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An implementation of a three-dimensional model for an air-breathing hypersonic vehicle using algorithmic dif-
ferentiation is presented. Motivation for this work is given in terms of difficulties encountered while calculat-
ing the linearized flight dynamics of another hypersonic vehicle model. The new model automatically calculates
derivatives with respect to flight condition variables, control variables, model parameters, and design variables.
The differentiation approach used here is unique in that it calculates both left- and right-hand derivatives at
first-order discontinuities. Other approaches including complex step and finite difference are compared with the
present implementation. Difficulties encountered in the derivation include handling of if statements, iterative
solution of systems, and sorting. Hypersonic flight for a simple climbing and accelerating trajectory is considered
to demonstrate the use of the model, and the effect of ballast mass on the short-period and Dutch-roll modes is
also shown.

Nomenclature
a = local speed of sound
C = transformation matrix
e = eccentricity
F,F = force or specific force
f = mass capture fraction
f = vector equations of motion function
g = gravity vector
H = height
h = altitude
I = inertia tensor
J = Jacobian
L = length or geodetic latitude
M = Mach number
M = moment (torque) or specific moment
m = number of external inlet shocks
ṁ = mass flow rate
n = number of internal inlet shocks
n = normal vector
n̂ = unit normal vector
P = roll rate
p = pressure
Q = pitch rate
q = dynamic pressure
R = yaw rate
r = position vector
T = temperature
u = vector of control variables
V, v, v = velocity
w = dimensionless width
x, y, z = physical coordinates
x = vector of state variables
α = angle of attack
β = sideslip angle
γ = ratio of specific heats or flight path angle
δ = deflection angle or control input
ε = pressure ratio
ζ, η, ξ = placeholder variables
θ = pitch angle or angle of flow
λ = length fraction
ρ = density
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σ = velocity heading angle
φ = roll angle
ψ = yaw angle
ω,ω = angular velocity

Subscripts/superscripts
+ = right-hand derivative
− = left-hand derivative
∗ = reference value
0 = stagnation value
1, 2, . . . = station number
b = body frame
CE = collective (average) elevon value
CR = collective (average) rudder value
DE = differential (left minus right) elevon value
e = Earth-centered, Earth-fixed frame
ER = equivalence ratio
i = station index or intertial frame
N, E,D = north, east, down components
n = navigation frame

I. Introduction
Sensitivity analysis has many applications in engineering, for example
in uncertainty analysis, design optimization, and inverse problems, but
it has an additional level of importance to nonlinear systems and in
particular flight dynamics. A very important and useful analysis of a
complicated nonlinear system is to linearize about a certain condition
[1]. Analysis of the resulting linearized dynamics gives insight into the
stability and control characteristics of the system, and this is almost
always a starting point for more sophisticated analysis. As a result,
studying nonlinear systems often requires calculating derivatives even
if optimization or uncertainty analysis is not considered.

The simplest way to calculate these derivatives is to use finite dif-
ferences. This method is extremely easy to implement, but finite dif-
ferences have well-known problems with accuracy and efficiency [2].
We have developed a tip-to-tail model of an X-43-like hypersonic ve-
hicle [3–6] that has been useful in calculating vehicle performance but
has had problems with estimating sensitivities [6–8]. In particular, that
model, called MASIV (Michigan/AFRL Scramjet In Vehicle), includes
complex effects such as shock interactions, fuel-air mixing, and finite-
rate chemistry. While it has been very useful to study trim conditions,
the model has given results for the stability of the short-period mode
that are sometimes difficult to interpret. The problems arise from the
finite-difference approximations used to calculate the sensitivities of
the equations of motion to state variables and control variables.

Several strategies are available to address this problem. A particu-
larly promising approach that has already been applied to sophisticated
models is to use a complex-step approximation to the derivatives [2].
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This approach is similar in use to the finite-difference step approxi-
mation in that each derivative (i.e. the derivative with respect to each
variable) requires a separate evaluation of the function. However, the
complex-step approximation is both more robust and more accurate. It
is also fairly easy to implement assuming that every intermediate step
of the model contains only real values when the inputs are real.

A second approach is called algorithmic differentiation (or some-
times automatic, manual, or continuous differentiation) [9]. Algorith-
mic differentiation produces a program that calculates both the value of
a given output and its derivative each time it is evaluated. This works
even for complex systems by calculating the derivatives at each inter-
mediate step of the computation and repeated application of the chain
rule. The technique of algorithmic differentiation has been applied suc-
cessfully in a wide variety of applications [10,11]. This style of differ-
entiation seems to have very few insurmountable limitations and was
selected for this study as a somewhat safe option.

Several models for air-breathing hypersonic vehicles with the level
of complexity targeted for this study have already been proposed.
Chavez and Schmidt [12], Frendreis and Cesnik [13], and Bolender
and Doman [14], have created models to predict an unstable short-
period mode for single flight conditions. Interestingly, the Chavez and
Schmidt model contains a type of automatic differentiation as discussed
in [12], but with several approximations and only with respect to the
variables needed for the stability analysis. The model used here is very
similar to [14] but applied to a three-dimensional vehicle.

This vehicle model is characterized by a series of equations (some
of which require solving equations implicitly). In this discussion, a col-
lection of “basis variables” are selected, and derivatives are taken with
respect to these variables using repeated applications of the chain rule.
In addition to the flight condition sensitivities and control variable sen-
sitivities required for the stability analysis, the model also calculates
derivatives with respect to a large set of vehicle design parameters and
a smaller number of model parameters (for example the radius of the
Earth). A small addition that was made to the model is that left-hand
and right-hand derivatives are calculated separately. As a result, deriva-
tives are handled correctly for functions such as abs, max, and min.

The bulk of this discussion focuses on the creation of this model
with special attention to aspects of the code that are particularly diffi-
cult to differentiate. A brief description of the Matlab implementation
is given, and the remaining description is split into sections of vehi-
cle design, force and moment calculation, and equations of motion. A
brief trajectory analysis provides a demonstration of the model in use.
It consists of a practical climbing and accelerating trajectory with a
constant dynamic pressure of one atmosphere and a constant acceler-
ation of 2 m/s2. The poles of the short-period and Dutch-roll modes
are plotted along this trajectory, and the modes are also calculated for a
range of ballast masses, which alter the center of gravity of the vehicle.

II. Vehicle Model
The vehicle used in this model is shown in Fig. 2, and it is roughly a
scaled-up version of an X-43. For simplicity the sides of the vehicle
are kept vertical. The design parameters include vehicle length, design
Mach number, and about 38 others so that the vehicle can be com-
pletely constructed from the design parameters. Calculation of forces
and moments on the vehicle is split into four parts: inlet, combustor,
nozzle, and exterior surfaces.

The entire model has been implemented in Matlab. A proven and
elegant method of algorithmic differentiation is to replace each numer-
ical program variable with an object that stores both the values and
derivatives [15, 16]. Then each arithmetic operator is overloaded with
a function that calculates values and applies the chain rule. Since Mat-
lab is an interpreted language, using complex data structures or objects
can create efficiency problems due to the amount of overhead it creates.
In particular, creation of new object types is particularly slow. In this
implementation, the built-in variable type struct is used. This pro-
vides somewhat of a middle ground as it is possible to store both values
and derivatives in the same variable, but it does not provide an easy way
to directly overload operators such as addition and subtraction.

The coordinate system for this vehicle is the standard body-fixed
frame for aerospace vehicles. The x-axis points forward with respect
to the vehicle, the y-axis points toward the pilot’s right, and the z-axis

points downward. The origin is chosen to be the middle of the leading
edge.

A. Programming Environment

The model was implemented in Matlab using a variable type called
struct. Instead of overloading operators, the chain rule is applied
manually after each manipulation of variables. The following snippet
of code demonstrates an example variable a that is considered to be a
function of x. First we declare the variable x. Its derivative is 1 because
x is also the basis variable.

x = struct(’v’, 3, ’L1’, 1, ’R1’);

Now we have stored a value of 3 in x and a first derivative of 1 (both
the left-hand and right-hand derivatives are 1). A function that squares
the value of x and calculates the derivative could be written like the
following.

a = f(x);

function a = f(x)
% Function value
a.v = x.v ˆ 2;
% Derivative
a.L1 = 2 * x.v * x.L1;
a.R1 = 2 * x.v * x.R1;

As a result, a will have the following value.

a =
v: 9
L1: 18
R1: 18

The approach used here, which is perhaps less elegant but also has the
property that exceptions can be handled easily, is to apply the chain
rule manually. The previous section of code changes to the following.

a.v = f(x.v)
a = chain_rule(x, 2*x.v)

function A = f(X)
% Function value only
A = X ˆ 2;

The 2*x.v in chain_rule(x, 2*x.v) comes manually from
calculating ∂ f

∂x . In the present model, the derivatives are actually vec-
tors that keep track of the derivatives of the value with respect to all the
basis variables.

B. MASIV Vehicle

The vehicle used for MASIV [4, 6] is shown in Fig. 1 while Fig. 2
shows the vehicle used for the present model. The two vehicle models
are not identical, but the similarities are obvious. The flight dynamics
of the two vehicles should not be extremely different.

C. Vehicle Design

Most of the vehicle design, including differentiation, is a straightfor-
ward process. For example, the length of the inlet is specified as a
fraction of the total length of the vehicle, and thus involves two design
variables.

L(inlet) = λ(inlet)L(vehicle) (1)

The Jacobian of the inlet length can be found quite simply using the
chain rule.

J(L(inlet)) = λ(inlet) J(L(vehicle)) + L(vehicle) J(λ(inlet)) (2)

The length of the vehicle is distributed using this method among the
inlet, isolator, combustor, and nozzle. This makes four design vari-
ables: L(vehicle), λ(inlet), λ(isolator), λ(combustor). The missing value, λ(nozzle) is
chosen so that the λ values add up to 1.
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Figure 1. Isometric view of the MAX-1 vehicle used with MASIV.
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Figure 2. Vehicle used for present fundamental model.
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Figure 3. Definitions for inlet design methodology.

Similarly, the width of the vehicle is taken from a dimensionless
parameter w(vehicle) so that the entire vehicle may be scaled up or down
using only L(vehicle). The sides of the vehicle are taken to be completely
flat, so that for any given vertex i, the y-coordinate is

yi = ±
1
2

w(vehicle)L(vehicle) (3)

D. Inlet design

The full inlet design process from [17] is used here except that variable
geometry is not considered. Despite the fact the inlet model used here
is much simpler than the MASIV inlet model [3], a well-designed inlet
has been shown to have the property that simple models predict their
performance fairly accurately over a limited range of flight conditions
[17].

The process begins by picking a certain flight condition–more
specifically a Mach number and angle of attack–at which the inlet’s
performance should be optimized. Performance at other flight condi-
tions will also be taken into account in the design process, but we start
with a single flight condition using the design variables M(design) and
α(design). The inlet will consist of a sequence of m external shocks and
n internal shocks. Figure 3 shows a visualization of these shocks and
the regions they create for an inlet with m = 2 and n = 2. To opti-
mize the pressure recovery factor (a measure of entropy generation) at
the design flight condition, the external shocks all have the compres-
sion ratio ε(ext), and the internal shocks all have the compression ratio
ε(int). Furthermore, the inlet will be constrained to have a certain overall
compression ratio, ε(inlet), at the design flight condition. So we have a
simple constraint of

ε(inlet) = εm
(ext)ε

n
(int) (4)

Now we have two variables to solve for: ε(ext) and ε(int). The second
constraint is that the flow after the last shock must be parallel to the
x-axis [18]. Each of the m + n shocks deflects the flow by a certain
angle δi, so the flowpath angles are

θ1 = α(design) θi+1 = θi + δi θm+n+1 = 0 (5)

It is possible to write functions δi = δ(εi,Mi) and Mi+1 =
M(εi,Mi), so it is relatively straightforward to calculate the partial
derivatives

∂θm+n+1

∂ε(ext)

∣∣∣∣∣∣
1

,
∂θm+n+1

∂ε(int)

∣∣∣∣∣∣
1

,
∂θm+n+1

∂M(design)

∣∣∣∣∣∣
1

, and
∂θm+n+1

∂α(design)

∣∣∣∣∣∣
1

;

∂ε(inlet)

∂ε(ext)

∣∣∣∣∣∣
1

,
∂ε(inlet)

∂ε(int)

∣∣∣∣∣∣
1

,
∂ε(inlet)

∂M(design)

∣∣∣∣∣∣
1

, and
∂ε(inlet)

∂α(design)

∣∣∣∣∣∣
1

.

where the subscript 1 is shorthand for the first basis, which is ε(ext),
ε(int), M(design), and α(design). Since the system of equations from (4) and

(5) can only be solved iteratively, we calculate the partial derivatives
above for the values of ε(ext) and ε(int) that satisfy the two constraints.
The problem now is that the set of partial derivatives we have calculated
is different from the set of partial derivatives we need. The needed
derivatives are

∂ε(ext)

∂ε(inlet)

∣∣∣∣∣∣
2

,
∂ε(int)

∂ε(inlet)

∣∣∣∣∣∣
2

,
∂ε(ext)

∂M(design)

∣∣∣∣∣∣
2

,

∂ε(int)

∂M(design)

∣∣∣∣∣∣
2

,
∂ε(ext)

∂α(design)

∣∣∣∣∣∣
2

,
∂ε(int)

∂α(design)

∣∣∣∣∣∣
2

.

where the second basis is ε(inlet), M(design), and α(design).
Fortunately we can apply the chain rule to obtain a system of equa-

tions for the desired derivatives.

∂ε(inlet)

∂ε(inlet)

∣∣∣∣∣∣
2

= 1 =
∂ε(inlet)

∂ε(ext)

∣∣∣∣∣∣
1

∂ε(ext)

∂ε(inlet)

∣∣∣∣∣∣
2

+
∂ε(inlet)

∂ε(int)

∣∣∣∣∣∣
1

∂ε(int)

∂ε(inlet)

∣∣∣∣∣∣
2

(6)

∂θm+n+1

∂ε(inlet)

∣∣∣∣∣∣
2

= 0 =
∂θm+n+1

∂ε(ext)

∣∣∣∣∣∣
1

∂ε(ext)

∂ε(inlet)

∣∣∣∣∣∣
2

+
∂θm+n+1

∂ε(int)

∣∣∣∣∣∣
1

∂ε(int)

∂ε(inlet)

∣∣∣∣∣∣
2

(7)

Actually, the chain rule should give more terms than are listed here,
but terms such as ∂M(design)/∂ε(inlet)|2 are zero because both M(design) and
ε(inlet) are basis variables in the second basis. The next pair of deriva-
tives can be solved using the system

∂ε(inlet)

∂M(design)

∣∣∣∣∣∣
2

= 0 =
∂ε(inlet)

∂M(design)

∣∣∣∣∣∣
1

+
∂ε(inlet)

∂ε(ext)

∣∣∣∣∣∣
1

∂ε(ext)

∂M(design)

∣∣∣∣∣∣
2

+
∂ε(inlet)

∂ε(int)

∣∣∣∣∣∣
1

∂ε(int)

∂M(design)

∣∣∣∣∣∣
2

(8)

∂θm+n+1

∂M(design)

∣∣∣∣∣∣
2

= 0 =
∂θm+n+1

∂M(design)

∣∣∣∣∣∣
1

+
∂θm+n+1

∂ε(ext)

∣∣∣∣∣∣
1

∂ε(ext)

∂M(design)

∣∣∣∣∣∣
2

+
∂θm+n+1

∂ε(int)

∣∣∣∣∣∣
1

∂ε(int)

∂M(design)

∣∣∣∣∣∣
2

(9)

This system is very similar to the one used to calculate the derivatives
with respect to α(design).

Once the values and derivatives of ε(ext) and ε(int), the actual design
of the geometry proceeds as it is presented in [17], and the differentia-
tion is straightforward. Worth noting here is that the functions δ and M
from earlier in this subsection are first used to calculate the deflection
angles δ1, . . . , δm+n. At this point we introduce four more design vari-
ables M(min), M(max), α(min), and α(max), which specify a range of flight
conditions for which the inlet should not have any bad shock inter-
actions. Selecting a wide range for these design variables (i.e. large
difference between M(max) and M(min)) has been shown to improve the
robustness of the inlet [17,19]. Then the function βi = β(Mi, δi) is used
to calculate the wave angles for each extreme pair of flight conditions,
i.e. (M(min), α(min)), (M(min), α(max)), (M(max), α(max)), and (M(max), α(min)).

E. Minimum, Maximum, Absolute Value, and Sorting

The next step in the inlet design process involves taking the minimum
and maximum of several shock angles to ensure that the shocks place-
ment is acceptable for the specified range of flight conditions [17]. This
brings about a special type of problem when calculating derivatives be-
cause it introduces a discontinuity in the first derivative. While many
techniques involve picking either the left-hand or right-hand derivative
at such points, here we keep track of both derivatives. This section han-
dles the three basic types of problems that involve comparing function
values and keeping track of the derivatives.

The simplest continuous function that creates problems for deriva-
tives is probably the absolute value.

η = abs(ξ) =

{
ξ, ξ ≥ 0
−ξ, ξ < 0 (10)

However, we can write the left-hand and right-hand derivatives easily
enough.

∂η

∂ξ−
=

{
1, ξ > 0
−1, ξ ≤ 0

∂η

∂ξ+
=

{
1, ξ ≥ 0
−1, ξ < 0 (11)
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Figure 4. Example of sorting four linear functions of one variable

Using Eq. (11) and the classic formulas

max(ξ1, ξ2) =
ξ1 + ξ2

2
+
|ξ1 − ξ2|

2
(12)

min(ξ1, ξ2) =
ξ1 + ξ2

2
−
|ξ1 − ξ2|

2
(13)

it is also easy to write the derivatives of the min and max functions.
While it is possible to apply min and max repeatedly to sort a list of

values while keeping track of the left-hand and right-hand derivatives,
the case of sorting the derivatives when several values are the same
is worth more careful consideration. Consider the following relatively
simple example of several lines intersecting at the origin.

ηi = ciξ i = 1, . . . ,N (14)
[ζ1, . . . , ζN] = sort[η1, . . . , ηN] (15)

It is clear that ζ1 = . . . = ζN = 0 when ξ = 0, but it is less clear what
the derivatives of each ζi should be.

Figure 4 shows an instance of the linear example with ci-values of
−6,−3, 0, 3. Each ηi line has a constant color in Fig. 4a, while each
ζi has a constant color in Fig. 4b. At the intersection point, the lines
are essentially broken apart so that the sorted values correspond to one
value of η when ξ < 0 and a different η-value when ξ > 0. Looking at
the kinked functions in Fig. 4b demonstrates that the derivatives of ζi
at ξ = 0 are [

∂ζ1

∂ξ−
, . . . ,

∂ζN

∂ξ−

]
= −sort

[
−
∂η1

∂ξ−
, . . . ,−

∂ηN

∂ξ−

]
(16)[

∂ζ1

∂ξ+
, . . . ,

∂ζN

∂ξ+

]
= sort

[
∂η1

∂ξ+
, . . . ,

∂ηN

∂ξ+

]
(17)

In other words, the left-hand derivatives are sorted in descending order,
and the right-hand derivatives are sorted in ascending order.

F. Isolator, Combustor, and Nozzle Design

The geometry of the thrust-generating portion of the model is very sim-
ple. As shown in Fig. 5, the isolator is a simple constant-area section,
while the combustor consists of a constant-area section followed by a
diverging section. Because the lengths of the components are set by
λ(isolator) and λ(combustor), this introduces only two new design variables:
the length of the constant-area section, λ(constant-area), and the angle of the
combustor divergence, θ(divergence). We define λ(constant-area) to be the frac-
tion of the combustor that is constant-area so that 0 ≤ λ(constant-area) ≤ 1.

isolator
combustor

constant-area diverging

θ(divergence)

nozzle
inlet

Figure 5. Sketch of isolator and combustor design.

The nozzle has a similarly simple design consisting of only a sin-
gle ramp. Since the length of the nozzle is already set by the previous
design parameters, the body portion of the nozzle requires a single fur-
ther design parameter, which is the vertical offset of the vehicle’s trail-
ing edge compared to the leading edge. The nozzle then connects top
of the end of the combustor to the trailing edge. The additional aspect
of the design is the length of the cowl, as shown in Fig. 6, which is
controlled by another design variable, λ(cowl).

G. Control Surfaces

The horizontal and vertical control surfaces are both considered to be
flat plates with a moving section. The location of the horizontal con-
trol surface on the vehicle is determined by two variables, x(elevator) and
z(elevator), which both range between 0 and 1. The position of the leading
edge is selected so that the base of the horizontal control surface is en-
tirely on the side of the fuselage, i.e. the wing does not go beyond the
limits of the vehicle. For example, if x(elevator) = 1, the trailing edge of
the horizontal control surface will be at the trailing edge of the vehicle.
Similarly, the vertical position of the control surface along the side of
the vehicle is interpolated from the top of the vehicle fuselage to the
bottom. Figure 7 shows how this is defined so that a value of z(elevator)
between 0 and 1 ensures that the control surface is completely touching
the fuselage.

combustor cowl

nozzle

Figure 6. Sketch of nozzle design.
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allowable area

control surface location

z(elevator) = 1

z(elevator) = 0

Figure 7. Sketch of side of vehicle model with vertical placement of hor-
izontal control surface. The design variable is defined so that either the
leading or trailing edge is touching the upper surface of the vehicle when
z(elevator) = 0.

Design parameters used to describe the shape of horizontal control
surface are chord length, sweep angle, dihedral angle, span, taper ratio,
incidence angle, fraction of the chord that is a movable surface, and
fraction of the span that is movable. The same parameters are in use
for the tail (vertical control surface).

III. Force and Moment Calculation
Apart from the calculation of derivatives, the calculation of forces and
moments is similar to that of Bolender and Doman [14] with a few
modifications. As with previous hypersonic vehicle models, the anal-
ysis is split into four parts: the inlet, the isolator and combustor, the
nozzle, and the external surfaces including control surfaces. The dif-
ferentiation of the force and moment calculation is relatively straight-
forward, but several issues must carefully be considered.

A. Inlet Model

The inlet model has two phases; a sequence of shocks and a correction
for mass spillage. There are m external shocks and n internal shocks,
as described in Section II.D. The properties of the shock can actually
be calculated analytically [20], so they cause no difficulties for the dif-
ferentiation.

A simple analysis which considers the inlet flow to pass through
one shock after another cannot account for the spilled flow that does
not make it into the combustor. Following the shock calculations, we
have values ρ∗2, p∗2, T ∗2 , u∗2, and M∗

2 that describe the initial prediction of
the conditions at the end of the inlet. If H2 is the internal height at the
end of the inlet (or beginning of the isolator), this means that the mass
flow to the isolator is ṁ∗2 = ρ∗2u∗2H2. We can see from Fig. 8 that the
angle of the first shock provides a simple estimate of how much mass
actually goes into the engine. If f is the fraction of air that is captured
compared to the shock-on-lip condition, the actual mass flow rate is

ṁ2 = ρ2u2H2 = fρ∗2u∗2H2 (18)

In this model, the excess mass is subtracted isentropically, so that

p2

p∗2
=

1 +
γ−1

2 (M∗
2)2

1 +
γ−1

2 M2
2


γ
γ−1

(19)

These two equations have the solution

f =
M2

M∗
2

1 +
γ−1

2 (M∗
2)2

1 +
γ−1

2 M2
2


1
2
γ+1
γ−1

(20)

which must be solved implicitly for M2.

B. Combustor Model

The combustor model used here is the same as what is used in [14] and
[12]. Rearranging the equations slightly and using a different station
numbering, the equation for the heat addition is

M2
4

(
1 +

γ−1
2 M2

4

)
(
1 + γM2

4

)2 =
M2

3

(
1 +

γ−1
2 M2

3

)
(
1 + γM2

3

)2

T04

T03
(21)

shock 1

shock 2

shock 3

shock 4

height of captured flow

height of spilled flow

Figure 8. Sketch of mass flow spillage in inlet.

where the total temperature after heat addition, T04, is a function of the
equivalence ratio and T03. A similar process is used for the diverging
section of the combustor.

C. Nozzle Model

The nozzle model is also directly taken from [14] and [12] except that a
nozzle cowl has been added. The pressure at the end of the combustor
(and thus beginning of the nozzle) is p5. The model assumes that the
flow perfectly expands to atmospheric pressure, p1, along the nozzle
surface. The resulting force normal to a given panel of length Li is

Fi =
p1 p5

p5 − p1
Li ln

p5

p1
(22)

This formula is applied to both the lower surface of the nozzle body
and the upper surface of the nozzle cowl shown in Fig. 6.

D. Exterior Surfaces

Surfaces that are not part of the inlet, isolator, combustor, or nozzle
are split into panels that are analyzed using Newtonian aerodynamics.
These panels are readily apparent in Fig. 2. One thing that is worth
noting, however, is that panels with zero area cannot be ignored when
calculating derivatives. For a given panel i, the force acting on the
panel is Fi = −piAin̂i where Ai is the area of the panel, and n̂i is the
unit normal. This can also be written Fi = −pini where ‖n‖i = Ai. Then

∂Fi

∂ξ
= −pi

∂ni

∂ξ
(23)

when Ai = 0. An unfortunate problem here is that n̂i is not defined for
a panel with no area, so we consider the unnormalized normal vector,
ni as a single entity that is a function of the vertex coordinates.

IV. Equations of Motion
For hypersonic vehicles, the velocities and altitude are high enough that
the assumption a flat Earth is no longer valid. As a result, we employ
a model that is consistent with a rotating WGS84 Earth [21, 22]. For
example, an aircraft flying east at a constant altitude above the equator
would require a lift force that is about 13% less than what would be
predicted when using the flat-Earth equations of motion.

The output of the hypersonic vehicle model is a net specific force
(i.e. net force divided by vehicle mass) and net specific moment in the
body frame, which we write

Fb = Fb(x,u) (24)

Mb = Mb(x,u) (25)

Here x is a vector of state variables, and u is a vector of control vari-
ables. Since these forces and moments are calculated in a frame fixed
to the body of the vehicle, we will write the equations of motion in this
coordinate system. Since this frame is not an inertial frame, we cannot
calculate the accelerations by just adding up all the forces in the body
frame and dividing by the mass. Instead, we must apply the Coriolis
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transport theorem to account for the rotation of the body-fixed frame.
Eventually this leads to an equation of the type

ẋ = f(x,u) (26)

Two types of problem arise when calculating the derivatives of the
equations of motion. From the previous section, we already have the
derivatives of Fb and Mb, but the function f introduced in (26) involves
matrix multiplication and one matrix inversion.

A. Coordinate Systems

In order to apply Newton’s second law directly, we need an inertial
frame. In the current model, this is the Earth-centered inertial (ECI)
frame, and we label it the i-frame.

r̈i
ib = f i + gi f i = Ci

bfb (27)

We also see the need to be able to transform a vector from one coor-
dinate system to another, which requires a transformation matrix. In
this notation, b denotes the body frame, which is attached to the vehi-
cle. This notation is saying that multiplying a vector that is resolved in
the b-frame by Ci

b on the left results in the same vector resolved in the
i-frame.The chain rule for this example of matrix multiplication is

∂f i

∂ξ
=
∂Ci

b

∂ξ
fb + Ci

b
∂fb

∂ξ
(28)

but there is no vector form of this equation for the case that ξ is a
vector. The options are to apply the chain rule for each variable of
differentiation or use gradients for each element of the matrix.

The notation ri
ib requires more explanation. The rib part refers to

the vector from the origin of the i-frame (the center of the Earth) to the
origin of the b-frame (the center of mass). The superscript i means that
the vector is written as a vector in the i coordinate system.

Since the Earth is rotating, and the atmosphere more or less rotates
with it (neglecting weather patterns), we describe the motion of the
vehicle in a coordinate system where each point on the surface of the
Earth has constant coordinates. For this purpose, we use the Earth-
centered, Earth-fixed frame (ECEF), in which the ze-axis points from
the center of the Earth toward the north pole, the xe-axis points toward
the intersection of the equator and the prime meridian, and the ye-axis
completes a right-handed system. The angular velocity between the
ECEF frame and the ECI frame is

ωe
ie =

 0
0
ωie

 ωie ≈ 7.292115 × 10−5 rad/s (29)

To make the equations more intuitive, a coordinate system is in-
troduced in which the x-axis points toward the local north, the y-axis
points toward the local east, and the z-axis points locally down. This
is called the navigation frame, and the transformation matrix from the
navigation frame to the ECEF frame is

Ce
n =

− sin L cos λ − sin λ − cos L cos λ
− sin L sin λ cos λ − cos L sin λ

cos L 0 − sin L

 (30)

The navigation frame is carried with the vehicle, so that the origin of the
navigation frame is always located at the center of mass of the vehicle.
However, the navigation frame does not rotate with the vehicle, so that,
for example, the zn-axis always points directly normal to the surface of
the Earth. Figure 9 gives a visual demonstration of the relation between
the ECEF and navigation coordinate frames for an example point. The
components of the vehicle velocity in this frame are

vn
eb = Cn

e ṙe
eb =

vN
vE
vD

 (31)

This equation shows an implicit assumption made in this notation;
derivatives that are shown with a dot are always taken in the resolv-
ing frame. This means, for example, that vn

eb 6= ṙn
eb. Also, the vehicle

velocity and position are both always measured from the ECEF origin

prime meridian

equator
xe

ye

ze

xn yn

zn

Figure 9. ECEF and navigation coordinate frames.

to the body origin, so the two subscripts will be dropped in the follow-
ing references.

The final coordinate frame is the body frame, which was discussed
previously and has the transformation matrix that carries the navigation
frame to the body frame of

Cb
n =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


(32)

The components of the velocity are vb = (u, v,w).

B. The WGS84 Earth Model

Instead of using a spherical Earth, we have chosen to use the WGS84
ellipsoidal reference datum [21]. This is the same model used for the
Global Positioning System (GPS) [22], and it thus provides an accurate
reference for navigation. In this model, each curve of constant latitude
is a circle, but each meridian is an ellipse with an eccentricity of

e = 0.0818191908426 (33)

and a semi-major axis of

RQ = 6378137 m (34)

One result of using an ellipsoidal Earth is the possibility of ambigu-
ously defined latitude and altitude. In this paper, we use geodetic lati-
tude, which has the property that moving normal to the reference ellip-
soid does not change the latitude.

C. Net Accelerations

The equations of motion in the n-frame, which are often called the
navigation equations [22] are

v̇n = Cn
bfb + gn − ωn

ie × (ωn
ie × Cn

ere) − (2ωn
ie + ωn

en) × vn (35)

and a simple application of the transport theorem provides the net ac-
celerations in the body frame.

v̇b =

 u̇
v̇
ẇ

 = fb + Cb
n(gn −ωn

ie × (ωn
ie ×Cn

ere)− (2ωn
ie +ωn

en + Cn
bω

b
nb)× vn)

(36)
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The angular equations of motion in the body frame can be shown
to be

ω̇b
nb =

(
Ib

)−1 (
Mb − ωb

ib × Ibωb
ib

)
− Cb

n

(
ω̇n

en + ωn
in × Cn

bω
b
nb + ωn

ie × ω
n
en

)
(37)

where Ib is the inertia tensor divided by the total mass of the vehicle. In
our model, we assume that changes in the mass of the vehicle simply
change the uniform density of the entire vehicle volume, which is a first
approximation used before the mass properties of the vehicle are real-
istically established. As a result, Ib is independent of the vehicle mass
in this simple model. The components of the body angular velocity are
given as ωb

nb = (P,Q,R).
Calculating the derivatives of Ṗ, Q̇, and Ṙ require knowing the

derivatives of the matrix inverse (Ib)−1. A special case of implicit dif-
ferentiation is useful here. Consider a system of equations

Aη = ζ

where A and ζ are both functions of a variable ξ, and the derivatives
∂η/∂ξ are desired. Taking the derivative of both sides gives

∂A
∂ξ
η + A

∂η

∂ξ
=
∂ζ

∂ξ

which is a linear system that can easily be solved for ∂η/∂ξ once the
original linear system for η has been solved.

D. Trim

For our purposes, finding a trimmed flight condition entails selecting a
value of ẋ and finding values of x and u that satisfy Eq. (26). The accel-
eration vector, ẋ, consists of the velocity and angular velocity deriva-
tives, u̇, v̇, ẇ, Ṗ, Q̇, and Ṙ. Typically, we want to select values for some
of the state variables (i.e., the entries in x)) and find values all of the
control values plus the remaining state variables. Using these concepts,
we can rewrite Eq. (26) as

ẋ = f(X,Y,u) (38)

where X is a vector of the independent state variables and Y contains
the dependent state variables. In this discussion, we consider the in-
dependent state variables to be those describing the position, velocity,
and angular velocity. The dependent variables include the orientation
of the vehicle and the various control variables.

For this paper, the independent state variables are

X =
[
L λ h M γ σ P Q R

]T
(39)

and the dependent variables are

Y =
[
α β φ

]T
u =

[
δER δCE δDE δCR

]T
(40)

where δCE is the average of the left and right elevator deflection angles
(defined so that a positive deflection moves the trailing edge down) and
δDE is the deflection angle of the right elevator minus the deflection
angle of the left elevator. For simplicity we also make the assumption
that the sideslip angle, β, is zero. This is convenient because it makes
Eq. (38) a system of equations with six variables and six equations.

E. Ascending Trajectory

We consider trajectories with constant dynamic pressure. Using a stan-
dard atmospheric model [23], the assumption of constant dynamic pres-
sure allows us to determine altitude as a function of Mach number. In
other words there is a function such that h = h(V). Since h and V
are both basis variables, it is important to remember the relationship
between h and V when we calculate derivatives of the performance.
Differentiating this function with respect to time gives

ḣ =
dh
dV

V̇ (41)

Since ḣ = V sin γ, we can solve for the acceleration,

V̇ = V
dV
dh

sin γ (42)

The dynamic pressure is

q =
1
2
ρV2 (43)

where ρ is given as a function of altitude, ρ(h). Differentiating both
sides with respect to altitude gives

dV
dh

= −
V
2ρ
ρ′(h)

Substituting this result back into (42) gives

V̇ = −
V2

2ρ
ρ′(h) sin γ (44)

This means that the acceleration, V̇ , can be determined from the flight-
path angle, γ, or vice versa. The result is that the entire range of pos-
sible flight conditions with a given constant dynamic pressure can be
expressed in terms of only two variables.

Since we have introduced a term involving dρ/dh into the analysis,
our derivative analysis will require the value of d2ρ/dh2. For example,

∂V̇
∂h

= −
V2

2ρ
ρ′′(h) sin γ

A very similar result occurs if we use Ṁ in our linearization analysis.
Since M depends on the temperature, which is a function of altitude,
we need the second derivative of temperature with respect to altitude.

Ṁ =
V̇
a
−

Vȧ
a2 ȧ =

1
2

T ′(h)
T

aḣ (45)

In other words, we need to keep an extra derivative of the atmospheric
model with respect to the altitude h.

V. Results
One of the main motivations for this work is to simulate the open-loop
linearized dynamics using a technique with little or no computational
instability. Calculating the linearized dynamics requires the derivatives
of the equations of motion. Because the model used in this paper calcu-
lates the derivatives automatically, it is particularly well-suited to these
linearization calculations.

Section V.C quantifies the numerical errors associated with using
finite differences to calculate the linearization derivatives. Although the
model is relatively simple for a tip-to-tail vehicle model, it is compli-
cated enough to make roundoff errors in the finite differences to occur
at relatively large step sizes. Finally, section V.D contains a discussion
of the relative advantages and disadvantages of various techniques to
calculate derivatives.

A. Trajectory Simulation

A model that can calculate the linearized dynamics is useful to com-
pare against other models. The authors have developed another model,
called MASIV [3, 5, 6, 24, 25], which contains analysis of effects such
as shock interactions, finite-rate chemistry, fuel-air mixing, and a ram-
mode solver. Like the model developed in this paper, it is a tip-to-tail
vehicle model that contains trim analysis. The MASIV model has been
successful in many respects, but performance values such as thrust are
not always smooth functions of the input variables [7]. As a result,
calculating the derivatives required for linearization is difficult [6, 8].

The model presented in this paper, however, calculates the deriva-
tives exactly. Despite the fact that the two models are very different,
and indeed consider slightly different vehicles, it is useful to see if the
two models predict qualitatively similar linearized dynamics. This is
especially informative in the case of the Dutch-roll mode because there
is so little information available about the lateral-directional dynamics
of hypersonic vehicles. Although comparing MASIV with a model of
lesser fidelity does not necessarily provide information on the accuracy
of the original model, it can provide a check for consistency. It also pro-
vides information on what aspects of the model can be responsible for
changes in the flight dynamics. This alludes to the fact that two models
could have significant differences in the intermediate values and still
have very similar linearized flight dynamics. The same could be said
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about two different designs. As an example, consider two engines that
have different combustion efficiencies, and everything else is the same.
At a given flight condition, the short-period mode would probably be
almost identical for both vehicles because the one with the lower effi-
ciency would simply inject more fuel to get the same acceleration.

Figure 10 shows the locus of poles for modes of two linearized
flight dynamic modes using both models. The short-period mode is a
purely longitudinal mode (i.e. it is a two-dimensional process and does
not involve roll or yaw of the vehicle) that primarily involves the angle
of attack (α) and the pitch rate (Q). It is shown for MASIV in Fig. 10a
and the model from this paper inf Fig. 10c. The Dutch-roll mode is
primarily a trade between sideslip angle (β) and yaw rate (R), and is
shown in Figs. 10b and 10d.

The vehicles used for the trajectory simulations are the ones from
Figs. 1 and 2. For the low-order vehicle from Fig. 2, the design Mach
number range is 7 to 9, the inlet compression ratio is 70, and the ballast
mass in the nose is 20% of the weight of the vehicle. This hight ballast
weight was used to shift the center of gravity forward to qualitatively
match the short-period stability of the MASIV model. The MASIV
vehicle design has been described in previous works, particularly [6]
and [17]. The inlet compression ratio used here is 70, and the design
Mach number range is 7 to 11.

The more interesting results are probably in the short-period plots.
The MASIV results in Fig. 10a appear to show a stable, oscillatory
short-period mode, and as the Mach number increases, both the time-
to-half and the oscillation frequency decrease. However, the jagged-
ness of the plot seems to cast doubt on at least some of these state-
ments. Discomfort with this plot in particular was one of the reasons to
investigate exact differentiation techniques. In particular, the fine-scale
variations mean that there is some amount of computational noise, and
it raises doubt about the bulk properties of the short-period mode cal-
culation.

However, the comparison between Figs. 10a and 10c show the
same overall trends. This is not a confirmation that either model is
physically correct, since there is no comparison to flight data, but it
does indicate that the overall trend of the MASIV short-period pole
locus is not a computational aberration. Instead, it appears that the un-
certainty introduced by the non-smooth MASIV model is on the order
of the fluctuations in Fig. 10a.

The results for the Dutch-roll mode are somewhat different. Fig-
ure 10b does not show large fluctuations, which is mostly due to the
relative simplicity of the MASIV lateral force model compared to the
MASIV engine model. Overall, the Dutch-roll mode shows a simi-
lar trend to that of the short-period mode except that it is much more
lightly damped. The results from the exact differentiation model in
Fig. 10d actually differ substantially. For one thing, the damping is
much greater, and the frequency increases rather than decreases with
Mach number. However, this is mostly due to the difference in vehi-
cle design. In particular, the large, flat sides of the vehicle used in the
present model produce very large lateral forces while they offer little
or no damping for roll perturbations.

B. Center of Mass Location

Figures 11 and 12 investigate the effects of the center of mass loca-
tion on the stability of the linearized flight dynamics modes. The re-
sults from Section V.A showed stable short-period modes, which dif-
fers from the results in [12] and [14]. However, shifting the center of
mass far enough forward will cause almost any air vehicle to be stable,
so the difference of results should not be alarming.

In this model, we consider the vehicle to have a uniform density
except for an extra ballast mass placed at the nose. These two assump-
tions lead to both a center of mass location and an inertia tensor. With
no ballast mass, both modes are unstable with no oscillations. As bal-
last mass, the short-period mode becomes less unstable until at a cer-
tain point it switches to a stable oscillatory mode, as shown in Fig. 11a.
From this point, Fig. 11b shows that adding more ballast causes both
the time-to-half and the frequency to actually increase.

The Dutch-roll poles plotted in Fig. 12 show a more complicated
trend. With zero ballast, the mode is unstable and non-oscillatory, but
adding ballast actually makes the mode more unstable. But at a certain
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Figure 11. Short-period poles for various ballast masses, λb =

m(ballast)/m(vehicle) at Mach 8 and one atmosphere dynamic pressure.

amount of ballast, the Dutch-roll abruptly changes to a stable, oscilla-
tory mode. From there, each of the two poles seems to be making a
half ellipse back towards the origin.

For both modes, the lowest ballast that results in a stable mode
actually gives the stablest mode for any of the cases. This seems a
little unusual, but it is important to note that the center of mass is not
changed in isolation. Moving the center of mass also affects the trim
condition, and thus the changes to the linearized flight dynamics are
also affected by the changes to trim angle of attack, equivalence ratio,
and elevon angle.

C. Derivative Convergence

Although finite-difference approximations to derivatives have well-
known and well-documented potential pitfalls [2], they are extremely
simple to apply, and they can serve as a test for more challenging ap-
proximation methods. Here the simple forward finite-difference ap-
proximation has been applied to several derivatives using a range of
step sizes from 10−16 to 10−1. Because the differentiation was written
manually for this code, such testing is particularly important to verify
accuracy of the analytical derivatives. However, the finite-difference
approximation does not fully converge when implemented on a com-
puter, so the comparison only assures that the analytical derivatives are
accurate to a relative error of about 10−8. Using the complex-step ap-
proximation would give a higher degree of verification.

Since the analysis has been done using double-precision numbers,
the computer will say that a − b is zero if |a − b|/a < 10−16. Because
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Figure 10. Poles of the open-loop linearized dynamics for two vehicle models on a constant dynamic pressure trajectory of 1 atm accelerating from Mach 7
to Mach 11.

the forward finite difference,

f ′(ξ) =
f (ξ + ∆ξ) − f (ξ)

∆ξ
+ O(∆ξ) (46)

requires subtracting very small numbers as the step size decreases, it
predicts a sensitivity of exactly 0 if the relative change in f is less
than 10−16, and in most cases problems occur even for much larger step
sizes.

Figure 13 shows the comparison between the analytical derivative
of the forward acceleration, u̇ to a flight condition variable (angle of
attack, α) and a design variable (design Mach number, M(design)) using
the low-order model. The equations of motion are applied to a vehicle
flying at Mach 8 and an altitude of 28000 m. The angle of attack is
0, and the equivalence ratio (i.e. the throttle setting) is 0.4. For these
conditions, the value of u̇ is −0.2163 m/s2.

Similarly, Fig. 14 shows the sensitivity comparison for two deriva-
tives of T5, which is the static temperature immediately after the
constant-area heat addition. To show the copious amount of deriva-
tives that the model calculates, the figure shows the accuracy of the
derivatives of an intermediate computation, T5, to a flight condition
variable (angle of attack, α) and a model parameter (combustion ef-
ficiency, η(combustion)). The actual values associated with these figures
are

u̇ = −0.2163 m/s2 ∂u̇
∂α

= −52.83
m

s2 · rad
∂u̇

∂M(design)
= 1.544 m/s2

T5 = 2851 K
∂T5

∂α
= 1740 K/rad

∂T5

∂η(combustion)
= 2699 K

The plots in Figs. 13 and 14 illustrate the subtraction errors that plague
the finite-difference approximation. For step sizes lower than approx-
imately 10−6, the approximation shows the expected first-order con-
vergence. For smaller step sizes, the approximation becomes less and
less accurate, and the graph is not smooth. The non-smooth nature of
the left portion of each curve is probably due to the fact that more and
more intermediate computations experience loss of significance as the
step size decreases. Eventually all of the computations have loss of sig-
nificance, and the derivative approximation goes to zero, although this
is only visible for the very smallest step sizes in Fig. 13b here.

D. Discussion

Although there are several remaining technical issues with algorith-
mic differentiation and the complex-step approximation, the theoretical
problems rarely show up in practice [2]. Using the proper tools, both
of those methods can be relatively easy to implement. In this model,
differentiation was done manually as part of the code, so the theoretical
problems are not a concern, but it required considerably more work to
implement.

Compared to the complex-step approximation, this approach to-
ward calculating derivatives has both advantages and disadvantages.
Using Matlab, implementing the complex step requires very little work
even for complicated programs, while any type of algorithmic differ-
entiation almost requires that the program use a dedicated syntax. The
implementation used here is even more difficult because the coder is
also responsible for keeping track of the derivatives, and a special syn-
tax was created to ease this process. However, this method keeps track
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Figure 12. Dutch-roll poles for various ballast masses, λb =

m(ballast)/m(vehicle) at Mach 8 and one atmosphere dynamic pressure.
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Figure 13. Relative error in the sensitivity estimates given by the forward
finite-difference method of forward acceleration (u̇) using the analytic re-
sult as reference. The errors are normalized by the absolute value of the
analytic result.

of left-hand and right-hand derivatives separately, which can alert to
otherwise undetectable behavior of the system. For example, in the
standard atmosphere the temperature is defined as a piecewise linear
function of geopotential altitude [23]. If the vehicle is flying at a geopo-
tential altitude of exactly 11 km, the derivative of temperature with re-
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Figure 14. Relative error in the sensitivity estimates given by the forward
finite-difference method of static temperature after constant-area heat ad-
dition (T5) using the analytic result as reference. The errors are normalized
by the absolute value of the analytic result.

spect to an increase in altitude will differ from the derivative with re-
spect to a decrease in altitude. In this model, these differences were
found to be extremely rare in practice.

Another advantage of the present method is that it works with-
out modification for complex-valued functions or for systems with
complex-valued inputs. Although this is a problem that can be over-
come with the complex-step approximation, for example by keeping
track of the real part and imaginary part of each function separately, it
would make the two methods for differentiation about equally difficult
to implement. In the current hypersonic vehicle model, there are no
complex-valued functions.

The present implementation calculates the derivatives with respect
to a large set of basis variables each time the vehicle performance is cal-
culated. This provides convenience because the derivatives are always
present, but naturally that comes at a price of efficiency if not all the
derivatives will be used later. Perhaps more importantly, this process
almost requires establishing a set of basis variables before the compu-
tation. Calculating a derivative with respect to a different variable can
be difficult or impossible.

By comparison, the complex-step approximation requires one
function evaluation for each derivative. In other words, to calculate
the derivatives with respect to ξ1, ξ2, ξ3 would require three function
evaluations. On the other hand, the user can pick an input with respect
to which to differentiate at any point. Consider an example where

ζ = f2(η) η = f1(ξ) (47)

Supposing that η is a basis variable, we can easily (and automatically)
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calculate ∂ζ/∂η, and we can calculate ∂ξ/∂η implicitly. However, they
may not be any way to represent ∂η/∂ξ in the syntax because ξ is not
a basis variable. Provided that f1 is actually a function of several vari-
ables, getting ∂η/∂ξ from the derivatives that we would have may re-
quire an application of the inverse function theorem. In contrast, the
complex-step method can provide an approximation by simply evalu-
ating f2(ξ + i∆ξ). This is relevant to the hypersonic vehicle example
because there are multiple conventions to specify the flight condition.
For example, it is sometimes useful to specify the pitch angle and the
angle of attack, while other times it is more useful to specify the angle
of attack and velocity flight path angle.

Another approach similar in many ways to complex-step differen-
tiation is automatic differentiation. With such a technique, numeric
variables are replaced with a special class of variable that stores both
the value of the variable and its derivative (or sometimes Jacobian
or even Hessian). Then each operation, such as addition, multiplica-
tion, trigonometric functions, exponentiation, calculation of eigenval-
ues, etc., is rewritten to apply the chain rule while it calculates the
results. The authors have implemented a version of this technique in
Matlab, but the results are not presented here.

Although the various differentiation methods have various advan-
tages and disadvantages, they can also be used to work together. Test-
ing and verification are two obvious applications, but they can also be
useful for calculating approximations to higher-order derivatives. For
one thing, the complex-step approximation loses many of its advan-
tages even for the second derivative [26], so that method will need help
if second derivatives or mixed derivatives are important. Finite differ-
ences can always be used as a last resort, but an interesting idea is to
combine algorithmic differentiation and the complex-step approxima-
tion. If a program has been set up to calculate n derivatives, then using
the complex step and taking the imaginary part of the nth derivative
gives an easy-to-implement approximation to the (n + 1)st derivative.

VI. Conclusions
A simple hypersonic vehicle model has been constructed that automat-
ically calculates derivatives along with its performance. These deriva-
tives allow a user to easily calculate the linearized dynamics of the
vehicle without any further computation, and the derivatives can also
be useful for design optimization. Left-hand and right-hand derivatives
are tracked separately in the case that the vehicle flight condition or
design is at a discontinuity in any of the first derivatives.

The model provides both a useful tool for analysis of hypersonic
flight and an example of exact differentiation applied to a complex sys-
tem. For example, calculation of sensitivities to model parameters pro-
vides valuable information for model uncertainty analysis.

The short-period and Dutch-roll modes were compared to those
calculated for a higher-fidelity model. The comparison showed that
both models produce qualitatively similar trends for the linearized
open-loop dynamics, which provides an indication that the two models
are at least consistent. The effects of ballast mass on the stability of the
vehicle are also investigated. Unsurprisingly, adding ballast in order to
move the center of gravity forward can make an unstable vehicle stable.
A more interesting result is that adding further ballast to a stable vehi-
cle can reduce the stability margin for the short-period and Dutch-roll
modes.
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