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1 Multiple linear regression

Multiple linear regression (MLR) is where we regress a target variable against
more than one covariate. In terms of soil spatial prediction functions, MLR is
a least-squares model whereby we want to to predict a continuous soil variable
from a suite of covariates. There are a couple of ways to go about this. We
could just put everything (all the covariates) in the model and then fit it
(estimate the model parameters). We could perform a stepwise regression
model where we only enter variables that are statistically significant, based on
some selection criteria. Alternatively we could fit what could be termed, an
“expert” model, such that based on some pre-determined knowledge of the soil
variable we are trying to model, we include covariates that best describe this
knowledge. In some ways this is a biased model because we really don’t know
everything about (the spatial characteristics) the soil property under
investigation. Yet in many situations it is better to rely on expert knowledge
that is gained in the field as opposed to some other form.

So lets firstly get the data organized. Recall from before in the data
preparatory exercises that we were working with the soil point data and
environmental covariates for the Hunter Valley area. These data are stored in
the HV subsoilpH and hunterCovariates sub objects from the ithir

package. For the succession of models to be used, we will concentrate on
modelling and mapping the soil pH for the 60-100cm depth interval. To
refresh, lets load the data in, then intersect the data with the available
covariates.

library(ithir)

library(raster)

library(rgdal)

library(sp)

# point data

data(HV_subsoilpH)

# Start afresh round pH data to 2 decimal places

HV_subsoilpH$pH60_100cm <- round(HV_subsoilpH$pH60_100cm, 2)
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# remove already intersected data

HV_subsoilpH <- HV_subsoilpH[, 1:3]

# add an id column

HV_subsoilpH$id <- seq(1, nrow(HV_subsoilpH), by = 1)

# re-arrange order of columns

HV_subsoilpH <- HV_subsoilpH[, c(4, 1, 2, 3)]

# Change names of coordinate columns

names(HV_subsoilpH)[2:3] <- c("x", "y")

# grids (covariate raster)

data(hunterCovariates_sub)

Perform the covariate intersection.

coordinates(HV_subsoilpH) <- ~x + y

# extract

DSM_data <- extract(hunterCovariates_sub, HV_subsoilpH, sp = 1, method = "simple")

DSM_data <- as.data.frame(DSM_data)

str(DSM_data)

## 'data.frame': 506 obs. of 15 variables:

## $ id : num 1 2 3 4 5 6 7 8 9 10 ...

## $ x : num 340386 340345 340559 340483 340734 ...

## $ y : num 6368690 6368491 6369168 6368740 6368964 ...

## $ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 7.28 4.95 5.61 5.39 3.44 ...

## $ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

## $ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

## $ Landsat_Band1 : num 57 47 59 52 62 53 47 52 53 63 ...

## $ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

## $ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

## $ Light_insolation : num 1689 1701 1722 1688 1735 ...

## $ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

## $ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

## $ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

## $ TWI : num 17.5 18.2 18.8 18 17.8 ...

## $ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Often it is handy to check to see whether there are missing values both in the
target variable and of the covariates. It is possible that a point location does
not fit within the extent of the available covariates. In these cases the data
should be excluded. A quick way to assess whether there are missing or NA
values in the data is to use the complete.cases function.

which(!complete.cases(DSM_data))

## integer(0)
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DSM_data <- DSM_data[complete.cases(DSM_data), ]

There do not appear to be any missing data as indicated by the integer(0)

output above i.e there are zero rows with missing information.

With the soil point data prepared, lets fit a model with everything in it (all
covariates) to get an idea of how to parametise the MLR models in R.
Remember the soil variable we are making a model for is soil pH for the
60-100cm depth interval.

hv.MLR.Full <- lm(pH60_100cm ~ +Terrain_Ruggedness_Index + AACN + Landsat_Band1 +

Elevation + Hillshading + Light_insolation + Mid_Slope_Positon + MRVBF +

NDVI + TWI + Slope, data = DSM_data)

summary(hv.MLR.Full)

##

## Call:

## lm(formula = pH60_100cm ~ +Terrain_Ruggedness_Index + AACN +

## Landsat_Band1 + Elevation + Hillshading + Light_insolation +

## Mid_Slope_Positon + MRVBF + NDVI + TWI + Slope, data = DSM_data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.2380 -0.7843 -0.1225 0.7057 3.4641

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.372452 2.147673 2.502 0.012689 *

## Terrain_Ruggedness_Index 0.075084 0.054893 1.368 0.171991

## AACN 0.034747 0.007241 4.798 2.12e-06 ***

## Landsat_Band1 -0.037712 0.009355 -4.031 6.42e-05 ***

## Elevation -0.013535 0.005550 -2.439 0.015079 *

## Hillshading 0.152819 0.053655 2.848 0.004580 **

## Light_insolation 0.001329 0.001178 1.127 0.260081

## Mid_Slope_Positon 0.928823 0.268625 3.458 0.000592 ***

## MRVBF 0.324041 0.084942 3.815 0.000154 ***

## NDVI 4.982413 0.887322 5.615 3.28e-08 ***

## TWI 0.085150 0.045976 1.852 0.064615 .

## Slope -0.102262 0.062391 -1.639 0.101838

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.178 on 494 degrees of freedom

## Multiple R-squared: 0.2501,Adjusted R-squared: 0.2334

## F-statistic: 14.97 on 11 and 494 DF, p-value: < 2.2e-16

From the summary output above, it seems a few of the covariates are
significant in describing the spatial variation of the target variable. To
determine the most parsimonious model we could perform a stepwise
regression using the step function. With this function we can also specify
what direction we want step wise algorithm to proceed.
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hv.MLR.Step <- step(hv.MLR.Full, trace = 0, direction = "both")

summary(hv.MLR.Step)

##

## Call:

## lm(formula = pH60_100cm ~ AACN + Landsat_Band1 + Elevation +

## Hillshading + Mid_Slope_Positon + MRVBF + NDVI + TWI, data = DSM_data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.1202 -0.8055 -0.1286 0.7443 3.4407

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.449369 0.930288 8.008 8.36e-15 ***

## AACN 0.037413 0.006986 5.356 1.31e-07 ***

## Landsat_Band1 -0.037795 0.009134 -4.138 4.12e-05 ***

## Elevation -0.012042 0.005299 -2.273 0.023481 *

## Hillshading 0.089275 0.018576 4.806 2.04e-06 ***

## Mid_Slope_Positon 0.982066 0.263538 3.726 0.000216 ***

## MRVBF 0.307179 0.083361 3.685 0.000254 ***

## NDVI 5.111642 0.882036 5.795 1.21e-08 ***

## TWI 0.092169 0.045241 2.037 0.042149 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.179 on 497 degrees of freedom

## Multiple R-squared: 0.245,Adjusted R-squared: 0.2329

## F-statistic: 20.16 on 8 and 497 DF, p-value: < 2.2e-16

Comparing the outputs of both the full and stepwise MLR models, there is
very little difference in the model diagnostics such as the R2. Both models
explain about 25% of variation of the target variable. Obviously the “full”
model is more complex as it has more parameters than the “step” model. If
we apply Occam’s Razor, the “step” model is preferable.

As described earlier, it is more acceptable to test the performance of a model
based upon an external validation. Lets fit a new model using the covariates
selected in the step wise regression to a random subset of the available data.
We will sample 70% of the available rows for the model calibration data
set.

set.seed(123)

training <- sample(nrow(DSM_data), 0.7 * nrow(DSM_data))

hv.MLR.rh <- lm(pH60_100cm ~ AACN + Landsat_Band1 + Elevation + Hillshading +

Mid_Slope_Positon + MRVBF + NDVI + TWI, data = DSM_data[training, ])

# calibration predictions

hv.pred.rhC <- predict(hv.MLR.rh, DSM_data[training, ])

# validation predictions

hv.pred.rhV <- predict(hv.MLR.rh, DSM_data[-training, ])
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Now we can evaluate the test statistics of the calibration model using the
goof function.

# calibration

goof(observed = DSM_data$pH60_100cm[training], predicted = hv.pred.rhC)

## R2 concordance MSE RMSE bias

## 1 0.2437432 0.3936011 1.370124 1.170523 -6.217249e-15

# validation

goof(observed = DSM_data$pH60_100cm[-training], predicted = hv.pred.rhV)

## R2 concordance MSE RMSE bias

## 1 0.2248642 0.3798786 1.376643 1.173304 0.05121269

In this situation the calibration model does not appear to be over fitting
because the test statistics for the validation are similar to those of the
calibration data. While this is a good result, the prediction model performs
only moderately well by the fact there is a noticeable deviation between
observations and corresponding model predictions. Examining other candidate
models is a way to try to improve upon this results.

1.1 Applying the model spatially

From a soil mapping perspective the important question to ask is: What does
the map look like that results from a particular model? In practice this can be
answered by applying the model parameters to the grids of the covariates that
were used in the model. There are a few options on how to do this.

1.1.1 Covariate table

The traditional has been to collate a grid table where there would be two
columns for the coordinates followed by other columns for each of the available
covariates that were sourced. This was seen as an efficient way to organize all
the covariate data as it ensured that a common grid was used which also
meant that all the covariates are of the same scale in terms of resolution and
extent. We can simulate the covariate table approach using the
hunterCovariates sub object as below.

data(hunterCovariates_sub)

tempD <- data.frame(cellNos = seq(1:ncell(hunterCovariates_sub)))

vals <- as.data.frame(getValues(hunterCovariates_sub))

tempD <- cbind(tempD, vals)

tempD <- tempD[complete.cases(tempD), ]

cellNos <- c(tempD$cellNos)

gXY <- data.frame(xyFromCell(hunterCovariates_sub, cellNos, spatial = FALSE))

tempD <- cbind(gXY, tempD)

str(tempD)

## 'data.frame': 33252 obs. of 14 variables:

c©2017, Soil Security Laboratory 5



## $ x : num 340935 340960 340985 341010 341035 ...

## $ y : num 6370416 6370416 6370416 6370416 6370416 ...

## $ cellNos : int 101 102 103 104 105 106 107 108 109 110 ...

## $ Terrain_Ruggedness_Index: num 0.745 0.632 0.535 0.472 0.486 ...

## $ AACN : num 9.78 9.86 10.04 10.27 10.53 ...

## $ Landsat_Band1 : num 68 63 59 62 56 54 59 62 54 56 ...

## $ Elevation : num 103 103 102 102 102 ...

## $ Hillshading : num 0.94 0.572 0.491 0.515 0.568 ...

## $ Light_insolation : num 1712 1706 1701 1699 1697 ...

## $ Mid_Slope_Positon : num 0.389 0.387 0.386 0.386 0.386 ...

## $ MRVBF : num 0.376 0.765 1.092 1.54 1.625 ...

## $ NDVI : num -0.178 -0.18 -0.164 -0.169 -0.172 ...

## $ TWI : num 16.9 17.2 17.2 17.2 17.2 ...

## $ Slope : num 0.968 0.588 0.503 0.527 0.581 ...

The result shown above is that the covariate table contains 33252 rows and
has 14 variables. It is always necessary to have the coordinate columns, but
some saving of memory could be earned if only the required covariates are
appended to the table. It will quickly become obvious however that the
covariate table approach could be limiting when mapping extents get very large
or the grid resolution of mapping becomes more fine-grained, or both.

With the covariate table arranged it then becomes a matter of using the
MLR predict function.

map.MLR <- predict(hv.MLR.rh, newdata = tempD)

map.MLR <- cbind(data.frame(tempD[, c("x", "y")]), map.MLR)

Now we can rasterise the predictions for mapping (Figure 1 ) and grid
export. In the example below we set the CRS to WGS84 Zone 56 before
exporting the raster file out as a Geotiff file.

map.MLR.r <- rasterFromXYZ(as.data.frame(map.MLR[, 1:3]))

plot(map.MLR.r, main = "MLR predicted soil pH (60-100cm)")

# set the projection

crs(map.MLR.r) <- "+proj=utm +zone=56 + south + ellps=WGS84 +datum=WGS84 +units=m +no_defs"

writeRaster(map.MLR.r, "soilpH_60_100_MLR.tif", format = "GTiff", datatype = "FLT4S",

overwrite = TRUE)

# check working directory for presence of raster

Some of the parameters used within the writeRaster function that are
worth noting include: format, which is the raster format that we want to
write to. Here “GTiff” is being specified — use the writeFormats fuction to
look at what other raster formats can be used. the parameter datatype is
specified as “FLT4S” which inidcates that a 4 byte, signed floating point
values are to be written to file. Look at the function dataType to look at other
alternatives, for example for categorical data where we may be interested in
logical or integer values.
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Figure 1: MLR predicted soil pH 60-100cm across the Hunter Valley

1.1.2 Raster predictions

Probably a more efficient way of applying the fitted model is to apply it
directly to the rasters themselves. This avoids the step of arranging all
covariates into table format. If multiple rasters are being used, it is necessary
to have them arranged as a rasterStack object. This is useful as it also
ensures all the rasters are of the same extent and resolution. Here we can use
the raster predict function such as below using the covStack raster stack as
input.

map.MLR.r1 <- predict(hunterCovariates_sub, hv.MLR.rh, "soilpH_60_100_MLR.tif",

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

# check working directory for presence of raster

The prediction function is quite versatile. For example we can also map the
standard error of prediction or the confidence interval or the prediction
interval even. The script below is an example of creating maps of the 90%
prediction intervals for the hv.MLR.rh model. We need to explicitly create a
function called in this case predfun which will direct the raster predict
function to output the predictions plus the upper and lower prediction limits.
In the predict function we insert predfun for the fun parameter and control
the output by changing the index value to either 1, 2, or 3 to request either
the prediction, lower limit, upper limit respectively. Setting the level

paramter to 0.90 indicates that we want to return the 90% precition interval.
The resulting plots are shown in Figure 2.
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par(mfrow = c(3, 1))

predfun <- function(model, data) {
v <- predict(model, data, interval = "prediction", level = 0.9)

}

map.MLR.r.1ow <- predict(hunterCovariates_sub, hv.MLR.rh, "soilPh_60_100_MLR_low.tif",

fun = predfun, index = 2, format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

plot(map.MLR.r.1ow, main = "MLR predicted soil pH (60-100cm) lower limit")

map.MLR.r.pred <- predict(hunterCovariates_sub, hv.MLR.rh, "soilPh_60_100_MLR_pred.tif",

fun = predfun, index = 1, format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

plot(map.MLR.r.pred, main = "MLR predicted soil pH (60-100cm)")

map.MLR.r.up <- predict(hunterCovariates_sub, hv.MLR.rh, "soilPh_60_100_MLR_up.tif",

fun = predfun, index = 3, format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

plot(map.MLR.r.up, main = "MLR predicted soil pH (60-100cm) upper limit")

# check working directory for presence of rasters

1.1.3 Directly to rasters using parallel processing

An extension of using the raster predict function is to apply the model again
to the rasters, but to do it across multiple computer nodes. This is akin to
breaking a job up into smaller pieces then processing the jobs in parallel rather
than sequentially. The parallel component here is that the smaller pieces are
passed to more than 1 compute nodes. Most desktop computers these days
can have up to 8 compute nodes which can result in some excellent gains in
efficiency when applying models across massive extents and or at fine
resolutions. The raster package has some built in dependencies with other R
packages that facilitate parallel processing options. For example the raster

package ports with the parallel package for setting up and controlling the
compute node processes. The script below is an example of using 4 compute
nodes to apply the hv.MLR.rh model to the hunterCovariates sub raster
stack.

library(parallel)

beginCluster(4)

cluserMLR.pred <- clusterR(hunterCovariates_sub, predict, args = list(hv.MLR.rh),

filename = "soilpH_60_100_MLR_pred.tif", format = "GTiff", progress = FALSE,

overwrite = T)

endCluster()

To set up the compute nodes, you use the beginCluster function and inside
it, specify how many compute nodes you want to use. If empty brackets are
used, the function will use 100% of the compute resources. The clusterR

function is the work horse function that then applies the model in parallel to
the rasters. The parameters and subsequent options are similar to the raster
predict function, although it would help to look at the help files on this
function for more detailed explanations. It is always important after the
prediction is completed to shutdown the nodes using the endCluster

c©2017, Soil Security Laboratory 8



Figure 2: MLR predicted soil pH (60-100cm) across the Hunter Valley with
associated lower and upper prediction limits.

function.

The relative ease in setting up the parallel processing for our mapping needs
has really opened up the potential for performing DSM using very large data
sets and rasters. Moreover, using the parallel processing together with the file
pointing ability (that was discussed earlier) raster has made the possibility of
big DSM a reality, and importantly- practicable.
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