

Year: Third Year

Semester: VI Course Code: XMI601

Co	Course: Biostatistics								Course Code: XMI601			
	Teaching Scheme (Hrs/Week)			Continuous Internal Assessment (CIA)				End Semester Examination		Total		
L	Τ	Р	C	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Theory	Lab		
4	0	-	4	10	20	10	10	-	50	_	100	
M	Max, Time, End Semester Exam (Theory) - 3Hrs,											

Prerequisite Students should have the basic knowledge of statistics.

Objec	Objectives				
1	To understand the role and importance of statistics in Biology				
2	To understand different terminologies of biostatistics				
3	To understand different methods of data collection and representation				
4	To understand how correlation and regression works in biological experiments				
5	To understand the bioinformatics world				

Unit Number	Details	Hours
1	Introduction: types of biological data (data on ratio scale, interval scale, ordinal scale, nominal scale, continuous and discrete data), frequency distribution and graphical representations (bar graph, histogram and frequency polygon), cumulative frequency distribution, populations, samples, random sampling,	12 L
	parameters and statistics	
2	Measures of central tendency and dispersion: Arithmetic mean, geometric mean, harmonic mean, median, quantiles, mode, range, variance, standard deviation, moments, coefficient of variation, Shannon-Weaver index	12 L
3	Probability: Permutations and Combinations, Probability of an event, addition and multiplication of probabilities Distributions: Normal distribution, skewness and kurtosis, binomial distribution, Poisson distribution	12 L
4	Statistical hypothesis testing: Statistical testing, errors, one-tailed and two-tailed testing, t-test, Fisher exact test, chi square test, two sample hypothesis (testing difference between two means), Non parametric tests (Mann-Whitney test) Paired sample hypothesis (testing mean difference), Wilcoxon paired sample test, single factor ANOVA, Kruskal-Wallis test, Tukey test, Newman-Keuls test, two factor ANOVA	12 L
5	Correlation and Regression: Linear regression, correlation and Pearson coefficient of correlation, rank correlation and Spearman rank correlation coefficient	12 L
	Total	60 L

Course Outcome					
Students should able to					
CO1	Students will understand the role and importance of statistics in Biology				
CO2	Students will understand different terminologies of biostatistics				
CO3	Students will understand the different methods of data collection and representation				
CO4	Students will understand how correlation and regression works in biological experiments				
CO5	Students will understand the bioinformatics world				

	Resources
Recommended	1. Zar, JH, Biostatistical Analysis, Pearson-Prentice Hall (2007).
Books	2. Rao K Visweswara, Biostatistics: A Manual of Statistical Methods for Use
	 in Health, Nutrition & Anthropology, Jaypee Brothers Publishers (2007) 3. Pagano, M. and Gauvreau, K., Principles of Biostatistics, Thomson Learning (2005)
	 Mahajan BK, Methods in Biostatistics, Jaypee Brothers Publishers (2002). Introduction to biostatistics, Pranab Kumar Banerjee.
	 ABC of Research Methodology and Applied Biostatistics, M N Parikh and Nithya Gogtay.
	7. Biostatistics in brief, K Viswesara Rao
	8. Introduction to Biometry, S G Purohit, V D Ranade and A V Dusane
	9. Basic statistics, B L Agarwal
	10. Introduction to biostatistics and research methods, PSS Sundar Rao and J Richards
	1. Fundamentals of biostatistics, Khan and Khanum
Reference	2. Methods in Biostatistics for medical students and research workers, B K
Books	Mahajan
	3. Biostatistics – Principle and Practice, B Antonisamy, Soloman Chrostopher
	and P Prasanna Samuel
	4. Drought stress in peanut, Lambert Publication, Laware And Shinde.
	5. An Introduction to Biostatistics, N. Gurumani

Year: Third Year

Semester: VI Course Code: XMI602

Course: Food and Dairy Microbiology

Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA)					End Semester Examination		Total		
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3	CIA- 4	Lab	Theory	Lab	
4	0	-	4	10	20	10	10	-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite Basic concepts of microbiology and microbial techniques

Object	Objectives				
1	To understand the beneficial role of microorganisms in fermented foods				
2	To understand food processing and the microbiology of different types of fermented food				
	products including dairy				
3	To know the spoilage mechanisms in foods and thus identify methods to control				
	deterioration and spoilage				
4	To recognize and describe the characteristics of important pathogens and spoilage				
	microorganisms in foods				
5	To understand of the basis of food safety regulations and Discuss the rationale for the use				
	of standard methods and procedures for the microbiological analysis of food and dairy				
	products				

Unit Number	Details	Hours
1	1. Classification of Foods based on stability:	12 L
	Perishable, Semi-perishable & stable	
	2. Food spoilage:	
	a. Chemical and physical properties of food affecting microbial growth	
	b. Sources of food spoilage micro-organisms	
	c. Spoilage of	
	i. Meat and Poultry products	
	ii. Bread	
	iii. Fruits and Vegetables	
	iv. Eggs	
	v. Sea foods	
	vi. Canned foods	
	3. Food preservation:	
	a. Principles of food preservation	

	b. Thermal destruction of bacteria - use of low temperature and high	
	temperature.	
	c. Determination of TDP, TDT, D, F, and Z values	
	d. Use of chemicals and antibiotics in food preservation	
	e. Canning	
	f. Dehydration	
	g. Use of radiations	
	h. Principles of Hazard Analysis and Critical Control Points (HACCP)-	
	i. Introduction to Tetrapack technology	
2	1. Microbial food intoxication and infections:	12 L
_	a. Food poisoning by:	
	i. Staphylococcus aureus	
	ii. Campylobacter	
	iii. Clostridium botulinum	
	iv. Aspergillus flavus	
	b. Food infection by :	
	i. Salmonella typhimurium	
	ii. Vibrio parahemolyticus	
	2. Fermented foods:	
	a. Definition and Types	
	b. Significance of fermented foods (probiotic characteristics of lactic	
	acid bacteria)	
	c. Fermentation of <i>Idli</i>	
	3. Applications of genetically modified microorganisms: a. Starter cultures	
	b. Genetically modified foods	
	i. Food grade Bio-preservatives	
	ii. Recombinant Dairy enzymes / Proteins	10.7
3	Dairy Development in India:	12 L
	Role of National Dairy Development Board (NDDB), National Dairy	
	Research Institute (NDRI), Military dairy farm, Indian Dairy	
	Corporation (IDC), Dairy Co-operatives, Milk Grid, Operation Flood.	
	Milk Chemistry and Constituents:	
	a. Definition and Composition of milk	
	b. Types of Milk (skimmed, toned and homogenized).	
	c. Concept of clean milk	
	d. Factors affecting quality and quantity of milk.	
	e. Nutritive value of milk	
	f. Physico-Chemical properties of milk.	
4	Microbiology of milk:	12 L
	a. Common micro-organisms found in milk	
	b. Fermentation and spoilage of milk	
	c. Milk borne diseases	
	Preservation of Milk by Pasteurization & its storage:	
	a. Methods of Pasteurization – LTH, HTST, UHT	
	b. Storage specifications after pasteurization	
	c. Phosphatase test and its significance	
5	Microbial analysis of milk:	12 L
	a. Dye reduction test (using methylene blue and resazurin)	

 $_{Page}4$

Food Sanitation and regulation, Role of FDA	Total	60
d. Somatic cell count		
c. Brucella ring test and tests for mastitis.		
b. Total bacterial count.		

Course Outcome

CO1	Students will be able to understand the beneficial role of microorganisms in fermented foods
CO2	Students will be able to describe the processing of food products
CO3	Students will be able to develop general understanding of role of microorganisms in food spoilage
CO4	Students will be able to gain knowledge of food borne infections, detection and prevention
CO5	Students will be able to understand the importance & methods of food preservation as well as food safety

Resources						
Recommende	1. Stanbury, P. F. and Whittaker, A. (1984) Principles of Fermentation					
d Books	technology, Pergamon press.					
	2. Peppler, H. L (1979), Microbial Technology, Vol I and II, Academic Press,					
	New York.					
	3. Prescott, S.C. and Dunn, C. G., (1983) Industrial Microbiology, Reed G. AVI					
	tech books.					
	4. Peter F. Stanbury. Principles Of Fermentation Technology, 2E, Elsevier (A					
	Division of Reed Elsevier India Pvt. Limited), 2009					
	5. Casida, L. E., (1984), Industrial Microbiology, Wiley Easterbs, New Delhi					
	Ajay Singh, Owen P. Ward, 2004 edition, Applied Bioremediation and					
	Phytoremediation					
Reference	1. (Soil Biology). Springer;					
Books	2. Banwart G. J. (1989). Basic Food microbiology, 2nd Edn. Chapman and Hall.					
	International Thompson Publishing.					
	3. Charles R. Lane, Paul Beales, Kelvin J. D. Hughes (2012). Fungal Plan					
	Pathogens.1 st Edn. CABI Publishing.					
	4. Clarence Henry Eckles, Willes Barnes Combs, Harold Macy (1943). Milk and					
	milk products, 4th Ed. McGraw-Hill book Company, Incorporated.					
	5. David S. Ingram, N.F. Robertson (1999). Plant Disease.1st Edn.: Collins					
	6. George Nicholas Agrios (2005).Plant Pathology.5th Edn. Academic Press Inc.					
	7. James M. Jay, Martin J. Loessner, David A. Golden (2005). Modern food					
	microbiology, 7th Edn. Springer Science & Business.					
	8. John Postgate, (1998). Nitrogen Fixation. Cambridge University Press					
	9. K. S. Bilgrami, H. C. Dube (1984). A textbook of modern plant pathology. 7th					
	Edn.					

 ${}^{Page}\mathbf{5}$

Year: Third Year

Semester: VI

Course: Agricultural and Applied Microbiology

Course Code: XMI603

Teaching Scheme (Hrs/Week)				Continuous Internal Assessment (CIA)					End Semester Examination		Total
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3	CIA- 4	Lab	Theory	Lab	
4	0	-	4	10	20	10	10	-	50	_	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

Prerequisite Basic concepts of microbiology, microbial techniques and its importance.

Object	ives									
1	To inculcate the knowledge of microorganisms and its uses in agriculture sector									
2	To create the understanding of microorganisms role in agricultural productivity									
3	To import the knowledge of plant diseases and microbes responsible for it									
4	To develop the interest among students by explaining other applications of									
	microorganisms in environmental cleaning									
5	To learn about significance of microorganisms in advanced technologies like									
	nanotechnology									

Unit Number	Details	Hours
1	Agriculture Technology:	12 L
	1. Plant growth improvement with respect to:	
	a. Disease resistance	
	b. Environmental tolerance	
	2. Methods of plant disease control	
	a. Chemical control	
	b. Eradication	
	c. Biological control (employing bacterial and fungal cultures)	
	d. Integrated pest management	
	e. Development of insect resistant plants (BT crops)	
	f. Application of viral proteins in controlling plant viral diseases	
	g. Antisense RNA technology in plant disease control	
	h. RNA interference (RNAi) in controlling plant pathogens	
	i. Mycoviruses acting against fungal plant pathogens	
2	Biochemistry and production of bio-fertilizers with respect to:	12 L
	a. Nitrogen Fixation	
	i. Nonsymbiotic Nitrogen fixation : Diazotrophy, role of nitrogenase and	

	hydrogenase, mechanism of nitrogen fixation							
	ii. Symbiotic Nitrogen fixation : Establishment of symbiosis,							
	Nodule development, mechanism of nitrogen fixation in root							
	nodules							
	iii. Nod genes, Nif genes, Nif gene cloning,							
	b. Phosphate solubilization							
	c. Potassium mobilization							
	d. Iron chelation							
3	Soil microorganisms, composition and types of soil:	12 L						
	a. Soil microorganisms, composition and types of soil.							
	b. Rhizosphere microflora and its role in the rhizosphere							
	c. Role of microorganisms in composting and humus formation							
	d. Biofertilizers: Bacterial, Cyanobacterial ,fungal and their large scale							
	production							
	e. Biocontrol agents: Bacterial, Viral, Fungal and their large scale							
	production							
	f. Role of microorganisms in following elemental cycles in nature Carbon,							
	Nitrogen, Sulphur, Phosphorous.							
	g. Degradation of cellulose, hemicelluloses, lignin and pectin							
4	Bioremediation and Waste Water Treatment:	12 L						
-	1. Bioremediation:							
	Definition, Role of plants & Microbes in Bioremediation of:							
	a. Hydrocarbons							
	b. Industrial Wastes: (Dyes, Paper & Pulp, Heavy metals, Dairy,							
	Distillery, Tannery							
	c. Xenobiotics							
	2. Bioaugmentation:							
	a. Definition							
	b. Use of microbial cultures and enzymes for bioaugmentation							
	c. Applications							
	3. Genetically Modified Microorganisms in Bioremediation							
	4. Biosorption							
5	1.Brief account of microbial interactions:	12 L						
J	Symbiosis, Neutralism, Commensalism, Competition, Ammensalism,	12 1						
	•							
	Synergism, Parasitism, and Predation							
	2. Microorganisms used in Bioleaching process							
	a. Bioleaching of - Copper, Iron, Manganese, Gold, Silver							
	b. Advantages of Bioleaching							
	3.Introduction to Nanobiotechnology:							
	Synthesis of Nanoparticles using microorganisms and its' applications							
	4. Microbial Biosensors and Biochips in Environmental Monitoring:							
	a. Definition, components, types, advantages & limitations							
	b. Application of Biosensors and Biochips							
	5.Biofuel cells and Biodegradable plastic							
	ensioner consume stonestannose subtre							
	6 Bioterrorism							
	6.Bioterrorism							

Studen	ts should able to
CO1	Students will be able to develop understanding towards microbial importance in other fields such as agriculture and environment
CO2	Students will be able to describe the role of microbes in agriculture productivity, diseases reduction
CO3	Students will be able to understand technical know-how involved in agro based products
CO4	Students will be able generate a sense of the environmental issues
CO5	Students will be able to develop problem solving approach towards environmental and social issues by using microbial techniques

Resources	
Recommended	1. Stanbury, P. F. and Whittaker, A. (1984) Principles of Fermentation
Books	technology, Pergamon press.
	2. Peppler, H. L (1979), Microbial Technology, Vol I and II, Academic Press,
	New York.
	3. Prescott, S.C. and Dunn, C. G., (1983) Industrial Microbiology, Reed G.
	AVI tech books.
	4. Peter F. Stanbury. Principles Of Fermentation Technology, 2E, Elsevier (A
	Division of Reed Elsevier India Pvt. Limited), 2009
Reference Books	1. Casida, L. E., (1984), Industrial Microbiology, Wiley Easterbs, New Delhi
	Ajay Singh, Owen P. Ward, 2004 edition, Applied Bioremediation and
	Phytoremediation
	(Soil Biology). Springer;
	2. Banwart G. J. (1989). Basic Food microbiology, 2nd Edn. Chapman and
	Hall.
	International Thompson Publishing.
	3. Charles R. Lane, Paul Beales, Kelvin J. D. Hughes (2012). Fungal Plant
	Pathogens.1st
	Edn. CABI Publishing.
	4. Clarence Henry Eckles, Willes Barnes Combs, Harold Macy (1943). Milk and milk
	products, 4th Ed. McGraw-Hill book Company, Incorporated.
	5. David S. Ingram, N.F. Robertson (1999). Plant Disease.1st Edn.: Collins
	6. George Nicholas Agrios (2005).Plant Pathology.5th Edn. Academic Press
	Inc.
	7. James M. Jay, Martin J. Loessner, David A. Golden (2005). Modern food
	microbiology,
	7th Edn. Springer Science & Business.
	8. John Postgate, (1998). Nitrogen Fixation. Cambridge University Press
	9. K. S. Bilgrami, H. C. Dube (1984). A textbook of modern plant pathology.
	7th Edn.
	7th Edn.

Year: Third Year

Course: Computational biology; food and dairy microbiology Laboratory

Semester: VI **Course Code: XMI611**

Teaching Scheme (Hrs/Week)				Continuous Internal Assessment (CIA)					End Semester Examination		Total
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3	CIA- 4	Lab	Theory	Lab	
0	0	4	2	_	-	-	-	50	_	50	100
Ma	Max. Time, End Semester Exam (Theory) - 2Hrs.										

0	Objectives								
1	To train the students in food and dairy microbiological techniques								
2	To demonstrate the significance of biostatistics								

Sr. No.	Description						
1	Tests for Milk and Dairy products						
	Phosphatase test						
2	MBRT test						
3	Test for mastitis						
4	Milk fat estimation						
5	Standard Plate Count (for milk / milk product e.g. milk powder)						
6	Direct Microscopic count						
7	Somatic cell count						
8	Visit to food industry/ dairy industry						
9	Data representation- graphs						
10	Central measure of tendency determination (mean, mode, median)						
11	Chi square test						
12	Correlation and regression analysis						
Term Work							

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on Attendance, Good Laboratory Practice (GLP), Timely Completion, Journal/Record book and Oral. It should be assessed by subject teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Not	tes	
1	The regular attendance of the students during semester for practical course will be monitored and	
	marks will be given accordingly (10 Marks).	
2	Good Laboratory Practices (10 Marks)	ر و
3	Timely Completion (10 Marks)	Pag

4 Journal / Record Book (10 Marks)

5 Oral / Viva (10 Marks)

Practical/Oral/Presentation:

Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners appointed as internal and external examiners by the University. The examiners will prepare the mark/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope shall be submitted to the head of the department or authorized person.

Γ	Not	es
	1	One experiment from the regular practical syllabus will be conducted (40 Marks).
	2	Oral/Viva-voce (10 Marks).

Year: Third Year

Course: Agriculture and Applied Microbiology Laboratory

Semester: VI **Course Code: XMI612**

Teaching Scheme (Hrs/Week)				Continuous Internal Assessment (CIA)					End Semester Examination		Total
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3	CIA- 4	Lab	Theory	Lab	
0	0	4	2	_	-	-	-	50	-	50	100
Ma	Max. Time, End Semester Exam (Theory) - 2Hrs.										

0	Objectives				
1	To train the students in soil and agriculture microbiological techniques				
2	To equip the students with techniques used in other applications such as environmental,				
	nanotechnology etc.				

Sr. No.	Description
1	Screening and isolation of pesticide degrading microorganisms from soil.
2	Enrichment, Isolation, Preparation and Application of Bioinoculants (e.g. Azo-Rhizo / Blue Green Algae (cyanobacteria), phosphate solubilizer - anyone)
3	Isolation and identification of Xanthomonas spp. from infected sample
4	Isolation and identification of Aspergillus spp. from onions infected with Black Mould
5	Antifungal activity of Lactic acid bacteria.
6	Microscopic examination of Fungi causing Rust and Smut infections in Plants (Demonstration)
7	Dye removal from wastes by dead microbial Biomass
8	Biosynthesis of nanoparticles
9	Visit to Food, Dairy and Agro based Industries and preparation of visit report
Term Worl	ς:

Term Work assessment shall be conducted for the Project, Tutorials and Seminar. Term work is continuous assessment based on Attendance, Good Laboratory Practice (GLP), Timely Completion, Journal/Record book and Oral. It should be assessed by subject teacher of the institute. At the end of the semester, the final grade for a Term Work shall be assigned based on the performance of the student and is to be submitted to the University.

Notes

The regular attendance of the students during semester for practical course will be monitored and 1 marks will be given accordingly (10 Marks).

2	Good Laboratory Practices (10 Marks)			
3	Timely Completion (10 Marks)			
4	Journal / Record Book (10 Marks)			
5	Oral / Viva (10 Marks)			
Practical/Oral/Presentation:				
Prac	Practical/Oral/Presentation shall be conducted and assessed jointly by at least a pair of examiners			
appo	pinted as internal and external examiners by the University. The examiners will prepare the			
mar	k/grade sheet in the format as specified by the University, authenticate and seal it. Sealed envelope			
shall be submitted to the head of the department or authorized person.				

Not	Notes				
1	One experiment from the regular practical syllabus will be conducted (40 Marks).				
2	Oral/Viva-voce (10 Marks).				

School of Science

Second Year B.Sc Microbiology

Course: MOOC (Genetic Engineering & Applications)

Year: Second Year

Semester: IV Course Code: XMI402

	Teaching Scheme (Hrs/Week)Continuous Internal Assessment (CIA)				End Semester Examination		Total				
L	Т	Р	С	CIA-1	CIA- 2	CIA- 3	CIA- 4	Lab	Theory	Lab	
4	0	-	4	10	20	10	10	-	50	-	100
Ma	Max. Time, End Semester Exam (Theory) - 3Hrs.										

	T
Prerequisite	Basics of genes and related concepts

Objectives				
1				
2				
3				
4				
5				

Unit Number	Details	Hours
1	 Lecture 1: Role of genes within cells, genetic code, genetic elements that control gene expression Lecture 2: Method of creating recombinant DNA molecules Lecture 3: Types, biology and salient features of vectors in recombinant DNA technology–I: Plasmids Lecture 4: Phages, Cosmids, Fosmids, Phagemids, and Artificial chromosomes Lecture 5: Safety guidelines for recombinant DNA research Lecture 6: Control of spills and mechanism of implementation of biosafety guidelines 	6 L
2	 Lecture 1: Enzymes in genetic engineering: Restriction nucleases: exo & endo nucleases Lecture 2: Enzymes in modification- Polynucleotide phosphorylase, DNase and their mechanism of action. Lecture 3: Enzymes in modification- Methylases and phosphatases and their mechanism of action. Lecture 4: Enzymes in modification- Polynucleotide kinase, Ligases, RNase and their mechanism of action. 	4 L
3	Lecture 1: Methods of nucleic acid detection. Lecture 2: Polymerase chain reaction (PCR) and its applications	6 L

 ${}^{\rm Page}13$

	Lecture 3: Variations in PCR and their applications	
	Lecture 4: Methods of nucleic acid hybridization	
	Lecture 5: Probe and target sequences	
4	Lecture 1: Isolation and purification of nucleic acid (genomic/plasmid DNA	6 L
	and RNA)	
	Lecture 2: Quantification and storage of nucleic acids.	
	Lecture 3: Construction of cDNA library	
	Lecture 4: Construction of Genomic library	
	Lecture 5: Screening and preservation of DNA libraries	
	Lecture 6: DNA Sequencing and Cloning Stategies	
5	Lecture 1: Gene transfer techniques: biological methods	5 L
	Lecture 2: Gene transfer techniques: chemical methods	
	Lecture 3: Gene transfer techniques: physical or mechanical methods	
	Lecture 4: Agro- bacterium mediated gene transfer in plants	
	Lecture 5: Chloroplast transformation	
6	Lecture 1: Transgenic science in plant improvement	6L
	Lecture 2: Biopharming - plants as bioreactors	
	Lecture 3: Transgenic science for animal improvement	
	Lecture 4: Biopharming- Animals as bioreactor for recombinant protein	
	Lecture 5: Gene mapping in plants and animals	
	Lecture 6: Marker-assisted selection for plant breeding and livestock	
	improvement	
7	Lecture 1: Microbial biotechnology: Genetic manipulation	4 L
	Lecture 2: Engineering microbes for the production of antibiotics and	
	enzymes	
	Lecture 3: Engineering microbes for the production of insulin, growth	
	hormones, monoclonal antibodies	
	Lecture 4: Engineering microbes for clearing oil spills	
8	Lecture 1: Gene therapy: Introduction and Methods	4 L
	Lecture 2: Gene targeting & silencing	
	Lecture 3: Gene therapy in the treatment of diseases	
	Lecture 4: Challenges & future of gene therapy	
	Total	41

Course Outcome	
Students should able to	
CO1	
CO2	
CO3	
CO4	
CO5	

Resources	
Recommended	1. Introduction to Genetic Engineering - Nicholl. Cambridge Low
Books	Price Edition, 2006.
	2. Principles of gene manipulation and Genomics - Primrose S.B. and
	Twyman R.M., Blackwell Scientific Publications, 2008.
	3. Genes IX - Benjamin Lewis. Oxford University & Cell Press, 2008.
Reference Books	1. Molecular modeling of proteins by Andreas Kukol, Humana press
	2. Introduction to computational biochemistry, by C.Stan Tsai, A John WILEY &
	SONS, Inc., Publication.
	3. Bioinformatics, Sequence and Genome analysis by David Mount.
	4. Introduction to Bioinformatics, Teresa K Attwood and David J Parry-smith.
	5. Essential Bioinformatics, Jin Xiong, Cambridge University press.
	6. Molecular modeling of proteins by Andreas Kukol, Humana press.

