

jQuery Selectors
By Bear Bibeault & Yehuda Katz

CONTENTS INCLUDE:

n	 What are jQuery Selectors?
n	 Types of jQuery Selectors
n	 Basic CSS Selectors
n	 Custom jQuery Selectors
n	 Matched Set Methods
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

jQuery selectors are one of the most important aspects of the
jQuery library. These selectors use familiar CSS syntax to allow
page authors to quickly and easily identify any set of page
elements to operate upon with the jQuery library methods.
Understanding jQuery selectors is the key to using the jQuery
library most effectively. This reference card puts the power of
jQuery selectors at your very fingertips.

A jQuery statement typically follows the syntax pattern:

	 $(selector).methodName();

The selector is a string expression that identifies the set of
DOM elements that will be collected into a matched set to be
operated upon by the jQuery methods.

Many of the jQuery operations can also be chained:

	 $(selector).method1().method2().method3();

As an example, let’s say that we want to hide the DOM element
with the id value of goAway and to add class name incognito:

	 $(‘#goAway’).hide().addClass(‘incognito’);

Applying the methods is easy. Constructing the selector
expressions is where the cleverness lies.

There are three categories of jQuery selectors: Basic CSS
selectors, Positional selectors, and Custom jQuery selectors.

The Basic Selectors are known as “find selectors” as they are used
to find elements within the DOM. The Positional and Custom
Selectors are “filter selectors” as they filter a set of elements
(which defaults to the entire set of elements in the DOM).

Basic CSS Selectors
These selectors follow standard CSS3 syntax and semantics.

WHAT ARE JQUERY SELECTORS?

TYPES OF JQUERY SELECTORS

Syntax Description

* Matches any element.

E Matches all elements with tag name E.

E F Matches all elements with tag name F that are descendants of E.

E>F Matches all elements with tag name F that are direct children of E.

E+F Matches all elements with tag name F that are immediately
preceded by a sibling of tag name E.

E~F Matches all elements with tag name F that are preceded
by any sibling of tag name E.

E:has(F) Matches all elements with tag name E that have at least one
descendant with tag name F.

E.c Matches all elements E that possess a class name of c.
Omitting E is identical to *.c.

E#i Matches all elements E that possess an id value of i.
Omitting E is identical to *#i.

E[a] Matches all elements E that posses an attribute a of any value.

E[a=v] Matches all elements E that posses an attribute a whose value is
exactly v.

E[a^=v] Matches all elements E that posses an attribute a whose value starts
with v.

E[a$=v] Matches all elements E that posses an attribute a whose value ends
with v.

E[a*=v] Matches all elements E that posses an attribute a whose value
contains v.

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,

onload, etc. in browser event model)

setRequestHeader

(namevalue)

add a header to the HTTP request

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()

is called)

httpStatus The HTTP return code (integer, only populated after

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only

set after response reaches the interactive readyState)

getResponseHeader

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot
Tip

 tech facts at your fingertips

jQ
u

e
ry

 S
e

le
ct

o
rs

w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

Examples
n 	$(‘div’) selects all <div> elements

n 	$(‘fieldset a’) selects all <a> elements within
	 <fieldset> elements

Hot
Tip

The wrapped set created by the application of a
selector can be treated as a JavaScript array for
convenience. It is particularly useful to use array
indexing to directly access elements within the
wrapped set.

For example:

var element = $(‘img’)[0];

will set the variable element to the first element
in the matched set.

→

#7

jQuery Selectors
2

DZone, Inc. | www.dzone.com

Syntax Description

B:first Selects the first element on the page matching the base
selector B.

B:last Selects the last element on the page matching the base
selector B.

B:first-child Selects all elements from B that are first children.

B:last-child Selects all elements from B that are last children.

B:only-child Selects all elements from B that are only children.

B:nth-child(n) Selects all elements from B that are n-th ordinal children.
Starts at 1.

B:nth-child(odd|even) Selects all elements from B that are even or odd ordinal
children. The first child is considered odd (ordinal 1).

B:nth-child(Xn+Y) Selects all elements from B that match the formula. X denotes
an ordinal multiplier, while Y denotes an offset. Y may be
omitted if 0. See the following examples.

B:even Selects the even elements within the set of elements
defined by B.

Syntax Description

B:odd Selects the odd elements within the set of elements defined by B.

B:eq(n) Selects the n-th element within the set of elements defined
by B. Starts at 0.

B:gt(n) Selects elements within the set of elements defined by B
that follow the n-th element (exclusive). Starts at 0.

B:lt(n) Selects elements within the set of elements defined by B
that precede the n-th element (exclusive). Starts at 0.

Syntax Description

B:animated Selects elements from the base set B that are currently under
animated control via one of the jQuery animation methods.

B:button Selects elements of B that are of any button type; that is:
button, input[type=submit], input[type=reset] or
input[type=button].

B:checkbox Selects elements of B that are of type input[type=checkbox].

 tech facts at your fingertips

Basic CSS Selectors, continued

Examples

n 	$(‘li>p’) selects all <p> elements that are direct children
	 of elements

n 	$(‘div~p’) selects all <div> elements that are preceded
	 by a <p> element

n 	$(‘p:has(b)’) selects all <p> elements that contain a
	 element

n 	$(‘div.someClass’) selects all <div> elements with
	 a class name of someClass

n 	$(‘.someClass’) selects all elements with class name 	
	 someClass

n 	$(‘#testButton’) selects the element with the id value 	
	 of testButton

n 	$(‘img[alt]’) selects all elements that possess 	
	 an alt attribute

n 	$(‘a[href$=.pdf]’) selects all <a> elements that
	 possess an href attribute that ends in .pdf

n 	$(‘button[id*=test]’) selects all buttons whose id 	
	 attributes contain test

Positional Selectors
These selectors match based upon positional relationships
between elements. These selectors can be appended to any
base selector (which we’ll denote by B) to filter the matches
based upon position. If B is omitted, it is assumed to be *
(the pool of all elements).

jQuery Custom Selectors
These selectors are provided by jQuery to allow for commonly
used, or just plain handy, selections that were not anticipated
by the CSS Specification. Like the Positional Selectors, these
selectors filter a base matching set (which we denote with B).
Omitting B is interpreted as the set of all elements. These
selectors may be combined; see the examples for some
powerful selector combinations.

Positional Selectors, continued

Examples

n 	$(‘p:first’) selects the first <p> element on the page

n 	$(‘img[src$=.png]:first’) selects the first
	 element on the page that has a src attribute ending in .png

n 	$(‘button.small:last’) selects the last <button> 	
	 element on the page that has a class name of small

n 	$(‘li:first-child’) selects all elements that are 	
	 first children within their lists

n 	$(‘a:only-child’) selects all <a> elements that are the 	
	 only element within their parent

n 	$(‘li:nth-child(2)’) selects all elements that 	
	 are the second item within their lists

n 	$(‘tr:nth-child(odd)’) selects all odd <tr> elements 	
	 within a table

n 	$(‘div:nth-child(5n)’) selects every 5th <div>
	 element

n 	$(‘div:nth-child(5n+1)’) selects the element after 	
	 every 5th <div> element

n 	$(‘.someClass:eq(1)’) selects the second element 	
	 with a class name of someClass

n 	$(‘.someClass:gt(1)’) selects all but the first two
	 elements with a class name of someClass

n 	$(‘.someClass:lt(4)’) selects the first four elements 	
	 with a class name of someClass

Hot
Tip

You can create the union of multiple disparate
selectors by listing them, separated by commas,
in a single call to $(). For example, the following
matches all <div> and <p> elements:

$(‘div,p’)

While the following, matches all <div> elements
with a title attribute, and all elements
with alt attributes:

$(‘div[title],img[alt]’)

Hot
Tip

Note that the :nth-child selectors begin
counting at 1, while the :eq , :gt and :lt
selectors begin with 0.

3

DZone, Inc. | www.dzone.com

jQuery Selectors
 tech facts at your fingertips

jQuery Custom Selectors, continued

Examples

n 	$(‘img:animated’) selects all elements that are 	
	 undergoing animation

n 	$(‘:button:hidden’) selects all button type elements 	
	 that are hidden

n 	$(‘input[name=myRadioGroup]:radio:checked’) 	
	 selects all radio elements with the name attribute value of 	
	 myRadioGroup that are checked

n 	$(‘:text:disabled’) selects all text fields that are 		
	 disabled

n 	$(‘#xyz p :header’) selects all header type elements 	
	 within <p> elements that are within an element with an id 	
	 value of xyz. Note the space before :header that prevents 	
	 it from binding directly to the p.

n 	$(‘option:not(:selected)’) selects all unselected 	
	 <option> elements

n 	$(‘#myForm button:not(.someClass)’) selects all 	
	 buttons from the <form> with the id of myForm that do not 	
	 possess the class name someClass.

n 	$(‘select[name=choices] :selected’) selects the 	
	 selected <option> elements within the <select> element 	
	 named choices.

n 	$(‘p:contains(coffee)’) selects all <p> elements that 	
	 contain the text coffee

Used either separately, or in combination, the jQuery selectors
give you a great deal of power to easily create a set of elements
that you wish to operate upon with the jQuery methods.

The add() method returns a new matched set that is the
union of elements in the original wrapped set and any elements
either passed directly as the expression argument, or
matched by the selector of the expression argument.

Consider:

	 $(‘div’).add(‘p’).css(‘color’,’red’);

This statement creates a matched set of all <div> elements,
then creates a new matched set of the already matched <div>
elements and all <p> elements. The second matched set’s ele-
ments (all <div> and all <p> elements) are then given the CSS
color property of “red”.

You may think this is not all that useful because the same could
have been achieved with:

	 $(‘div,p’).css(‘color’,’red’);

But now consider:

	 $(‘div’).css(‘font-weight’,’bold’).add(‘p’).		

	 css(‘color’,’red’);

Here the first created matched set of <div> elements is as-
signed a bold rendition, and then the second matched set,
with <p> elements added, is colored red.

jQuery chaining (in which the css() method returns the
matched set) allows us to create efficient statements such as
this one that can accomplish a great deal with little in the way
of script.

More Examples

	 $(‘div’).add(someElement).css(‘border’,’3px solid 		

	 pink’);

	 $(‘div’)

	 .add([element1,element2])

	 .css(‘border’,’3px solid pink’);

Syntax Description

B:enabled Selects form elements from B that are in enabled state.

B:file Selects elements of B that are of type input[type=file].

B:header Selects elements from B that are of the header types:
that is <h1> through <h6>.

B:hidden Selects elements of B that are hidden.

B:image Selects elements of B that are of type input[type=image].

B:input Selects form input elements from B; that is, <input>, <select>,
<textarea> and <button> elements.

B:not(f) Selects elements of B that do not match the filter selector specified
by f. A filter selector is any selector beginning with : (colon), A base
set B cannot be specified as part of f.

B:parent Selects elements of B that are parents of non-empty element
children.

B:password Selects elements of B that are of type input[type=password].

B:radio Selects elements of B that are of type input[type=radio].

B:reset Selects elements of B that are of type input[type=reset] or
button[type=reset].

B:selected Selects elements of B that are in selected state. Only <option>
elements posses this state.

B:submit Selects elements of B that are of type input[type=submit] or
button[type=submit].

B:text Selects elements of B that are of type input[type=text].

B:visible Selects form elements from B that are not hidden.

While the jQuery selectors give us great flexibility in identify-
ing which DOM elements are to be added to a matched set,
sometimes there are match criteria that cannot be expressed
by selectors alone. Also, given the power of jQuery method
chaining, we may wish to adjust the contents of the matched
set between method invocations.

For these situations, jQuery provides methods that operate
not upon the elements within the matched set, but on the
matched set itself. This section will summarize those methods.

Adding New Elements

For adding new elements to a matched set, the add() method
is provided:

MATCHED SET METHODS

add(expression)

expression (String) A selector expression that specifies the DOM elements to

be added to the matched set, or an HTML string of new elements

to create and add to the set.

(Element) A reference to an existing element to add.

(Array) Array of references to elements to add.

4

DZone, Inc. | www.dzone.com

jQuery Selectors
 tech facts at your fingertips

Removing Matched Elements
What if we want to remove elements from the matched set?
That’s the job of the not() method:

Like add(), this method creates and returns a new matched
set, except with the elements specified by the expression
argument removed. The argument can be a jQuery selector, or
references to elements to remove.

Examples
	 $(‘body *’).css(‘font-weight’,’bold’)
		 .not(‘p’).css(‘color’,’red’);

Makes all body elements bold, then makes all but <p>
elements red.

	 $(‘body *’).css(‘font-weight’,’bold’)
		 .not(anElement).css(‘color’,’red’);

Similar to the previous except the element referenced by
variable anElement is not included in the second set (and
therefore not colored red).

Finding Descendants
Sometimes it’s useful to limit the search for elements to
descendants of already identified elements. The find()
method does just that:

Unlike the previously examined methods, find() only accepts
a selector expression as its argument. The elements within the
existing matched set will be searched for descendants that
match the expression. Any elements in the original matched
set that match the selector are not included in the new set.

Example
	 $(‘div’).css(‘background-color’,’blue’)
		 .find(‘img’).css(‘border’,’1px solid aqua’);;

Selects all <div> elements, makes their background blue,
selects all elements that are descendants of those
<div> elements (but not elements that are not
descendants) and gives them an aqua border.

Filtering Matched Sets
When really fine-grained control is required for filtering the ele-
ments of a matched set, the filter() method comes in handy:

The filter() method can be passed either a selector expression
(comma-separated if more than one is desired) or a function.
When passed a selector, it acts like the inverse of not(),
retaining elements that match the selector (as opposed to
excluding them). When passed a function, the function is in-
voked for each element and decisions that cannot be expressed
by selectors can be made regarding the exclusion or inclusion
of each element.

Examples

	 $(‘.bashful’).show()

		 .filter(‘img[src$=.gif]’).attr(‘title’,’Hi there!’);

Selects all elements with class name bashful, makes sure
that they are visible, filters the set down to just GIF images,
and assigns a title attribute to them.

	 $(‘img[src^=images/]’).filter(function(){

		 return $(this).attr(‘title’).match(/.+@.+\.com/)!= null;

		 })

		 .hide();

Selects images from a specific folder, filters them to only
those whose title attribute matches a rudimentary .com
email address, and hides those elements.

find(expression)

expression (String) A selector expression that specifies which descendant
elements are to be matched.

filter(expression)

expression (String) A selector expression that specifies which elements
are to be retained.

(Function) A function used to determine if an element should
be included in the new set or not. This function is passed the
zero-based ordinal of the element within the original set, and
the function context (this) is set to the current element.
Returning false as the function result causes the element to
not be included in the new set.

Slicing and Dicing Matched Sets

Rather than matching elements by selector, we may sometimes
wish to slice up a matched set based upon the position of the
elements within the set. This section introduces two methods
that do that for us.

Both of these methods assume zero-based indexing.

Examples

	 $(‘body *’).slice(2).hide();

Selects all body elements, then creates a new set containing
all but the first two elements, and hides them.

	 $(‘body *’).slice(2,3).hide();

Selects all body elements, then creates a new set containing
the third element in the set and hides it. Note that the new
set contains just one element: that at position 2. The element
at position 3 is not included.

slice(being,end)

begin (Number) The beginning position of the first element to
be included in the new set.

end (Number) The end position of the first element to not be
included in the new set. If omitted, all elements from begin to
the end of the set are included.

not(expression)

expression (String) A selector expression that specifies the DOM elements

to be removed from the matched set.

(Element) A reference to an existing element to remove.

(Array) Array of references to elements to remove.

Hot
Tip

Avoid a typical beginner’s mistake and never
confuse the not() method, which will remove
elements from the matched set, with the
remove() method, which will remove the
elements in the matched set from the HTML DOM!

5

DZone, Inc. | www.dzone.com

jQuery Selectors
 tech facts at your fingertips

Slicing and Dicing Matched Sets, continued

The eq(n) method can be considered shorthand for
slice(n,n+1).

Matching by Relationship
Frequently we may want to create new matched sets based
upon relationships between elements. These methods are
similar enough that we’ll present them en masse in the
following table:

For all methods that accept a filtering expression, the expression
may be omitted in which case no filtering occurs.

Translating Elements
There may be times that you want to translate the elements
within a matched set to other values. jQuery provides the
map() method for this purpose.

Controlling Chaining

All of the methods examined create new matched sets whose
contents are determined in the manner explained for each
method. But what happens to the original? Is it dismissed?

It is not. When a new wrapped set is created it is placed on the
top of a stack of sets, with the top-most set being the one
to which any methods will be applied (as we have seen in the
examples). But jQuery allows you to “pop” the top-most set
off that stack so that you can apply methods to the original
set. It does this with the end() method:

Consider a previous example:

	 $(‘div’).add(‘p’).css(‘color’,’red’);

As we recall, this creates a matched set of <div> elements,
then creates a new set that also contains the <p> elements.
Since this latter set is at the top of the stack when the css()
method is called, it is the second set that is affected. Now
consider:

	 $(‘div’).add(‘p’).css(‘color’,’red’).end().hide();

After the css() method is called, the end() method pops
the second set off the stack “exposing” the original set of just
<div> elements, which are then hidden.

Another useful method to affect how chaining the sets operates
is the andSelf() method:

Calling andSelf() creates yet another new matched set that
is the union of the top two matched sets on the stack. This can
be useful for performing an action on a set, creating a new

For example, let’s say that you wanted to collect the values of
all form elements within a form named myForm:

	 var values = $(‘#myForm :input’).map(function(){
		 return $(this).val();
	 });	

end()

(no arguments)

andSelf()

(no arguments)

eq(position)

position (Number) The position of a single element to be included in the
new set.

map(callback)

callback (Function) A callback function called for each element in the
matched set. The return values of the invocations are collected
into an array that is returned as the result of the map() method.

The current element is set as the function context (this) for
each invocation.

Method Description

children(expression) Creates a new matched set containing all unique
children of the elements in the original matched set
that match the optional expression.

next(expression) Creates a new matched set containing unique
following (next) siblings of the elements in the
original matched set that match the optional
expression. Only immediately following siblings
are returned.

nextAll(expression) Creates a new matched set containing unique
following (next) siblings of the elements in the
original matched set that match the optional
expression. All following siblings are returned.

parent(expression) Creates a new matched set containing unique
immediate parents of the elements in the original
matched set that match the optional expression.

parents(expression) Creates a new matched set containing all
ancestors of the elements in the original matched
set that match the optional expression.

prev(expression) Creates a new matched set containing unique
preceding siblings of the elements in the original
matched set that match the optional expression.
Only immediately preceding siblings are returned.

prevAll(expression) Creates a new matched set containing unique
preceding siblings of the elements in the original
matched set that match the optional expression. All
preceding siblings are returned.

siblings(expression) Creates a new matched set containing unique
siblings of the elements in the original matched set
that match the optional expression.

contents() Creates a new matched set containing all unique
children of the elements in the original matched set
including text nodes. When used on an <iframe>,
matches the content document.

Hot
Tip

The map() function returns a jQuery object
instance. To convert this to a normal JavaScript
array, you can use the get() method without
parameters:

var values = $(‘#myForm :input’).map(function(){
 return $(this).val();
}).get();

In this case, values references a JavaScript array rather than
a jQuery wrapped object.

→

ABOUT THE AUTHORS

jQuery Selectors
6

jQuery in Action is a

fast-paced introduction

and guide to the

jQuery library. It shows

you how to traverse

HTML documents,

handle events, perform

animations, and add

Ajax to your web pages using jQuery. You

learn how jQuery interacts with other tools

and how to build jQuery plugins.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/

jquery-in-action

Bear Bibeault
Bear Bibeault has been writing software for over three decades, starting with a
Tic-Tac-Toe program written on a Control Data Cyber supercomputer via a 100-baud
teletype. He is a Software Architect and Technical Manager for a company that builds
and maintains a large financial web application used by the accountants that many of
the Fortune 500 companies keep in their dungeons. He also serves as a “sheriff” at
the popular JavaRanch.com.

Publications: jQuery in Action, Ajax in Practice, Prototype and Scriptaculous in Action (Manning)
Notable Projects: “Sheriff” at JavaRanch.com, FrontMan Web Application Controller

Yehuda Katz
Yehuda Katz has been involved in a number of open-source projects over the past
several years. In addition to being a core team member of the jQuery project, he is
also a core member of Merb, an alternative to Ruby on Rails (also written in Ruby).
He speaks about jQuery and Ruby at a number of regional conferences, and is the
JavaScript expert on the Merb team. He recently joined EngineYard working on
the Merb project full-time.

Publication: jQuery in Action (Manning)
Notable Projects: Visual jQuery.com, jQuery Plugin Coordinator, Merb, DataMapper ORM
Web site: www.yehudakatz.com

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: jQuery in Action, Erich Gamma, Bear Bibeault and Yehuda Katz. Manning Publications, February 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-06-6
ISBN-10: 1-934238-06-6

9 781934 238066

5 0 7 9 5

Controlling Chaining, continued

distinct set, and then applying a method (or methods) to them
all. Consider:

	 $(‘div’).css(‘background-color’,’yellow’)
		 .children(‘img’).css(‘border’,’4px ridge maroon’)
		 .andSelf().css(‘margin’,’4em’);

All <div> elements are selected and their background set to
yellow. Then, the children of those <div> elements are
selected and have a border applied. Finally, the two sets are

merged, and a wide margin is applied to all <div> elements
and their children.

Between jQuery selectors and the jQuery methods that allow
us to manipulate the matched sets, we can see that jQuery
gives us some powerful tools to select the DOM elements
that we can then operate upon with the many jQuery methods
(as well as the dozens and dozens of jQuery plugins) that are
available to us.

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

