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NONLINEAR CURVED BEAM THEORY  

Nonlinear strain-displacement relations (exact) 

          A curved beam, or rod, is a one 

dimensional entity in the following 

formulation.  Exact strain-displacement 

relations will be derived and then these will 

be approximated in several ways as 

appropriate for specific applications.  The 

process and the several types of 

approximations illustrate parallel aspects of 

plate and shell theories.  The centerline 

(later identified with the location of the 

neutral bending axis) in the undeformed 

and deformed states is depicted in Fig. A1.  

Let s  be the distance measured along the 

centerline in the undeformed state and s  

the distance in the deformed state. 

 

                         Fig. A1 

 With reference to Fig. A1, use the over-bar to denote quantities in the deformed 

state.  The displacements, ( )w s  and ( )v s , are normal and tangent to the undeformed 

beam and are regarded as functions of distance along the undeformed beam: 

 ( ) ( ) , , 0, is "on the right"
dr

r r w s n v s t t n t n
ds

    
        

Define the rotation   as  

 sin (cos )t n n t t t n n     
         

  , 1 1
dr dr ds dr dv w dw v

t t n t e n
ds ds ds ds ds R ds R

               
   

     
 

where the radius of curvature of the undeformed centerline is 
1

( )

d

R s ds


  , 

        
1 1

,
dt dn

n t
ds R ds R

  
  

 

and     
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,
dv w dw v

e
ds R ds R

     

Note that  

 sin
ds

t n
ds

  
   

Define the stretching strain as  

  2 21 1 1 1
ds dr dr

e
ds ds ds

          

 
  

The change in curvature   is 

 
1 1

R R
    with 

1 1
,

d d d d ds d d

R ds R ds ds ds ds ds ds

                
 

 

Thus,  

    1 1
1 1

ds d d d d d d

ds ds ds ds ds ds ds R

                                  
 

This completes the nonlinear strain-displacement relations, except it is useful to define an 

alternative stretching strain measure,  , analogous to the Lagrangian measure in 3D 

elasticity: 

 

2

2 2

1 1
1 (2 )

2 2

1 1 1
1

2 2 2

ds

ds

dr dr
e e

ds ds

  

 

       
   
 

     
 

 


 

A)  Summary of exact equations for finite strain and finite rotation 

With    ,
dv w dw v

e
ds R ds R

    , 

2 21 1 1 1
sin , 1, (1 ) ,

1 2 2 2 1

ds d
e e

ds ds R

        
 

               
 

B)  Inextensional strains and finite rotations  (exact inextensional theory) 

This theory reduces to the elastica for initially straight members.  With e  and   defined 

in A), 

2 21 1
0 0 sin , 0,

2 2

d
e e

ds

                
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C)  Small strains and finite rotations 

Assume 1  , which implies that 1   and   .  With e  and   defined as above, 

use 1   to obtain the following approximations: 

 2 21 1
sin , ,

2 2

d
e e

ds R

               
 

D)  Small strains and moderate rotations 

This is an important class of theories because it allows rigorous nonlinear buckling 

analyses for linear elastic beams, columns and rings.  Moreover, some of the most widely 

used plate (von Karman theory) and shell theories (DMV theory) are derived under the 

assumption of small strains and moderate rotations.  As in C), assume 1  .  For 

moderate rotations we require 2 1  , which in turn implies that 2 1  .  (Note that 

this is less restrictive than 1  .)  These assumptions imply, 2e e  and   .  

Thus, the equations for this theory are 

 21
, , ,

2

dv w dw v d
e e

ds R ds R ds R

                
 

E)  Small strains and small rotations (linear theory) 

The linearized set of equations from A) or, equivalently, from D) are 

 , ,
dv w dw v d

e
ds R ds R ds R

              
 

 

Homework Problem1:  Vanishing of the strain measures under rigid body displacements 

(i) For a rigid body translation, r r U 
 

, where U


 is a constant vector in the 

plane, show that 0   and  =0 for all the five cases above. 

(ii) Consider a rigid rotation about O  in Fig. A1, ( )i ij j i ij ji jr r r r     , where 

  is the rotation about the normal to the plane and the non-zero ij are  

11 cos , 12 sin  , 21 sin  and 22 cos .  Show that 0   and 

 =0 for A, B and C above.  For D & E, determine the dependence of   and 

  on small  , i.e. determine the lowest order dependence on small  . 
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First order constitutive relations for small strain, linear elastic behavior (no 

restrictions on rotations other than the strains due to bending are small) 

 There are many possibilities that could be considered for constitutive laws.  For 

example, if one were interested in applications to rubber materials that undergo large 

strains one would have to consider nonlinear finite strain constitutive models.  Where the 

bending moment (or moment/length), M , and the stretching force (or force/length), F , 

are related to the two strain quantities through and energy density function, ( , )    by 

 ,M F
 

 
 
 

 

However, almost exclusively in these notes, we will be concerned with applications 

relevant to structural materials which by their nature have strains due to stretching and 

bending that are small if linear elastic material is assumed, which it will.  (It should be 

noted, however, that the strain-displacement relations and the equilibrium equations 

derived later are applicable when plastic straining occurs, but we will not consider 

plasticity in these notes.) 

Digression: constitutive laws for first order beam theories 

As background consider the engineering theory for straight 
wide plates and beams which is a first order theory.  For 
wide plates, the constitutive relation is M B    with 
B EI where 2/(1 )E E   , 3 /12I h  and h  is the 
thickness.  The ode governing a uniform plate subject to a 
transverse load/length, ( )p s , is 4 4/Bd w d s p .  This is a 
first order theory based on the deflection of the centerline.  
Consider a clamped beam of length L  shown in the figure 
for the beam at the top and for a 2D plane strain elasticity 
problem at the bottom.  Beam theory treats p  as being 
applied along the centerline, and it cannot distinguish 
between loads applied along the top of the beam or along the 
centerline, for example, as in the case of the 2D problem.  
With energy/length  / 2A A AM     and / 2B B BM     

of the two 2D problems, typically, 
( ) / ( / )A B A O h L    .  That is, depending on details that 

beam theory cannot capture, there are inherent relative 
differences on the order of /h L .  With / 2M     from 
beam theory, it is also true that ( ) / ( / )A A O h L    . 

       For a curved beam another length enters, R --see  
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example for a circular ring in the figure.  The load induces  
both a change in curvature,  , and a stretching strain, .  
Let 2 2/ 2 / 2EI Eh      be a measure of the 
energy/length. Plane strain, 2D elasticity solutions for 
annular regions such as that to the right differ by relative 
order /h R  for problems that would be modeled identically 
by curved beam theory, e.g. the pressure acting on top vs. on 
the bottom of the beam.  That is, for two such problems, A & 
B, ( ) / ( / )A B A O h R    .  This is an inherent error 

expected of curved beam theory.  We will make good use of 
this result.  
End of digression  

 

For problems limited to small strains and linear stress-strain response, let B  and 

S  be the bending and stretching stiffness of the beam, respectively.  These may be a 

function os s .  (For the wide plate 3 2/[12(1 )]B Eh    and 2/(1 )S Eh   .)  Recall the 

standard constitutive equation for a straight beam or rod with uniform isotropic elastic 

properties across its cross-section under combined bending and stretching: 

 2 21 1
; ,

2 2
A A

A B S M B F S   
 

 
        

 
 

For plane strain deformations of a curved or flat plate, M  and F  are the moment and 

force per length perpendicular to the plane.  The constitutive relation above coincides 

exactly with the results from 3D linear elasticity for pure bending and stretching of a 

uniform flat plane in plane strain.  Moreover, the variation of the strain component 

parallel to the middle surface through the thickness of the plate is 

 11 y      

where y  is the distance from the middle surface. 

 One possibility for curved beam theory is to employ A  as the energy/length.  

However, consider the following alternative.  Instead of using ( , )   as the pair of 

strain measures, use ( , )K   where /K R    .  (Knowledge of ( , )K   provides 

( , )   and vise versa, and the difference between the two sets vanishes for a flat plate.)  

The advantage of the alternative bending strain measure K  is the simplified bending 

strain relation: 
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d

K
ds


  

Now, what if we were to use the following constitutive relation?   

 2 21 1
; ,

2 2
B B

B B K S M B K F S
K

 


 
      

 
 

For flat plates this is the same as that based on A .  It is important to realize that a 

curved beam is, in fact, a 2D or 3D entity although we will model it as being 1D.  The 

first order theory we are in the process of deriving is a 1D theory based solely on the 

deformation of the neutral bending axis.  An important argument of W.T. Koiter that 

carries over to shell theory is that for a first order curved beam or plate theory (i.e. a 

theory that is valid to lowest order in /h R  and/or /h L ), either A  or B  may be used 

because the error intrinsic to any first order theory is of the order A - B .  We will use 

B  since it results in “nicer” equations, but solutions based on A  would be equally 

valid.  The analog will emerge in first order shell theory.   

 The details of Koiter’s argument for curved plates are as follows.  With 2B k S  

where k  is a radius of gyration and with b k    as a measure of the strain due to 

bending at a distance k  from the neutral axis, then one can easily show that 

  
2

2 2 2 2 21 1
and 2 ,

2 2A b B b b

k k
S S

R R
      

              
 

such that the relative difference between the two is 

2

2 2

2 ( / )bA B

A b

k Rk k
O

R R

  
 

            
 

Exact solutions from 2D plane strain elasticity for thin circular annular regions subject to 

various loadings show that differences of this order cannot be avoided if one considers 

the whole range of problems of interest for a first order theory (see the digression).  That 

is, a specific problem might be more accurately represented by one or the other of these 

two constitute models, but if one considers all possible problems one is as accurate as the 

other and we are free to choose the one we like.  The choice based on B    and K  

gives the “nicest” set of equations, and this will be our choice.   
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Principle of Virtual Work (PVW) and Equilibrium Equations 

 We will illustrate the PVW and derive equilibrium equations for theory D for 

small strains and moderate rotations which has 

21
,

2

d
e K

ds

    ,  ,
dv w dw v

e
ds R ds R

     

Note that the only nonlinearity is the 2  term in  .  (This theory reduces to the 1D 

version of von Karman nonlinear plate theory for wide plates.)  Virtual strains and 

displacements are related by 

,
d

e K
ds

      , ,
d v w d w v

e
ds R ds R

         

Define the Principle of Virtual Work (PVW) in terms of the internal virtual work (IVW) 

and external virtual work (EVW) for a curved beam extending from 0 to L  as 

 

   
0

00

L

L L

n t n t

IVW M K F ds

EVW p w p v ds P w m P v

 

    

 

    




 

The PVW requires IVW=EVW to hold for all admissible virtual displacements w  and 

v .  The following illustrates the standard process for generating equilibrium equations 

and boundary conditions 

0

L d d w v d v w d w v
IVW M F ds

ds ds R ds R ds R

     
                    

  

Integrate by parts to obtain 

 

2

20

0

( ) 1L

L

d M F d F dM dF F
IVW w v ds

d s R ds R ds ds R

d w dM M
M F w F v

ds ds R

  

   

             
   

                     


 

Enforcing IVW=EVW for all admissible w  and v  gives the equilibrium equations 

 
2

2

( )
n

d M F d F
p

d s R ds


     and   

1
t

dM dF F
p

R ds ds R


    

and the conditions at the ends of the interval 

 
0

L
d w dM M

M F w F v
ds ds R

                    
=

0

( )
L

n t

d w m
P w m P v

ds R

      
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Thus, at either of the end the boundary conditions involve the specification of  

or
dw

M m
ds

 ; and   or  n

dM
F P w

ds
   ;  and   ort

M m
F P v

R R
   . 

The distributed loads we have defined are defined as load/length of the undeformed beam 

and they act in the directions defined by the undeformed normal and tangent vectors, n


 

and t


.  They are called dead loads.  A pressure loading, is an example of a live load,  and 

it is defined a load/length in the deformed state and acts parallel to n


.  We will treat 

pressure loads later. 

 

Small strain-moderate rotation equations for circular rings 

 With reference to the figure, let s R  where R  is the radius of the ring and   is 

the angular measure in the undeformed state measure counter clockwise.  For a linear 

material, M BK  and F S .  Let ( ) ( ) /d d   and note that ( ) /w v R    and 

( ) /e v w R  .  The equilibrium equations expressed in terms of e  and   are 

    1 12 2 2 2 3
2 2 nB SR e SR e R p             

    1 12 2 2 2 3
2 2 tB SR e SR e R p          

Boundary conditions depend on whether the ring is complete 

and how it is supported.  We will use this set of equations to 

investigate buckling of a ring under dead pressure load.   

 These equations also apply to the dynamic behavior 

of a circular ring if one invokes D’Alembert’s Principle and 

takes np w    and tp v   where ( ) ( ) / t    and   is 

the mass/unit length of the undeformed ring. 

 

Linear vibrations of a circular ring 

 Linearize the above equations to obtain 

 2 3B SR e R w        and  2 3B SR e R v       

noting that e  and   depending linearly on ( , )w t  and ( , )v t .  
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Homework Problem #2:  Vibration frequencies and modes of a complete ring 

 Consider solutions to the above equations of the form 

 0 cos sinw w n t   and 0 sin sinv v n t   

where 0,1,2,3,....n  and   is the unknown vibration frequency which will depend on n .  

Show that this is an eigenvalue problem and show that   satisfies  

    24 2 4 2 2 2 2 2 21 ( / ) ( / ) 1 ( / ) 0n n R r R r n n R r            

where 
4R

B

   and 
B

r
S

  (for a uniform beam of thickness h , /(2 3)r h  and is 

called the radius of gyration of the section).  Note that, in general, there are two 

frequencies for each n .  Compute all the vibration modes and frequencies for n =0 to 10 

for the case / 20r R  .  Comment on the single mode for n =0.  Comment on the mode 

for n =1 (be alert for a rigid body mode).  Sketch the two modes for n =2 and comment 

on why the frequency of one of the modes is so much higher than the other.  Hint:  In 

carrying out this problem you will probably find it useful to calculate the relative 

amplitudes of the eigenmodes both for, 0w  and 0v , and for 0e  and 0 . 

 

Classical buckling of circular ring under uniform radial pressure (dead pressure) 

 The ring is subject to a uniform dead pressure loading with np p   and 0tp  . 

The ring and the loading are axisymmetric and it is easy to see that the following simple 

solution exactly satisfies the nonlinear coupled equations for small strains and moderate 

rotations: 

 
2

0

pR
w w

S
   , 0v  , 0

0

w
e e

R
  ,  0   

We conduct a buckling analysis analogous to the “classical” bucking analysis of a 

straight column.  The question asked is the following:  “Is there a critical value of 

pressure, denoted by Cp , at which a solution emerges other than the simple axisymmetric 

solution given above.   

The following is a bifurcation analysis.  For specified p , perturb w  and v  about 

0w w  and 0v   with   as the perturbation parameter.  With  
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 0 1 ...w w w   ,   1 ...v v  , 

one finds  

  1 1 1... / ...w v R        ,   0 1 0 1 1... / ...e e e e v w R          

Substitute into the full nonlinear equations and linearize with respect to  : 

 2 3
1 1 1 0B SR e pR      

 2 3
1 1 1 0B SR e pR      

Eliminate 1e  from the above two equations to obtain 

    3
1 1 1 1 0B pR          

This is an eigenvalue problem with p  as the eigenvalue.  Look for eigenmodes of the 

form:  1 sin n    (or 1 cos n  ) for 1, 2,3,...n   to find the eigenvalues: 

 2
3n

B
p n

R
  

Note that 3
1 1 1( / ) / 0e R S B R p        for all n .   Solve for 0

1w  and 0
1v  where 

0
1 1 cosw w n  and 0

1 1 sinv v n  given 1 1 1( ) /e v w R   and 1 1 1( ) /w v R    to obtain  

 0 0
1 1 0v n w    and  0 0

1 1v w n R    

For 1n   there is no solution.  The lowest eigenvalue which is identified with the 

buckling pressure, Cp , occurs for 2n   with 

 2 3

4
C

B
p p

R
  ,  0 0

1 12 / 3, / 3w R v R       (Buckling under dead pressure) 

Note that 1 0e   and, thus, the buckling mode is inextensional to first order in  . 

 

Classical buckling of circular ring under uniform radial pressure (live pressure) 

 Under live pressure, the load/length in the deformed state is pn


 and the external 

virtual work is  EVW pn wn vt ds   
  .  From page 2,  

  (1 )
ds

t e t n
ds

  
  

 and, thus,    (1 )
ds

n t e n
ds

   
  

 

Now it is straightforward to see that 
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   (1 )EVW p e w v ds      

When this EVW is used in place of that used earlier for dead loads and with    for 

moderate rotations, one obtains for the circular ring under live pressure 

   1 12 2 2 2 3
2 2

(1 )B SR e SR e R e p                (replace rhs by 3R p ) 

    1 12 2 2 2 3
2 2

B SR e SR e R p           

 

One additional approximation can be made consistent with the fact that we have already 

neglected terms like e  compared to unity: replace the right hand side of the first equation 

by 3R p . 

 

Homework problem #3:  The buckling pressure for a circular ring under live pressure 

(i) Show that the pre-buckling axisymmetric solution is the same as that for dead 

pressure. 

(ii) Show that the critical buckling pressure (the lowest eigenvalue) is 

33 /Cp B R  and the associated buckling mode is 0 cos n    with 2n  . 

The buckling pressure under live pressure is 33% lower than that under dead pressure. 

 

Euler’s elastica—Axial buckling of an inextensional uniform straight column 

 

 Consider the initially straight column in the figure.  It is 

pinned at the ends ( 0M  , 0w  , (0) 0v  ) with a horizontal 

load P  applied at the right end.  The column is modeled as 

inextensional ( 0  ), and the theory B) for arbitrary large 

rotations is employed such that /M Bd ds  where B  is 

constant.  Let ( )x s  and ( )y s  denote the location of points in the 

deformed state in the rectangular coordinate system shown.   

Note that / cosdx ds   and / sindy ds   .  Moment 

equilibrium about the left end (see figure) requires ( )M y s P .  
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(Comment:  Alternatively, you could obtain this equilibrium equation from the PVW.)  

Then note, 

 sin sin 0 (0 ), (0) ( ) 0
dM dy

P P B P s L L
ds ds

                 

where ( ) ( ) /d ds  .  The equation is the same as that for finite oscillations of a 

pendulum if s  is regarded as time.  It has solutions that can be expressed in terms of 

elliptic functions, as will be seen below.   

 A first integral is readily noted: 

 2 21 1
sin 0 cos 0 cos

2 2
B P B P B P C     

           
 

 

Let 0 (0)   (which is unknown at this point).  Then noting that (0) 0  , 

 2 2
0 0

0

1 2
cos cos cos cos

2

2 / cos cos

P
B P P

B

B P

     

  

        
 

   

 

Let’s look for solutions such as those depicted in the figure with 0 0   which are 

symmetric with respect to the center of the column such that for 0 / 2s L  , 0   and 

0   with ( / 2) 0L  .  Then,  

 
0

0

2

cos cos

P d
s

B






 


  

Since ( / 2) 0L  , it follows that  

  0

1 00
0

2
2 sin( / 2)

2 cos cos

P L d
E

B

  
 

 
  

This is the relation between P  and 0 -- 1E  is the complete elliptic integral of the first 

kind, but the integral is as easy to use for numerical evaluation.  Note that for small 0 , 

 
0

2 20
0

2

2 2( ) / 2

P L d

B

  
 

 


  

Thus, the buckling load (the lowest load such that the column is not straight—also called 

the bifurcation load) is 2 2/CP B L ;  this is the famous Euler load. 
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All other details of the deformed shape can be computed from the above 

equations.  In particular, the deflection at the center of the column, ( / 2)y L    is given 

by 

 
0

0
0

1 sin

2 cos cos

B d

L L P

  
 


  

And the horizontal displacement through which the end load works, ( )L x L    is 

 
0/ 2

0 0
0

2 2 cos
1 1

2 cos cos

L dx B d
ds

L L ds L P

  
 


   

   

These relations are plotted in the following figure where they are compared with results 

based on small strain/moderate rotation theory (Homework Problem #4). 
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Homework Problem #4: Column buckling using small strain/moderate rotation theory 

Consider the problem above within the contest of small strain/moderate rotation 

theory (the equations are listed on page 8 with R   ).  Make no other approximations.  

Here are a few hints.  Show that F  is independent of s x  and is therefore given by 

F P  .  The equation for ( )w x  is an eigenvalue problem which gives the result 

2 2/P B L  for all values of / L  where   is the deflection at the center of the beam.  

Then, note that 

 1 2
20 0

( )
L L

u L u dx w dx           

Determine results analogous to those in the figure above for / L  and / L .  Recall that 

this theory is the same as von Karman plate theory for 1D problems.  

 

Homework Problem #5:  Spaepen’s Elastica problem 

  

Consider an initially straight rod that is 

squeezed between two platens by imposing d  

as shown in the figure.  Equal and opposite 

forces P  arise.  Frans Spaepen used this as a 

test configuration to create a region of high 

curvature at B where a highly local material 

instability occurred once the curvature became 

large enough.  The question of interest is the relation of the curvature at B, B , to d .  

Assume finite rotation/inextentional strain theory and limit consideration to symmetric 

deflections about B.  Note that the point of contact at A is not known in advance—its 

determination is part of the problem.  Denote the length of the rod between A and B by 

/ 2L  (this is also unknown).  The boundary conditions are 

 (0) / 2, (0) 0, ( / 2) 0L       

This would appear to over specify the problem, but the extra condition allows L  to be 

determined.  The condition (0) 0   follows from the fact that the rod is straight above 

A, and M  is necessarily continuous across A (why?).  Show that 
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/ 2

0
2.622

2 cos

P d
L

B

 


  ,   
/ 2

0

2
cos 1.198

P
d d

B


   , 

 
/ 2

0

2 sin
2

cos

P d
H

B

  


  ,   
2 cos

( )
P

s
B

  ,  
2 1.198

B

P

B d
    

 

Homework Problem #6:  Non-uniform pressure distribution acting on a circular ring 

Consider an unsupported complete circular ring of radius R , uniform bending 
stiffness B  and uniform stretching stiffness S .  (As is typical for a thin ring, 2B k S  
with / 1k R  .)  The ring is loaded by a normal pressure distribution, cosnp q n  

where n  is an integer.  Using linear ring theory, determine ( )w   and ( )v   for 
0,2,3,4,...n  .  Hint: guess the form for ( )w   and ( )v   with due regard for the phase.   

(i) Why is there no solution for 1n  ? 
(ii) Determine the displacements (0) ( )A w w    and 

( / 2) (3 / 2)B w w     for all n  other than 1.  Why is the result for 

0n   special? 

(iii) For each n , compute the bending energy, 
2 1 2

20
BK Rd


 , and the 

stretching energy, 
2 1 2

20
S Rd


  .  Compare them by taking their ratio 

(use 2B k S ) and remark on the difference between 0n   and the 
other n . 

(iv) Given you have the solution for cosn np q n  (and, therefore, also 

for sinn np g n ), describe in words how you would produce the 

solution for any equilibrated normal pressure distribution, ( )p  . 
 
Homework Problem #6A—Two elastica problems 

 Both the deformed beams in the figure are straight 

with length L  in the undeformed state.  The top beam is 

bent into a circle and the ends are then welded such that 

the slope (and curvature) is continuous.  The bottom 

beam is bent into the shape shown such that at the left the 

two ends meet with the ends tangent to each other as 

shown and then welded.  Using the theory for the elastica, 

determine and compare the bending moment in the 

circular hoop and the bending moment at A in the loop. 
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Homework Problem #6B:  Two circular arch problems  (Messy solution!!) 

 The two circular arches in the figure to the right are identical.  Each has modulus 

E , thickness t , width b  perpendicular to the plane, radius of curvature R , and each has 

a curved length L  in the undeformed state (the support span is 2 sin( / 2 )R L R .  Both are 

simply supported at each end ( 0, 0)M w   and horizontal component of displacement 

of both is zero at the left end ( 0xU  ).  The upper arch has 

0xU   at the right end, while the lower arch has no 

resistance to horizontal force at the right end ( 0)xF  .  

Using linear curved beam theory, determine the vertical 

deflection at the center of the beam.  

(i) Show that for /L Rt <<1, the center 

deflections of the two beams are essentially 

the same, and comment on why this is. 

(ii) Show that for /L Rt >>1, the center deflections of the two beams are 

very different with the upper arch undergoing much less deflection—it is 

acting as an arch, while the lower beam is supporting the load by bending. 

 


