
  

Context-Free Grammars



  

Describing Languages

● We've seen two models for the regular languages:
● Finite automata accept precisely the strings in the 

language.
● Regular expressions describe precisely the strings 

in the language.

● Finite automata recognize strings in the language.
● Perform a computation to determine whether a 

specifc string is in the language.

● Regular expressions match strings in the language.
● Describe the general shape of all strings in the 

language.



  

Context-Free Grammars

● A context-free grammar (or CFG) is an 
entirely diferent formalism for defning a 
class of languages.

● Goal: Give a description of a language by 
recursively describing the structure of 
the strings in the language.

● CFGs are best explained by example...



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op (E)
⇒ E Op (E Op E)
⇒ E * (E Op E)
⇒ int * (E Op E)
⇒ int * (int Op E)
⇒ int * (int Op int)
⇒ int * (int + int)



  

Arithmetic Expressions

● Suppose we want to describe all legal arithmetic 
expressions using addition, subtraction, 
multiplication, and division.

● Here is one possible CFG:

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /

E
⇒ E Op E
⇒ E Op int
⇒ int Op int
⇒ int / int



  

Context-Free Grammars

● Formally, a context-free grammar 
is a collection of four items:

● A set of nonterminal symbols
(also called variables),

● A set of terminal symbols (the 
alphabet of the CFG)

● A set of production rules saying 
how each nonterminal can be 
replaced by a string of terminals 
and nonterminals, and

● A start symbol (which must be a 
nonterminal) that begins the 
derivation.

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /
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Some CFG Notation

● In today’s slides, capital letters in Bold Red 
Uppercase will represent nonterminals.
● e.g. A, B, C, D

● Lowercase letters in blue monospace will represent 
terminals.
● e.g. t, u, v, w

● Lowercase Greek letters in gray italics will 
represent arbitrary strings of terminals and 
nonterminals.
● e.g. α, γ, ω

● You don't need to use these conventions on your 
own; just make sure whatever you do is readable. ☺



  

A Notational Shorthand

E → int

E → E Op E

E → (E)

Op → +

Op → -

Op → *

Op → /



  

A Notational Shorthand

E → int | E Op E | (E)

Op → + | - | * | /



  

Derivations

⇒ E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E * (E Op E)

⇒ int * (E Op E)

⇒ int * (int Op E)

⇒ int * (int Op int)

⇒ int * (int + int)

● A sequence of steps where 
nonterminals are replaced by 
the right-hand side of a 
production is called a 
derivation.

● If string α derives string ω, we 
write α ⇒* ω.

● In the example on the left, we 
see E ⇒* int * (int + int).

E → E Op E | int | (E)
Op → + | * | - | /



  

The Language of a Grammar

● If G is a CFG with alphabet Σ and start 
symbol S, then the language of G is the 
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }   
● That is, (ℒ G) is the set of strings of 

terminals derivable from the start 
symbol.



  Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Consider the following CFG G over Σ = {a, b, c, d}:
 

S → Sa | dT
T → bTb | c

 

How many of the following strings are in (ℒ G)?
 

dca
cad
bcb
dTaa
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If G is a CFG with alphabet Σ and start symbol S, 
then the language of G is the set

 

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }



  

Context-Free Languages

● A language L is called a context-free 
language (or CFL) if there is a CFG G 
such that L = (ℒ G).

● Questions:
● What languages are context-free?
● How are context-free and regular languages 

related?



  

From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → a*b
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From Regexes to CFGs

● CFGs consist purely of production rules 
of the form A → ω. They do not have the 
regular expression operators * or ∪.

● However, we can convert regular 
expressions to CFGs as follows:

S → aX
X → b | C
C → Cc | ε



  

Regular Languages and CFLs

● Theorem: Every regular language is 
context-free.

● Proof Idea: Use the construction from 
the previous slides to convert a regular 
expression for L into a CFG for L. ■

● Problem Set 8 Exercise: Instead, show 
how to convert a DFA/NFA into a CFG.



  

The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?
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● Consider the following CFG G:
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The Language of a Grammar

● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }   

a ba ba ba b



  

Regular
Languages CFLs

All Languages



  

Why the Extra Power?

● Why do CFGs have more power than 
regular expressions?

● Intuition: Derivations of strings have 
unbounded “memory.”

S → aSb | ε
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Why the Extra Power?

● Why do CFGs have more power than 
regular expressions?

● Intuition: Derivations of strings have 
unbounded “memory.”

S → aSb | ε

a ba ba ba b



  

Time-Out for Announcements!



  

Midterm Exam Logistics

● The next midterm is tonight from 7:00PM – 10:00PM. 
Locations are divvied up by last (family) name:
● A-I: Go to Cubberley Auditorium.
● J-Z: Go to Cemex Auditorium.

● The exam focuses on Lecture 06 – 13 (binary relations 
through induction) and PS3 – PS5. Finite automata 
onward is not tested.
● Topics from earlier in the quarter (proofwriting, frst-order 

logic, set theory, etc.) are also fair game, but that’s primarily 
because the later material builds on this earlier material.

● The exam is closed-book, closed-computer, and limited-
note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d 
like.



  

Our Advice

● Eat dinner tonight. You are not a brain in a jar. You 
are a rich, complex, beautiful biological system. 
Please take care of yourself.

● Read all the questions before diving into them. 
Tunnel vision can hurt you on an exam. There’s 
evidence that spreading your time out leads to better 
outcomes.

● Refect on how far you’ve come. How many of 
these questions would you have been able to 
understand two months ago? That’s the mark that 
you’re learning something!



  

Three Questions

● What is something you know now that, at 
the start of the quarter, you knew you didn’t 
know?

● What is something you know now that, at 
the start of the quarter, you didn’t know 
that you didn’t know?

● What is something you don’t know that, at 
the start of the quarter, you didn’t know 
that you didn’t know?



  

Back to CS103!



  

Designing CFGs

● Like designing DFAs, NFAs, and regular 
expressions, designing CFGs is a craft.

● When thinking about CFGs:
● Think recursively: Build up bigger structures 

from smaller ones.
● Have a construction plan: Know in what 

order you will build up the string.
● Store information in nonterminals: Have 

each nonterminal correspond to some useful 
piece of information.



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w is 
a palindrome }

● We can design a CFG for L by thinking 
inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are 

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Some sample strings in L:

((()))  

(())()  

(()())(()())  

((((()))(())))  

ε  

()()  



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the frst open parenthesis.

((( (( (( (( (((() ))) ))) )))))
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Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the frst open parenthesis.

( ( ( ( ( ( (( ((( () ) ) ) ) ) ) ))))



  

Designing CFGs

● Let Σ = {(, )} and let L = {w ∈ Σ* | w is a 
string of balanced parentheses }

● Let's think about this recursively.
● Base case: the empty string is a string of 

balanced parentheses.
● Recursive step: Look at the closing parenthesis 

that matches the frst open parenthesis. 
Removing the frst parenthesis and the 
matching parenthesis forms two new strings of 
balanced parentheses. 

S → (S)S | ε



  

Designing CFGs

● Let Σ = {a, b} and let L = {w ∈ Σ* | w 
has the same number of a's and b's }

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

Answer at PollEv.com/cs103 or
text CS103 to 22333 once to join, then a number.

How many of the following CFGs have language L?How many of the following CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε
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Designing CFGs: A Caveat

● When designing a CFG for a language, 
make sure that it
● generates all the strings in the language and
● never generates a string outside the 

language.
● The frst of these can be tricky – make 

sure to test your grammars!
● You'll design your own CFG for this 

language on Problem Set 8.



  

CFG Caveats II

● Is the following grammar a CFG for the 
language { anbn | n ∈ ℕ }?

S → aSb  

● What strings in {a, b}* can you derive?
● Answer: None!

● What is the language of the grammar?
● Answer: Ø

● When designing CFGs, make sure your 
recursion actually terminates!



  

Designing CFGs

● When designing CFGs, remember that each 
nonterminal can be expanded out 
independently of the others.

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● Is the following a CFG for L?

S → X≟X

X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟



  

Finding a Build Order

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● To build a CFG for L, we need to be more clever with how we 

construct the string.
● If we build the strings of a's independently of one another, 

then we can't enforce that they have the same length.
● Idea: Build both strings of a's at the same time.

● Here's one possible grammar based on that idea:

S → ≟ | aSa  

S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟



  

Function Prototypes

● Let Σ = {void, int, double, name, (, ), ,, ;}. 
● Let's write a CFG for C-style function 

prototypes!
● Examples:

● void name(int name, double name);

● int name();

● int name(double name);

● int name(int, int name, int);

● void name(void);



  

Function Prototypes

● Here's one possible grammar:
● S → Ret name (Args);
● Ret → Type | void
● Type → int | double
● Args → ε | void | ArgList
● ArgList → OneArg | ArgList, OneArg
● OneArg → Type | Type name

● Fun question to think about: what changes 
would you need to make to support pointer 
types?



  

Summary of CFG Design Tips

● Look for recursive structures where they exist: 
they can help guide you toward a solution.

● Keep the build order in mind – often, you'll 
build two totally diferent parts of the string 
concurrently.
● Usually, those parts are built in opposite directions: 

one's built left-to-right, the other right-to-left.
● Use diferent nonterminals to represent 

diferent structures.



  

Applications of Context-Free Grammars



  

CFGs for Programming Languages
BLOCK → STMT

  | { STMTS }

STMTS → ε
 | STMT STMTS

STMT → EXPR;
  | if (EXPR) BLOCK

   | while (EXPR) BLOCK
   | do BLOCK while (EXPR);
   | BLOCK
   | …

EXPR → identifier
  | constant

    | EXPR + EXPR
    | EXPR – EXPR
    | EXPR * EXPR
    | ...



  

Grammars in Compilers

● One of the key steps in a compiler is fguring out what a 
program “means.”

● This is usually done by defning a grammar showing the 
high-level structure of a programming language.

● There are certain classes of grammars (LL(1) grammars, 
LR(1) grammars, LALR(1) grammars, etc.) for which it's 
easy to fgure out how a particular string was derived.

● Tools like yacc or bison automatically generate parsers 
from these grammars.

● Curious to learn more? Take CS143!



  

Natural Language Processing

● By building context-free grammars for actual 
languages and applying statistical inference, it's 
possible for a computer to recover the likely meaning 
of a sentence.
● In fact, CFGs were frst called phrase-structure 

grammars and were introduced by Noam Chomsky in his 
seminal work Syntactic Structures.

● They were then adapted for use in the context of 
programming languages, where they were called Backus-
Naur forms.

● Stanford's CoreNLP project is one place to look for an 
example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml


  

Biography Minute: 
Noam Chomsky

● Invented CFGs!
● Helped found felds of linguistics

and cognitive science

● Today, perhaps more well known for political 
writing than linguistics
● Made it onto President Nixon’s “Enemies List”
● Anti-capitalism, anti-imperialism, anti-war
● Drawing on linguistics expertise, written extensively 

on state propaganda (Manufacturing Consent)

PC: Hans Peters / Anefo (via Wikimedia)



  

Next Time

● Turing Machines
● What does a computer with unbounded 

memory look like?
● How would you program it?
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