 ; 3,037.76$; 2,901.36
7. $\$ 1,669.35$
9. 2,141; 70; 1,993; 50; 2,970; 30; 2,156; 30; \$1,871; 13
11. 3,$020 ; 10 ; 2,754 ; 38 ; 2,668$; 68; 3,604; 30; \$2,374; 16

Assignment 9.2

1. 802.50; 752.90; 678.71; 904.21; 791.89; 758.56; 746.56; 678.79; 466.79; 328.79; 422.79
2. a. $\$ 728.47$
b. $\$ 1,630.27$
c. $\$ 951.41$
d. $\$ 737.40$
e. $\$ 962.18$

Assignment 9.3

1. Cogswell Cooling, Inc.

Reconciliation of Bank Statement,	
November 30	
Checkbook balance	\$ 668.45
Minus unrecorded bank charges:	
Service charge	9.50
	\$ 658.95
Plus bank interest credit	12.00
Adjusted checkbook balance	\$ 670.95
Bank balance on statement	\$1,050.82
Minus outstanding checks:	
No. 148 \$ 13.90	
No. $156 \quad 235.10$	
No. $161 \quad 96.35$	
No. 165 \$ 34.52	379.87
Adjusted bank balance	\$ 670.95

3.Linberg Floors

Reconciliation of Bank Statement, May 31	
Checkbook balance	$\$ 19,512.54$
Plus bank interest credited	35.20
	$\$ 19,547.74$

Minus unrecorded bank charges:
Service charge \$ 18.00
Automatic $\quad 1,765.00$ transferinsurance
Returned check $920.00 \quad 2,703.00$
Adjusted checkbook balance $\overline{\underline{\$ 16,844.74}}$
Bank balance on statement $\$ 18,120.16$
$\begin{aligned} & \text { Plus deposit not recorded } \\ & \text { by bank }\end{aligned} \quad \frac{2,004.35}{\$ 20,124.51}$

Minus outstanding checks:		
No. 730	\$ 85.17	
No. 749	1,216.20	
No. 753	462.95	
No. 757	512.80	
No. 761	19.75	
No. 768	982.90	3,279.77
Adjusted bank balance		\$16,844.74

Chapter 10

Assignment 10.1

1. $\$ 360.00 ; \$ 108.00 ; \$ 18.00$; \$486.00
320.00; -; —; 320.00
400.00; 120.00; 40.00; 560.00
360.00; 67.50; —; 427.50
352.00; —; —; 352.00
280.00; -; -; 280.00
320.00; 84.00; -; 404.00
360.00; 13.50; —; 373.50
352.00; 105.60; 17.60; 475.20
352.00; —; 352.00
380.00; 114.00; 38.00; 532.00
400.00; 60.00; 460.00
\$4,235.00; \$672.60;
\$113.60; \$5,022.20
2. $\$ 2,808.38$
3. $\$ 633.54$
4. $\$ 11.21 ; \$ 11.00 ; \$ 0.21$
5. $\$ 43.46 ; \$ 43.00 ; \$ 0.46$

Assignment 10.2

1. $\$ 496.00 ; \$ 496.00 ; \$ 30.75$; \$7.19; \$51.00; \$103.04; \$392.00
400.00; 15.00; 45.00; 445.00; 27.59; 6.45; 17.00; 63.04; 381.90;
432.00; 432.00; 26.78; 6.26; 51.00; 96.04; 335.96
600.00; 600.00; 37.20; 8.70; 27.00; 90.90; 509.10
368.00; 13.80; 110.40; 478.40; 29.66; 6.94; 20.00; 74.60; 403.80
592.00; 22.20; 88.80; 680.80; 42.21; 9.87; 30.00; 100.08; 580.72
384.00; 384.00; 23.81; 5.57; 34.00; 75.38; 308.62
571.20; 21.42; 42.84; 614.04; 38.07; 8.90; 16.00; 74.97; 539.07
500.00; 500.00; 31.00; 7.25; 52.00; 105.25; 394.75
\$4,343.20; \$287.04; \$4,630.24; \$287.07; \$67.13; \$298.00; \$784.20; \$3,846.04
2. $\$ 27.94 ; \$ 6.53 ; \$ 17.74$; \$56.21; \$394.39
25.54; 5.97; 13.88; 49.39; 362.61
25.54; 5.97; 13.88; 49.39; 362.61
29.48; 6.89; 20.23; 60.60; 414.90
25.74; 6.02; 14.20; 49.96; 365.24
30.40; 7.11; 21.70; 63.21; 427.04
26.51; 6.20; 15.43; 52.14; 375.36
27.03; 6.32; 16.27; 53.62; 382.28
31.62; 7.40; 23.68; 66.70; 443.30
31.35; 7.33; 23.24; 65.92; 439.68
31.99; 7.48; 24.28; 67.75; 448.25
30.91; 7.23; 22.53; 64.67; 433.83
33.22; 7.77; 26.26; 71.25; 464.55
\$377.27; \$88.22; \$253.32; \$770.81; \$5,314.04
3. a. $\$ 22,528.40$
b. $\$ 1,396.75$
c. $\$ 326.67$
d. $\$ 2,500.95$
e. $\$ 5,947.79$
4. a. $\$ 19,500 ; \$ 7,000$
b. $\$ 56$
c. $\$ 378$
d. $\$ 434$

Chapter 11

Assignment 11.1

1. $\$ 0.43 ; \$ 6.61 ; \$ 3.39$
0.31; 4.71; 0.30
0.90; 13.79; 6.21
1.37; 20.93; 4.07
0.41; 6.21; 3.79
2.06; 31.47; 8.53 1.30; 19.85; 0.15
0.07; 1.05; 0.20
0.98; 14.97; 0.03 1.10; 16.79; 3.21
2. $\$ 96.55$
3. a. Discount Carpets
b. $\$ 312$

Assignment 11.2

1. a. $\$ 625,000,000$
b. $\$ 732,997,500$
c. $\$ 361,760,000$
2. $\$ 1.30$
\$0.98
3. $\$ 2,565$
4. $\$ 337.50$
5. a. 1.7% (0.017)
1.5\% (0.015)
1.35\% (0.0135)
2.0\% (0.02)
b. 17 mills 15 mills 13.5 mills 20 mills
6. $\$ 1,392$

Assignment 11.3

1. a. 20,750
b. $\$ 32,900$
c. $\$ 8,000$
d. $\$ 7,392$
e. $\$ 14,888$
2. a. $\$ 2,250$
b. $\$ 225$
3. a. $\$ 38,050$
b. $\$ 4,993$

Chapter 12

Assignment 12.1

1. a. $\$ 960$
b. $\$ 220$
c. $\$ 1,650$
d. $\$ 1,430$
2. a. $\$ 3,600$
b. $\$ 2,400$
c. $\$ 279$
d. $\$ 3,600$
3. a. $\$ 53,340$
b. $\$ 50,000$
c. $\$ 6,000$
d. $\$ 3,440$
e. $\$ 56,000$

Assignment 12.2

1. a. $\$ 3,724$
b. $\$ 2,793$
c. $\$ 558.60$
2. $\$ 200,000$
3. a. $\$ 165,000$
b. $\$ 55,000$
c. $\$ 180,000$
d. $\$ 120,000$
4. $\$ 360,000$

Assignment 12.3

1. $\$ 19.30 ; \$ 3,860.00$
\$8.26; \$2,643.20
\$27.04; \$540.80
\$4.91; \$2,356.80
\$16.83; \$3,366.00
\$53.86; \$4,578.10
2. $\$ 3,990$
3. a. $\$ 9,050$
b. $\$ 9,500$
c. $\$ 6,545$
4. a. $\$ 574$
b. $\$ 2,524$

Chapter 13

Assignment 13.1

1. $\$ 30$
2. $\$ 48$
3. $\$ 187.50$
4. $\$ 2,240$
5. $\$ 130$
6. $\$ 48.00 ; \$ 47.34 ; \$ 0.66$
7. $\$ 480.00 ; \$ 473.42 ; \$ 6.58$
8. $\$ 375.00 ; \$ 369.86 ; \$ 5.14$
9. $\$ 6.38 ; \$ 6.25 ; \$ 0.13$
10. $\$ 60.32 ; \$ 60 ; \$ 0.32$
11. $\$ 4,800$
12. 8%
13. 225 days
14. $\$ 33.73$
15. 7.5%

Assignment 13.2

1. $\$ 12.75$
\$862.75
2. $\$ 90$
\$3,690
3. $\$ 1,600$ \$76,600
4. $\$ 924.66$
\$45,924.66
5. $\$ 67.81$
\$5,067.81

Chapter 14

Assignment 14.1

1. a. 1.5%
b. 1.25%
c. 1.4%
d. 0.6%
e. 0.5%
f. 1.6%
g. 1.2%
h. 0.7%
i. 0.75%
j. 0.8%
2. $\$ 29.34 ; \$ 1,748.68$
3. $\$ 45.15 ; \$ 1,151.95$
4. $\$ 23.63 ; \$ 993.55$
5. $\$ 1,098.40 ; \$ 12.23$;
\$1,783.02
6. $\$ 790.12 ; \$ 9.15 ; \$ 1,571.62$

Assignment 14.2

1. $\$ 36.00 ; \$ 1,636.00$; \$3,200.00
3,200.00; 24.00; 1,624.00; 1,600.00
1,600.00; 12.00; 1,612.00
2. $\$ 36.00 ; \$ 1,636.00$; \$3,200.00
3,200.00; 36.00; 1,636.00; 1,600.00
1,600.00; 36.00; 1,636.00
3. a. $\$ 3,200$
b. $\$ 102$
c. 12.75%
4. a. $\$ 3,200$
b. $\$ 108$
c. 13.5%

Assignment 14.3
A. 1. $\$ 170.33143 ; \$ 851.66$
3. $\$ 6.44301 ; \$ 1,127.53$
B. 5 . $\$ 254.70501 ; \$ 851.66$
7. 4,516.77; 33.88; 1,494.35; 3,022.42
9. 1,516.86; 11.38;

1,528.24; 1,516.86
C. 11. $4,845.00 ; 36.34$; 1,163.66; 3,681.34
13. 2,508.95; 18.82; 2,527.77; 2,508.95

Chapter 15

Assignment 15.1

1. 188
2. 122
3. 121
4. January 30, 2006
5. December 8, 2008
6. March 7, 2006
7. Jan. 9, 2007; \$403; $\$ 26,403$
8. Oct. 28, 2005; \$583.92; \$36,333.92
9. 125; \$198.01; \$11,998.01
10. Aug. 9, 2005; \$2,115.62; \$54,115.62

Assignment 15.2

1. $\$ 31.25$
\$2,531.25
May 15
32
\$24.75
\$2,506.50
2. $\$ 0$
\$4,500
Jan. 23
39
\$48.75
\$4,451.25
3. $\$ 71.01$
\$3,671.01
July 19
44
\$57.53 \$3,613.48
4. $\$ 0$
\$4,000
Oct. 18
45
\$49.32
\$3,950.68

Assignment 15.3

1. $\$ 250 ; \$ 7,250 ; 10.34 \%$
2. $\$ 825 ; \$ 15,675 ; 12.63 \%$
3. $\$ 27.18 ; \$ 952.82 ; 7.71 \%$
4. $\$ 100.00 ; 20 ; \$ 26.85 ; \$ 73.15$
5. $\$ 525.00 ; 20 ; \$ 74.41$; \$450.59
6. $\$ 92.00 ; 30 ; \$ 71.87 ; \$ 20.13$
7. $\$ 650.00 ; 20 ; \$ 118.07$; \$531.93

Chapter 16

Assignment 16.1

1. $\$ 7,622.94 ; \$ 1,622.94$
2. $\$ 37,690.80 ; \$ 17,690.80$
3. $\$ 5,719.80 ; \$ 719.80$
4. $\$ 5,713.00 ; \$ 1,713.00$
5. $\$ 4,381.50$
6. $\$ 46,140.66$
7. $\$ 1,626.84$
8. $\$ 22,510.44$
9. $\$ 7,590.85$
10. $\$ 3,046.95$
11. $\$ 31,622.58$
12. $\$ 1,750.71$
13. $\$ 308.99$

Assignment 16.2

1. $\$ 3,266.17 ; \$ 633.83$
2. $\$ 22,561.35 ; \$ 12,438.65$
3. $\$ 5,512.60 ; \$ 4,487.40$
4. $\$ 2,285.35 ; \$ 214.65$
5. $\$ 1,060.20$
6. $\$ 9,230.00$
7. $\$ 4,407.62$
8. $\$ 2,714.50$
9. $\$ 2,218.97$
10. $\$ 4,273.90$
11. $\$ 18,561.75$
12. $\$ 4,884.72$
13. $\$ 42.88$

Chapter 17
Assignment 17.1

1. $\$ 765.60$ \$655.20
\$368.00
\$744.00
\$1,785.00
\$486.00
\$4,803.80
2. a. $\$ 22,950$
b. $\$ 22,200$
c. $\$ 21,700$

Assignment 17.2

1. $\$ 120,000 ; \$ 96,000$ 120,000; 72,000; 93,000 86,000
\$ 75,000; 82,000; 87,000; \$61,000
2. a. $\$ 46,300$
b. 6.41
3. a. $\$ 30,123$; $\left(2 \frac{1}{2}\right.$ points $)$
b. $\$ 50,205$; $\left(2 \frac{1}{2}\right.$ points $)$
4. $\$ 1,555,829$
5. a. $\$ 200,000 ; \$ 4,000$
b. $\$ 182,000 ; \$ 86,000$
c. $\$ 255,500 ; \$ 188,500$
d. $\$ 275,591 ; \$ 168,409$
e. $\$ 24,000 ; \$ 13,500$
f. $\$ 160,000 ; \$ 208,000$
g. $\$ 360,000 ; \$ 60,000$
h. $\$ 313,043 ; \$ 126,957$
i. $\$ 112,500 ; \$ 12,500$
j. \$100,000; \$30,000

Chapter 18

Assignment 18.1

1. a. $\$ 2,700 ; \$ 10,800 ; \$ 19,200$
b. $\$ 6,100 ; \$ 24,400 ; \$ 23,600$
c. $\$ 10,500 ; \$ 21,000$; \$63,000
d. $\$ 5,600 ; \$ 11,200 ; \$ 23,400$
2. a. $\$ 14,000$
b. $\$ 18,000$
3. a. $\$ 4,000.00 ; \$ 3,062.50$
b. $\$ 3,715.20 ; \$ 343.68$
c. $\$ 2,000.00 ; \$ 1,000.00$
d. $\$ 1,920.00 ; \$ 1,228.80$
e. $\$ 2,362.50 ; \$ 1,328.91$
f. $\$ 7,695.00 ; \$ 6,232.95$
4. $\$ 1,540.39$
5. $\$ 8,000$
\$5,333
\$2,667
6. straight-line, $\$ 22,286$

Assignment 18.2

1. a. $\$ 2,475$
b. $\$ 8,640$
2. $\$ 8,000$
3. $\$ 15,670$

Chapter 19

Assignment 19.1

1. $13.98 \% ; 15.40 \% ; \$ 18,000$; 8.49\%
15.20\%; 12.71\%; \$75,000; 42.86\%
25.53\%; 25.42\%; \$70,000; 20.00\%
54.71\%; 53.52\%; \$163,000; 22.12\%
17.02\%; 20.33\%; —; 0.00\%
7.29\%; 7.26\%; \$20,000; 20.00\%
9.73\%; 13.07\%; (20,000); -11.11\%
21.28\%; 19.61\%; \$80,000; 29.63\%
14.29\%; 13.80\%; \$45,000; 23.68\%
45.29\%; 46.48\%; \$105,000; 16.41\%
100.00\%; 100.00\%; \$268,000; 19.46 \%
5.84\%; 4.50\%; \$34,000; 54.84\%
2.74\%; 2.54\%; \$10,000; 28.57\%
0.91\%;1.45\%; \$(5,000); -25.00%
9.48\%; 8.50\%; \$39,000; 33.33\%
18.78\%; 23.24\%; \$(11,000); -3.44%
10.94\%; 15.25\%; \$(30,000); -14.29\%
29.73\%; 38.49\%; \$(41,000); -7.74\%
39.21\%; 46.99\%; \$(2,000); -0.31\%
31.61\%; 33.91\%; \$53,000; 11.35\%
20.06\%; 15.98\%; \$110,000; 50.00\%
9.12\%; 3.12\%; \$107,000; 248.84\%
60.79\%; 53.01\%; \$270,000; 36.99\%
100.00\%; 100.00\%; \$268,000; 19.46\%
2. $10.0 \% ; 8.10 \% ; \$ 14,600$; 38.5\%
7.2\%; 6.37\%; \$ 8,010; 26.9\%
11.8\%; 11.87\%; \$6,500; 11.7\%
28.9\%; 26.34\%; \$29,110; 23.6\%
16.0\%; 15.39\%; \$12,200; 16.9\%
2.9\%; 2.67\%; \$2,600;
22.4\%
13.1\%; 12.72\%; \$9,400; 15.8\%
44.7\%; 50.25\%; —; 0.0\%
13.3\%; 10.69\%; \$20,000; 40.0\%
71.1\%; 73.66\%; \$29,400; 8.5\%
100.0\%; 100.00\%; \$58,510; 12.5\%
2.7\%; 3.04\%; \$(250); -1.8\%
1.6\%; 1.58\%; \$800; 10.8\%
0.2\%; 0.21\%; \$220; 22.4\%
4.4\%; 4.83\%; \$770; 3.4\%
15.5\%; 17.90\%; \$(2,200); -2.6%
4.8\%; 4.49\%; \$ 4,000; 19.0\%
20.2\%; 22.39\%; \$1,800; 1.7\%
24.7\%; 27.21\%; \$2,570; 2.0\%
37.1\%; 38.49\%; \$15,000; 8.3\%
15.6\%; 17.53\%; —; 0.0\%
22.7\%; 16.77\%; \$40,940; 52.2\%
75.3\%; 72.79\%; \$55,940; 16.4\%
100.0\%; 100.00\%; \$58,510; 12.5\%

Assignment 19.2

1. $103.95 \% ; 103.76 \%$; \$93,000; 11.25\%
3.95\%; 3.76\%; \$5,000; 16.67\%
100.00\%; 100.00\%;
\$88,000; 11.04\%
23.73\%; 24.72\%; \$13,000; 6.60\%
51.98\%; 49.56\%; \$65,000; 16.46\%
75.71\%; 74.28\%; \$78,000; 13.18\%
27.12\%; 26.35\%; \$30,000; 14.29\%
48.59\%; 47.93\%; \$48,000; 12.57\%
51.41\%; 52.07\%; \$40,000; 9.64\%
14.98\%; 15.06\%; \$12,600; 10.50\%
9.49\%; 10.04\%; \$4,000;
5.00\%
2.03\%; 2.51\%; \$(2,000);
-10.00%
0.51\%; 0.53\%; \$300; 7.14\%
0.41\%; 0.39\%; \$500; 16.13\%
0.14\%; 0.18\%; \$(200); -14.29\%
0.79\%; 0.65\%; \$1,800; 34.62\%
0.36\%; 0.26\%; \$1,100; 52.38\%
28.71\%; 29.61\%; \$18,100; 7.67\%
22.70\%; 22.46\%; \$21,900; 12.23\%
3.62\%; 3.51\%; \$4,000; 14.29\%
19.08\%; 18.95\%; \$17,900; 11.85\%
2. $102 \% ; 102 \% ; \$ 12,200 ; 16 \%$

2\%; 2\%; \$200; 11\%
100\%; 100\%; \$12,000; 16\%
26\%; 24\%; \$4,500; 26\%
45\%; 48\%; \$3,000; 9\%
71\%; 72\%; \$7,500; 14\%
28\%; 30\%; \$2,100; 10\%
42\%; 42\%; \$5,400; 18\%
58\%; 58\%; \$6,600; 16\%
13\%; 15\%; \$300; 3\%
9\%; 8\%; \$1,500; 25\%
2\%; 2\%; \$200; 17\%
1\%; 1\%; \$70; 18\%
1\%; 1\%; \$50; 8\%
0\%; 1\%; \$(70); -17\%
2\%; 2\%; \$200; 12\%
0\%; 0\%; \$(30); -14\%
28\%; 29\%; \$2,220; 10\%
30\%; 29\%; \$4,380; 21\%
3\%; 3\%; \$200; 10\%
27\%; 26\%; \$4,180; 22\%

Assignment 19.3

1. $\$ 5,400 ; 5.2 \%$

19,100; 16.5\%
40,000; 27.6\%
\$64,500; 17.6\%
\$(3,500); -7.2\%
13,000; 9.8\%
\$9,500; 5.3\%
\$74,000; 13.6\%
\$4,800; 17.0\%
7,100; 6.3\%
\$11,900; 8.4\%
$\$(20,000) ;-16.7 \%$
\$(8,100); -3.1\%

82,100; 28.8\%
\$74,000; 13.6\%
\$(55,000); -6.6\%
\$7,000; 5.1\%
(35,000); -5.6\%
\$(28,000); -3.7%
40,000; 27.6\%
\$(68,000); -11.1\%
\$13,000; 5.9\%
\$3,400; 4.3\%
(1,000); -3.3\%
\$2,400; 2.2\%
\$10,600; 9.4\%
3. $\$ 9,000 ; 56.3 \%$

4,000; 50.0\%
15,000; 48.4\%
\$28,000; 50.9\%
\$(4,000); -9.3\%
4,000; 36.4\%
\$0; 0.0\%
\$28,000; 25.7\%
\$(1,000); -18.2\%
3,500; 58.3\%
\$2,500; 21.7\%
\$(8,000); -21.1\%
\$(5,500); -11.1\%
\$33,500; 56.3\%
\$28,000; 25.7\%
\$85,000; 70.8\%
\$3,500; 12.7\%
69,500; 82.2\%
\$73,000; 65.2\%
15,000; 48.4\%
\$58,000; 71.6\%
\$27,000; 69.2\%
\$9,500; 44.2\%
5,750; 79.3\%
\$15,250; 53.0\%
\$11,750; 114.6\%

Chapter 20

Assignment 20.1

1. a. $\$ 217.59$
b. $\$ 795.72$
c. $\$ 37.42$
d. $\$ 105.08$
e. $\$ 238.76$
f. $\$ 36.20$
g. $\$ 47.06$
2. a. $\$ 132,432$
b. $\$ 8,432$
c. $\$ 7,568$
3. a. 31,114
b. $\$ 18,500$

Assignment 20.2

1. a. $\$ 2,700$
b. $\$ 86.40$
c. $\$ 2,786.40$
2. $\$ 1,296$
3. a. $\$ 16,608$
b. $\$ 17,042.30$
c. $\$ 2,592$
d. $\$ 760.32$
4. a. $\$ 36,750$
b. $\$ 14,700$
c. 0
5. $\$ 195,000$
6. a. 590.55 in .
b. 49.215 ft
c. 16.35 yd
d. 9.315 mi
e. .875 oz
f. .055 lb
g. 55 lb
h. 63.39 pt
i. 31.71 qt
j. 7.92 gal

Chapter 21

Assignment 21.1

1. a. $\$ 36,400$
b. $\$ 10,846$
2. 7.9%
3. 10.52%
4. a. $\$ 2.10 ; 6.56 \%$
b. $\$ 6 ; 7.5 \%$
c. \$2; 4.49\%
d. $\$ 5.50 ; 6.11 \%$
e. $\$ 3.25 ; 5.6 \%$

Assignment 21.2

1. 5,000 shares; 90,000 shares
2. a. $\$ 67,500$
b. $\$ 8,750$
c. $\$ 1.75$
d. $\$ 270,000$
e. $\$ 305,000$
f. $\$ 4.00$
3. $\$ 9,750 ; \$ 0.16$
4. $\$ 38,000 \div 25,000=\$ 1.52$; -0-
$\$ 42,000 \div 25,000=\$ 1.68$;
$\$ 14,000 \div 50,000=\$ 0.28$
$\$ 40,000 \div 25,000=\$ 1.60$;
$\$ 25,000 \div 50,000=\$ 0.50$
5. $\$ 550$
6. a. 17
b. 15

Chapter 22
Assignment 22.1

1. $\$ 1,750$
2. $\$ 5,400,000$
3. a. $\$ 4,000.00 ; \$ 300.00$
b. $2,940.00 ; 236.25$
c. $7,740.00 ; 911.25$
d. 6,540.00; 562.50
\$21,220.00; 2,010.00
4. a. 73; $\$ 2,096.50$
b. $100 ; \$ 2,852.50$
5. a. 8.33%
b. 7.89%
c. 8.93%
d. 7.32%

Assignment 22.2

1. a. 8.22%
b. 9.11%
2. a. $\$ 3,661.67$
b. 9.66%

Chapter 23

Assignment 23.1

1. $\$ 57,614.63$
2. $\$ 104,223.28$
3. $\$ 22,557.76$
4. $\$ 75,298.83$
5. $\$ 1,829.35$
6. $\$ 34,335.28$
7. $\$ 8,124.48$
8. $\$ 15,609.04$
9. $\$ 869.25$
10. $\$ 28,807.32$
11. $\$ 6,614.16$
12. $\$ 26,754,941.60$
13. $\$ 175.10$

Assignment 23.2

1. $\$ 18,988.95$
2. $\$ 34,064.26$
3. $\$ 58,670.83$
4. $\$ 23,585.11$
5. $\$ 1,067.02$
6. $\$ 1,543.04$
7. $\$ 57,738.20$
8. $\$ 1,776.98$
9. $\$ 913.89$
10. $\$ 60,195.40$
11. $\$ 395.01$
12. 6,450.00; 32.25; 1,600.45; 4,849.55
13. 3,241.10; 16.21; 1,616.49; 1,624.61

Chapter 24

Assignment 24.1

1. a. Mean: 67.3; 63.2; 61.6 Median: 62; 60; 63.5 Mode: 59; 46; 66
b. $7 ; 6 ; 8 ; 3 ; 6$
2. a. 48.6
b. 45.8
c. Financial District Branch 10 up to 20: 1 20 up to 30: 3 30 up to 40: 5 40 up to 50: 5 50 up to 60: 7 60 up to 70: 6 70 up to 80: 3 80 up to 90: 0 Total: 30

University Branch
10 up to 20: 6
20 up to 30: 7
30 up to 40: 2
40 up to 50: 1
50 up to 60: 2
60 up to 70: 3
70 up to 80: 6
80 up to 90: 3
Total: 30

Assignment 24.2

1. a.

b.

3.

Answers to Self-Check Review Problems

Chapter 1

1. 38
2. $127 ; 67 ; 240 ; 204 ; 638$
3. 2,696
4. 51 (3)
5. 7 (7)
6. 21 (33)
7. 4 (42)
8. 81 (2)
9. 32 R. 12
10. 609,824
11. $5(1)$
12. 32
13. 10,000
14. 222; 313; 205; 740
15. 41,216
16. 705,408
17. 28 (4)
18. 640
19. 20,000 (6)
20. 110 (7)
21. $80 \times 30=2400$
22. $100 \times 20=2,000$
23. $400 \times 200=80,000$
24. $4000 \times 100=400,000$
25. $1,500 \times 600=900,000$
26. $400 \div 80=5$
27. $900 \div 30=30$
28. $10,000 \div 500=20$
29. $3000 \div 60=50$
30. $6000 \div 3000=2$

Chapter 2

1. $\frac{17}{6}$
2. $7 \frac{1}{2}$
3. $\frac{6}{7}$
4. $\frac{40}{56}$
5. $1 \frac{17}{30}$
6. $1 \frac{19}{24}$
7. $7 \frac{11}{20}$
8. $\frac{7}{15}$
9. $1 \frac{17}{18}$
10. $1 \frac{34}{45}$
11. $\frac{3}{10}$
12. $1 \frac{1}{20}$
13. $\frac{7}{3}$
14. $2 \frac{1}{4}$
15. $2 \frac{1}{10}$
16. $\frac{8}{9}$
17. $16 \frac{1}{2}$
18. $24 \frac{5}{16}$
19. $6 \frac{1}{8}$
20. $9 ; \frac{7}{8}$ inches

Chapter 3

1. 116.0014
2. six thousand, four hundred thirty one and seven hundred nineteen thousandths
3. 3.5
4. $\$ 12.67$
5. 743.64475
6. 20.807
7. 2.717
8. 178.4694
9. 1.797726
10. $\$ 259.51$
11. 3.23
12. . 74
13. 8649.3
14. 2.76235
15. d. 500
16. c. $\$ 0.80$
17. $\$ 3,825.75$
18. $\$ 148,235.96$
19. 590.8 cubic feet
20. 21.88

Chapter 4

1. 30
2. 42
3. 96
4. 2
5. $\$ 31,256$
6. $\$ 43,244$
7. 427 miles
8. $\$ 400$
9. $\$ 225.75$
10. $\$ 250$
11. 23 hours
12. 19 hours
13. 12 hours
14. 8
15. 156
16. 3
17. 3
18. 11
19. 20
20. $\$ 2.00$

Chapter 5

1. . 171
2. 62.5%
3. 1.5
4. $\frac{3}{4} \%$
5. .0006
6. 40%
7. 7
8. 150
9. 180
10. 70
11. 87.5
12. 160
13. $\$ 120,000$
14. $\$ 96,000$
15. 100%
16. 50%
17. 1,625 rose bushes
18. 225%
19. $\$ 3,440$
20. 64%

Chapter 6

1. a. $\$ 3,480$,
b. $\$ 6,480$
2. a. $\$ 4,300$
b. $\$ 6,800$
3. a. $\$ 2,601$
b. $\$ 7,101$
4. a. $\$ 6,926$
b. $\$ 6,926$
5. $\$ 6,000$
6. $\$ 2,550$
7. $\$ 7,750$
8. $\$ 3,300$
9. $\$ 1,400$
10. $\$ 6,900$
11. $\$ 4,250$
12. $\$ 5,500$
13. $\$ 8,550$
14. $\$ 33,910$
15. $\$ 3,210$
16. $\$ 25,256$

Chapter 7

1. a. $\$ 130$
b. $\$ 520$
2. a. $\$ 360$
b. $\$ 168$
c. $\$ 672$
3. a. 60%
b. $\$ 525$
4. a. 75%
b. 90%
c. $\$ 1,080$
5. a. 60%
b. 80%
c. 90%
d. 56.8%
6. a. Aug 4
b. Aug 24
c. $\$ 17.49$
d. $\$ 857.06$
7. a. Jan. 2
b. Feb. 11
c. 97%
d. $\$ 1,787.15$
8. a. $\$ 10,204.08$
b. $\$ 6,335.92$

Chapter 8

1. a. $\$ 43.35$
b. $\$ 207.83$
c. $\$ 1,570$
d. $\$ 572.63$
2. a. $\$ 250$
b. $\$ 750$
3. a. $\$ 23.40$
b. $\$ 59.40$
4. a. 160%
b. $\$ 360$
5. a. 140%
b. $\$ 231$
6. a. 200%
b. $\$ 420$
7. a. 140%
b. $\$ 70$
8. a. $\$ 240$
b. 100%
9. a. $\$ 400$
b. 25%
10. a. $\$ 72$
b. $\$ 168$
11. a. $\$ 36$
b. $\$ 108$
12. a. 60%
b. $\$ 744$
13. a. 25%
b. $\$ 132$
14. a. 40%
b. $\$ 2,400$
15. a. 75%
b. $\$ 48$
16. a. $\$ 320$
b. 40%
17. a. $\$ 2,250$
b. 60%
18. a. $\$ 10$
b. 25%
c. 20%

Chapter 9

1. a. B
b. D
c. A
d. D
e. C
f. C
g. D
h. D
2. Bank Balance $\$ 10,961.65$ + Deposit in transit $1,850.15$
$12,811.80$

- O/S checks $\quad 342.90$ Adj. Bank Balance

Book Balance	$\$ 12,583.40$
+ Interest	52.50
+ Error	3.00
- Svc Ch	$12,638.90$
+ 300 NSFV	200.00

Adj. Book
Balance
$12,468.90$

Chapter 10

1. a. Gross pay $=\quad \$ 712.50$
b. Social Security $=\$ 44.18$

Medicare $=\quad \$ 10.33$
c. FIT withheld $=\$ 89.57$
d. Net pay $=\quad \$ 568.42$
2. a. Percentage method $=\quad \$ 42.77$
Wage-bracket method $=\quad \$ 44.00$
b. Percentage method $=\quad \$ 55.36$ Wage-bracket method =
\$ 55.00
3. Jan. $\$ 1,260.35$;

Feb. \$1,198.35;
Mar. \$888.35
4. Social Security, $\$ 7,688$; Medicare \$1,798, Federal income tax, \$7,800;
Total, \$17,286
5. Social Security, 111.60;

Medicare, \$94.25;
Total, \$205.85
6. $\$ 614.08 ; \$ 532.00 ; \$ 464.40$

Chapter 11

1. Choose A because the cost is less than B.
2. a. 1.5%
b. $\$ 4,200, \$ 2,322$
3. a. $\$ 443.50$
b. 295.67
4. $\$ 27,300$
5. $\$ 15,500$
6. $\$ 11,600$
7. $\$ 24,650$
8. $\$ 9,725$

Chapter 12

1. Jim's insurance pays $\$ 5,300$, Jim's medical expenses. Joshua's insurance pays -0-.
2. $\$ 313.20$
3. $\$ 2,695$
4. $\$ 29.250$
5. $\$ 30,000$
6. $\$ 4,389$
7. $\$ 3,255$
8. $\$ 1,440$

Chapter 13

1. a. $\$ 75.60$
b. $\$ 74.56$
c. $\$ 1.04$
2. a. $\$ 140.00$
b. $\$ 138.08$
c. $\$ 1.92$
3. a. $\$ 114.94$
b. $\$ 120.00$
c. $\$ 5.06$
4. a. $\$ 58.98$
b. $\$ 60.00$
c. $\$ 1.02$
5. $\$ 1,500$
6. 5%
7. 219 days
8. $\$ 2,512.50$
9. $\$ 289.97$

Chapter 14

1. a. 9.0%
b. 7.2%
c. 14.4%
d. 4.8%
2. a. 0.5%
b. 1.25%
c. 1.1%
d. 0.8%
3. a. $\$ 26.72$
b. $\$ 2,387.35$
4. a. $\$ 30.00$
b. $\$ 1,030.00$
c. $\$ 2,000.00$
d. $\$ 2,000.00$
e. $\$ 20.00$
f. $\$ 1,020.00$
g. $\$ 1,000.00$
h. $\$ 1,000.00$
i. $\$ 10.00$
j. \$1,010.00
5. 12%
6. $\$ 1,158.77$
7. a. $\$ 30.00$
b. $\$ 990.07$
c. $\$ 2,009.93$
d. $\$ 2,009.93$
e. $\$ 20.10$
f. $\$ 999.97$
g. $\$ 1,009.96$
h. $\$ 1,009.96$
i. $\$ 10.10$
j. \$1,020.96
k. $\$ 1,020.66$

Chapter 15

1. a. Feb. 7, 2007
b. $\$ 3551.04$
2. a. 151 days
b. $\$ 4,510.73$
3. a. Jan. 6, 2008
b. $\$ 15,255.21$
4. a. 123 days
b. $\$ 3,045.27$
5. a. $\$ 77.85$
b. $\$ 3,037.85$
c. September 12
d. 59 days
e. $\$ 73.66$
f. $\$ 2,964.19$
6. a. $\$ 3,100$
b. February 8
c. 60 days
d. $\$ 61.15$
e. $\$ 3,038.85$
7. a. $\$ 135.00$
b. $\$ 4,365$
c. 9.28%
8. a. $\$ 32.00$
b. 20 days
c. $\$ 8.59$
d. $\$ 23.41$

Chapter 16

1. a. $\$ 4,786.72$
b. $\$ 786.72$
c. $\$ 20,892.24$
d. $\$ 8,892.24$
e. $\$ 51,608.60$
f. $\$ 31,608.60$
g. $\$ 21,226.40$
h. $\$ 13,226.40$
2. a. $\$ 21,320.40$
b. $\$ 8,679.60$
c. $\$ 2,340.72$
d. $\$ 3,659.28$
e. $\$ 10,479.15$
f. $\$ 4,520.85$
g. $\$ 29,698.80$
h. $\$ 10,301.20$
3. $\$ 7,927.74$
4. $\$ 4,997.88$
5. $\$ 6,691.12$
6. $\$ 4,104.25$

Chapter 17

1. 80
2. a. 86,$371 ; 352,129$
b. $87,562.50 ; 350,937.50$
c. 83,$125 ; 355,375$
3. $\$ 346,000$
4. a. $\$ 38,600$
b. $\$ 271,800$
c. 7.04 times

Chapter 18

1. a. 12.5%
b. 25%
c. 25%
d. 40%
2. $\frac{4}{10}, \frac{3}{10}, \frac{2}{10}, \frac{1}{10}$
3. Declining Balance
4. a. $\$ 9,000$
b. $\$ 71,000$
c. $\$ 3,000$
d. $\$.90 / \mathrm{hr}$
e. $\$ 2,124$
5. a. $\$ 9,000$
b. $\$ 13,500$
6. a. $\$ 9,280$
b. $\$ 16,620$
7. a. $\$ 1,040.00$
b. $\$ 1,487.00$

Chapter 19

1. a. $\$ 285,000$
b. $\$ 382,000$
c. $14.84 \% ; 1.49 \% ; 34.04 \%$
2. $30.34 \% ; \$ 139,650$
3. 16.34%
4. a. 16.67% increase
b. 25.00% decrease
c. can't be calculated
d. 0% no change
e. can't be calculated
5. a. $1.65: 1$
b. $1.08: 1$
c. 1.05 times
d. 17.72%
e. 10.79%
f. 56.44%

Chapter 20

1. 622.05
2. $\$ 0.36$
3. $3,442.50$
4. $\$ 84.70$
5. $\$ 47,058.82$ or $\$ 47,058$ if $300,000 \times .15686$ is used as calculation
6. $\$ 5,305.17$ less
7. $\$ 86,706.90(\$ 86,705.20)$.
8. $\$ 69,365.52(\$ 69,364.16)$
9. $\$ 979.20$
10. $\$ 2,170$.
11. 3.784 liters
12. $\quad 113.70$ miles farther

Chapter 21

1. a. $2,880,000$ shares
b. $\$ 82.45$
c. Boeing $\$ 48.22-\$ 2.21=$ \$46.01 Chevron \$82.45 + $\$ 1.16=\$ 83.61$
d. $\$ 58-\$ 41=\$ 17$
e. $\$ 82.45 \div 18=\$ 4.58$
2. a. $\$ 27,015$
b. $\$ 17,716.25$
c. $\$ 5,460$
3. a. $\$ 400.10$ gain
b. $\$ 400.10 \div \$ 8,579.95=$ 4.7\%
4. a. $\$ 0.65 \div \$ 17.12=3.8 \%$
b. $\$ 325+\$ 400.10=$
$\$ 725.10 \div \$ 8,579.95=$ 8.5\%
5. $400 \times 4=1,600$ shares
6. $400 \times \$ 20 \times 8 \%=\$ 640$ preferred dividend $1,600 \times \$ 0.60=\$ 960$ common dividend $\$ 960-\$ 640=\$ 320$ more
7. $8,000 \times 50 \times 7.5 \%=$ $\$ 30,000 \div 8,000=$
\$3.75/share preferred;
\$85,000 - \$30,000 =
$\$ 55,000 \div 50,000$ sh $=$ \$1.10/share common
8. $\$ 30,000 \times 2=\$ 60,000 \div$
$8,000=\$ 7.50 /$ share preferred; \$90,000 - \$60,000 $=\$ 30,000 \div 50,000=$ $\$ 0.60 /$ share common

Chapter 22

1. a. $\$ 15,600(\$ 15,000 \times 1.04)$
b. Semiannually
c. $\$ 562.50(\$ 15,000 \times$
$\left.7.5 \% \times \frac{1}{2}\right)$
d. $\$ 206.25(\$ 15,000 \times 7.5 \%$ $\times 66$ days $\div 360$)
e. $\$ 15,806.25(\$ 15,600+$ \$206.25)
f. Premium (104 = 4\% above face value)
g. $\$ 600(\$ 15,000 \times 4 \%)$ or (\$15,600-\$15,000)
h. 2018
i. $7.21 \% ~(\$ 1,125$ annual interest $\div \$ 15,600$)
j. 7.03%; $\$ 600$ premium \div 12 yrs = \$50 amortiza tion
$\$ 1,125-\$ 50=\$ 1,075$
annual interest adjusted for amortization $(\$ 15,000+\$ 15,600) \div 2$
$=\$ 15,300$ average principal invested $\$ 1,075 \div \$ 15,300=$ 7.03\% yield to maturity
2. a. $180(30 \times 6)$
b. $\$ 7,560$ (180 share $\times \$ 42$)
c. $\$ 1,860$ gain; $\$ 7,560-$ \$5,700 (\$6,000 $\times 95 \%$)
d. $\$ 6,300$ (180 share $\times \$ 35$)
3. $\$ 10,500,000$
4. MCD $1 / m$

Chapter 23

1. a. $\$ 163,122.89$
b. $\$ 16,122.89$
c. $\$ 475,127.60$
d. $\$ 275,127.60$
e. $\$ 1,066.39$
f. $\$ 10,804.98$
g. $\$ 977.87$
h. $\$ 4,531.12$
2. a. $\$ 6,063.94$
b $\$ 936.06$
c. $\$ 92,116.78$
d. $\$ 34,383.22$
e. $\$ 2,991.94$
f. $\$ 26,862.98$
g. $\$ 2,240.89$
h. $\$ 7,226.70$
3. $\$ 40,573.37$
4. $\$ 407,768.36$
5. $\$ 2,507.03$
6. $\$ 16,663.03$

Chapter 24

1. a. 63
b. 59
c. 57
2. a. 3
b. 7
c. 4
d. 6
3. a .

4. a.

b.

c.

A

Account purchase. A detailed statement from the commission merchant to the principal.
Account sales. A detailed statement of the amount of the sales and the various deductions sent by the commission merchant to the consignor.
Accounts receivable. Amounts owed to a business for services performed or goods delivered.
Accrued interest. Interest earned from the last payment date to the purchase date.
Accumulated depreciation. The total of all the depreciation recognized up to a specified time.
Acid test ratio. Used to determine the amount of assets that can be quickly turned into cash to pay current liabilities; acid test ratio $=$ total of cash plus receivables \div total current liabilities.
Ad valorem duty. A tax charged as a percent of the value of the item.
Addends. Any of a set of numbers to be added.
Additional death benefit (ADB). Benefits, available with some life insurance policies, that allow the insured to purchase, at a low rate per thousand dollars of coverage, additional insurance up to the full face value of the policy. In case of death of the insured by accident, both the full value of the policy and the ADB would be paid to the beneficiaries of the insured. If death occurs other than by accident, the full value of the policy is paid but no ADB is paid. Sometimes referred to as accidental death benefit.
Adjusted bank statement balance. The dollar amount obtained by adding to or subtracting from the bank statement balance checkbook activities not yet known to the bank. This amount should equal the adjusted checkbook balance.
Adjusted checkbook balance. The dollar amount obtained by adding to or subtracting from the checkbook balance those activities appearing on the bank statement that do not yet appear in the checkbook. This amount should equal the adjusted bank statement balance.
Adjusted gross income (AGI). Gross income minus certain income adjustments.
Amortization. The process by which a loan's monthly payments are always equal in dollar amount while the interest amount, which is calculated on the unpaid balance, always varies.
Amortization payment factor. A number which, when multiplied by the per $\$ 1,000$ loan amount, calculates the amount of each loan payment.

Amortization schedule. A schedule of payments; the schedule shows the amount of interest and the amount of principal in each payment.
Amount credited. The total amount paid plus the amount of cash discount.
Amount of decrease. The rate of decrease times the base amount.
Amount of increase. The rate of increase times the base amount.
Annual discount amortization. Also known as the annual premium amortization, determined by dividing the discount (or premium) by the number of years from purchase to maturity.
Annual percentage rate (APR). The annual equivalent interest rate charged.
Annual premium amortization. Also known as the annual discount amortization, determined by dividing the premium (or discount) by the number of years from purchase to maturity.
Annuity. A sum of money paid out in a series of equal payments.
Annuity insurance. Life insurance that pays a certain sum of money to the insured every year after the insured reaches a specified age or until the insured's death.
Assessed valuation. A property value determined by a representative of the local or state government.
Assets. Things of value owned by a business or a person.
Auto collision insurance. Insurance that protects the vehicle of the insured against collision damage.
Auto comprehensive insurance. Insurance that protects the vehicle of the insured against fire, water, theft, vandalism, falling objects, and other damage not caused by collision.
Auto liability and property damage insurance. Insurance that protects the insured against claims resulting from personal injuries and property damage.
Automatic teller machine (ATM). A computerized electronic machine, many of which are located outside of banks and in numerous other locations, that allows customers to perform various banking functions, such as checking balances, making deposits, and withdrawing funds.
Average. A single number that is supposed to be "typical" or "representative" of the group, such as the mean, median, or mode.
Average cost method. A method of valuing inventory that is based on the assumption that the costs of all items on hand are averaged and shared evenly among all units.

Average daily balance. The sum of each day's balance divided by the number of days in the month. Payments are usually included; new purchases may or may not be included.
Average inventory. The inventory average calculated by summing each inventory valuation (determined by physical inventory) and divided by the number of physical inventories over a specified period of time; average annual inventory $=$ (beginning inventory value + ending inventory value) $\div 2$.
Average principal. The average unpaid balance of a note or loan.
Average principal invested. Determined by adding the maturity value and the cost price and then dividing by 2 .
Average unpaid balance. The sum of all of the unpaid monthly balances divided by the number of months.

B

Balance sheet. The financial statement of what is owned (assets), what is owed (liabilities), and the difference between the two (net worth) on a specific date.
Bank charge. A fee for services performed by the bank.
Bank discount. The decrease in value of a discounted note.
Bank statement. A formal accounting by a bank of the adding and subtracting activities that have occurred in one bank account over a stated period of time (usually a month).
Bar graph. Also known as a bar chart, a graphic presentation of statistical information resembling the histogram except that there may not be a numeric scale on the horizontal axis and the bars normally do not touch each other.
Base (B). The whole quantity, or 100%, of an amount.
Basic depreciation rate. A rate of depreciation determined by dividing 100% by the estimated total years of useful life of the item.
Bearer. The lender of a note.
Beginning inventory (BI). The cost of inventory on hand at the beginning of a time period.
Beneficiary. A person, a company, or an organization that benefits from an insurance policy.
Board of directors. A group of people elected by shareholders to oversee the operation of the corporation.
Bonds. Long-term notes that are bought and sold on the open market, much like stocks.
Bond ratings. Information on the presumed safety of a bond investment, provided by firms such as Standard \& Poor's and based on experience and research.

Book value. The original cost of an asset minus accumulated depreciation.
Broker. A person who performs services of buying and/or selling for a commission.
Business statistics. Collections of information about businesses.

C

Callable bonds. Bonds that have a provision that the issuer can repurchase, or call in the bonds, at specified dates if the board of directors authorizes the retirement (payoff) of the bonds before their maturity date.
Cancel. "Divide out" common factors that occur in both the numerator and denominator.
Cancellation. Process of dividing out common factors.
Capital stock. The general term applied to the shares of a corporation.
Cash discount. A reduction in an invoice amount available to the buyer for paying all or part of the amount due within a stated period of time.
Cash surrender value. The amount of cash that a company will pay the insured on the surrender, or "cashing-in," of an insurance policy.
Charges. The commission and any other sales expenses, such as transportation, advertising, storage, and insurance.
Charter. A corporation's basic approval document, issued by the state, under which the corporation operates.
Check. A written order directing the bank to pay a certain sum to a designated party.
Checkbook. Checks and check stubs to record deposits, withdrawals, check numbers, dates of transactions, other additions or subtractions, and the account balance.
Check register. A place for recording important information about each transaction.
Child Tax Credit. Taxpayers with dependent children under age 17 can receive a credit of $\$ 1,000$ per qualifying child. The credit phases out at higher income levels.
Classes of data. Individual values organized into groups, to more easily make sense of raw numbers.
Coinsurance clause. An insurance policy clause specifying that, if a property is not insured up to a certain percentage of its value, the owner is the bearer of part of the insurance and will not be covered for the full amount of damages.
Commercial paper. Documentation of a promise to repay a loan or pay for merchandise.
Commission. Payment to an employee or to an agent for performing or helping to perform a business transaction or service.
Commission merchant. A person who performs services of buying and/or selling for a commission.
Common denominator. A denominator that is shared by two or more fractions. The product of the denominators of two or more fractions is always a common denominator.
Common stock. The usual type of stock issued by a corporation, often with different rights compared to preferred stock.

Comparative bar graph. Two bar graphs combined on one grid, to compare two different sets of comparable data.
Complement method. A method for finding the net price.
Complement rate. A rate equal to 100% minus the discount rate; used with the complement method in determining trade or cash discounts.
Component bar graph. A bar graph constructed to show how certain data are composed of various parts.
Compound amount. Also known as the future value, the total value of an investment; equal to the principal plus all the compound interest.
Compound amount factors. Also known as future value factors, the numbers in a compound interest or future value table that are used to compute the total amount of compound interest.
Compound interest. Interest computed by performing the simple interest formula periodically during the term of the investment.
Compound interest tables. Tables of numbers, known as future value factors or compound amount factors, that can be used to compute future values (compound amounts) and compound interest.
Consignee. The party to whom a consignment shipment is sent.
Consignment. Goods from a producer to a commission merchant for sale at the best possible price.
Consignor. The party who sends a consignment.
Convertible bonds. Corporate bonds that have a provision that they may be converted to a designated number of shares or to a designated value of the corporation's stock.
Convertible preferred stock. Preferred stock that gives the owner the option of converting those preferred shares into a stated number of common shares.
Corporate bonds. Long-term notes, such as convertible bonds and callable bonds, issued by a corporation.
Corporation. A body that is granted a charter by a state legally recognizing it as a separate entity, with its own rights, privileges, and liabilities distinct from those of its owners.
Cost of goods sold. The seller's cost of items (goods) that have been sold during a certain time.
Credit. A deposit to a bank account.
Credit balance. A negative difference.
Credit card. Credit extended by a third party.
Cross-checking. Adding columns vertically and then adding these totals horizontally.
Cumulative preferred stock. Preferred stock that, if the corporation doesn't pay the specified percentage, has the unpaid amount (the dividend in arrears) carried over to the following year or years.
Current yield. The annual interest income of a bond, calculated by dividing the annual interest by the current purchase price.

D
Decimal equivalent. The presentation of a nondecimal number in decimal form.
Decimal places. The places for digits to the right of the decimal point, representing tenths, hundredths, thousandths, and so forth.
Decimal point. The period between two numerals.
Declare a dividend. A board of directors' distribution of earnings to shareholders.
Declining-balance depreciation rate. A multiple of the basic depreciation rate, such as two (double-declining-balance) or 1.5(150\%-declining-balance).
Deductible clause. An insurance policy clause that stipulates that the insured will pay the first portion of collision damage and that the insurance company will pay the remainder up to the value of the insured vehicle.
Denominator. In a fraction, the number below the line.
Dependency exemptions. Reductions to taxable income for each of one or more dependents.
Deposit slip. A written form that lists cash and checks being deposited in a bank account and cash received from the amount being deposited.
Depreciation. The decrease in the value of an asset through use.
Difference. The result of subtracting the subtrahend from the minuend.
Discount. A fee charged when someone buys the note before maturity. With regard to bonds, a bond sells at a discount if the market value becomes less than the face value.
Discount amount. The decrease in value of a discounted note.
Discount date. The last day on which a cash discount may be taken. The day on which a note is discounted (sold).
Discount period. A certain number of days after the invoice date, during which a buyer may receive a cash discount. The time between a note's discount date and its maturity date.
Discount rate. The percent used for calculating a trade or cash discount. The interest percent charged by the buyer of a discounted note.
Discounting a note. Selling a note before its maturity date.
Dividend. The number being divided.
Dividend in arrears. The unpaid amount carried over to the following year or years due to holders of cumulative preferred stock.
Divisor. The number used to divide another number.
Dollar markup. The total of operating expenses and net profit. Markup expressed as an amount rather than as a percent.
Double-declining-balance. A method that determines a depreciation amount for the first year that is approximately twice the straightline rate.
Down payment. A partial payment made at the time of a purchase with the balance due at a later time.

Due date. The final day by which time an invoice is to be paid. After that day the buyer may be charged interest. Also the date by which a loan is to be repaid.
Duty. A charge or tax often levied against imported items to protect the domestic market against foreign competition.

E

Effective interest rate. The actual annual rate of interest.
Electronic fund transfers (EFTs). Money that is transmitted electronically, primarily via computers and automatic teller machines.
Employee's earnings record. Summary by quarter of the employee's gross earnings, deductions, and net pay.
Employer's Quarterly Federal Tax Return. A tax report, filed on Form 941 every three months by all employers, that provides the IRS with details about the number of employees, total wages paid, income and FICA taxes withheld, and other figures that determine whether a tax balance is due from the company.
Ending inventory. The cost of the inventory on hand at the end of a time period.
Endowment insurance. Insurance payable upon the insured's death if it occurs within a specified period, and an endowment of the same amount as the policy, payable if the insured is alive at the end of that period.
Equation. A sentence consisting of numbers and/or letters that represent numbers, divided into two sections by an equals sign (=).
Equivalent single discount rate. A single trade discount rate that can be used in place of two or more trade discount rates to determine the same discount amount.
Estimated service life. The amount of usefulness that an owner expects to get from an item before it will need to be replaced owing to obsolescence.
Exact interest method. The calculation of interest based on the assumption that a year is 365 (or 366) days long.
Excise tax. A tax assessed on each unit, such as is levied on the sale of gasoline, cigarettes, and alcoholic beverages.
Exponent. A number written above and to the right of a number used to indicate raising to the power.
Export. The shipment of goods made in one country for sale in other countries.
Export Administration Regulations. In the U.S., the set of International Trade Administration/Department of Commerce rules and regulations that governs trade between domestic and foreign companies.
Extend credit. To give a buyer immediate possession or immediate service with payment due in the future.
Extension. When taking an inventory, the dollar amount derived by multiplying the quantity of an item by its unit price or average cost.

F

Face value. The dollar amount written on a note; it is the same as the amount borrowed, or the principal (P). With regard to corporate and government bonds, the amount that will be paid to the holder when a bond is redeemed at maturity.
Factors. Term used in multiplication to mean numbers.
Federal Insurance Contributions Act (FICA). Provides for a federal system of old-age, survivors, disability, and hospital insurance.
Federal Unemployment Tax Act (FUTA). Law that requires employers to pay the IRS an annual tax of 6.2% on the first $\$ 7,000$ paid to each employee. The federal government uses the money to help fund State Employment Security Agencies, which administer unemployment insurance and job service programs.
Filing status. One of five conditions, including single, married, and married filing separate return, that a taxpayer qualifies for on Form 1040 that will determine such factors as tax rates and allowable deductions.
Finance charge. The fee that the seller charges for the privilege of buying on credit.
Financial statements. Statements presenting financial information about a company; two of these statements are the balance sheet and the income statement.
First-in, first-out (FIFO) costing method. A method of valuing inventory that assumes that costs for units used or sold are charged according to the order in which the units were manufactured or purchased.
Fixed interest rate. An interest rate that stays the same for the entire length of the loan.
Foreign trade zones. Domestic sites in the United States that are used for import and export activity and are considered to be outside U.S. Customs territory.
Form 1040. One of the basic income tax return forms filed by taxpayers.
Form W-4. The form used to inform the government of a person's marital status and to claim withholding allowances.
Fractions. Number expressions of one or more equal parts of whole units.
Frequency. The number of values in a class of data.
Frequency table. A table that summarizes the number of values in each class.
Future value. Also known as the compound amount, the total value of an investment; equal to the principal plus all the compound interest.
Future value factors. Also known as compound amount factors, the numbers in a compound interest or future value table that are used to compute the total amount of compound interest.
Future value of an annuity. The total value of a set of equal deposits into a sinking fund.

Future value of annuity factors (FVAF). Numbers used in annuity tables to compute total interest earned.

G

Government bonds. Long-term notes such as the treasury bonds issued by the federal government and the municipal bonds issued by states, cities, school districts, and other public entities.
Graduated commission rates. A system of rates by which graduated commissions increase as the level of sales increase.
Gross cost. The prime cost and all charges paid by the principal.
Gross proceeds. The price that a commission merchant gets for a consignment; also, the full sales price before any allowances, returns, or other adjustments are considered.
Gross profit method. A method of estimating inventory without a physical count or perpetual inventory system.
Group insurance. Health insurance coverage extended to a group of people. The cost for each person's coverage is less expensive than it would be under an individual policy.
Grouped data. Individual values that have been organized into data classes, as for use in a frequency table.

H

Health maintenance organization (HMO). Group health insurance coverage with limited options as a means of keeping health insurance costs lower than that of regular group policies.
Higher terms. A fraction in which both the numerator and denominator have been multiplied by the same number.
High-risk driver. A driver with a record of numerous citations or accidents.
Histogram. A diagram that presents the grouped data from a frequency table.

I
Import. Acquiring and selling goods made in a foreign country.
Improper fraction. One whole unit or more. The numerator is greater than or equal to the denominator.
Income statement. The financial statement that shows the revenues, the expenses, and the net income for a certain period of time.
Installments. Monthly payments, which for a credit sale typically include the purchase price plus credit charges.
Insured. For life insurance, the person whose life is being insured; for other types of insurance, the person who receives the benefit of the insurance.
Interest. A fee, usually charged for the use of money.
Interest-bearing note. A note that has a maturity value greater than its face value.
Interest dollars. The interest stated as an amount of money rather than as a percent.

Interest period. The period of time between the loan date and the repayment date.
Inventory sheet. A form used for recording information when taking a physical inventory.
Inventory turnover. The number of times the average inventory is converted into sales during the year.
Inventory turnover at cost. Cost of goods sold divided by average inventory for the same period computed at cost prices.
Inventory turnover at retail. Net sales divided by average inventory for the same period computed at retail prices.
Invoice. A document from a seller requesting payment from the buyer; the supplier's bill.
Invoice date. The date stated on an invoice; the beginning of the discount period.
Itemized deductions. Potential reductions to income allowed for certain payments made during the tax year.

J

Junk bond. A high-risk bond with a low rating.

L

Last-in, first-out (LIFO) costing method. A
method of valuing inventory based on the assumption that the inventory on hand at the end of a period of time is composed of the units received first.
Least common denominator. The lowest shared multiple of two or more denominators.
Levy. A government charge or fee.
Liabilities. The sum total of all that a business owes at any point in time; debt.
Limited-payment life insurance. A certain premium to be paid every year for a certain number of years specified at the time of insuring, or until the death of the insured, should that occur during the specified period. The policy is payable on the death of the insured, although there may be some options available at the end of the payment period.
Line graph. A type of graph often used for illustrating data over time.
List price. The price amount listed in the catalog.
Loan value. The amount that an insured may borrow on a policy from the insurance company.
Long-term credit. Loans that are for longer than 1 year.
Lower of cost or market value (LCM). An inventory valuation method by which the lower amount of either the market value or the cost value is chosen.
Lower terms. A fraction that has been reduced by a common divisor.
Lowest terms. A fraction that cannot be reduced by any common divisor.
Low-risk driver. A driver with a long-standing, clear driving record.

M

Maker. With regard to a note, the borrower.
Market value. The dollar amount required to replace the inventory as of the inventory date.

Markup. The difference between price and a seller's cost of an item for sale. In dollars it is the amount added to the cost of the goods in order to have a gross profit high enough to cover operating expenses and to make a net profit.
Markup percent. A percent that is used to compute the amount of dollar markup by multiplication. It could be a percent that multiplies the cost to find the dollar markup; or, it could be a percent that multiplies the selling price to find that dollar markup.
Markup percent based on cost. The percent that is calculated by dividing the desired amount of dollar markup by the cost.
Markup percent based on selling price. The percent that is calculated by dividing the desired amount of dollar markup by the selling price.
Markup rate. Markup percent.
Maturity date. The final day of a note on which the borrower (the maker of the note) pays the face value and any interest due to the holder of the note. The due date.
Maturity value (MV). For an interest-bearing note, it is the sum of the face value (principal) and the interest dollars: $\mathrm{MV}=\mathrm{P}+\mathrm{I}$.
Mean. An average of a group of values, computed by dividing the sum of the group of values by the number of values in the group.
Median. An average of a group of values, computed by arranging the numbers in numerical order and finding the middle number.
Metric system. The decimal system of weights (grams, kilograms, etc) and measures (meters, kilometers, etc.) used in most countries of the world, with the major exception of the U.S.
Mill. One tenth of one cent, or $\$ 0.001$; a tax rate may be expressed in mills.
Minuend. Number from which subtraction is being made.
Mixed decimal. A number containing a decimal point and both a whole-number part and a decimal part.
Mixed number. A number that represents more than one whole unit by combining a whole number and a proper fraction.
Mode. An average of a group of values, computed by identifying the number that occurs most often.
Modified Accelerated Cost Recovery System (MACRS). The accelerated depreciation method required by the IRS.
Mortgage. A loan, usually amortized over 15 to 30 years, used to purchase a home.
Multiplicand. The factor that is multiplied.
Multiplier. The factor that indicates how many times to multiply.
Municipal bonds. Long-term notes issued by states, cities, school districts, and other public entities.

N

Negotiable promissory note. A promissory note that may be sold to a third party.

Net price. The price that a distributor will charge a customer after any trade discounts have been subtracted from the list price.
Net proceeds. The amount sent to the consignor as a result of consignment sales; gross proceeds minus charges.
Net purchase amount. The price of the merchandise actually purchased, including allowances for returns and excluding handling and other costs.
Net revenue. Total revenue less any returns and allowances; frequently called net sales.
Net sales. Total sales for the time period minus sales returned and adjustments made during the same time.
Net worth. The difference between what a business owns (its assets) and what it owes (its liabilities). Also known as owners' or stockholders' equity.
No-fault insurance. Insurance coverage under which the driver of each vehicle involved in an injury accident submits a claim to his or her own insurance company to cover medical costs for injuries to the driver and passengers in that person's own vehicle. The insurance does not cover damage to either vehicle involved in an accident.
No-par stock. Stock issued without par value.
Non-interest-bearing promissory note. A note having a maturity value equal to its face value.
Number of compounding periods (\mathbf{n}). The number of compounding periods per year times the number of years of the loan.
Numerical sentence. A mathematical or logical statement, such as an equation, expressed in numbers and symbols.
Numerator. In a fraction, the number above the line.

O

Obsolescence. Becoming out-of-date.
Odd lot. Shares of stock for sale, consisting of any number of shares less than 100.
Odd-lot differential. A small extra charge, commonly added to the round-lot price, when odd lots are purchased.
Of. "Multiply," particularly when "of" is preceded by the Rate and followed by the Base.
150\%-declining-balance. A method that determines a depreciation amount for the first year that is approximately one and one-half the straight-line rate.
Ordinary annuity. An annuity in which the payments occur at the end of each period.
Ordinary interest method. The calculation of interest based on the assumption that a year is 360 days long.
Original cost. The cost of building or buying an asset and getting it into use.
Outstanding check. One that has been written but hasn't yet cleared the bank and been charged to the customer's account.
Outstanding deposit. A credit that hasn't yet been recorded by the bank.

Overhead costs. General costs not directly related to sales merchandise.

P

Par. A value assigned the shares of capital stock and stated on the stock certificate.
Payee. Party to whom a check is written.
Payroll register. A summary of wages earned, payroll deductions, and final take-home pay.
Percentage (\mathbf{P}). A portion of the Base.
Percentage method. One of two primary methods for calculating the amount of income tax to withhold from employee paychecks. After the total withholding allowance is subtracted from an employee's gross earnings, the amount to be withheld is determined by taking a percentage of the balance. The percentage to be used is specified by the IRS.
Period. The unit of time of the compounding.
Periodic interest rate (i). The rate of interest charged each period.
Perpetual inventory. A running count of all inventory units and unit costs based on a physical tracking of every item as it comes into and goes out of inventory.
Personal exemptions. Reductions to taxable income for the primary taxpayer and a spouse.
Physical inventory. An actual counting of the inventory.
Pie chart. Also known as a circle graph, a graphic presentation of statistics resembling a component bar graph because it shows how one quantity is composed of different parts.
Power. The number of times as indicated by an exponent that a number is multiplied by itself.
Preferred provider organization (PPO). Group health insurance coverage with benefits based on use of contracted providers as a means of keeping health insurance costs lower than that of regular group policies.
Preferred stock. A type of stock issued by corporations, which gives holders a right to share in earnings and liquidation before common shareholders do.
Premium. Fee for insurance coverage, usually paid every year by the insured person. The difference between a bond's par value and its market value when the market value is more. When bonds are sold at a premium, the yield rate will be lower than the stated (face) rate.
Present value. The amount needed to invest today to reach a stated future goal, given a certain rate of return.
Present value factors (PVF). The numbers in a present value factors table that are used to compute present value.
Present value of an annuity. The current value of a series of future payments.
Present value of annuity factor (PVAF). The numbers in a present value annuity factors table that are used to compute present value and total interest earned.
Price/earnings ratio (P/E). A measure of a stock's value, based on the per-share earnings as re-
ported by the company for the four most recent quarters.
Prime cost. The price that commission merchants pay for the merchandise when they purchase goods for their principals.
Principal. The person (client) for whom a service is performed. Amount that is borrowed using credit.
Proceeds. The amount that a seller receives from the buyer of a note being discounted; the difference between the maturity value and the discount amount. In a stock transaction, the proceeds received by the seller are equal to the selling price minus the commission.
Product. The answer to a multiplication problem.
Promissory note. An agreement signed by the borrower that states the conditions of a loan.
Proper fraction. Smaller than one whole unit. The numerator is smaller than the denominator.
Property insurance. Insurance against loss of or damage to property.
Property tax. A tax on real estate or other property owned by the business or an individual.
Purchases (P). Those goods for sale that have been acquired during the current time period.
Pure decimal. A number with no whole-number part.

Q

Quotient. The answer to a division problem.

R

Rate (R). The stated or calculated percent of interest.
Rate (percent) of decrease. The negative change in two values stated as a percent.
Rate (percent) of increase. The positive change in two values stated as a percent.
Rate of return on investment. A rate that approximates the interest rate that owners are earning on their investment in a company; rate of return on investment $=$ net income \div owner's equity.
Rate of yield. From an investment in stock, the ratio of the dividend to the total cost of the stock.
Rate of yield to maturity. The rate of interest investors will earn if they hold a bond to its maturity date.
Ratio. The relation of one amount to another.
Ratio of accounts receivable to net sales. Indicates the percentage of sales that have not yet bean paid for by customers; ratio of accounts receivable to net sales $=$ accounts receivable \div net sales.
Reconciliation of the bank balance. Comparison of the check stubs or check register with the bank statement to determine the adjusted bank balance.

Recovery amount. The maximum amount that an insurance company will pay on a claim.
Relationship of net income to net sales. This ratio indicates the portion of sales that is income; relationship of net income to net sales $=$ net income \div net sales.
Remainder. A part of a dividend that is left after even division is complete. The leftover part of division into which the divisor cannot go a whole number of times.
Remittance. Amount that a buyer actually pays after deducting a cash discount.
Round lot. A unit of stocks for sale, usually 100 shares.
Rounding off. Rounding up or down.

S

Sales tax. A government charge on retail sales of certain goods and services.
Scrap value (SV). The amount the owner of an asset expects to receive upon disposing of it at the end of its estimated service life.
Series of discounts. Two or more trade discount rates available to a buyer for different volume purchases.
Short rates. Insurance premium rates charged for less than a full term of insurance.
Short-term credit. Loans that are 1 year or less in length.
Simple interest. The fundamental interest calculation.
Sinking fund. A fund of deposits made by the issuer of a corporate or government bond and managed by a neutral third party in order to ultimately pay off a bond.
State Unemployment Tax Act (SUTA). Any of various laws passed by states that require the employer to pay a tax, such as 5.4% on the first $\$ 7,000$ paid to each employee, used to help fund unemployment programs.
Statistics. A field of study that includes the collection, organization, analysis, and presentation of data.
Stock certificate. A paper document that establishes ownership of a stock.
Stock exchanges. Formal marketplaces, such as the New York Stock Exchange and the National Association of Securities Dealers Automated Quotations, that are set up for the purpose of trading stocks.
Stock transactions. The purchase and sale of stocks.
Stockbroker. An agent who handles stock transactions for clients.
Straight (or ordinary) life insurance. Insurance requiring a certain premium to be paid every year until the death of the insured person. The policy then becomes payable to the beneficiary.
Straight-line (SL) method. A depreciation method that distributes the depreciable cost of an item in equal amounts to designated units or periods covering its useful life; (orig-
inal cost - scrap value) \div estimated total life in units or periods of time $=$ depreciation amount for 1 unit or period.
Subtrahend. Number being subtracted.
Sum. The total of two or more addends.
Sum-of-the-years-digits (SYD) method. A depreciation method based on the assumption that greater use (and greater productivity) occurs in the earlier years of an asset's life; the rate of depreciation is greater than the straightline method but less than the declining-balance method in the earlier years.

T

Tax rate. The percent used to calculate a tax.
Tax Rate Schedules. Tables formulated by the IRS to compute, depending upon filing status, the tax owed for various levels of taxable income.
Taxable income. The amount of income on which the income tax is determined.
Term insurance. Insurance protection issued for a limited time. A certain premium is paid every year during the specified time period, or term. The policy is payable only in case of death of the insured during the term. Otherwise, neither the insured nor the specified beneficiaries receive any payment, and the protection stops at the end of the term.
Term of the loan (or note). The period of time between the loan date and the repayment date.

Terms of payment. A statement on the invoice that informs the buyer of any available discount rate and discount date as well as the due date.
Time (T). Stated in terms of all or part of a year, the length of time used for calculating the interest dollars, the rate, or the principal.
Time line. A line representing time onto which marks are placed to indicate the occurrence of certain activities.
Total cost (for purchaser of stock). The purchase price of the stock plus a brokerage fee.
Trade discounts. Discounts given to buyers that generally are based on the quantity purchased.
Treasury bonds. Bonds issued by the United States government.
Truth in Lending Act. A federal law to assist consumers in knowing the total cost of credit.

U
Ungrouped data. Numbers listed individually.
Units-of-production method. A method for determining depreciation that distributes depreciation based on how much the asset is used.

V
Variable-rate loans. Loans that permit the lender to periodically adjust the interest rate depending on current financial market conditions.

W

Wage-bracket method. One of two primary methods for calculating the amount of income tax to withhold from employee paychecks. This method starts by granting a deduction for each withholding allowance claimed. The amount for each withholding allowance is provided by the IRS in a table. This method involves use of a series of wagebracket tables published by the IRS.
Withholding allowance. An amount claimed on tax Form W-4 by an employee that determines how much income tax the employer will withhold from each paycheck. Each allowance claimed (as for a spouse or dependents) reduces the amount of income tax withheld.
Working capital. The amount of current assets less current liabilities.
Working capital ratio. The amount of current assets that would remain if all a company's current liabilities were paid immediately; total current assets \div total current liabilities.

Y

Yield. Income from an investment; generally stated as a percent, or rate.

A

Accidental death benefit, 235
Account,
purchase, 112
sales, 111
Addends, 4
Adding, decimal numbers, 51-52
Addition,
checking, 5-6
of decimal numbers, 5-6
equations, 74
of fractions and mixed numbers, 30-33
horizontal, 6
number combinations, 4
repeated digits, 5
of two-digit numbers, 5
Additional death benefit, 235
Adjusted,
bank balance, 164
checkbook balance, 164
gross income, 211
Adjustments to Income section, 211
Ad valorem duty, 409
Aggie Office Supply, 109
Amortization, 274
payment factor, 278-81
schedule, 282
Amortizing a loan, 278-81
computing a monthly payment, 278-79, 473
Ioan payment schedule, 280-81,474-75
steps to create a schedule, 280-81
Amount credited, 129
Annual discount (or premium) amortization, 451
Annual percentage rate, 271-72
Annuity. See also Calculators
computing the future value of an, 462
computing the present value of $\mathrm{an}, 468-493 \mathrm{t}$ formula for present value, 469-70
using a calculator for, 470
computing regular payments of an, from the future value, 466-67
computing regular payments of an, from the present value, 471-72
using a calculator for, 472
future value of annuity factors, 464, $490 \mathrm{t}-492 \mathrm{t}$
future value of an annuity formula, 464
ordinary, 462-63
present value of an, 462
sinking funds, 467-68
steps to use the table to compute future value and total interest earned, 464
steps to use the table to compute present value and total interest earned, 469
tables, 463
using calculators to compute annuity factors, 465-66
various payment periods, 464
Annuity insurance, 235
Asia-Pacific Tours, 112
Assessed valuation, 204-05
Assets, 384
Athlete's World, 140-146
Auto,
comprehensive insurance, 230
insurance, 230-35
liability and property damage
insurance, 230
Automated teller machine, 159
Average, 496
daily balance, 270
principal invested, 451
unpaid balance, 275

B

Balance sheets, analyzing, 384-85
Bank,
charge, 161
discounting, 274, 296, 303-04
statements, 161
Bar chart. See Bar graph
Bar graph, 501-504
Base, finding, 90-91
Basic depreciation rate, 366
Bayside Coffee Shop, 92
Beneficiary, 235
Board of directors, 430
Bond ratings, 447
Bonds,
accrued interest on, 449
commissions for buying and selling, 449
computing annual interest on, 447-48
corporate, gains and losses on, 446-47
definition and types of, 446
interest rate, 448
junk, 447
newspaper information on, 448
prices of, 448
printed reports, 448-49
rate of yield for, 450-52
rating, 448
Book value, 365
"Borrow 1", 35
Broadway Motors, 126-128
Broker, 108
Budget, monthly and year-to-date comparison, 388
Burger King, 122, 496
Business operating ratios,
acid test ratio, 390
inventory turnover, 391
rate of return on investment, 391-92
ratio of accounts receivable to net sales, 390
relationship of net income to net sales, 391
working capital ratio, 389
Business statistics, 496

C

Calculators,
and exponents, 319
use of in interest applications, 253
Calculators (continued)
using, to compute annuity factors, 465-66
using a, to compute the periodic payment in an annuity, 472
using a, to compute the present value of an annuity, 470-71
using the Texas Instruments BA II Plus for annuity
calculations, 475
additional annuity keys, 475-77
basic annuity keys, 475
Callable bonds, 446
Capital stock, 426
Cash discounts, 126-130,305-06
for partially paid invoices,
steps to compute the unpaid
balance, 129
for fully paid invoices,
steps to compute, 126
Cash surrender value, 236-37
of life insurance policy, 236-37
Charges, 111
Charter, 426
Check, 158
Checkbook, 160-161
Check register, 161
Child Tax Credit, 215
Circle graph. See Pie charts
Classes of data. See Data classes
Coinsurance,
clause, 233
computing it on property losses, 253
to determine the owner's share of property loss under, 234
for a fire insurance policy, 234
on property, 233
Collision damage, 230
Commissions, 108
calculating sales and purchases for principals, 108-109
computing graduated sales, 109-111
computing sales and purchases for principals, 111
computing when a sale involves returned goods, 109
definition and terms, 108
merchant, 111
Common,
denominator, 33
stock, 431
Complement method, 122-124
to compute the remittance, 128
Complement rate, 122
Comparative bar graph, 502-03
Component bar graph, 503
Compound amount factors, 317
Compounding periods, 318-19
Compound interest, 316-17. See also Annuity Computing,
an employee's Federal and state unemployment tax liability, 189
an employer's quarterly Federal tax return, 187-188
auto insurance costs, 230
the interest variables, 257 finding the interest amount, principal, rate, or time, 258
Social Security, Medicare, and other withholdings, 184-186
special assessments, prorations, and exemptions, 207-08
Consignee, 111
Consignment, 111
Consignor, 111
Consumer Credit Protection Act of 1968, 271
Consumer Handbook to Credit Protection Laws, 271
Consumer Leasing Act of 1976, 271
Cost of goods sold, 140
Convertible,
bonds, 446
preferred stock, 432
Corporate bonds, 446
Corporation, 426
Cost,
of goods sold, 351
Credit, 162
card, 270
offered for an interest charge, 270
purchaser, 270
Cross-checking, 6
Cumulative stock, 431
Currency exchange rates,
computing by country, 406-408
computing the effects of changes, 408
Current yield, of bonds, 450

D

Data classes, 498
Decimal, numbers, changing to percents, 88-89 and electronic displays, 48-49 equivalents to fractions, 56 reading, 49-50 reading long, 49 shortcuts in multiplying and dividing, 58 steps to add, 51
steps to change a percent to a, 88-89
steps to divide, 54
steps to multiply, 53-54
steps to round, 50,58
steps to subtract, 52-53
using multipliers and divisors that end in
zeroes, 57-58
vs. fractions, 48
and whole numbers, 51
places, 49
point, 49
Declare a dividend, 430
Declining-balance depreciation rate, 366-67
Deductible clause, 230
Deductions, 211
tax, 211-13
Delta Marine Sales, 108
Denominator, 30 canceling common factors in, 37
Dependency exemption, 209
Deposit slips, 158
Depreciation,
accumulated, 365
declining-balance method, 366
definition, 364
Modified Accelerated Cost
Recovery System, 369-71
partial-year, 371
straight-line method of determining, 364
sum-of-the-years-digits method of computing, 368-69
units-of-production method, 365
Determining taxes due, using
Standard Form 1040, 213
Discounts,
date, 127
on interest-bearing note, 296
method, 122
period, 127
rate, 123
when selling bonds, 447
Dividend, 11
in arrears, 431
Divide,
by 100,13
by 10,12
definition and terms, 11-14
estimating, 14
of decimal numbers, 54
steps for fractions, mixed numbers, and
whole numbers, 11-12, 38
steps in long, 11
when divisor and dividend end in zeroes, 13
Divisor, 11
Dollar markup, 140
and cost,
steps to compute from the markup percent, 144
Double-declining-balance, 366-67
Down payment, 252
Due-date, of promissory note, 296
Duties on imports, computing, 409-411

E

Eastern Restaurant Supply, 122-124
Effective interest rates, 275, 320
daily compounding, 321
increasing, 276
Electronic fund transfers, 159
Employee's earnings record, 186-187
Employee's Withholding Allowance Certificate, 177
Employer's Quarterly Federal Tax Return, 187
Employer's Tax Guide, The, 179, 181-183
Endowment insurance, 235
Equivalent single discount rate,
steps to compute, 125
Equation, 74
Estimated service life, 364
Estimating,
when dividing, 14
when multiplying, 14
Excise tax, 203-04
as an amount per unit, 203
Exemptions, on property taxes, 207-08
Exponent, 319
Export Administration Regulation, 406
Exports, 406

F

Face value,

on bonds, 447

of promissory note, 296
Factors, 8
Fair Labor Standards Act, 176
Federal government,
income, from taxes, 208
spending, 208
Federal income tax, 176
Federal Income Taxation, 209
Federal income tax withholding,
amounts computations, 178-179
using the percentage method, 179-184 using the wage-bracket method, 181-183
steps to compute using the percentage
method, 179
Federal Insurance Contributions Act (FICA), 176, 184
Federal taxes, 176
Federal Unemployment Tax Act, 189
Federal Wage and Hour Law, 176
FICA. See Federal Insurance Contributions Act
Filing status, 209
Finance charges, 270
Financial,
sales taxes, 203
statements, 384
Fixed interest rate, 281
Floyd's Appliance Store, 144
Foreign trade zones, 410
Form, 941, 187-188
Form 941. See Employer's Quarterly Federal Tax Return
Form 1040, 209-14
Line 42, 213
remaining sections of, 213
to determine taxable income, 209-13
to determine taxes due, 213-16
Form 1040A, 209
Form 1040EZ, 209
Form W-4, 176-177

Fractions,

adding, 33
bar, 30
canceling, 32, 37
changing to percents, 89
decimal equivalents of, 89
definition and vocabulary of, 30
division of, 38
improper to mixed numbers, 36-37
multiplying, 36
raising and reducing, 32
steps to add two or more fractions and/or mixed fractions, 33
steps to change an improper to a mixed number, 31
steps to change a mixed number to an improper, 31
steps to divide, 38
steps to multiply fractions, mixed numbers, or whole numbers, 36
steps to raise to a higher terms, 32
steps to subtract one fraction or mixed number from another, 35
subtracting, 34-36
versus decimal numbers, 48
Freight charges, 127
Frequency tables, 498
comparative bar graphs, 502
component bar graph, 503-04
computing the mean of large data sets, 499-500
constructing bar graphs, 501-04
constructing histograms, 500-01
constructing line graphs, 504-06
constructing pie charts, 507-08
grouped data from, 500
large data sets, 499-500
Function hierarchy, 72
FUTA. See Federal Unemployment Tax Act
Future value,
computing present values from, 316
factors, 317
formula, 317-18
steps to use the table, 317
tables, 325-26, 338-39

G

Gifts, inheritance, and bequests, 209
Government bonds, 446
Graduated commission rates, 109
Gross,
cost, 112
pay calculations, 176
proceeds, 111
profit method, 349
Group insurance, 237-39
annual deductible, 238
Group medical,
insurance, 185
premiums, 238

H

Hart Furniture Co., 160, 163
Health maintenance organization (HMO), 237
High-risk driver, 231
Histogram, 500-02

Home Ownership and Equity
Protection Act of 1994, 271
Horizontal analysis, 384
I
Imports, 406
Improper fraction, 30
Income statement, 384
analyzing, 386-89
Income taxes,
determining taxable income, 209
Installment purchases, 273-74
Insured, 232
Insurance,
auto, 230-35
life, 235-37
medical contributions and
reimbursements, 237-39
no-fault, 230
premium per \$1,000, 236
property, 230, 233-35
risk rates, 231
short rates, 232
Interest,
comparing ordinary and exact, 255
computing exact, 254-55
computing ordinary, 254-55
computing simple, 252,256
computing the variables, 257
definition, 252
dollars, 296
estimating exact simple, 256-57
rate, comparing discount to interest rate on a loan, 304
rates, converting, 270 combinations of time and
interest that yield 1\%, 256
estimating exact, 256-57
other rates and times, 256
values per \$1,000, 237
International Trade Administration, 406
Inventory,
average, 350
average cost method of, 346
estimator of value of, 349
FIFO method of computing, 346
LIFO method of computing, 347
perpetual systems, 344
sheets, 344
turnover, 391
turnover, computing, 350
turnover, at retail, 351
turnover, at cost, 351
physical, 344
Invoice, 126
Itemized deductions, 213

J
Johnson Hardware, 165
Johnson and Johnson, 189
Joslin Realty, 92
Junk bonds, 447
L
Least common denominator, 33
Levy, 202

Liabilities, 384
Life insurance,
computing premiums, 235-37
Limited-payment life insurance, 235
Line graphs, 504-06
List price, 122
Loan value, of a life insurance policy, 236-37
Lower of cost or market value, 347-48
Low-risk driver, 231

M

Macy's Department Store, 252
Market value, 204
Markup, 140
computing based on cost, 141
computing based on selling price, 144
percent, 141-146
to compute the cost from, 142, 145
computing based on cost, 143
steps to compute dollar markup and cost from, 144
steps to compute from the selling price, 146
rate, 141
variables, 140
Maturity date, of promissory note, 296
Maturity value, 296
McDonald's, 122
Quarter Pounder, 69
Mean, 496-97
of large data sets, 499-500
Median, 497
Medical insurance contributions and reimbursements,
computing, 237-39
Medicare, 176
amounts, 187
taxes, 184-185
provides income for the Federal government, 208
Mental computations, 70
Merchandise returns, 127
Metric system, 411
Mills, 205-06
Minuend, 7
Mixed,
decimal, 48
number, 30
Mode, 498
Mortgage, 281-82
Multiplicand, 8
Multiplication,
by 50, 10
by 25,10
checking, 9
of decimal numbers, 53-54
definition and terms, 53-54
estimating the answer, 14
of fractions, 36
of numbers ending in zero, 9
of the product of two factors, 8,10
steps for fractions, mixed numbers, and whole numbers, 36
when multiplier contains zero not at the end, 9
See also Cancellation

Multiplier, 8
Municipal bonds, 446

N

National Automotive Supply, 126-128
Negotiable promissory note, 296
Net price, 122-123
steps to compute with the discount method, 122
steps to compute with the complement method, 123
Net,
proceeds, 111
purchase amount, 126
revenue, 386
sales, 349, 386
tax, 215
worth, 384
No-fault insurance, 230
Nonprofit organizations, and exempt from property taxes, 207
No-par stock, 426
Numerator, 30
canceling common factors in, 37
Numeric,
equations,
solving simple, 74-76
sentence, 74

0

Obsolescence, 364
Odd lot, 429
Odd-lot differential, 429
Original cost, 364
Outstanding,
check, 161
deposit, 163
Overhead costs, 94
steps to allocate based on total floor space, 95
Owner's share of property
loss under coinsurance, steps to determine, 234

P
Par stock, 426
Payee, 158
Payroll,
periods, 176
register, 176-178, 185
Percentage, 90-91
method, 179-184
Percents,
in business, 92
changing fractions and decimals to, 89
changing to decimals, 88-89
definition of, 88, 90
and property taxes, 206
sales tax as, 202-03
using to allocate overhead
expenses, 94-95
using to measure increase and decrease, 92-94
steps to change a fraction or a decimal to a, 89
Periodic interest rate, 318

Personal,

exemptions, 209
income taxes,
provide income for the Federal government, 208
Pie charts, 507-08
Power, 319
Preferred provider organization, 237
Preferred stock, 431
Premiums, 230-33
for property insurance, 233
if the policy is cancelled, 232
when selling bonds, 447
Present values,
formula for computing, 322-23
tables, 323-326, 340-41
Prime cost, 112
Principal, 108, 252
Product, 8
steps to approximate, 58
Promissory note,
computing the interest period of, 297
computing the maturity value of, 300
determining due date of, 298-99
discount amount, 301
discount date on, 301
discount period, 301
discount rate, 301
negotiable, 296, 300
non-interest bearing, 302
proceeds of, 301
steps to compute the number of interest
days between
two dates, 297
Proper fraction, 30
Property,
insurance, 233-35
taxes,
computing, 204-06
definition, 204
special assessments, prorations, and exemptions, 204, 207-08
Prorations, 207-08
Pure decimal, 48
P/Y, 476

Q

Quotient, 11
steps to approximate, 59
R
Rates,
percentage,
finding, 90-91
of increase or decrease, 92-94
time, and distance problems, 72
Reconciliation, of bank balance, 161-164
Recovery amount, 234
Regal Meals, 122
Remainder, 11
Remittance,
steps to compute, 126
steps to compute when there are merchandise returns and/or
freight charges, 127
steps to compute with the
complement method, 128
Retail sales taxes, 202
Rossi \& Shanley Real Estate, 93
Rounding off, 50, 77
S
Sales,
commissions, computing, 108
steps to compute when a sale involves returned goods, 109
steps to compute under a graduated rates plan, 109
tax,
as an amount per unit, 203
as a percent of price, 202-03
computing, 202
definition of, 202-03
excise taxes, 203
financial sales taxes, 203
goods and services exempt from, 202
as percentage of price, 202
social sales taxes, 203
and total sales amount, steps to compute, 202
Selling price,
computing cost from, 142, 144-145
computing directly from cost, 141-142, 145
computing from cost, 145
steps to compute from the markup percent, 142
steps to compute the markup percent from, 146
steps to computing based on cost, 141-142
Series of discounts, 123
Short rates, 232-33
Simple interest, 252
computing, 252
formula for, 252
Sinking funds, 467-68
Social sales taxes, 203
Social Security, 176
amounts, 187
provides income for the Federal government, 208
tax, 184-185
Space Savers, 130
Special assessments, for property, 207-08
Special payroll deductions, 185
Specialty Marketing Group, 112-113
Standard deduction, 211-213
State,
income taxes, 185
taxes on cigarettes, 203
Unemployment Tax Act, 189
Statistics, 496
Steps in long division, 11-12
Straight (ordinary) life insurance coverage, 235-36
Subtraction,
checking, 7
of decimal numbers, 52-53
of fractions, 34-36
horizontal, 7
Subtrahend, 7
Sum, 4

SUTA. See State Unemployment Tax Act Suzi's Muffins, 122-125

T

Tables for percentage method of withholding, 180
Taxable income, 209-13
computing, 213
definition of, 210
determining using Form 1040, 209
what it does and does not include, 210
Tax,
assessment bases, are expected to change, 209
credits, 215-216
rate, 202
computing in percents and mills, 88-89, 205
percents, 205
mills, 205-06
are expected to change, 209

Tax Rate Schedules, 213-15
Term insurance, 235
Terms of payment, 126
Trade discounts,
computing, 122
for 30-day payment series, calculating, 123-124

Taxes. See Income taxes, Property taxes, Sales taxes, Unemployment taxes
Truncating, 50

U

Unemployment tax liability, 189
Ungrouped data, 498
Uniform Product Code, 203
United Food Services, 125
Unpaid balance, 129
User of calculators, in computing interest, 253

W

Wage-bracket method, 181-184
Warner-Lambert Company, 189
Wells Fargo Bank, 158-159,162
Willowbrook Farms, 111
Withholding allowance, 176-177
Word problems,
percentage, 179-184
rate, time, and distance, 72
relationship problems, 76
rounding, 77
solving, 70-72, 74-76

Y

Yeager Manufacturing, 187
Yield, of bonds, 450

Progress Report

Part	Chapter	Assignment	Title	Page	Date Assigned	Date Completed	Score/Grade
1	1	1.1	Addition	19			
		1.2	Subtraction	21			
		1.3	Multiplication	23			
		1.4	Division	25			
		1.5	Estimating	27			
	2	2.1	Addition and Subtraction of Fractions	43			
		2.2	Multiplication and Division of Fractions	45			
	3	3.1	Addition and Subtraction of Decimal Numbers	63			
		3.2	Multiplication and Division of Decimal Numbers	65			
		3.3	Decimal Numbers at Business	67			
	4	4.1	Word Problems, Equations, and Series	81			
		4.2	Word Problems, Formulas, and Equations	83			
2	5	5.1	Base, Rate, and Percentage	99			
		5.2	Rate of Increase and Rate of Decrease	101			
		5.3	Business Applications	103			
		5.4	Allocation of Overhead	105			
	6	6.1	Commission	117			
		6.2	Applications with Commission	119			
	7	7.1	Trade Discounts	135			
		7.2	Cash Discounts	137			
	8	8.1	Markup Based on Cost	151			
		8.2	Markup Based on Selling Price	153			
3	9	9.1	Check Register and Check Stubs	169			
		9.2	Check Register and Bank Statements	171			
		9.3	Bank Balance Reconciliation Statements	173			
	10	10.1	Payroll Problems	195			
		10.2	Payroll, Earnings Record, Payroll Tax Returns	197			
	11	11.1	Sales Tax	221			
		11.2	Property Taxes	223			
		11.3	Federal Income Tax	227			
	12	12.1	Auto Insurance	243			
		12.2	Property Insurance	245			
		12.3	Life and Medical Insurance	247			
4	13	13.1	Simple Interest	263			
		13.2	Simple Interest Applications	267			

Part	Chapter	Assignment	Title	Page	Date Assigned	Date Completed	Score/Grade
	14	14.1	Monthly Finance Charges	287			
		14.2	Installment Sales and Effective Rates	291			
		14.3	Amortization and Mortgages	293			
	15	15.1	Dates, Times, and Maturity Value	309			
		15.2	Discounting Promissory Notes	311			
	16	16.1	Future Value (Compound Amount)	329			
		16.2	Present Value	333			
5	17	17.1	Inventory Cost	357			
		17.2	Inventory Estimating and Turnover	359			
	18	18.1	Business Depreciation Part 1	377			
		18.2	Business Depreciation Part 2	381			
	19	19.1	Balance Sheet Analysis	397			
		19.2	Income Statement Analysis	399			
		19.3	Financial Statement Ratio	401			
	20	20.1	Trading with Other Countries	417			
		20.2	Duties and Metric Conversion	419			
6	21	21.1	Buying and Selling Stock	437			
		21.2	Capital Stock	441			
	22	22.1	Corporate and Government Bonds	457			
		22.2	Bond Rate of Yield	459			
	23	23.1	Annuities-Future Value	481			
		23.2	Annuities-Present Value	485			
	24	24.1	Statistical Averages	513			
		24.2	Graphs and Charts	515			

[^0]: Australia•Brazil•Canada•Mexico Singapore•Spain•United Kingdom United States

[^1]: *Business calculators permit you to make different entries for the annual interest rate, the number of compounding periods in 1 year, and the number of payments in 1 year. For example, you could make monthly payments into an account that paid 6% compounded daily. That computation is well beyond the capability of what we can do with only Tables 23.1 and 23.2. Therefore, in this explanation, we will simply assume that $[\mathbf{N}]=$ the number of payments, and $[\mathbf{I} / \mathbf{Y}]=$ the periodic interest rate.

