

Continuous-time Markov Chains

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

October 31, 2016

Continuous-time Markov chains

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

Definition

- ▶ Continuous-time positive variable $t \in [0, \infty)$
- ▶ Time-dependent random state X(t) takes values on a countable set
 - ▶ In general denote states as i = 0, 1, 2, ..., i.e., here the state space is \mathbb{N}
 - ▶ If X(t) = i we say "the process is in state i at time t"
- ▶ **Def:** Process X(t) is a continuous-time Markov chain (CTMC) if

$$P(X(t+s) = j | X(s) = i, X(u) = x(u), u < s)$$

= $P(X(t+s) = j | X(s) = i)$

- ▶ Markov property \Rightarrow Given the present state X(s)
 - \Rightarrow Future X(t+s) is independent of the past X(u)=x(u), u< s
- ▶ In principle need to specify functions $P(X(t+s) = j \mid X(s) = i)$
 - \Rightarrow For all times t and s, for all pairs of states (i,j)

Notation and homogeneity

Notation

- ▶ X[s:t] state values for all times $s \le u \le t$, includes borders
- \blacktriangleright X(s:t) values for all times s < u < t, borders excluded
- ▶ X(s:t] values for all times $s < u \le t$, exclude left, include right
- ▶ X[s:t) values for all times $s \le u < t$, include left, exclude right
- ▶ Homogeneous CTMC if P (X(t+s) = j | X(s) = i) invariant for all s
 - ⇒ We restrict consideration to homogeneous CTMCs
- ▶ Still need $P_{ij}(t) := P\left(X(t+s) = j \mid X(s) = i\right)$ for all t and pairs (i,j) $\Rightarrow P_{ij}(t)$ is known as the transition probability function. More later
- Markov property and homogeneity make description somewhat simpler

Transition times

- $ightharpoonup T_i = \text{time until transition out of state } i \text{ into any other state } j$
- ▶ **Def:** T_i is a random variable called transition time with ccdf

$$P(T_i > t) = P(X(0:t] = i | X(0) = i)$$

▶ Probability of $T_i > t + s$ given that $T_i > s$? Use cdf expression

$$P(T_{i} > t + s | T_{i} > s) = P(X(0:t+s] = i | X[0:s] = i)$$

$$= P(X(s:t+s] = i | X[0:s] = i)$$

$$= P(X(s:t+s] = i | X(s) = i)$$

$$= P(X(0:t] = i | X(0) = i)$$

- ▶ Used that X[0:s] = i given, Markov property, and homogeneity
- ▶ From definition of $T_i \Rightarrow P(T_i > t + s \mid T_i > s) = P(T_i > t)$
 - ⇒ Transition times are exponential random variables

Alternative definition

- ► Exponential transition times is a fundamental property of CTMCs
 - ⇒ Can be used as "algorithmic" definition of CTMCs
- ▶ Continuous-time random process X(t) is a CTMC if
 - (a) Transition times T_i are exponential random variables with mean $1/
 u_i$
 - (b) When they occur, transition from state i to j with probability P_{ij}

$$\sum_{j=1}^{\infty} P_{ij} = 1, \qquad P_{ii} = 0$$

- (c) Transition times T_i and transitioned state j are independent
- ▶ Define matrix **P** grouping transition probabilities P_{ij}
- ► CTMC states evolve as in a discrete-time Markov chain
 - \Rightarrow State transitions occur at exponential intervals $T_i \sim \exp(\nu_i)$
 - ⇒ As opposed to occurring at fixed intervals

Embedded discrete-time Markov chain

- ▶ Consider a CTMC with transition matrix **P** and rates ν_i
- ▶ **Def:** CTMC's embedded discrete-time MC has transition matrix **P**
- ► Transition probabilities P describe a discrete-time MC
 - \Rightarrow No self-transitions ($P_{ii} = 0$, **P**'s diagonal null)
 - ⇒ Can use underlying discrete-time MCs to study CTMCs
- ▶ **Def:** State *j* accessible from *i* if accessible in the embedded MC
- ▶ **Def:** States *i* and *j* communicate if they do so in the embedded MC
 - ⇒ Communication is a class property
- ▶ Recurrence, transience, ergodicity. Class properties . . . More later

Transition rates

- ▶ Expected value of transition time T_i is $\mathbb{E}[T_i] = 1/\nu_i$
 - \Rightarrow Can interpret ν_i as the rate of transition out of state i
 - \Rightarrow Of these transitions, a fraction P_{ij} are into state j
- ▶ **Def:** Transition rate from *i* to *j* is $q_{ij} := \nu_i P_{ij}$
- Transition rates offer yet another specification of CTMCs
- ▶ If q_{ii} are given can recover ν_i as

$$\nu_i = \nu_i \sum_{j=1}^{\infty} P_{ij} = \sum_{j=1}^{\infty} \nu_i P_{ij} = \sum_{j=1}^{\infty} q_{ij}$$

► Can also recover P_{ij} as $\Rightarrow P_{ij} = q_{ij}/\nu_i = q_{ij} \left(\sum_{i=1}^{\infty} q_{ij}\right)^{-1}$

Birth and death process example

- ▶ State X(t) = 0, 1, ... Interpret as number of individuals
- ▶ Birth and deaths occur at state-dependent rates. When X(t) = i
- ▶ Births \Rightarrow Individuals added at exponential times with mean $1/\lambda_i$ \Rightarrow Birth or arrival rate $=\lambda_i$ births per unit of time
- ▶ Deaths \Rightarrow Individuals removed at exponential times with rate $1/\mu_i$ \Rightarrow Death or departure rate $=\mu_i$ deaths per unit of time
- Birth and death times are independent
- ▶ Birth and death (BD) processes are then CTMCs

Transition times and probabilities

- ▶ Q: Transition times T_i ? Leave state $i \neq 0$ when birth or death occur
- ▶ If T_B and T_D are times to next birth and death, $T_i = \min(T_B, T_D)$
 - \Rightarrow Since T_B and T_D are exponential, so is T_i with rate

$$\nu_i = \lambda_i + \mu_i$$

- ▶ When leaving state i can go to i+1 (birth first) or i-1 (death first)
 - \Rightarrow Birth occurs before death with probability $\frac{\lambda_i}{\lambda_i + \mu_i} = P_{i,i+1}$
 - \Rightarrow Death occurs before birth with probability $\frac{\mu_i}{\lambda_i + \mu_i} = P_{i,i-1}$
- ▶ Leave state 0 only if a birth occurs, then

$$\nu_0 = \lambda_0, \qquad P_{01} = 1$$

- \Rightarrow If CTMC leaves 0, goes to 1 with probability 1
- \Rightarrow Might not leave 0 if $\lambda_0 = 0$ (e.g., to model extinction)

Transition rates

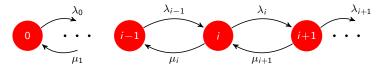
▶ Rate of transition from i to i + 1 is (recall definition $q_{ij} = \nu_i P_{ij}$)

$$q_{i,i+1} = \nu_i P_{i,i+1} = (\lambda_i + \mu_i) \frac{\lambda_i}{\lambda_i + \mu_i} = \lambda_i$$

▶ Likewise, rate of transition from i to i - 1 is

$$q_{i,i-1} = \nu_i P_{i,i-1} = (\lambda_i + \mu_i) \frac{\mu_i}{\lambda_i + \mu_i} = \mu_i$$

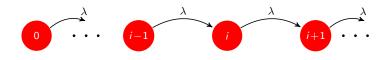
► For $i = 0 \Rightarrow q_{01} = \nu_0 P_{01} = \lambda_0$



▶ Somewhat more natural representation. Similar to discrete-time MCs

Poisson process example

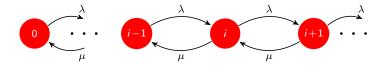
- ▶ A Poisson process is a BD process with $\lambda_i = \lambda$ and $\mu_i = 0$ constant
- ightharpoonup State N(t) counts the total number of events (arrivals) by time t
 - \Rightarrow Arrivals occur a rate of λ per unit time
 - ⇒ Transition times are the i.i.d. exponential interarrival times



► The Poisson process is a CTMC

M/M/1 queue example

- ▶ An M/M/1 queue is a BD process with $\lambda_i = \lambda$ and $\mu_i = \mu$ constant
- ightharpoonup State Q(t) is the number of customers in the system at time t
 - \Rightarrow Customers arrive for service at a rate of λ per unit time
 - \Rightarrow They are serviced at a rate of μ customers per unit time



- ► The M/M is for Markov arrivals/Markov departures
 - ⇒ Implies a Poisson arrival process, exponential services times
 - \Rightarrow The 1 is because there is only one server

Transition probability function

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

Transition probability function

- ► Two equivalent ways of specifying a CTMC
- 1) Transition time averages $1/\nu_i$ + transition probabilities P_{ij}
 - ⇒ Easier description
 - ⇒ Typical starting point for CTMC modeling
- 2) Transition probability function $P_{ij}(t) := P(X(t+s) = j \mid X(s) = i)$
 - \Rightarrow More complete description for all $t \ge 0$
 - \Rightarrow Similar in spirit to P_{ij}^n for discrete-time Markov chains
- ▶ Goal: compute $P_{ij}(t)$ from transition times and probabilities
 - \Rightarrow Notice two obvious properties $P_{ij}(0) = 0$, $P_{ii}(0) = 1$

Roadmap to determine $P_{ij}(t)$

- ▶ Goal is to obtain a differential equation whose solution is $P_{ii}(t)$
 - \Rightarrow Study change in $P_{ii}(t)$ when time changes slightly
- Separate in two subproblems (divide and conquer)
 - \Rightarrow Transition probabilities for small time h, $P_{ii}(h)$
 - \Rightarrow Transition probabilities in t + h as function of those in t and h
- ▶ We can combine both results in two different ways
- 1) Jump from 0 to t then to $t + h \Rightarrow$ Process runs a little longer
 - \Rightarrow Changes where the process is going to \Rightarrow Forward equations
- 2) Jump from 0 to h then to $t + h \Rightarrow \text{Process starts a little later}$
 - \Rightarrow Changes where the process comes from \Rightarrow Backward equations

Transition probability in infinitesimal time

Theorem

The transition probability functions $P_{ii}(t)$ and $P_{ij}(t)$ satisfy the following limits as t approaches 0

$$\lim_{t\to 0}\frac{P_{ij}(t)}{t}=q_{ij},\qquad \lim_{t\to 0}\frac{1-P_{ii}(t)}{t}=\nu_i$$

▶ Since $P_{ij}(0) = 0$, $P_{ii}(0) = 1$ above limits are derivatives at t = 0

$$\left. \frac{\partial P_{ij}(t)}{\partial t} \right|_{t=0} = q_{ij}, \qquad \left. \frac{\partial P_{ii}(t)}{\partial t} \right|_{t=0} = -\nu_i$$

▶ Limits also imply that for small *h* (recall Taylor series)

$$P_{ij}(h) = q_{ij}h + o(h),$$
 $P_{ii}(h) = 1 - \nu_i h + o(h)$

- ightharpoonup Transition rates q_{ii} are "instantaneous transition probabilities"
 - \Rightarrow Transition probability coefficient for small time h

Probability of event in infinitesimal time (reminder)

- Q: Probability of an event happening in infinitesimal time h?
- ▶ Want P(T < h) for small h

$$P(T < h) = \int_0^h \lambda e^{-\lambda t} dt \approx \lambda h$$

- \Rightarrow Equivalent to $\frac{\partial P(T < t)}{\partial t}\bigg|_{t=0} = \lambda$
- ▶ Sometimes also write $P(T < h) = \lambda h + o(h)$
 - $\Rightarrow o(h)$ implies $\lim_{h\to 0} \frac{o(h)}{h} = 0$
 - \Rightarrow Read as "negligible with respect to h"
- Q: Two independent events in infinitesimal time h?

$$P(T_1 \leq h, T_2 \leq h) \approx (\lambda_1 h)(\lambda_2 h) = \lambda_1 \lambda_2 h^2 = o(h)$$

Transition probability in infinitesimal time (proof)

Proof.

- ▶ Consider a small time h, and recall $T_i \sim \exp(\nu_i)$
- ▶ Since $1 P_{ii}(h)$ is the probability of transitioning out of state i

$$1 - P_{ii}(h) = P(T_i < h) = \nu_i h + o(h)$$

- \Rightarrow Divide by h and take limit to establish the second identity
- ▶ For $P_{ij}(t)$ notice that since two or more transitions have o(h) prob.

$$P_{ij}(h) = P(X(h) = j | X(0) = i) = P_{ij}P(T_i < h) + o(h)$$

▶ Again, since T_i is exponential $P(T_i < h) = \nu_i h + o(h)$. Then

$$P_{ij}(h) = \nu_i P_{ij}h + o(h) = q_{ij}h + o(h)$$

 \Rightarrow Divide by h and take limit to establish the first identity

Chapman-Kolmogorov equations

Theorem

For all times s and t the transition probability functions $P_{ij}(t+s)$ are obtained from $P_{ik}(t)$ and $P_{kj}(s)$ as

$$P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(s)$$

- \blacktriangleright As for discrete-time MCs, to go from i to j in time t+s
 - \Rightarrow Go from *i* to some state *k* in time $t \Rightarrow P_{ik}(t)$
 - \Rightarrow In the remaining time s go from k to $j \Rightarrow P_{kj}(s)$
 - \Rightarrow Sum over all possible intermediate states k

Chapman-Kolmogorov equations (proof)

Proof.

$$P_{ij}(t+s)$$

$$= P(X(t+s) = j | X(0) = i)$$
Definition of $P_{ij}(t+s)$

$$= \sum_{k=0}^{\infty} P(X(t+s) = j | X(t) = k, X(0) = i) P(X(t) = k | X(0) = i)$$
Law of total probability
$$= \sum_{k=0}^{\infty} P(X(t+s) = j | X(t) = k) P_{ik}(t)$$
Markov property of CTMC and definition of $P_{ik}(t)$

 $= \sum_{i=1}^{n} P_{kj}(s) P_{ik}(t)$

Definition of $P_{ki}(s)$

Combining both results

- Let us combine the last two results to express $P_{ij}(t+h)$
- ▶ Use Chapman-Kolmogorov's equations for $0 \rightarrow t \rightarrow h$

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(h) = P_{ij}(t) P_{jj}(h) + \sum_{k=0, k \neq j}^{\infty} P_{ik}(t) P_{kj}(h)$$

▶ Substitute infinitesimal time expressions for $P_{ij}(h)$ and $P_{kj}(h)$

$$P_{ij}(t+h) = P_{ij}(t)(1-\nu_j h) + \sum_{k=0, k\neq j}^{\infty} P_{ik}(t)q_{kj}h + o(h)$$

▶ Subtract $P_{ij}(t)$ from both sides and divide by h

$$\frac{P_{ij}(t+h) - P_{ij}(t)}{h} = -\nu_j P_{ij}(t) + \sum_{k=0, k \neq i}^{\infty} P_{ik}(t) q_{kj} + \frac{o(h)}{h}$$

▶ Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove . . .

Kolmogorov's forward equations

Theorem

The transition probability functions $P_{ij}(t)$ of a CTMC satisfy the system of differential equations (for all pairs i, j)

$$rac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0, k
eq i}^{\infty} q_{kj} P_{ik}(t) -
u_j P_{ij}(t)$$

- ► Interpret each summand in Kolmogorov's forward equations
 - $\partial P_{ij}(t)/\partial t = \text{rate of change of } P_{ij}(t)$
 - ▶ $q_{kj}P_{ik}(t)$ = (transition into k in $0 \rightarrow t$) ×
 (rate of moving into j in next instant)
 - $\nu_j P_{ij}(t) =$ (transition into j in $0 \to t$) \times (rate of leaving j in next instant)
- ► Change in $P_{ij}(t) = \sum_{k} (\text{moving into } j \text{ from } k) (\text{leaving } j)$
- ► Kolmogorov's forward equations valid in most cases, but not always

Kolmogorov's backward equations

- ▶ For forward equations used Chapman-Kolmogorov's for $0 \rightarrow t \rightarrow h$
- ▶ For backward equations we use $0 \to h \to t$ to express $P_{ij}(t+h)$ as

$$P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(h) P_{kj}(t) = P_{ii}(h) P_{ij}(t) + \sum_{k=0, k \neq i}^{\infty} P_{ik}(h) P_{kj}(t)$$

▶ Substitute infinitesimal time expression for $P_{ii}(h)$ and $P_{ik}(h)$

$$P_{ij}(t+h) = (1-\nu_i h)P_{ij}(t) + \sum_{k=0, k\neq i}^{\infty} q_{ik} h P_{kj}(t) + o(h)$$

▶ Subtract $P_{ij}(t)$ from both sides and divide by h

$$\frac{P_{ij}(t+h) - P_{ij}(t)}{h} = -\nu_i P_{ij}(t) + \sum_{k=0}^{\infty} q_{ik} P_{kj}(t) + \frac{o(h)}{h}$$

▶ Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove . . .

Kolmogorov's backward equations

Theorem

The transition probability functions $P_{ij}(t)$ of a CTMC satisfy the system of differential equations (for all pairs i, j)

$$\frac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0, k\neq i}^{\infty} q_{ik} P_{kj}(t) - \nu_i P_{ij}(t)$$

- ► Interpret each summand in Kolmogorov's backward equations
 - $ightharpoonup \partial P_{ii}(t)/\partial t = \text{rate of change of } P_{ii}(t)$
 - ▶ $q_{ik}P_{kj}(t) =$ (transition into j in $h \rightarrow t$) ×

 (rate of transition into k in initial instant)
 - $\nu_i P_{ij}(t) = \text{(transition into } j \text{ in } h \to t\text{)} \times \text{(rate of leaving } i \text{ in initial instant)}$
- ► Forward equations \Rightarrow change in $P_{ii}(t)$ if finish h later
- ▶ Backward equations \Rightarrow change in $P_{ij}(t)$ if start h earlier
- ▶ Where process goes (forward) vs. where process comes from (backward)

Determination of transition probability function

Continuous-time Markov chains

Transition probability function

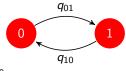
Determination of transition probability function

Limit probabilities and ergodicity

A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

- ▶ Transition rates are q_{01} and q_{10}
- ► Given q_{01} and q_{10} can find rates of transitions out of $\{0,1\}$



$$u_0 = \sum_j q_{0j} = q_{01}, \qquad \nu_1 = \sum_j q_{1j} = q_{10}$$

Use Kolmogorov's equations to find transition probability functions

$$P_{00}(t)$$
, $P_{01}(t)$, $P_{10}(t)$, $P_{11}(t)$

► Transition probabilities out of each state sum up to one

$$P_{00}(t) + P_{01}(t) = 1,$$
 $P_{10}(t) + P_{11}(t) = 1$

Kolmogorov's forward equations

► Kolmogorov's forward equations (process runs a little longer)

$$P'_{ij}(t) = \sum_{k=0, k \neq j}^{\infty} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t)$$

► For the two state CTMC.

$$\begin{split} P_{00}^{'}(t) &= q_{10}P_{01}(t) - \nu_{0}P_{00}(t), \qquad P_{01}^{'}(t) = q_{01}P_{00}(t) - \nu_{1}P_{01}(t) \\ P_{10}^{'}(t) &= q_{10}P_{11}(t) - \nu_{0}P_{10}(t), \qquad P_{11}^{'}(t) = q_{01}P_{10}(t) - \nu_{1}P_{11}(t) \end{split}$$

- ightharpoonup Probabilities out of 0 sum up to 1 \Rightarrow eqs. in first row are equivalent
- ▶ Probabilities out of 1 sum up to 1 ⇒ eqs. in second row are equivalent ⇒ Pick the equations for $P'_{00}(t)$ and $P'_{11}(t)$

Solution of forward equations

▶ Use \Rightarrow Relation between transition rates: $\nu_0 = q_{01}$ and $\nu_1 = q_{10}$ \Rightarrow Probs. sum 1: $P_{01}(t) = 1 - P_{00}(t)$ and $P_{10}(t) = 1 - P_{11}(t)$

$$P_{00}^{'}(t) = q_{10} [1 - P_{00}(t)] - q_{01}P_{00}(t) = q_{10} - (q_{10} + q_{01})P_{00}(t)$$

 $P_{11}^{'}(t) = q_{01} [1 - P_{11}(t)] - q_{10}P_{11}(t) = q_{01} - (q_{10} + q_{01})P_{11}(t)$

- ► Can obtain exact same pair of equations from backward equations
- ► First-order linear differential equations ⇒ Solutions are exponential
- ▶ For $P_{00}(t)$ propose candidate solution (just differentiate to check)

$$P_{00}(t) = \frac{q_{10}}{q_{10} + q_{01}} + ce^{-(q_{10} + q_{01})t}$$

 \Rightarrow To determine c use initial condition $P_{00}(0) = 1$

Solution of forward equations (continued)

▶ Evaluation of candidate solution at initial condition $P_{00}(0) = 1$ yields

$$1 = \frac{q_{10}}{q_{10} + q_{01}} + c \Rightarrow c = \frac{q_{01}}{q_{10} + q_{01}}$$

▶ Finally transition probability function $P_{00}(t)$

$$P_{00}(t) = \frac{q_{10}}{q_{10} + q_{01}} + \frac{q_{01}}{q_{10} + q_{01}} e^{-(q_{10} + q_{01})t}$$

▶ Repeat for $P_{11}(t)$. Same exponent, different constants

$$P_{11}(t) = \frac{q_{01}}{q_{10} + q_{01}} + \frac{q_{10}}{q_{10} + q_{01}} e^{-(q_{10} + q_{01})t}$$

- ▶ As time goes to infinity, $P_{00}(t)$ and $P_{11}(t)$ converge exponentially
 - \Rightarrow Convergence rate depends on magnitude of $q_{10} + q_{01}$

Convergence of transition probabilities

- ▶ Recall $P_{01}(t) = 1 P_{00}(t)$ and $P_{10}(t) = 1 P_{11}(t)$
- ► Limiting (steady-state) probabilities are

$$\begin{split} &\lim_{t\to\infty} P_{00}(t) = \frac{q_{10}}{q_{10}+q_{01}}, \qquad \lim_{t\to\infty} P_{01}(t) = \frac{q_{01}}{q_{10}+q_{01}} \\ &\lim_{t\to\infty} P_{11}(t) = \frac{q_{01}}{q_{10}+q_{01}}, \qquad \lim_{t\to\infty} P_{10}(t) = \frac{q_{10}}{q_{10}+q_{01}} \end{split}$$

- ▶ Limit distribution exists and is independent of initial condition
 - ⇒ Compare across diagonals

Kolmogorov's forward equations in matrix form

- ▶ Restrict attention to finite CTMCs with *N* states
 - \Rightarrow Define matrix $\mathbf{R} \in \mathbb{R}^{N \times N}$ with elements $r_{ij} = q_{ij}$, $r_{ii} = -\nu_i$
- Rewrite Kolmogorov's forward eqs. as (process runs a little longer)

$$P_{ij}^{'}(t) = \sum_{k=1, k \neq j}^{N} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t) = \sum_{k=1}^{N} r_{kj} P_{ik}(t)$$

▶ Right-hand side defines elements of a matrix product

$$P(t) = \begin{pmatrix} r_{1j} P_{ik}(t) & r_{1j} & r_{1N} \\ r_{kj} P_{ik}(t) & r_{kl} & r_{kj} & r_{kN} \\ r_{kj} P_{ik}(t) & r_{kl} & r_{kj} & r_{kN} \\ r_{Nj} P_{iN}(t) & r_{Nl} & r_{Nj} & r_{NN} \end{pmatrix} = P(t)R = P'(t)$$

Kolmogorov's backward equations in matrix form

► Similarly, Kolmogorov's backward eqs. (process starts a little later)

$$P_{ij}^{'}(t) = \sum_{k=1, k \neq i}^{N} q_{ik} P_{kj}(t) - \nu_i P_{ij}(t) = \sum_{k=1}^{N} r_{ik} P_{kj}(t)$$

▶ Right-hand side also defines a matrix product

$$R = \begin{pmatrix} r_{11} & r_{1k} & r_{iN} \\ r_{ik} & r_{kj}(t) & r_{ik} & r_{kj}(t) \\ r_{ik} & r_{iN} & r_{iN} \\ r_{ik} & r_{iN} & r_{iN} \\ r_{iN} & r_{iN} & r_{iN} & r_{iN} \\ r_{iN}$$

Kolmogorov's equations in matrix form

- ▶ Matrix form of Kolmogorov's forward equation $\Rightarrow \mathbf{P}'(t) = \mathbf{P}(t)\mathbf{R}$
- ▶ Matrix form of Kolmogorov's backward equation $\Rightarrow \mathbf{P}'(t) = \mathbf{RP}(t)$
 - ⇒ More similar than apparent
 - ⇒ But not equivalent because matrix product not commutative
- Notwithstanding both equations have to accept the same solution

Matrix exponential

- ► Kolmogorov's equations are first-order linear differential equations
 - \Rightarrow They are coupled, $P'_{ii}(t)$ depends on $P_{kj}(t)$ for all k
 - \Rightarrow Accepts exponential solution \Rightarrow Define matrix exponential
- ▶ **Def:** The matrix exponential $e^{\mathbf{A}t}$ of matrix $\mathbf{A}t$ is the series

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}t)^n}{n!} = \mathbf{I} + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2} + \frac{(\mathbf{A}t)^3}{2 \times 3} + \dots$$

Derivative of matrix exponential with respect to t

$$\frac{\partial e^{\mathbf{A}t}}{\partial t} = \mathbf{0} + \mathbf{A} + \mathbf{A}^2 t + \frac{\mathbf{A}^3 t^2}{2} + \dots = \mathbf{A} \left(\mathbf{I} + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2} + \dots \right) = \mathbf{A}e^{\mathbf{A}t}$$

▶ Putting **A** on right side of product shows that $\Rightarrow \frac{\partial e^{\mathbf{A}t}}{\partial t} = e^{\mathbf{A}t}\mathbf{A}$

Solution of Kolmogorov's equations

- ▶ Propose solution of the form $P(t) = e^{Rt}$
- ightharpoonup P(t) solves backward equations, since derivative is

$$\frac{\partial \mathbf{P}(t)}{\partial t} = \frac{\partial e^{\mathbf{R}t}}{\partial t} = \mathbf{R}e^{\mathbf{R}t} = \mathbf{RP}(t)$$

► It also solves forward equations

$$\frac{\partial \mathbf{P}(t)}{\partial t} = \frac{\partial e^{\mathbf{R}t}}{\partial t} = e^{\mathbf{R}t} \mathbf{R} = \mathbf{P}(t) \mathbf{R}$$

Notice that P(0) = I, as it should $(P_{ii}(0) = 1, \text{ and } P_{ij}(0) = 0)$

Computing the matrix exponential

- ▶ Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, i.e., $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$
 - \Rightarrow Diagonal matrix $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ collects eigenvalues λ_i
 - \Rightarrow Matrix **U** has the corresponding eigenvectors as columns
- ▶ We have the following neat identity

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{U}\mathbf{D}\mathbf{U}^{-1}t)^n}{n!} = \mathbf{U}\left(\sum_{n=0}^{\infty} \frac{(\mathbf{D}t)^n}{n!}\right)\mathbf{U}^{-1} = \mathbf{U}e^{\mathbf{D}t}\mathbf{U}^{-1}$$

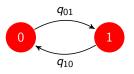
▶ But since **D** is diagonal, then

$$e^{\mathbf{D}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{D}t)^n}{n!} = \begin{pmatrix} e^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

▶ Transition rates are $q_{01}=3$ and $q_{10}=1$



▶ Recall transition time rates are $\nu_0 = q_{01} = 3$, $\nu_1 = q_{10} = 1$, hence

$$\mathbf{R} = \begin{pmatrix} -\nu_0 & q_{01} \\ q_{10} & -\nu_1 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 1 & -1 \end{pmatrix}$$

▶ Eigenvalues of **R** are 0, -4, eigenvectors $[1, 1]^T$ and $[-3, 1]^T$. Thus

$$\mathbf{U} = \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{U}^{-1} = \begin{pmatrix} 1/4 & 3/4 \\ -1/4 & 1/1 \end{pmatrix}, \quad e^{\mathbf{D}t} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-4t} \end{pmatrix}$$

▶ The solution to the forward equations is

$$\mathbf{P}(t) = e^{\mathbf{R}t} = \mathbf{U}e^{\mathbf{D}t}\mathbf{U}^{-1} = \begin{pmatrix} 1/4 + (3/4)e^{-4t} & 3/4 - (3/4)e^{-4t} \\ 1/4 - (1/4)e^{-4t} & 3/4 + (1/4)e^{-4t} \end{pmatrix}$$

Unconditional probabilities

- ightharpoonup P(t) is transition prob. from states at time 0 to states at time t
- ▶ Define unconditional probs. at time t, $p_j(t) := P(X(t) = j)$ \Rightarrow Group in vector $\mathbf{p}(t) = [p_1(t), p_2(t), \dots, p_j(t), \dots]^T$
- ▶ Given initial distribution $\mathbf{p}(0)$, find $p_j(t)$ conditioning on initial state

$$p_j(t) = \sum_{i=0}^{\infty} P(X(t) = j | X(0) = i) P(X(0) = i) = \sum_{i=0}^{\infty} P_{ij}(t) p_i(0)$$

- ▶ Using compact matrix-vector notation \Rightarrow $\mathbf{p}(t) = \mathbf{P}^T(t)\mathbf{p}(0)$
 - \Rightarrow Compare with discrete-time MC \Rightarrow $\mathbf{p}(n) = (\mathbf{P}^n)^T \mathbf{p}(0)$

Limit probabilities and ergodicity

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

Recurrent and transient states

- ► Recall the embedded discrete-time MC associated with any CTMC
 - ⇒ Transition probs. of MC form the matrix **P** of the CTMC
 - \Rightarrow No self transitions ($P_{ii} = 0$, **P**'s diagonal null)
- ▶ States $i \leftrightarrow j$ communicate in the CTMC if $i \leftrightarrow j$ in the MC
 - ⇒ Communication partitions MC in classes
 - ⇒ Induces CTMC partition as well
- ▶ **Def:** CTMC is irreducible if embedded MC contains a single class
- ▶ State *i* is recurrent if it is recurrent in the embedded MC
 - ⇒ Likewise, define transience and positive recurrence for CTMCs
- ► Transience and recurrence shared by elements of a MC class
 - ⇒ Transience and recurrence are class properties of CTMCs
- ► Periodicity not possible in CTMCs

Limiting probabilities

Theorem

Consider irreducible, positive recurrent CTMC with transition rates ν_i and q_{ij} . Then, $\lim_{t\to\infty}P_{ij}(t)$ exists and is independent of the initial state i, i.e.,

$$P_{j} = \lim_{t o \infty} P_{ij}(t)$$
 exists for all (i, j)

Furthermore, steady-state probabilities $P_j \ge 0$ are the unique nonnegative solution of the system of linear equations

$$\nu_j P_j = \sum_{k=0, k \neq j}^{\infty} q_{kj} P_k, \qquad \sum_{j=0}^{\infty} P_j = 1$$

- ► Limit distribution exists and is independent of initial condition
 - ⇒ Obtained as solution of system of linear equations
 - ⇒ Like discrete-time MCs, but equations slightly different

Algebraic relation to determine limit probabilities

- ▶ As with MCs difficult part is to prove that $P_j = \lim_{t \to \infty} P_{ij}(t)$ exists
- ► Algebraic relations obtained from Kolmogorov's forward equations

$$\frac{\partial P_{ij}(t)}{\partial t} = \sum_{k=0, k\neq j}^{\infty} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t)$$

▶ If limit distribution exists we have, independent of initial state *i*

$$\lim_{t\to\infty}\frac{\partial P_{ij}(t)}{\partial t}=0,\qquad \lim_{t\to\infty}P_{ij}(t)=P_{j}$$

► Considering the limit of Kolomogorov's forward equations yields

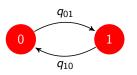
$$0 = \sum_{k=0, k \neq j}^{\infty} q_{kj} P_k - \nu_j P_j$$

Reordering terms the limit distribution equations follow

Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

▶ Transition rates are q_{01} and q_{10}



- From transition rates find mean transition times $\nu_0=q_{01}, \ \nu_1=q_{10}$
- Stationary distribution equations

$$u_0 P_0 = q_{10} P_1, \qquad \nu_1 P_1 = q_{01} P_0, \qquad P_0 + P_1 = 1,
q_{01} P_0 = q_{10} P_1, \qquad q_{10} P_1 = q_{01} P_0$$

- ▶ Solution yields $\Rightarrow P_0 = \frac{q_{10}}{q_{10} + q_{01}}, \qquad P_1 = \frac{q_{01}}{q_{10} + q_{01}}$
- ▶ Larger rate q_{10} of entering $0 \Rightarrow \text{Larger prob. } P_0$ of being at 0
- ▶ Larger rate q_{01} of entering $1 \Rightarrow$ Larger prob. P_1 of being at 1

Ergodicity

▶ **Def**: Fraction of time $T_i(t)$ spent in state i by time t

$$T_i(t) := \frac{1}{t} \int_0^t \mathbb{I}\left\{X(\tau) = i\right\} d\tau$$

- \Rightarrow $T_i(t)$ a time/ergodic average, $\lim_{t\to\infty} T_i(t)$ is an ergodic limit
- ▶ If CTMC is irreducible, positive recurrent, the ergodic theorem holds

$$P_i = \lim_{t \to \infty} T_i(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{I} \{X(\tau) = i\} d\tau$$
 a.s

Ergodic limit coincides with limit probabilities (almost surely)

Function's ergodic limit

▶ Consider function f(i) associated with state i. Can write f(X(t)) as

$$f(X(t)) = \sum_{i=1}^{\infty} f(i) \mathbb{I} \{X(t) = i\}$$

▶ Consider the time average of f(X(t))

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(X(\tau))d\tau = \lim_{t\to\infty}\frac{1}{t}\int_0^t \sum_{i=1}^\infty f(i)\mathbb{I}\left\{X(\tau) = i\right\}d\tau$$

Interchange summation with integral and limit to say

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(X(\tau))d\tau = \sum_{i=1}^\infty f(i)\lim_{t\to\infty}\frac{1}{t}\int_0^t \mathbb{I}\left\{X(\tau) = i\right\}d\tau = \sum_{i=1}^\infty f(i)P_i$$

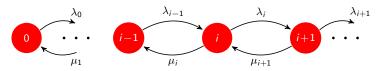
► Function's ergodic limit = Function's expectation under limiting dist.

Limit distribution equations as balance equations

- ► Recall limit distribution equations $\Rightarrow \nu_j P_j = \sum_{k=0, k \neq j}^{\infty} q_{kj} P_k$
- $ightharpoonup P_i = \text{fraction of time spent in state } j$
- ν_j = rate of transition out of state j given CTMC is in state j $\Rightarrow \nu_j P_j$ = rate of transition out of state j (unconditional)
- ▶ q_{kj} = rate of transition from k to j given CTMC is in state k $\Rightarrow q_{kj}P_k = \text{rate of transition from } k \text{ to } j \text{ (unconditional)}$ $\Rightarrow \sum_{k=0, k\neq j}^{\infty} q_{kj}P_k = \text{rate of transition into } j, \text{ from all states}$
- \blacktriangleright Rate of transition out of state j = Rate of transition into state j
- ▶ Balance equations \Rightarrow Balance nr. of transitions in and out of state j

Limit distribution for birth and death process

- ▶ Birth/deaths occur at state-dependent rates. When X(t) = i
- ▶ Births \Rightarrow Individuals added at exponential times with mean $1/\lambda_i$ \Rightarrow Birth rate = upward transition rate = $q_{i,i+1} = \lambda_i$
- ▶ Deaths \Rightarrow Individuals removed at exponential times with mean $1/\mu_i$ \Rightarrow Death rate = downward transition rate = $q_{i,i-1} = \mu_i$
- ▶ Transition time rates $\Rightarrow \nu_i = \lambda_i + \mu_i, i > 0$ and $\nu_0 = \lambda_0$



▶ Limit distribution/balance equations: Rate out of j = Rate into j

$$(\lambda_i + \mu_i)P_i = \lambda_{i-1}P_{i-1} + \mu_{i+1}P_{i+1}$$

 $\lambda_0 P_0 = \mu_1 P_1$

Finding solution of balance equations

- ▶ Start expressing all probabilities in terms of P₀
- \triangleright Equation for P_0
- \triangleright Sum eqs. for P_1 and P_0
- Sum result and eq. for P_2

Sum result and eq. for P_i

$$\lambda_0 P_0 = \mu_1 P_1$$

$$(\lambda_1 + \mu_1) P_1 = \lambda_0 P_0 + \mu_2 P_2$$

$$\lambda_1 P_1 = \mu_2 P_2$$

$$(\lambda_2 + \mu_2)P_2 = \lambda_1 P_1 + \mu_3 P_3$$

$$\lambda_0 P_0 = \mu_1 P_1$$

$$\lambda_1 P_1 = \mu_2 P_2$$

$$\lambda_2 P_2 = \mu_3 P_3$$

$$\lambda_{i-1}P_{i-1} = \mu_i P_i$$
 $\lambda_i P_i = \mu_{i+1}P_{i+1}$ $(\lambda_i + \mu_i)P_i = \lambda_{i-1}P_{i-1} + \mu_{i+1}P_{i+1}$

Finding solution of balance equations (continued)

▶ Recursive substitutions on red equations on the right

$$P_1 = \frac{\lambda_0}{\mu_1} P_0$$

$$P_2 = \frac{\lambda_1}{\mu_2} P_1 = \frac{\lambda_1 \lambda_0}{\mu_2 \mu_1} P_0$$

$$\vdots$$

$$P_{i+1} = \frac{\lambda_i}{\mu_{i+1}} P_i = \frac{\lambda_i \lambda_{i-1} \dots \lambda_0}{\mu_{i+1} \mu_i \dots \mu_1} P_0$$

► To find P_0 use $\sum_{i=0}^{\infty} P_i = 1 \Rightarrow 1 = P_0 + \sum_{i=1}^{\infty} \frac{\lambda_i \lambda_{i-1} \dots \lambda_0}{\mu_{i+1} \mu_i \dots \mu_1} P_0$ $\Rightarrow P_0 = \left[1 + \sum_{i=1}^{\infty} \frac{\lambda_i \lambda_{i-1} \dots \lambda_0}{\mu_{i+1} \mu_i \dots \mu_1} \right]^{-1}$

Glossary

- Continuous-time Markov chain
- ► Markov property
- ► Time-homogeneous CTMC
- ► Transition probability function
- Exponential transition time
- Transition probabilities
- Embedded discrete-time MC
- Transition rates
- Birth and death process
- Poisson process

- ► M/M/1 queue
- Chapman-Kolmogorov equations
- ► Kolmogorov's forward equations
- Kolmogorov's backward equations
- Limiting probabilities
- Matrix exponential
- Unconditional probabilities
- Recurrent and transient states
- Ergodicity
- Balance equations