

Flexible Rails: Flex 3 on Rails 2
By Peter Armstrong

CONTENTS INCLUDE:

n	 About Flexible Rails
	n	 Overview of Rails 2
n	 Overview of Flex 3
n	 Flex 3 and Rails 2 Together
n	 Building a Flex + Rails
 Application
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

Simply put, Flex is the most productive way to build the UI
of Rich Internet Applications, and Rails is a very productive
way to rapidly build a database-backed CRUD application,
thanks to ActiveRecord (the ORM layer of Rails) and thanks
to the principles of Convention Over Configuration and
DRY (Don’t Repeat Yourself). This refcard shows you how to
get started. It provides an overview of Flex and Rails, how
they can be used together and then building a simple Flex
+ Rails application using XML over HTTPService to have
the Flex client talk to a RESTful Rails server. Since we’ll use
RESTful Rails controllers, the Rails controller methods will
also support the traditional HTML views.

Rails provides a standard three-tier architecture (presentation tier,
model tier, persistence tier) as well as a Model-View-Controller
(MVC) architecture. As shown in Figure 1, Rails takes care of
everything between the web server and the database.

Figure 1: Rails provides a standard three-tier architecture (presenta-
tion tier, model tier, persistence tier) as well as a Model-View-Controller
architecture.

The typical sequence is as follows:

1. A user visits a particular URL in their web browser (makes
 an HTTP request).

2. This request goes over the Internet to the web server in
 which Rails is running.

3. That web server passes the request to the routing code in
 Rails, which triggers the appropriate controller method call
 based on the routes defined in config\routes.rb.

4. The controller method is called. It communicates with
 various ActiveRecord models (which are persisted to and
 retrieved from a database of your choosing). The controller
 method can then do one of two things:

 1. Set some instance variables and allow a view
 template (a specially named .html.erb file, for
 example) to be used to produce HTML, XML, or
 JavaScript, which is sent to the browser.

 2. Bypass the view mechanism and do rendering
 directly via a call to the render method. This method
 can produce plain text (render :text => "foo"), XML
 (render :text => @task), and so on.

In Flex 3, you write code in MXML (XML files with a .mxml
extension; M for Macromedia) and ActionScript (text files with
a .as extension) files and compile them into a SWF file, which
runs in the Flash player. This SWF is referenced by an HTML
file, so that when a user with a modern web browser loads
the HTML file, it plays the Flash movie (prompting the user
to download Flash 9 if it’s not present). The SWF contained in
the web page can interact with the web page it’s contained
in and with the server it was sent from.

ABOUT FLEXIBLE RAILS

OVERVIEW OF RAILS 2

OVERVIEW OF FLEX 3

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

 tech facts at your fingertips

Method Name Parameters and Descriptions

open(method, url, async) open a connection to a URL

method = HTTP verb (GET, POST, etc.)

url = url to open, may include querystring

async = whether to make asynchronous request

onreadystatechange assign a function object as callback (similar to onclick,

onload, etc. in browser event model)

setRequestHeader

(namevalue)

add a header to the HTTP request

send(body) send the request

body = string to be used as request body

abort() stop the XHR from listening for the response

readyState stage in lifecycle of response (only populated after send()

is called)

httpStatus The HTTP return code (integer, only populated after

response reaches the loaded state)

responseText body of response as a JavaScript string (only set after

response reaches the interactive readyState)

responseXML body of the response as a XML document object (only

set after response reaches the interactive readyState)

getResponseHeader

(name)

read a response header by name

getAllResponseHeaders() Get an array of all response header names

Hot
Tip

 tech facts at your fingertips

w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

F
le

xi
b

le
 R

ai
ls

:
Fl

ex
 3

 o
n

R
ai

ls
 2

Client

Internet

Presentation
Tier

Model Tier

Persistence
Tier

MySQL
PostgreSQL

Oracle
DB2, etc.

Web Browser

HTTP Request
http://www.pomodo.com/tasks/list

ActiveRecord
(Model)

ActionController
(Controller)

ActionView
(View)

ActionController::Routing::Routes

HTML
XML

JavaScript

render :text, render :xml

Rails

#9

Flexible Rails: Flex 3 on Rails 2
2

DZone, Inc. | www.dzone.com

Resource URL Notes

RubyonRails http://rubyonrails.org/down

HiveLogic http://hivelogic.com/articles/2008/02/
ruby-rails-leopard

SQLite http://www.sqlite.org/download.html On Windows, download
sqlite-3_5_5.zip or higher
and sqlitedll-3_5_5.zip or
higher, and unzip both of
them into C:\WINDOWS\
system32

 tech facts at your fingertips

FYI
Flash 9? Are you kidding me?

The reference to Flash 9 earlier may have set off

alarm bells in your head: “Isn’t Flash 9 somewhat

new? How many people will be able to run my app?” Well,

while not everyone has Flash 9, most do: according to http://

www.adobe.com/products/player_census/flashplayer/

version_ penetration.html Flash 9 has reached near ubiquity:

97.3% in US/Canada, 96.5% in Europe and 98.0% in Japan.

This is better than Windows.

Flex and Rails can be used together with XML over HTTPService
or with Action Message Format. The XML over HTTPService
approach is shown in Figure 2 below.

To get started, various software packages need to be installed.
The full instructions can be found in chapter 2 of Flexible Rails
(Manning Publications). Here’s what is needed:

1. Ruby 1.8.6

2. RubyGems 1.0.0 (or higher)

3. Rails. 2.0.2 (or higher)

4. Flex Builder 3

5. SQLite

6. The sqlite3 gem, installed by running this command:
 C:\>gem install sqlite3-ruby

The world doesn’t need Yet Another Todo List, but let’s build
one. Unlike most Rails tutorials, we will assume you are using
Windows. (Rails has “crossed the chasm”, so this is now becom-
ing the correct assumption.)

Open a command prompt or Terminal window and run the fol-
lowing commands:

 C:\>rails todo

This installs the SQLite3 gem and then creates a new Rails appli-
cation which by default uses the SQLite database. (The default
in Rails 2.0.1 and below was MySQL.)

Next, create a couple of directories:

 C:\>cd todo

	 C:\todo>mkdir	app\flex

 C:\todo>mkdir public\bin

Next, switch to Flex Builder 3 and create the new Flex project:

1. Do File > New > Flex Project...

2. Choose to create a new project named Todo in c:\todo

3. Leave its type set to “Web application” and its “Application
 server type” set to None and click Next

4. Set the Output folder of the Flex project to public\bin and
 click Next

5. Set the “Main source folder” to app\flex, leave the “Main
 application file” as Todo.mxml and set the output folder
 to http://localhost:3000/bin and click Finish. Your new Flex
 project will be created. (Note that public isn’t part of the
 path since it’s the root; 3000 is the default port for the server).

The AMF waters are a bit muddier: there are currently three
ways that Flex can talk to Rails using AMF and RemoteObject:

	 n	 RubyAMF

	 n	 WebORB for Rails

 n	 BlazeDS (with Rails running on JRuby).

FLEX 3 AND RAILS 2 TOGETHER INSTALLING EVERYTHING

BUILDING A FLEX + RAILS APPLICATION

Figure 2.

Client

Internet

Presentation
Tier

Model Tier

Persistence
Tier

MySQL , PostgreSQL
Oracle, DB2, etc.

Web Browser with Flash Player 9

ActiveRecord
(Model)

ActionController::Routing::Routes

Rails

HTTP Request
http://www.pomodo.com/tasks/list

ActionView
(View)

XML

Flex app (SWF)Web
Page

render :text, render :xml

ActionController
(Controller)

3

DZone, Inc. | www.dzone.com

Flexible Rails: Flex 3 on Rails 2
 tech facts at your fingertips

Building a Flex + Rails Application, continued

The TasksController (in app\controllers\tasks_controller.rb)
looks like this:

 class TasksController < ApplicationController

 # GET /tasks

	 	 #	GET	/tasks.xml

	 	 def	index

		 	 	 @tasks	=	Task.find(:all)

 respond_to do |format|

	 	 	 	 format.html	#	index.html.erb

	 	 	 	 format.xml		{	render	:xml	=>	@tasks	}

 end

 end

 # GET /tasks/1

	 	 #	GET	/tasks/1.xml

 def show

	 	 	 @task	=	Task.find(params[:id])

 respond_to do |format|

 format.html # show.html.erb

	 	 	 	 format.xml		{	render	:xml	=>	@task	}

 end

 end

 # GET /tasks/new

	 	 #	GET	/tasks/new.xml

 def new

 @task = Task.new

 respond_to do |format|

 format.html # new.html.erb

	 	 	 	 format.xml		{	render	:xml	=>	@task	}

 end

 end

 # GET /tasks/1/edit

 def edit

	 	 	 @task	=	Task.find(params[:id])

 end

 # POST /tasks

	 	 #	POST	/tasks.xml

 def create

	 	 	 @task	=	Task.new(params[:task])

 respond_to do |format|

 if @task.save

	 	 	 	 	 flash[:notice]	=	'Task	was	successfully	created.'

	 	 	 	 	 format.html	{	redirect_to(@task)	}

	 	 	 	 	 format.xml		{	render	:xml	=>	@task,

	 	 	 	 	 	 :status	=>	:created,	:location	=>	@task	}

 else

	 	 	 	 	 format.html	{	render	:action	=>	"new"	}

	 	 	 	 	 format.xml		{	render	:xml	=>	@task.errors,

	 	 	 	 	 	 :status	=>	:unprocessable_entity	}

 end

 end

 end

 # PUT /tasks/1

	 	 #	PUT	/tasks/1.xml

Hot
Tip

We are using app\flex as the root of all our
Flex code—in larger team environments it’s
advisable to create a Flex project as a sibling
of the Rails app (say, c:\todoclient) and set
its output folder to go inside c:\todo\public\
bin. This way, different team members can use
different IDEs for the client and server projects:
for example, Aptana and Flex Builder are both
Eclipse-based, and interesting things can
happen when you nest projects.

Next, let’s create a new Task resource using the now-RESTful
scaffold command.

 C:\todo>ruby script\generate scaffold Task name:string

Here we are creating a Task that has a name attribute, which
is a string. Running this command generates the various Rails
files, including the model, helper, controller, view templates,
tests and database migration. We’re going to make the simplest
Todo list in history: Tasks have names, and nothing else. Further-
more, there are no users even, just a global list of tasks.

The Task model looks like this:

 class Task < ActiveRecord::Base

 end

Because the Task model extends (with <) ActiveRecord::Base, it
can be mapped to the equivalent database tables. Because we
also created the controllers and views with the script\generate
scaffold command and ensured that we specified all the fields,
we can use a prebuilt web interface to Create, Read, Update,
and Delete (CRUD) them.

The CreateTasks migration that was created (in db\migrate\001_
create_tasks.rb) looks like this:

 class CreateTasks < ActiveRecord::Migration
 def self.up
 create_table :tasks do |t|
 t.string :name
 t.timestamps
 end
 end
 def self.down
 drop_table :tasks
 end

 end

In the up method, we specify the data types of each new
column, such as string in our case, or boolean, integer or text.
These are then mapped to the equivalent database data types:
for example, boolean becomes a tinyint(1) in MySQL. The
timestamps call adds two columns: created_at and updated_
at, which Rails treats specially, ensuring that they’re automatically
set. This is often a good thing to have, so we’ll leave them
there even though they won’t be needed in this build. →

CreateTasks Class Extends ActiveRecord::Migration

Up method Creates a new tasks table with the create_table method call,
which takes a block that does the work

Down method Deletes it with the drop_table call

4

DZone, Inc. | www.dzone.com

Flexible Rails: Flex 3 on Rails 2
 tech facts at your fingertips

Building a Flex + Rails Application, continued

 def update

						 	 @task	=	Task.find(params[:id])

 respond_to do |format|

							 	 	 if	@task.update_attributes(params[:task])

										 	 	 flash[:notice]	=	'Task	was	successfully	updated.'

										 	 	 format.html	{	redirect_to(@task)	}

										 	 	 format.xml		{	head	:ok	}

 else

										 	 	 format.html	{	render	:action	=>	"edit"	}

										 	 	 format.xml		{	render	:xml	=>	@task.errors,

											 	 	 	 :status	=>	:unprocessable_entity	}

 end

 end

 end

 # DELETE /tasks/1

			 	 #	DELETE	/tasks/1.xml

 def destroy

						 	 @task	=	Task.find(params[:id])

 @task.destroy

 respond_to do |format|

							 	 	 format.html	{	redirect_to(tasks_url)	}

							 	 	 format.xml		{	head	:ok	}

 end

 end

 end

This new controller which was generated for us contains the
seven RESTful controller methods, which are explained in
the following table (inspired by David Heinemeier Hansson’s
Discovering a World of Resources on Rails presentation—
media.rubyonrails.org/presentations/worldofresources.pdf,
slide 7—as well as the table on p. 410 of Agile Web Develop-
ment with Rails, 2nd ed. (The Pragmatic Programmers),
and the tables in Geoffrey Grosenbach’s REST cheat sheet
http://topfunky.com/clients/peepcode/REST-cheatsheet.pdf):

Next, we run the new migration that was created (CreateTasks)
when we ran the scaffold command:

 C:\todo>rake db:migrate

At this point we run the server:

 C:\todo>ruby script\server

and play with creating, editing and deleting tasks.

1. Go to http://localhost:3000/tasks to see an empty task list.

2. Click the New link to go to http://localhost:3000/tasks/new.

3. Create a new Task with a name of “drink coffee” and
 click Create.

4. Go back to http://localhost:3000/tasks to see the task list
 with the new “drink coffee” task present.

Now, let’s do something interesting and hook this up to Flex.
Currently, the Todo.mxml file looks like this:

 <?xml	version="1.0"	encoding="utf-8"?>

	 <mx:Application	xmlns:mx="http://www.adobe.com/

	 2006/mxml"	layout="absolute">

	 </mx:Application>

The top-level tag is mx:Application; the root of a Flex ap-
plication is always an Application. The mx: part identifies the
XML namespace that the Application component is from. By
default, an Application uses an absolute layout, where you
specify the x,y of each top level container and component.

What we want to build is the following application:

Table 1: The seven standard RESTful controller methods

FYI
What’s REST?
REST (Representational State Transfer) is a

way of building web services that focuses on

simplicity and an architecture style that is “of the web.”

This can be described as a Resource Oriented Architecture

(ROA); see RESTful Web Services published by O’Reilly Media

for details. Briefly, the reason to use a RESTful design in Rails

is that it helps us organize our controllers better, forces

us to think harder about our domain, and gives us a nice

API for free.

Figure 3: The Simple Todo Flex Application

Method Sample
URL paths

Pretend
HTTP
Method

Actual
HTTP
Method

Corres-
ponding
CRUD
Method

Corres-
ponding
SQL
Method

1 index /tasks
/tasks.xml

GET GET READ SELECT

2 show /tasks/1
/tasks/1.xml

GET GET READ SELECT

3 new /tasks/new
/tasks/new.xml

GET GET — —

4 edit /tasks/1/edit GET GET READ SELECT

5 create /tasks
/tasks.xml

POST POST CREATE INSERT

6 update /tasks/1
/tasks/1.xml

PUT POST UPDATE UPDATE

7 destroy /tasks/1
/tasks/1.xml

DELETE POST DELETE DELETE

5

DZone, Inc. | www.dzone.com

Flexible Rails: Flex 3 on Rails 2
 tech facts at your fingertips

Building a Flex + Rails Application, continued

We want the ability to create new tasks, delete tasks and rename
them inline in the list. Furthermore, we want to do this in the least
amount of code possible. Normally, I’d build this iteratively; but
we’ll build it all at once. Modify the Todo.mxml file to look like this:

 <?xml	version="1.0"	encoding="utf-8"?>

	 <mx:Application	

	 	 xmlns:mx="http://www.adobe.com/2006/mxml"

			 	 width="100%"	height="100%"	layout="vertical"

			 	 backgroundGradientColors="[#000000,	#CCCCCC]"

			 	 creationComplete="svcTasksList.send()">

	 <mx:Script>

	 <![CDATA[

			 	 import	mx.events.ListEvent;

			 	 import	mx.controls.Alert;

		 	 import	mx.rpc.events.ResultEvent;

			 	 private	function	createTask():void	{

						 	 svcTasksCreate.send();

			 	 }

			 	 private	function	deleteTask(task:XML):void	{

						 	 svcTasksDestroy.url	=	"/tasks/"	+	task.id	+	".xml";

						 	 svcTasksDestroy.send({_method:	"DELETE"});

			 	 }

			 	 private	function	updateSelectedTask(event:ListEvent):	

	 	 void	{

						 	 var	itemEditor:TextInput	=

							 	 	 TextInput(event.currentTarget.itemEditorInstance);

						 var	selectedTask:XML	=	XML(event.itemRenderer.data);

						 if	(selectedTask.name	==	itemEditor.text)	return;

						 var	params:Object	=	new	Object();

						 params['task[name]']	=	itemEditor.text;

						 params['_method']	=	"PUT";

					 	 svcTasksUpdate.url	=	"/tasks/"+	selectedTask.id	+".xml";

						 svcTasksUpdate.send(params);

			 }

			 private	function	listTasks():void	{

						 svcTasksList.send();

			 }

]]>

</mx:Script>

		 <mx:HTTPService	id="svcTasksCreate"	url="/tasks.xml"

						 contentType="application/xml"	resultFormat="e4x"

						 method="POST"	result="listTasks()">

						 <mx:request>

							 	 <task><name>{newTaskTI.text}</name></task>

						 </mx:request>

			 </mx:HTTPService>

			 <mx:HTTPService	id="svcTasksList"	url="/tasks.xml"

						 resultFormat="e4x"	method="POST"/>

			 <mx:HTTPService	id="svcTasksUpdate"	resultFormat="e4x"

						 method="POST"	result="listTasks()"/>

			 <mx:HTTPService	id="svcTasksDestroy"	resultFormat="e4x"

	 	 method="POST"	result="listTasks()"/>

	 <mx:XMLListCollection	id="tasksXLC"

						 source="{XMLList(svcTasksList.lastResult.children())}"/>

			 <mx:Panel	title="Simple	Todo"	width="100%"		 	

	 height="100%">

							 <mx:HBox	width="100%"	paddingLeft="5"	

	 	 paddingRight="5"

							 	 paddingTop="5">

							 	 <mx:Label	text="New	Task"/>

							 	 <mx:TextInput	id="newTaskTI"	width="100%"

										 	 enter="createTask()"/>

							 	 <mx:Button	label="Create"	click="createTask()"/>

						 </mx:HBox>

						 <mx:List	id="taskList"	width="100%"	height="100%"

							 	 editable="true"	labelField="name"

							 	 dataProvider="{tasksXLC}"

							 	 itemEditEnd="updateSelectedTask(event)"/>

						 <mx:ControlBar	width="100%"	horizontalAlign="center">

							 	 <mx:Button	label="Delete"	width="100%"	height="30"

										 	 enabled="{taskList.selectedItem	!=	null}"

										 	 click="deleteTask(XML(taskList.selectedItem))"/>

						 </mx:ControlBar>

			 </mx:Panel>

</mx:Application>

This is a complete Flex application in 67 lines of code! Compile
and run the application by clicking the green “play” button: you
will see the screen shown in Figure 3.

A Quick Highlight Tour of this Code:

1 We use a vertical layout to make the components
flow vertically. Other choices are horizontal (for

horizontal flow) and absolute (which we saw before). The
backgroundGradientColors specify the start and end of the
gradient fill for the background.

3 We can pass data to Rails via data bindings using
curly braces { } inside XML (as shown in svcTaskCreate)

or by sending form parameters that Rails would be expecting
(as shown in the updateSelectedTask method).

4 For svcTasksUpdate and svcTasksDestroy we are
not setting the url property statically, but instead

dynamically setting it to include the id of the task we are
updating or destroying.

2 We define a HTTPService svcTasksList, which does
a GET to /tasks.xml (thus triggering the index action of

the TasksController) and specifies a resultFormat of e4x so
the result of the service can be handled with the new E4X
XML API. We then take the lastResult of this service, which
is an XML document, get its children (which is an XMLList
of the tasks), and make this be the source of an XMLList-
Collection called tasksXLC. We do this with a binding to
the source attribute. Similarly, we define svcTasksCreate,
svcTasksUpdate and svcTasksDestroy to be used for the
other CRUD operations.

ABOUT THE AUTHOR

Flexible Rails: Flex 3 on Rails 2
6

Flexible Rails is a book
about how to use Ruby
on Rails and Adobe Flex
to build next-generation
rich Internet applications
(RIAs). The book takes
you to the leading edge
of RIA development,
presenting examples in
Flex 3 and Rails 2.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/flexible-rails

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Flexible Rails: Flex 3 on Rails 2, Peter Armstrong. Manning Publications, 2008.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-08-0
ISBN-10: 1-934238-08-2

9 781934 238080

5 0 7 9 5

continued from page 5

Organization URL Information

Manning

Publications

http://www.manning.com/armstrong Book: Flexible Rails—provides
a code-focused, iterative
tutorial introduction to using
Flex with Rails.

http://www.manning.com/armstrong2 Book: Enterprise Flexible
Rails—provides the definitive
tutorial introduction to the
Ruboss Framework.

Ruboss

Technology

Corporation

http://www.ruboss.com The Ruboss Framework: The
Open Source Framework
Which Puts Flex On Rails.
Ruboss taking the Flex + Rails
combination further, making
it even easier and more
accessible to the Enterprise.

RESOURCES

Peter Armstrong
Peter Armstrong is the CEO and Co-Founder of Ruboss Technology Corporation
(http://ruboss.com), a self-funded RIA startup in Vancouver, BC, Canada. Peter is
also the co-creator of the open source Ruboss Framework, the RESTful way to develop
Adobe Flex and AIR applications that easily int egrate with Ruby on Rails. Peter is
the author of Flexible Rails and Enterprise Flexible Rails. Peter has been developing
rich client applications for over 7 years. He has worked with Flex full-time since July

2004, including being a key part of the Dorado Product Engineering team that won the 2006 Adobe
MAX Award for RIA/Web Development (http://my.adobe.acrobat.com/doradomaxpresentation/).
He is the organizer of The Vancouver Ruby/Rails Meetup group and is a frequent conference
speaker on using Flex and Rails together.

Blog

http://peterarmstrong.com/

5 A hack: you can’t send HTTP PUT or DELETE from the
Flash player in a web browser, so we need to fake it.

Luckily, since you can’t send PUT or DELETE from HTML in
a web browser either, Rails already has a hack in place—we
just need to know how to use it. Rails will look for a _method
parameter in its params hash and, if there is one, use it instead
of the actual HTTP method. So, if we do a form POST with
a _method of PUT, Rails will pretend we sent an HTTP PUT. (If
you’re thinking that it’s ironic that at the core of a “cleaner”
architecture is a giant hack, well, you’re not alone.) This _meth-
od can be added to a params Object (params['_method']

= "PUT";) or to an anonymous object (svcTasksDestroy.

send({_method: "DELETE"});) If you’re new to Flex, {} can
be used for both anonymous object creation and for data
binding. Think of an anonymous object like a hash in Ruby.

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server
Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.
Design Patterns

Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

