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✬

✫

✩

✪

Continuous-Phase Frequency

Shift Keying (FSK)

Continuous-phase frequency shift keying (FSK) is

often used to transmit digital data reliably over

wireline and wireless links at low data rates.

Simple receivers with low error probability can be

built. Binary FSK is used in most applications,

often to send important control information.

• Early voice-band telephone line modems used

binary FSK to transmit data at 300 bits per

second or less and were acoustically coupled to

the telephone handset. Teletype machines used

these modems.

• Some HF radio systems use FSK to transmit

digital data at low data rates.

• The 3GPP Cellular Text Telephone Modem

(CTM) for use by the hearing impaired over

regular cellular speech channels uses four level

FSK.
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✬

✫

✩

✪

The FSK Transmitter

Converter Carrier fc

✲.....................

✲ ✲

Binary
Data

R bits/sec
D/A

K
✲

symbols/sec
(baud rate)

m(t)

M = 2K

Levels

s(t)Serial to
Parallel

FM

Modulator

fb = R/K

At the FSK transmitter input, bits from a binary

data source with a bit-rate of R bits per second

are grouped into successive blocks of K bits by

the “Serial to Parallel Converter.” These block

occur at the rate of fb = R/K symbols per second

which is called the baud rate.

Each block is used to select one of M = 2K

radian frequencies from the set

Λk = ωc + ωd[2k − (M − 1)]

= 2π{fc + fd[2k − (M − 1)]}

for k = 0, 1, . . . ,M − 1 (1)

The frequency ωc = 2πfc is called the carrier

frequency.
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✬

✫

✩

✪

The FSK Transmitter (cont. 1)

The radian frequencies

Ωk = ωd [2k − (M − 1)] = 2πfd[2k − (M − 1)]

for k = 0, 1, . . . ,M − 1 (2)

are the possible frequency deviations from the

carrier frequency during each symbol.

• The deviations range from −ωd(M − 1) to

ωd(M − 1) in steps of ∆ω = 2ωd.

• Each selected frequency is sent for Tb = 1/fb

seconds. The sinusoid transmitted during a block

is called the FSK symbol specified by the block.

During the symbol period nTb ≤ t < (n+ 1)Tb the

“D/A” box uniquely maps each possible input

block to a possible frequency deviation

Ω(n) = ωd [2kn − (M − 1)] (3)

where kn is the decimal value of the binary input

block.
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✬

✫

✩

✪

The FSK Transmitter (cont. 2)

The “D/A” block then forms the signal

Ω(n)p(t− nTb) where p(t) is the unit height pulse

of duration Tb defined as

p(t) =







1 for 0 ≤ t < Tb

0 elsewhere
(4)

Assuming transmission starts at t = 0, the

complete “D/A” converter output is the staircase

signal

m(t) =

∞
∑

n=0

Ω(n)p(t− nTb) (5)

This baseband signal is applied to an FM

modulator with carrier frequency ωc and

frequency sensitivity kω = 1 to generate the FSK

signal

s(t) = Ac cos

(

ωct+

∫ t

0

m(τ) dτ + φ0

)

(6)

where Ac is a positive constant and φ0 is a

random initial phase angle of the modulator.
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✬

✫

✩

✪

The FSK Transmitter (cont. 3)

The pre-envelope of s(t) is

s+(t) = Ace
jωctej

∫
t

0
m(τ) dτejφ0 (7)

and the complex envelope is

x(t) = Ace
j
∫

t

0
m(τ) dτejφ0 (8)

The phase contributed by the baseband message is

θm(t) =

∫ t

0

m(τ) dτ =

∫ t

0

∞
∑

n=0

Ω(n)p(τ − nTb) dτ

=

∞
∑

n=0

Ω(n)

∫ t

0

p(τ − nTb) dτ (9)

Now consider the case when iTb ≤ t < (i+ 1)Tb.

Then

θm(t) =
i−1
∑

n=0

Ω(n)Tb +Ω(i)

∫ t

iTb

dτ
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✬

✫

✩

✪

The FSK Transmitter (cont. 4)

θm(t) = Tb ωd

i−1
∑

n=0

[2kn − (M − 1)] +

Tb ωd[2ki − (M − 1)]
(t− iTb)

Tb

= π
2ωd

ωb

i−1
∑

n=0

[2kn − (M − 1)] +

π
2ωd

ωb
[2ki − (M − 1)]

(t− iTb)

Tb
(10)

• The modulation index for an FSK signal is

defined to be

h =
2ωd

ωb
=

∆ω

ωb
=

∆f

fb
(11)

The phase at the start of the ith symbol is

θm(iTb) = πh

i−1
∑

n=0

[2kn − (M − 1)] (12)
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✬

✫

✩

✪

The FSK Transmitter (cont. 5)

Therefore,

θm(t) = θm(iTb) + πh [2ki − (M − 1)]
(t− iTb)

Tb

for iTb ≤ t < (i+ 1)Tb (13)

The phase function θm(t) is continuous and

consists of straight line segments whose slopes are

proportional to the frequency deviations.

Discrete-Time Transmitter

Implementation

The FSK signal sample at time nT is

s(nT ) = cos

(

ωcnT +

∫ nT

0

m(τ) dτ + φ0

)

(14)

The angle at time nT is

θ(nT ) = ωcnT +

∫ nT

0

m(τ) dτ + φ0 (15)
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✬

✫

✩

✪

Transmitter Implementation (cont.)

and the angle one sample in the future is

θ((n+ 1)T ) = ωc(n+ 1)T +

(n+1)T
∫

0

m(τ) dτ + φ0

=



ωcnT +

nT
∫

0

m(τ) dτ + φ0





+ ωcT +

(n+1)T
∫

nT

m(τ) dτ

= θ(nT ) + ωcT + Tm(nT ) (16)

= θ(nT ) + TΛ(nT ) (17)

where Λ(nT ) = ωc +m(nT ) is the total tone

frequency at time nT . The M possible values for

TΛ(nT ) can be pre-computed. Thus, the new

phase angle can be computed recursively. In your

transmitter program, make sure that |θ(nT )| does

not get large.
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✫

✩

✪

Switched Oscillator FSK

Another approach to FSk would be to switch

between independent tone oscillators. This

switched oscillator approach could cause

discontinuities in the phase function depending on

the tone frequencies and symbol rate. The

discontinuities would cause the resulting FSK

signal to have a wider bandwidth than continuous

phase FSK. It could also cause problems for a

PLL demodulator.
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✫

✩

✪

Power Spectral Density for FSK

The term “power spectrum” will be used for

“power spectral density” from here on for

simplicity.

Lucky, Salz, and Weldon1 present the solution for

a slightly more generalized form of FSK than

described above. Let the pulse p(t) to have an

arbitrary shape but still be confined to be zero

outside the interval [0, Tb). The power spectrum,

Sxx(ω), of a random process x(t) can be defined

as:

Sxx(ω) = lim
λ→∞

1

λ
E
{

|Xλ(ω)|
2
}

(18)

where E{ } denotes statistical expectation and

Xλ(ω) =

∫ λ

0

x(t)e−jωt dt (19)

1R.W. Lucky, J. Salz, and E.J. Weldon, Principles of

Data Communications, McGraw-Hill, 1968, pp. 203–207

and 242–245.
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✬

✫

✩

✪

Power Spectral Density for FSK

(cont. 1)

Only formulas for the power spectrum of the

complex envelope will be presented here since the

power spectrum for the complete FSK signal can

be easily computed as

Sss(ω) =
1

4
Sxx(ω − ωc) +

1

4
Sxx(−ω − ωc) (20)

• The frequency deviation in the complex

envelope during the interval [nTb, (n+ 1)Tb) is

sn(t− nTb) = Ω(n)p(t− nTb) (21)

• The phase change caused by this frequency

deviation during the baud when time is taken

relative to the start of the baud is

bn(t) = Ω(n)

∫ t

0

p(τ) dτ for 0 ≤ t < Tb (22)

• The total phase change over a baud is

Bn = bn(Tb) = Ω(n)

∫ Tb

0

p(τ) dτ (23)
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✬

✫

✩

✪

Power Spectral Density for FSK

(cont. 2)

• The Fourier transform of a typical modulated

pulse is

Fn(ω) =

∫ Tb

0

ejbn(t)e−jωt dt (24)

It is convenient to define the following functions:

1. The characteristic function of bn(t)

C(α; t) = E
{

ejαbn(t)
}

(25)

2. The average transform of a modulated pulse

F (ω) = E {Fn(ω)} (26)

3.

G(ω) = E
{

Fn(ω)e
jBn

}

(27)

4. The average squared magnitude of a pulse

transform

P (ω) = E
{

|Fn(ω)|
2
}

(28)
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✬

✫

✩

✪

Power Spectral Density for FSK

(cont. 3)

5.

γ =
1

Tb
argC(1;Tb) (29)

In terms of these quantities, the power spectrum

is

Tb

A2
c

Sxx(ω) =























































P (ω) + 2ℜe [F (ω)G(ω)×

e−jωTb

1−C(1;Tb)e
−jωTb

]

; |C(1;Tb)| < 1

P (ω)− |F (ω)|2 + ωb×
∞
∑

n=−∞

|F (γ + nωb|
2
δ (ω − γ − nωb)

for C(1;Tb) = ejγTb

(30)

Notice that the spectrum has discrete spectral

lines as well as a distributed part when the

characteristic function has unity magnitude.
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✬

✫

✩

✪

Spectrum for Rectangular Frequency

Pulses

The power spectrum for the case where p(t) is the

rectangular pulse given by (4) and the frequency

deviations are equally likely reduces to

Tb

A2
c

Sxx(ω) =































































P (ω) + 2ℜe

[

F 2(ω)

1− C(1;Tb)e−jωTb

]

for h =
2ωd

ωb
not an integer

P (ω)− |F (ω)|2 + ωb×
∞
∑

n=−∞

|F (γ + nωb)|
2
δ (ω − γ − nωb)

for h = an integer k

(31)

where

γ =







0 for k even

ωb/2 for k odd
(32)
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✬

✫

✩

✪

Spectrum for Rectangular Frequency

Pulses (cont. 1)

Fn(ω) = Tb

sin
(ω − Ωk)Tb

2
(ω − Ωk)Tb

2

e−j(ω−Ωk)Tb/2 (33)

P (ω) =
T 2
b

M

M−1
∑

k=0







sin
(ω − Ωk)Tb

2
(ω − Ωk)Tb

2







2

(34)

F (ω) =
Tb

M

M−1
∑

k=0

sin
(ω − Ωk)Tb

2
(ω − Ωk)Tb

2

e−j(ω−Ωk)Tb/2

(35)

and

C(1;Tb) =
2

M

M/2
∑

k=1

cos[ωdTb(2k − 1)] =
sin(Mπh)

M sin(πh)

(36)
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✬

✫

✩

✪

Properties of the Spectrum for

Rectangular Frequency Pulses

• Fn(ω) has its peak magnitude at the tone

frequency Ωn = ωd[2n− (M − 1)] and zeros at

multiples of the symbol rate, ωb, away from the

tone frequency. This is exactly what would be

expected for a burst of duration Tb of a sinusoid

at the tone frequency.

• The term P (ω) is what would result for the

switched oscillator case when the phases of the

oscillators are independent random variables

uniformly distributed over [0, 2π).

• The remaining terms account for the continuous

phase property and give a narrower spectrum

than if the the phase were discontinuous.

• The power spectrum has impulses at the M tone

frequencies when h is an integer. However, the

impulses at other frequencies disappear because

they are multiplied by the nulls of F (γ + nωb).
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✬

✫

✩

✪

Specific Examples of FSK Spectra

Examples of the power spectral densities for

binary continuous phase and switched oscillator

FSK are shown in Figure 1 for h = 0.5, 0.63, 1 and

1.5. The spectra become more peaked near the

origin for smaller values of h. They become more

and more peaked near −ωd and ωd as h

approaches 1 and include impulses at these

frequencies when h = 1. Bell Labs designed its

Bell 103 binary FSK modem, released in 1962,

with h = 2/3 to avoid impulses in the spectrum

that could cause cross talk in the cables.

The spectra for M = 4 continuous phase and

switched oscillator FSK are shown in Figure 2 for

h = 0.5, 0.63, 0.9, and 1.5. The CTM with M = 4

uses a symbol rate of 200 baud with a tone

separation of 200 Hz and, thus, has the

modulation index h = 1.
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✫

✩

✪
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c for Continuous Phase and Switched

Oscillator Binary FSK for Several Values of h
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✫

✩
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Figure 2: Normalized Power Spectral Densities
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✬

✫

✩

✪

FSK Demodulation

Continuous phase FSK signals can be

demodulated using a variety of methods including:

1. A frequency discriminator.

A frequency discriminator works well when

signal-to-noise ratio (SNR) is high but

performs poorly when the SNR is low.

2. A phase-locked loop.

A phase-locked loop performs better at lower

SNR but is not good when the FSK signal is

present for short time intervals because a

narrow-band loop takes a long time to acquire

lock.

3. Tone filters with envelope detectors.

Tone filters with envelope detection is

theoretically the optimum noncoherent

detection method when the FSK signal is

corrupted by additive white Gaussian noise in

terms of minimizing the symbol error

probability.
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✬

✫

✩

✪

The Frequency Discriminator

The complex envelope of the FM signal is

x(t) = s+(t)e
−jωct = Ace

j
∫

t

0
m(τ) dτejφ0

= sI(t) + j sQ(t) (37)

The angle of the complex envelope is

ϕ̃(t) = arctan[sQ(t)/sI(t)] =

∫ t

0

m(τ) dτ + φ0

(38)

and the derivative of this angle is

d

dt
ϕ̃(t) =

sI(t)
d

dt
sQ(t)− sQ(t)

d

dt
sI(t)

s2I(t) + s2Q(t)
= m(t)

(39)

which is the desired message signal. A block

diagram for implementing this discriminator is

shown in Figure 3.
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✬

✫

✩

✪

Figure 3: Discrete-Time Frequency Discriminator

Realization Using the Complex Envelope
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✲
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✲

+

−
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• First the pre-envelope is formed and

demodulated to get the complex envelope whose

real part is the inphase (I) component and

imaginary part is the quadrature (Q) component.

• The frequency response of the differentiators

must approximate jω from ω = 0 out to the

cut-off frequency for the I and Q components

which will be somewhat greater than the

maximum frequency deviation ωd(M − 1).
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✬

✫

✩

✪

Discriminator Implementation

(cont.)

• The differentiator amplitude response should

fall to a small value beyond the cut-off frequency

because differentiation emphasizes high frequency

noise which can cause a significant performance

degradation.

• Notice how the delays through the FIR Hilbert

transform filter and differentiation filters are

matched by taking signals out of the center taps.

An example of the discriminator output is shown

in Figure 4 when fc = 4000 Hz, fd = 200 Hz, and

fb = 400 Hz, so the modulation index is h = 1.

The tone frequency deviations alternate between

200 and −200 Hz for eight symbols followed by

two symbols with −200 Hz deviation.
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✬

✫

✩

✪
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Figure 4: Discriminator Output for h = 1
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✬

✫

✩

✪

A Simple Approximate Frequency

Discriminator

A simpler approximate discriminator will be

derived in this subsection. Let 1/T = fs be the

sampling rate. Usually there will be multiple

samples per symbol so T << Tb. Using the

complex envelope the following product can be

formed:

c(nT ) =
1

A2
cT

Im
{

x(nT )x(nT − T )
}

=
1

T
Im
{

ej[
∫

nT

0
m(τ) dτ+φ0]e−j[

∫
nT−T

0
m(τ) dτ+φ0]

}

=
1

T
Im
{

ej
∫

nT

nT−T
m(τ) dτ

}

=
1

T
sin

∫ nT

nT−T

m(τ) dτ

≈
1

T
sin[Tm(nT − T )] =

1

T
sin[m(nT − T )/fs]

≈ m(nT − T )

(40)

To get the final result, the approximation

sinx ≃ x for |x| << 1 was used.

FSK-25



✬

✫

✩

✪

Approximate Discriminator (cont.)

In terms of the inphase and quadrature

components

c(nT ) =
1

A2
cT

[sQ(nT )sI(nT − T )− sI(nT )sQ(nT − T )]

(41)

and this is the discriminator equation that would

be implemented in a DSP.

As another approach, suppose the derivatives in

(39) are approximated at time nT by

d

dt
sI(t)|t=nT ≃

sI(nT )− sI(nT − T )

T
(42)

and

d

dt
sQ(t)|t=nT ≃

sQ(nT )− sQ(nT − T )

T
(43)

Subsituting these approximate derivatives into

(39) gives d
dt ϕ̃(t)|t=nT ≃ c(nT ) exactly as in the

previous approach.
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✬

✫

✩

✪

Symbol Clock Acquisition and

Tracking

The discriminator output will look like an

M -level PAM signal with rapid changes at the

symbol boundaries where the frequency deviation

has changed. The discriminator output must be

sampled once per symbol at the correct time to

estimate the transmitted frequency deviation and,

hence, the input data bit sequence.

When the signal-to-noise ratio is large at the

receiver, the sharp transitions in the discriminator

output can be detected.

• A method for doing this is to form the absolute

value of the derivative of the discriminator

output. This will generate a positive pulse

whenever the output level changes.

• A pulse location can be determined by looking

for a positive threshold crossing.
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✬

✫

✩

✪

Symbol Clock Acquisition (cont. 1)

• Then the symbol can be sampled in its middle

by waiting for half the symbol period, Tb/2, after

the pulse detection before sampling the

discriminator output level.

• The absolute value of the derivative will be very

small in the middle of the symbol and a search for

the next peak can be started.

• The derivative will be zero at the symbol

boundaries where the levels do not change.

Therefore, the search for a new peak should only

extend for slightly more than Tb/2. If no new

peak is found by that time then successive symbol

levels are the same and the start of the next

symbol should be estimated as the sampling time

in the middle of the last symbol plus Tb/2. This

process can then be repeated for each successive

symbol.
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✬

✫

✩

✪

Symbol Clock Acquisition (cont. 2)

In lower SNR environments, the method for

generating a symbol clock signal for PAM signals

discussed in Chapter 11 can be used. This

involves

• passing the discriminator output through a

bandpass filter with center frequency at fb/2,

• squaring the filter output,

• and passing the result through a bandpass

filter with a center frequency at the symbol

rate fb.

• The receiver can then lock to the positive

zero crossings of the resulting clock signal and

sample the discriminator output with an

appropriate delay from the zero crossings.
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✬

✫

✩

✪

The Phase-Locked Loop

The block diagram of a phase-locked loop (PLL)

that can be used to demodulate a continuous

phase FSK signal is shown in Figure 5. The

theory for this PLL is discussed extensively in

Chapter 8 and the main points are summarized in

this subsection.

��

��

��

��

��

��

-

-

-

-

-

-

?

-

-

-

����

?

6

66

�j sign!

�

y(nT )

k

v

T

!

c

T

z

�1

e

�j(�)

�(nT )

+

+

Phase Detector

Voltage Controlled Oscillator (VCO)

e

�j�(nT )

= e

�j(!

c

nT+�

1

)

Loop Filter H(z)

�
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✬

✫

✩

✪

The Phase-Locked Loop (cont. 1)

First, the received FSK signal is sampled with

period T and passed through a discrete-time

Hilbert transform filter to form the pre-envelope

s+(nT ) = s(nT ) + jŝ(nT ).

Suppose there are L samples per baud so that

Tb = LT . Then for iTb ≤ nT < (i+ 1)Tb,

n = iL+ ℓ for some integer ℓ with 0 ≤ ℓ ≤ L− 1 .

From (6) and (10) it follows that the total phase

angle of the pre-envelope during baud i is

Θ(nT ) = ωcnT + Tb

i−1
∑

k=0

Ω(k) + Ω(i)ℓT + φ0

for 0 ≤ ℓ < L− 1 (44)

The PLL contains a voltage controlled oscillator

(VCO) which generates a complex exponential

sinusoid at the carrier frequency ωc when its

input is zero.
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✬

✫

✩

✪

The Phase-Locked Loop (cont. 2)

The PLL acts to make the VCO total angle

φ(nT ) = ωcnT + θ1(nT ) equal to the angle of the

pre-envelope.

The multiplier in the Phase Detector box

demodulates the pre-envelope using the replica

complex exponential carrier generated by the

VCO.

The phase error between the angles of the

pre-envelope and replica carrier is computed by

the C arctangent function atan2(y, x) where y is

the imaginary part of the multiplier output and x

is its real part.

The parameters α and β in the Loop Filter are

positive constants. Typically, β < α/50 to make

the loop have a tranient response to a phase step

without excessive overshoot.
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✬

✫

✩

✪

The Phase-Locked Loop (cont. 3)

The accumulator generating σ(nT ) is included so

that the loop will track a carrier frequency offset.

The parameter kv is also a positive constant. The

product, αkvT , controls the tracking speed of the

loop. It should be large enough so the loop tracks

the input phase changes, but small enough so the

loop is stable and not strongly influenced by

additive input noise.

The VCO generates its phase angle by the

following recursion:

φ(nT + T ) = φ(nT ) + ωcT + kvTy(nT ) (45)

Therefore

kvy(nT ) =
φ(nT + T )− φ(nT )

T
− ωc (46)

During baud i and assuming the loop is perfectly

in lock so that Θ(nT ) = φ(nT ), substituting

Θ(nT ) given by (44) for φ(nT ) into (46) gives
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✬

✫

✩

✪

The Phase-Locked Loop (cont. 4)

kvy(nT ) =
Θ(nT + T )−Θ(nT )

T
−ωc = Ω(i) (47)

Therefore, the PLL is an FSK demodulator.

When the loop is in lock and the phase error is

small, atan2(x, y) can be closely approximated by

the imaginary part of the complex multiplier

output divided by Ac. The multiplier output is

[s(nT ) + jŝ(nT )]e−jφ(nT ) =

Ace
j[ωcnT+θm(nT )]e−jφ(nT )

= Ace
j[φm(nT )−θ1(nT )] (48)

and its imaginary part is

ŝ(nT ) cosφ(nT )− s(nT ) sinφ(nT )

= Ac sin[φm(nT )−θ1(nT )] ≃ Ac[φm(nT )−θ1(nT )]

(49)

where Ac = |s(nT ) + jŝ(nT )|.
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✬

✫

✩

✪

The Phase-Locked Loop (cont. 5)

The imaginary part can be divided by the

computed Ac or this scaling can be accomplished

by an automatic gain control (AGC) in the

receiver or by adjusting the loop parameters. The

loop gain in the PLL and, hence, its transient

response depend on Ac if the approximation (49)

is used, so this normalization by Ac is important.

The atan2(y, x) function automatically does the

normalization.

An example of the PLL behavior is shown in

Figure 6 for a binary FSK input signal. The

binary data input to the modulator was a PN

sequence generated by a 23-stage feedback shift

register. The carrier frequency was 4 kHz, the

frequency deviation was 200 Hz, and the baud

rate was 400 Hz. The output shows a segment

where the input alternated between 0 and 1

followed by a string of 1’s.
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✬

✫

✩

✪
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Figure 6: PLL Output with 1/T = 16000 Hz, kv =

1, αkvT = 0.2, and β = α/100
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✬

✫

✩

✪

Optimum Noncoherent Detection by

Tone Filters

• The FM discriminator performs very poorly

when the SNR is low or the FSK signal is

distorted, for example, by a speech compression

codec in a cell phone, because differentiation

emphasizes noise.

• The phase-locked loop demodulator performs

better than the discriminator at low SNR but can

have difficulty locking on to FSK signals that are

present in short bursts.

• A better detector for these cases that uses “tone

filters” will now be described . This approach

does not use knowledge of the carrier phase and is

called noncoherent detection.

• A result in detection theory is that in the

presence of additive white Gaussian noise the

detection strategy that is optimum in the sense of

minimizing the symbol error probability for
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✬

✫

✩

✪

symbol interval N is to compute the following

statistics for the symbol interval and decide that

the frequency that was transmitted corresponds

to the largest statistic2:

Ik(N) =







(N+1)Tb
∫

NTb

s(t) cos(Λkt+ ǫ) dt







2

+







(N+1)Tb
∫

NTb

s(t) sin(Λkt+ ǫ) dt







2

(50)

=

∣

∣

∣

∣

∣

∣

∣

(N+1)Tb
∫

NTb

s(t)e−j(Λkt+ǫ) dt

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

(N+1)Tb
∫

NTb

s(t)e−jΛkt dt

∣

∣

∣

∣

∣

∣

∣

2

for k = 0, . . . ,M−1 (51)

where Λk = ωc +Ωk = ωc + ωd[2k−M − 1] is the

2J. M. Wozencraft and I. M. Jacobs, Principles of Com-

munication Engineering, John Wiley & Sons, Inc., 1965, pp.

511–523.
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✬

✫

✩

✪

total tone frequency, s(t) is the noise corrupted

received signal, and ǫ is a conveniently selected

phase angle. Notice that the statistics have the

same value for every choice of ǫ.

Computing Ik(N) Using Oscillators

and Integrators

The receiver could implement (50) in the obvious

way. It could have a set of M oscillators, each

generating an inphase sine wave cosΛkt and a

quadrature sine wave sinΛkt. Then it would

multiply the input, s(t), by the sine waves,

integrate the products over each baud, and form

the sum of the squares of the inphase and

quadrature integrator outputs for each tone

frequency. The receiver would then decide that

the tone frequency corresponding to the largest

statistic was the one that was transmitted for

that baud.
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✬

✫

✩

✪

Computing Ik(N) by a Bank of

Filters

The statistics can also be generated using a bank

of “tone” filters. Let the impulse response of the

kth tone filter be

hk(t) =







ejΛkt for 0 ≤ t < Tb

0 elsewhere
(52)

The output of this filter when the input is s(t) is

yk(t) =

∫ t

t−Tb

s(τ)ejΛk(t−τ) dτ

=

∫ t

t−Tb

s(τ)e−jΛkτ dτ ejΛkt (53)

=

∫ t

t−Tb

s(τ) cos[Λk(t− τ)] dτ

+j

∫ t

t−Tb

s(τ) sin[Λk(t− τ)] dτ (54)
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✬

✫

✩

✪

Using Tone Filters (cont. 1)

Let t = (N + 1)Tb which is at the start of symbol

interval N + 1 or the end of symbol interval N .

Then

|yk(NTb + Tb)|
2 =

∣

∣

∣

∣

∣

∫ (N+1)Tb

NTb

s(τ)e−jΛkτ dτ

∣

∣

∣

∣

∣

2

(55)

which is the desired statistic Ik(N) given by (51).

The frequency response of a tone filter is

Hk(ω) =

∫ Tb

0

ejΛkte−jωt dt =
1− e−j(ω−Λk)Tb

j(ω − Λk)

= e−j(ω−Λk)Tb/2 Tb
sin[(ω−Λk)Tb/2]

(ω − Λk)Tb/2
(56)

The magnitude of this function has a peak at the

tone frequency Λk and zeros spaced at distances

that are integer multiples of ωb = 2π/Tb away

from the peak. Thus, the tone filters are bandpass

filters with center frequencies equal to the M tone

frequencies.
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✬

✫

✩

✪

Discrete-Time Tone Filter

Implementation

The integrals can be approximated by sums.

Suppose there are L samples per symbol so that

Tb = LT . Then the last term on the right of (51)

can be approximated by

Ik(N)/T 2 ≃ Dk(N) =

∣

∣

∣

∣

∣

∣

(N+1)L−1
∑

ℓ=NL

s(ℓT )e−jΛkℓT

∣

∣

∣

∣

∣

∣

2

(57)

A discrete-time approximation to the tone filter is

hk(nT ) =







ejΛknT for n = 0, 1, . . . , L− 1

0 elsewhere

(58)

and the output of this filter is

yk(nT ) =

n
∑

ℓ=n−L+1

s(ℓT )ejΛk(n−ℓ)T

= ejΛknT
n
∑

ℓ=n−L+1

s(ℓT )e−jΛkℓT (59)
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✬

✫

✩

✪

Discrete-Time Tone Filter

Implementation (cont. 1)

Notice that each of the M tone filter impulse

responses is convolved with the same set of L

samples {s(ℓT )}nℓ=n−L+1. Therefore, an efficient

implementation in terms of minimum memory

usage should have only one delay line containing

these L samples.

The decision statistics for symbol interval N are

obtained at the end of this interval by letting

n = (N + 1)L− 1 in (59) to get

Dk(N) = |yk[(N + 1)LT − T ]|
2

=

∣

∣

∣

∣

∣

∣

(N+1)L−1
∑

ℓ=NL

s(ℓT )e−jΛkℓT

∣

∣

∣

∣

∣

∣

2

(60)
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✬

✫

✩

✪

Frequency Response of the

Discrete-Time Tone Filter

The frequency response for tone filter k is

Hk(ω) =

L−1
∑

n=0

ejΛknT e−jωnT

= e−j(ω−Λk)(L−1)T/2 sin[(ω − Λk)LT/2]

sin[(ω − Λk)T/2]
(61)

• The amplitude response of this filter has a peak

of value L at the tone frequency Λk.

• It has zeros at frequencies Λk + pωb in the

interval 0 ≤ ω < ωs where p is an integer and

ωb = 2π/Tb.

• It repeats periodically outside this interval as

would be expected for the transform of a sampled

signal.

• This tone filter is a bandpass filter centered at

the tone frequency Λk.
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✬

✫

✩

✪

Block Diagram of Receiver Using

Tone Filters

The block diagram of a receiver using tone filters

is shown in Figure 7 for M = 4.

• The boxes labelled “Complex BPF” are the

tone filters.

• The solid line at the output of a box is the real

part of the output and the dotted line is the

imaginary part.

• The boxes labelled | · | form the squared

complex magnitudes of their inputs. These

squared magnitudes are the squared envelopes of

the tone filter outputs.

• The squared envelopes are sampled at the end

of each symbol period, the largest is found, and

the corresponding frequency deviation is assumed

to be the one that was actually transmitted. This

decision is then mapped back to the

corresponding bit pattern.
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✬

✫

✩

✪

Efficient Computation with FIR

Tone Filters

If the receiver has locked its local symbol clock

frequency to that of the received signal and the

phase for sampling at the end of a symbol has

been determined, then

• the convolution sum in (59) only has to be

computed at the sampling times.

• In between sampling times, new samples must

be shifted into the filter delay line but the output

does not have to be computed.

• In practice the clocks will continually drift and

must be tracked. The block diagram indicates

that the tone filter outputs are computed for each

new input sample. It will be shown below how a

signal for clock tracking can be derived from these

signals.
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✬

✫

✩

✪
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Figure 7: FSK Demodulator Using Tone Filters for

M = 4
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✬

✫

✩

✪

Recursive Implementation of the

Tone Filters

The tone filters can be efficiently implemented

recursively when their outputs must be computed

at every sampling time. To ensure stability of the

recursion, the tone filter impulse responses will be

slightly modified to gk(nT ) = rnhk(nT ) where r

is slightly less than 1. The z-transform of a

modified tone filter impulse response is

Gk(z) =

L−1
∑

n=0

rnejΛknT z−n =
1− rLejΛkLT z−L

1− rejΛkT z−1

(62)

The output of this modified tone filter can be

computed as

yk(nT ) = s(nT )− rLejΛkLT s(nT − LT )

+ rejΛkT yk(nT − T ) (63)
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✬

✫

✩

✪

Recursive Implementation of the

Tone Filters (cont. 1)

The real part of yk(nT ) is

vk,r(nT ) = ℜe{yk(nT )}

= s(nT )− rL cos(ΛkLT )s(nT − LT )

+ r cos(ΛkT )vk,r(nT − T )

−r sin(ΛkT )vk,i(nT − T ) (64)

and the imaginary part is

vk,i(nT ) = ℑm{yk(nT )}

= −rL sin(ΛkLT )s(nT − LT )

+ r cos(ΛkT )vk,i(nT − T )

+r sin(ΛkT )vk,r(nT − T ) (65)

These last two equations are what could actually

be implemented in a DSP since additions and

multiplications must operate on real quantities in

a DSP. This filter structure is sometimes called a

“cross-coupled” implementation.
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✬

✫

✩

✪

Computation for the Recursive

Implementation

The quantities rL cos(ΛkLT ), r
L sin(ΛkLT ),

r cos(ΛkT ), and r sin(ΛkT ) can be precomputed.

• Then, computation of the real and imaginary

outputs for the cross-coupled form requires six

real multiplications and five real additions for

each n.

• Computation by direct convolution requires

2(L− 1) real multiplications and 2(L− 1) real

additions for each n since hk(0) = gk(0) = 1 and

this is usually much larger than the computation

required for the cross-coupled form.

• The signal memory required for the

cross-coupled form is an L+ 1 word buffer to

store the real values {s(ℓT )}nℓ=n−L plus two

locations to store vk,r(nT − T ) and vk,i(nT − T ).

This is just slightly more than required by the

direct convolution method.
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✬

✫

✩

✪

Simplified Demodulator for Binary

FSK

The demodulator structure can be simplified for

binary (M = 2) FSK. A block diagram of the

simplified demodulator is shown in Figure 8.
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Tone

✲ ✲ ✲Lowpass

Filter

Figure 8: Simplified FSK Demodulator for M = 2

• The squared envelopes of the two tone filter

outputs are computed as before but now one is

subtracted from the other.

• This difference is passed through a lowpass filter

to smooth it and eliminate some noise.
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✬

✫

✩

✪

Simplified Demodulator for Binary

FSK (cont.)

• The slicer hard limits its input to a positive

voltage A if its input is positive and to a negative

voltage −A if its input is negative.

• When no noise is present on the transmission

channel, a slicer output of A indicates that the

frequency deviation Ω1 was transmitted and an

output of −A indicates that Ω0 was transmitted

during the symbol interval.

Generating a Symbol Clock Timing

Signal

In a low noise environment and when the system

filters are wideband, the symbol clock can be

tracked by locking to the sharp transitions in the

demodulator output.

This will not work in a high noise environment

and when the system filters cause gradual

transitions.
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✬

✫

✩

✪

Generating a Symbol Clock Timing

Signal (cont. 1)

One way to generate a signal for clock tracking is

to form the sum, c(nT ), of the
(

M
2

)

= M(M − 1)/2 absolute values of the

differences of the pairs of different tone filter

output squared envelopes. In equation form

c(nT ) =
∑

0≤i<j≤M−1

| ei(nT )− ej(nT )| (66)

The idea behind this is that during each symbol

where the tone frequency changes from the one in

the previous symbol, the tone filter output for the

previous tone will ring down and the tone filter

output for the new tone will ring up, so the

absolute value of the difference will show a

transition. The tone filter envelopes can then be

sampled at the peaks of c(nT ), the largest

envelope determined, and the result mapped back

to a data bit sequence.
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✬

✫

✩

✪

Adding a Bandpass Filter to the

Clock Tracker

When the tone frequency is the same in adjacent

symbols, the tone filter output envelopes will not

change and c(nT ) will not have a transition

between the symbols. A symbol clock tracking

algorithm based on c(nT ) would have to

“flywheel” through the symbol intervals where

c(nT ) has no transitions.

A solution to this problem is to pass c(nT )

through a bandpass filter centered at the symbol

rate fb. A simple 2nd order bandpass filter with

nulls at 0 and fs/2 Hz and a peak near fb Hz has

the transfer function

H(z) = (1− r)
1− z−2

1− 2z−1r cos(2πfb/fs) + r2z−2

(67)

where fs is the sampling rate and r is a number

close to but slightly less than 1.
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✫

✩

✪

Adding a Bandpass Filter to the

Clock Tracker (cont. 1)

The closer r is to 1, the more narrow the filter

bandwidth.

Let c(nT ) be the filter input, y(nT ) the filter

output, and v(nT ) an internal filter signal. Then

the filter output can be computed recursively by

the equations

v(nT ) = (1−r)c(nT ) + 2r cos(2πfb/fs)v(nT−T )

−r2v(nT − 2T ) (68)

y(nT ) = v(nT )− v(nT − 2T ) (69)

This filter will “ring” at the symbol clock

frequency. The receiver’s clock tracker can lock to

the positive zero crossings of this signal. The

slope of the filter output y(nT ) is a maximum at

the zero crossings. Therefore, the zero crossings

can be determined with significantly higher

accuracy than the peaks where the slope is zero.
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✫

✩

✪

Adding a Bandpass Filter to the

Clock Tracker (cont. 2)

The peaks of the tone filter envelopes will occur

with some delay from these zero crossings

depending on the filter parameters. The tone

filter squared envelopes should be sampled with

this delay from the zero crossings.

The bandpass filter output will continue to

oscillate at the symbol rate but will decay

exponentially through intervals where the input is

constant because of no tone frequency changes.

By choosing r close enough to 1, the output will

remain large enough during the intervals with no

transitions to still detect the positive zero

crossings and allow the clock tracker to

automatically flywheel through these intervals.

FSK-56



✬

✫

✩

✪

Detecting the Presence of an FSK

Signal

The presence of an FSK signal can be detected by

monitoring the sum of the M squared envelopes

ρ(nT ) =

M−1
∑

k=0

ek(nT ) (70)

This sum indicates the power received in the tone

filter pass bands. Detection of an FSK signal can

be declared when ρ(nT ) exceeds a threshold for

one or more samples.

The termination of an FSK signal can be declared

when the sum falls below a threshold. The

termination threshold can be set below the

detection threshold to allow hysteresis and reduce

false loss of signal detection.
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✬

✫

✩

✪

An M = 4 FSK Example Using Tone

Filters

Typical signals for an M = 4 FSK signal with

fd = 200 Hz, fc = 4000 Hz, fb = 400 Hz,

fs = 16000 Hz, and tone filter detection are

shown in Figures 9, 10, 11, 12, and 13. The tone

frequencies are 3400, 3800, 4200, and 4600 Hz.

For the tone filters r = 0.999 and for the clock

bandpass filter r = 0.998.

Figure 9 shows a small segment of the FSK signal.

The tone frequency for symbols during normalized

times 10 to 11 and 12 to 13 is 4600 Hz. The tone

frequency during times 11 to 12 and 13 to 14 is

3400 Hz. The varying amplitudes is an optical

illusion created by connecting samples of the

signal taken at a 16000 Hz rate with straight lines.
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✫

✩

✪

Figure 9: Segment of the FSK Signal
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Figure 10 shows the squared envelope e0(nT ) at

the output of the 3400 Hz tone filter. Notice that

the peaks occur at the integer normalized times.
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✫

✩

✪

Figure 10: 3400 Hz Tone Filter Output Squared

Envelope
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Figure 11 shows a segment of the preliminary

clock signal c(nT ) computed as

c(nT ) = | e0(nT )− e1(nT )|+ | e0(nT )− e2(nT )|

+ | e0(nT )− e3(nT )|+ | e1(nT )− e2(nT )|

+ | e1(nT )− e3(nT )|+ | e2(nT )− e3(nT )| (71)
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✫

✩

✪

M = 4 Example (cont.)

In this example, the tone frequencies for symbols

10 through 21 alternate between 3400 and 4600

Hz creating peaks in c(nT ) each symbol as the

envelopes of the corresponding two tone filters

charge up and down.

The tone frequency remains constant during

symbols 22, 23, and 24, so there is no change in

the tone filter output squared envelopes and

c(nT ) had no transitions.

Observe that the peaks occur at the integer

normalized times which are exactly where the

peaks in e0(nT ) occur in Figure 10. One could

lock to the peaks in c(nT ) and sample the

envelopes at the peak times but would have to

“flywheel” through intervals when the tone

frequency does not change.

FSK-61



✬

✫

✩

✪

Figure 11: The Preliminary Symbol Clock Track-

ing Signal c(nT )
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✫

✩

✪

Figure 12: The Signal c(nT ) Passed through a 2nd

Order Bandpass Filter
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Figure 12 shows the result when c(nT ) is passed

through the bandpass filter centered at the

symbol clock frequency. Notice that the signal is

exponentially damped between normalized times

22 and 30 when c(nT ) has no transitions.
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✫

✩

✪

Figure 13: Superimposed Preliminary and Band-

pass Filtered Clock Signals
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Figure 13 shows a segment of the preliminary

clock signal, c(nT ), and the bandpass filtered

clock signal, y(nT ), superimposed on the same

graph. The peaks of y(nT ) occur at almost the

same times as the peaks in c(nT ).
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✫

✩

✪

The positive zero crossings of y(nT ) occur 1/4 of

a symbol before the peaks of c(nT ). A good clock

tracker would lock to these zero crossing and the

receiver would then sample the tone filter squared

envelopes with a delay of 1/4 of a symbol which

corresponds to the peaks of c(nT ). The exact

delay necessary depends on the filter parameters.

Symbol Error Probabilities for FSK

Systems

The problem of computing the symbol error

probability for different types of FSK receivers is

discussed extensively in Chapter 8 of Lucky, Salz,

and Weldon3. The problem is very difficult

because of the nonlinear natures of the modulator

and various receivers. Many of the results are

approximations or require evaluation of

complicated integrals by numerical integration.

3R.W. Lucky, J. Salz, and E.J. Weldon, Principles of

Data Communication, McGraw-Hill Book Company, 1968
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✬

✫

✩

✪

Orthogonal Signal Sets

One case where exact closed form results are

know is when the transmitted symbols are

orthogonal, they are corrupted by additive white

Gaussian noise, and optimum noncoherent

detection by tone filters is used.

Two continuous-time signals over the interval

[t1, t2) with complex envelopes x1(t) and x2(t) are

said to be orthogonal if

ρ =

∫ t2

t1

x1(t)x2(t) dt = 0 (72)

From (13) it follows that the complex envelopes of

the FSK signal set during symbol period i where

iTb ≤ t < (i+ 1)Tb are

xk(t) = Ace
jθm(iTb)ejωd[2k−(M−1)](t−iTb)

for k = 0, . . . ,M − 1 (73)
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✬

✫

✩

✪

Orthogonal Signal Sets (cont. 1)

For two distinct integers k1 and k2 in this set

ρ =

∫ (i+1)Tb

iTb

xk1
(t)xk2

(t) dt

= A2
c

∫ (i+1)Tb

iTb

ej2ωd(k1−k2)(t−iTb) dt]

= A2
c

∫ Tb

0

ej2ωd(k1−k2)t dt

= A2
c

ej2ωd(k1−k2)Tb − 1

j2ωd(k1 − k2)
(74)

This integral will be zero if

2ωd(k1 − k2)Tb = 2πℓ (75)

or

h(k1 − k2) = ℓ (76)

where ℓ is an integer. This will be satisfied for all

pairs of signals in the FSK signal set when the

modulation index, h, is an integer.
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✫

✩

✪

Orthogonal Signal Sets (cont. 2)

An analogous property holds for the discrete-time

FSK approximation. Assume there are L samples

per symbol so that Tb = LT . The complex

discrete-time envelopes during symbol interval i

where iTb ≤ nT < (i+ 1)Tb are

xk(nT ) = Ace
jθm(iTb)ejωd[2k−(M−1)](nT−iLT )

for k = 0, . . . ,M − 1 (77)

Then for two distinct integers k1 and k2 the

correlation is

ρ =

(i+1)L−1
∑

n=iL

xk1
(nT )xk2

(nT )

= A2
c

L−1
∑

n=0

ej2ωd(k1−k2)nT

= A2
c

1− ej2ωd(k1−k2)LT

1− ej2ωd(k1−k2)T
(78)

The correlation ρ will be zero if

2ωd(k1 − k2)LT = 2ωd(k1 − k2)Tb = 2πℓ where ℓ

is an integer just as in the continuous-time case.
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✬

✫

✩

✪

Orthogonal Signal Sets (cont. 3)

The energy transmitted during symbol period i is

E =

∫ (i+1)Tb

iTb

s2(t) dt =
1

2

∫ (i+1)Tb

iTb

|xk(t)|
2
dt

= A2
cTb/2 (79)

and the average power transmitted during this

interval is S = E/Tb. Let the two-sided noise

power spectral density be N0/2. Then the symbol

error probability is4

Pe =

exp

(

−
E

N0

)

M

M
∑

i=2

(−1)i
(

M

j

)

exp

(

E

iN0

)

(80)

For binary FSK, i.e., M = 2, the symbol error

probability is

Pe =
1

2
exp

(

−
E

2N0

)

(81)

4Andrew J. Viterbi, Principles of Coherent Communi-

cation, McGraw-Hill, 1966, p. 247.
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✬

✫

✩

✪

Orthogonal Signal Sets (cont. 4)

An upper bound for the symbol error probability

for arbitrary M is

Pe ≤
M − 1

2
exp

(

−
E

2N0

)

(82)

There are k = log2 M bits per symbol. For

orthogonal signal sets, all symbol errors are

equally likely, so all bit-error patterns in a block

of k transmitted bits assigned to a symbol are

equally likely. Based on this observation, Viterbi5

shows that the bit error probability is related to

the symbol error probability by the formula

Pb =
2k−1

2k − 1
Pe (83)

5Andrew J. Viterbi, Principles of Coherent Communi-

cation, McGraw-Hill, 1966, p. 226.
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✬

✫

✩

✪

Experiments for Continuous-Phase

FSK

For these experiments you will explore M = 2 and

M = 4 continuous-phase FSK transmitters and

receivers. For all these experiments use the

following parameters: carrier frequency fc = 4000

Hz, frequency deviation fd = 200 Hz, symbol rate

fb = 400 Hz, sampling frequency fs = 16000

samples per second, and p(t) is the rectangular

pulse given by (4). Initialize the TMS320C6713

DSK as usual.

EXP 1. Theoretical FSK Spectra
Write a MATLAB program or use any other

favorite programming language to compute the

power spectral density for an FSK signal with

arbitrary M , fc, fd, and fb using (31). Then plot

the spectra for M = 2 and M = 4 vs. the

normalized frequency (ω − ωc)/ωb for the

parameters specified for these experiments.

Experiment with other parameters also.
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✬

✫

✩

✪

EXP 2. Making FSK Transmitters

Write programs for the TMS320C6713 DSK to

implement continuous-phase FSK transmitters for

M = 2 and M = 4. Write the output samples to

the left codec output channel. You will be using

these transmitters as FSK signal sources for your

receivers.

EXP 2.1 Initial Handshaking Sequence To

help the receivers detect the presence of an FSK

signal and lock to the transmitter’s symbol clock,

make your transmitter send the following signal

sequence:

1. First send 0.25 seconds of silence, that is,

send 0 volts for 0.25 seconds. This will allow

your receiver to skip over any initial transient

that occurs when the transmitter program is

loaded and started.
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✫

✩

✪

2. Then for M = 2 send 25 symbols alternating

each symbol between f0 = 3800 and

f1 = 4200 Hz tones. This will allow the

receivers to detect the FSK signal and lock on

to the symbol clock. For M = 4 send 25

symbols alternating each symbol between

f0 = 3400 and f3 = 4600 Hz.

3. Suppose the frequencies of the last few

symbols of the alternating sequence for

M = 2 were · · · , f0, f1, f0. Next send an

alternating frequency sequence for 10 symbols

but with the alternation reversed. That is

send f0, f1, f0, f1, f0, f1, f0, f1, f0, f1. Your

receiver can detect this change in the

alternations and use it as a timing mark to

determine when actual data will start.

For the M = 4 transmitter change to

alternating between f1 = 3800 and f2 = 4200

Hz for 10 symbols. Again, this change can be

used as a timing mark.
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✫

✩

✪

EXP 2.2 Simulating Random Customer

Data

After the alternations, begin transmitting

“customer” data continuously.

Simulate this data by using a 23 stage PN

sequence generator as discussed in Chapter 9.

Use the connection polynomial

h(D) = 1 +D18 +D23

so the data bit sequence, d(n), is generated by the

recursion

d(n) = d(n− 18)⊕ d(n− 23) (84)

where “⊕” in the recursion is modulo 2 addition,

that is, the exclusive-or operation. Initialize the

PN sequence generator shift register to some

non-zero state.

For M = 2, shift the PN generator once to get a

new data bit d(n) which will be a 0 or 1. Map

this bit to the tone frequency

Λ(n) = ωc + ωd[2d(n)− 1].
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✫

✩

✪

For M = 4, shift the register twice to get a pair of

bits [d1(n), d0(n)]. Consider this bit pair to be the

integer k(n) = 2d1(n) + d0(n) which can be 0, 1,

2, or 3. Map this bit pair to the tone frequency

Λ(n) = ωc + ωd[2k(n)− 3].

EXP 2.3 Experimentally Measure the FSK

Power Spectral Density

Measure the power spectral density of the

transmitted FSK signals for M = 2 and 4 after

the initial handshaking sequence when random

customer data is being transmitted.

• If you made the spectrum analyzer for Chapter

4, run it on one station and connect your

transmitter to it.

• You can use a commercial spectrum analyzer if

it is available.

• Otherwise collect an array of transmitted

samples, write them to a file on the PC, and use

MATLAB’s Signal Processing Toolbox function

pwelch( ). Compare your measured spectra with

the theoretical ones you computed.
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✫

✩

✪

EXP 3. Making a Receiver Using an

Exact Frequency Discriminator

Make a receiver using the exact frequency

discriminator shown in Figure 3 for M = 2.

Connect the transmitter from another station to

your receiver. You can use the mini-stereo to

mini-stereo cables in the cable box. You can also

use the BNC T-connectors in the cable box to

connect line-out BNC connectors to the line-in

BNC connectors.

First leave your transmitter off and turn on your

receiver. When the receiver is running, turn on

your transmitter. Your receiver program should

do the following:

1. The receiver should detect the absence or

presence of an input FSK signal by

monitoring the received signal power. The

power can be calculated by doing a running

average of the squared input samples over

several symbols.
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✫

✩

✪

EXP 3. Making an Exact Discriminator

(cont. 1)

The receiver should assume that no FSK

input signal is present when this power is

small and sit in a loop checking for the

presence of an input signal. When the

measured power crosses a threshold, the

receiver can start the discriminator and

symbol clock tracking algorithm.

You should predetermine a good threshold

based on your knowledge of the transmitter

amplitude and system gains. You can do this

experimentally by observing the received

power when the transmitter is running.

2. The receiver should continue to monitor the

input signal power and detect when the signal

is gone and then go into a loop looking for

the return of a signal.
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✫

✩

✪

EXP 3. Making an Exact Discriminator

(cont. 2)

3. Start your discriminator and symbol clock

tracker once an input signal is detected.

Monitor the tone frequency alternations and

look for the alternation switch. Count for 10

symbols after the switch and begin detecting

the tone frequencies resulting from the input

customer data.

4. Send the output samples of the discriminator

to the left codec channel.

Send a signal to the right codec output

channel that is a square wave at the symbol

clock frequency to use for synching the

oscilloscope. You can do this by sending a

positive value for 20 samples at the start of a

symbol followed by its negative value for the

next 20 samples.
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✫

✩

✪

EXP 3. Making an Exact Discriminator

(cont. 3)

Observe the discriminator output on the

oscilloscope and take a picture of a single

trace to show a typical output of the

discriminator.

Alternatively, you can capture an array of

discriminator output samples with Code

Composer or use fprintf(·) to write the array

to a PC file and plot the output file with your

favorite plotting program.

If you allow the oscilloscope to run freely, you

will see multiple traces synchronized with the

symbol clock overlapped on the screen. This

type of display is called an “eye pattern” in

the communications industry. At the end of

each symbol you should see two distinct equal

and opposite levels and the eye is said to be

open. The eye pattern can be used as a

diagnostic tool. Noise and system problems

cause the eye to be less open.
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✫

✩

✪

EXP 3. Making an Exact Discriminator

(cont. 4)

5. Map the detected tone frequency sequence

back into a bit sequence d̂(n).

6. Check that the received bit stream is the

same as the transmitted one. Your receiver

should have a 24-stage shift register that

contains d̂(n), d̂(n− 1), . . . , d̂(n− 23). You

can check for errors by checking that

d̂(n)⊕ d̂(n− 18)⊕ d̂(n− 23) = 0

for all n except for an initial burst of 1’s when

the shift register is filling up. If you initialize

the state of the register to the initial state of

the transmitter register the result should be

all 0’s if you have detected the starting time

of the customer data correctly.
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✫

✩

✪

EXP 4. Running a Bit-Error Rate

Test (BERT)

A measure of the quality of a digital transmission

scheme is its bit-error rate performance in the

presence of additive noise. Once your frequency

discriminator receiver is working correctly with

noiseless received FSK signals, perform a bit-error

rate test as follows:

1. Generate zero-mean Gaussian noise samples

in the DSP with some variance σ2 and add

them to the received signal samples.

Implement a power meter in your receiver

program to measure the power of the FSK

input samples, say P . Compute the SNR =

10 log10(P/σ
2) dB.

2. Your receiver should have a replica of the PN

sequence generator in the transmitter. You

should synchronize the state of the local PN

generator to that of the transmitter so it’s

output sequence will be in phase with the

received one.
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✫

✩

✪

EXP 4. BERT Test (cont. 1)

3. Start your BERT test with a very high SNR

so few errors will occur. Check if each bit

estimated by the receiver is the same as the

transmitted one and count any bit errors for a

number of bits sufficient to give a good

estimate of the bit-error probability.

The estimated bit-error rate is:

BER = (the number of errors in the observed

sequence of detected bits)/(the number of

observed detected bits).

The number of observed bits should be at

least 10 times the bit-error rate to get an

estimate with good accuracy. The variance of

this estimator decreases inversely with the

number of observed bits.
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✫

✩
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EXP 4. BERT Test (cont. 2)

4. Decrease the SNR in steps of 0.25 dB and

measure the bit-error rate for each SNR.

Continue decreasing the SNR until you can

no longer synchronize the replica PN

generator with the transmitter’s generator.

5. Plot the bit-error rate vs. SNR. The bit-error

rate should be plotted on a logarithmic scale

and SNR in dB on a linear scale. This kind of

plot is known as a “waterfall curve” in the

communications industry.

EXP 5. Making a Receiver Using an

Approximate Frequency

Discriminator

Repeat the tasks for the exact frequency

discriminator in EXP 3 for the approximate

frequency discriminator presented starting on

slide FSK-25.
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✫

✩

✪

EXP 6. Making a Receiver Using a

Phase-Locked Loop

Make a receiver using the phase-locked loop

described starting on Slide FSK-30 for M = 2.

Test your receiver by following the steps starting

on Slide FSK-76. Compare the bit-error rate

performance of this receiver with the

discriminator receiver.

EXP 7. Making a Receiver Using

Tone Filters

EXP 7.1 M = 4 Tone Filter Receiver

1. Make a receiver using tone filters for M = 4

FSK. Implement the method for generating a

symbol clock tracking signal described

starting on Slide FSK-52.

2. Use the sum of the tone filter output squared

envelopes, ρ(nT ) given by (70), to detect the

presence or absence of a received FSK signal.
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EXP 7.1 (cont.)

3. Test your receiver by following the steps for

the exact discriminator starting on Slide

FSK-76.

4. In addition, send the squared envelope at the

output of one of the tone filters to one output

channel of the codec, send the output of the

2nd order bandpass symbol clock tone

generation filter to the other channel to use

as a synch signal, observe them on the

oscilloscope, and record the display. Also

send the preliminary clock tracking signal to

the oscilloscope and record the result.

5. Compare your measured bit-error rate curve

with the theoretical bit error probability

curve given by (83). Also compare the

bit-error rate performance of this receiver to

the others.
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EXP 7.2 Simplified M = 2 Tone Filter

Receiver

Make and test the simplified binary tone filter

receiver described starting on Slide FSK-51.

Measure and plot the bit-error rate vs. SNR and

compare it with the theoretical curve.
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