Continuous-time Markov Chains

Gonzalo Mateos
Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

October 31, 2016

Continuous-time Markov chains

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

- Continuous-time positive variable $t \in[0, \infty)$
- Time-dependent random state $X(t)$ takes values on a countable set
- In general denote states as $i=0,1,2, \ldots$, i.e., here the state space is \mathbb{N}
- If $X(t)=i$ we say "the process is in state i at time t "
- Def: Process $X(t)$ is a continuous-time Markov chain (CTMC) if

$$
\begin{aligned}
& \mathrm{P}(X(t+s)=j \mid X(s)=i, X(u)=x(u), u<s) \\
= & \mathrm{P}(X(t+s)=j \mid X(s)=i)
\end{aligned}
$$

- Markov property \Rightarrow Given the present state $X(s)$
\Rightarrow Future $X(t+s)$ is independent of the past $X(u)=x(u), u<s$
- In principle need to specify functions $\mathrm{P}(X(t+s)=j \mid X(s)=i)$
\Rightarrow For all times t and s, for all pairs of states (i, j)

Notation and homogeneity

- Notation
- X[s:t] state values for all times $s \leq u \leq t$, includes borders
- $X(s: t)$ values for all times $s<u<t$, borders excluded
- $X(s: t]$ values for all times $s<u \leq t$, exclude left, include right
- $X[s: t)$ values for all times $s \leq u<t$, include left, exclude right
- Homogeneous CTMC if $\mathrm{P}(X(t+s)=j \mid X(s)=i)$ invariant for all s
\Rightarrow We restrict consideration to homogeneous CTMCs
- Still need $P_{i j}(t):=\mathrm{P}(X(t+s)=j \mid X(s)=i)$ for all t and pairs (i, j)
$\Rightarrow P_{i j}(t)$ is known as the transition probability function. More later
- Markov property and homogeneity make description somewhat simpler

Transition times

- $T_{i}=$ time until transition out of state i into any other state j
- Def: T_{i} is a random variable called transition time with ccdf

$$
\mathrm{P}\left(T_{i}>t\right)=\mathrm{P}(X(0: t]=i \mid X(0)=i)
$$

- Probability of $T_{i}>t+s$ given that $T_{i}>s$? Use cdf expression

$$
\begin{aligned}
\mathrm{P}\left(T_{i}>t+s \mid T_{i}>s\right) & =\mathrm{P}(X(0: t+s]=i \mid X[0: s]=i) \\
& =\mathrm{P}(X(s: t+s]=i \mid X[0: s]=i) \\
& =\mathrm{P}(X(s: t+s]=i \mid X(s)=i) \\
& =\mathrm{P}(X(0: t]=i \mid X(0)=i)
\end{aligned}
$$

- Used that $X[0: s]=i$ given, Markov property, and homogeneity
- From definition of $T_{i} \Rightarrow \mathrm{P}\left(T_{i}>t+s \mid T_{i}>s\right)=\mathrm{P}\left(T_{i}>t\right)$
\Rightarrow Transition times are exponential random variables

Alternative definition

- Exponential transition times is a fundamental property of CTMCs
\Rightarrow Can be used as "algorithmic" definition of CTMCs
- Continuous-time random process $X(t)$ is a CTMC if
(a) Transition times T_{i} are exponential random variables with mean $1 / \nu_{i}$
(b) When they occur, transition from state i to j with probability $P_{i j}$

$$
\sum_{j=1}^{\infty} P_{i j}=1, \quad P_{i i}=0
$$

(c) Transition times T_{i} and transitioned state j are independent

- Define matrix \mathbf{P} grouping transition probabilities $P_{i j}$
- CTMC states evolve as in a discrete-time Markov chain
\Rightarrow State transitions occur at exponential intervals $T_{i} \sim \exp \left(\nu_{i}\right)$
\Rightarrow As opposed to occurring at fixed intervals

Embedded discrete-time Markov chain

- Consider a CTMC with transition matrix \mathbf{P} and rates ν_{i}
- Def: CTMC's embedded discrete-time MC has transition matrix \mathbf{P}
- Transition probabilities \mathbf{P} describe a discrete-time MC
\Rightarrow No self-transitions ($P_{i i}=0$, \mathbf{P} 's diagonal null)
\Rightarrow Can use underlying discrete-time MCs to study CTMCs
- Def: State j accessible from i if accessible in the embedded MC
- Def: States i and j communicate if they do so in the embedded MC \Rightarrow Communication is a class property
- Recurrence, transience, ergodicity. Class properties . . . More later

Transition rates

- Expected value of transition time T_{i} is $\mathbb{E}\left[T_{i}\right]=1 / \nu_{i}$
\Rightarrow Can interpret ν_{i} as the rate of transition out of state i
\Rightarrow Of these transitions, a fraction $P_{i j}$ are into state j
- Def: Transition rate from i to j is $q_{i j}:=\nu_{i} P_{i j}$
- Transition rates offer yet another specification of CTMCs
- If $q_{i j}$ are given can recover ν_{i} as

$$
\nu_{i}=\nu_{i} \sum_{j=1}^{\infty} P_{i j}=\sum_{j=1}^{\infty} \nu_{i} P_{i j}=\sum_{j=1}^{\infty} q_{i j}
$$

- Can also recover $P_{i j}$ as $\Rightarrow P_{i j}=q_{i j} / \nu_{i}=q_{i j}\left(\sum_{j=1}^{\infty} q_{i j}\right)^{-1}$

Birth and death process example

- State $X(t)=0,1, \ldots$ Interpret as number of individuals
- Birth and deaths occur at state-dependent rates. When $X(t)=i$
- Births \Rightarrow Individuals added at exponential times with mean $1 / \lambda_{i}$
\Rightarrow Birth or arrival rate $=\lambda_{i}$ births per unit of time
- Deaths \Rightarrow Individuals removed at exponential times with rate $1 / \mu_{i}$
\Rightarrow Death or departure rate $=\mu_{i}$ deaths per unit of time
- Birth and death times are independent
- Birth and death (BD) processes are then CTMCs

Transition times and probabilities

- Q: Transition times T_{i} ? Leave state $i \neq 0$ when birth or death occur
- If T_{B} and T_{D} are times to next birth and death, $T_{i}=\min \left(T_{B}, T_{D}\right)$
\Rightarrow Since T_{B} and T_{D} are exponential, so is T_{i} with rate

$$
\nu_{i}=\lambda_{i}+\mu_{i}
$$

- When leaving state i can go to $i+1$ (birth first) or $i-1$ (death first)
\Rightarrow Birth occurs before death with probability $\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}=P_{i, i+1}$
\Rightarrow Death occurs before birth with probability $\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}=P_{i, i-1}$
- Leave state 0 only if a birth occurs, then

$$
\nu_{0}=\lambda_{0}, \quad P_{01}=1
$$

\Rightarrow If CTMC leaves 0 , goes to 1 with probability 1
\Rightarrow Might not leave 0 if $\lambda_{0}=0$ (e.g., to model extinction)

Transition rates

- Rate of transition from i to $i+1$ is (recall definition $q_{i j}=\nu_{i} P_{i j}$)

$$
q_{i, i+1}=\nu_{i} P_{i, i+1}=\left(\lambda_{i}+\mu_{i}\right) \frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}=\lambda_{i}
$$

- Likewise, rate of transition from i to $i-1$ is

$$
q_{i, i-1}=\nu_{i} P_{i, i-1}=\left(\lambda_{i}+\mu_{i}\right) \frac{\mu_{i}}{\lambda_{i}+\mu_{i}}=\mu_{i}
$$

- For $i=0 \Rightarrow q_{01}=\nu_{0} P_{01}=\lambda_{0}$

- Somewhat more natural representation. Similar to discrete-time MCs

Poisson process example

- A Poisson process is a BD process with $\lambda_{i}=\lambda$ and $\mu_{i}=0$ constant
- State $N(t)$ counts the total number of events (arrivals) by time t \Rightarrow Arrivals occur a rate of λ per unit time
\Rightarrow Transition times are the i.i.d. exponential interarrival times

- The Poisson process is a CTMC

$\mathrm{M} / \mathrm{M} / 1$ queue example

- An $\mathrm{M} / \mathrm{M} / 1$ queue is a BD process with $\lambda_{i}=\lambda$ and $\mu_{i}=\mu$ constant
- State $Q(t)$ is the number of customers in the system at time t
\Rightarrow Customers arrive for service at a rate of λ per unit time
\Rightarrow They are serviced at a rate of μ customers per unit time

- The M / M is for Markov arrivals/Markov departures
\Rightarrow Implies a Poisson arrival process, exponential services times
\Rightarrow The 1 is because there is only one server

Transition probability function

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

Transition probability function

- Two equivalent ways of specifying a CTMC

1) Transition time averages $1 / \nu_{i}+$ transition probabilities $P_{i j}$
\Rightarrow Easier description
\Rightarrow Typical starting point for CTMC modeling
2) Transition probability function $P_{i j}(t):=\mathrm{P}(X(t+s)=j \mid X(s)=i)$
\Rightarrow More complete description for all $t \geq 0$
\Rightarrow Similar in spirit to $P_{i j}^{n}$ for discrete-time Markov chains

- Goal: compute $P_{i j}(t)$ from transition times and probabilities
\Rightarrow Notice two obvious properties $P_{i j}(0)=0, P_{i i}(0)=1$

Roadmap to determine $P_{i j}(t)$

- Goal is to obtain a differential equation whose solution is $P_{i j}(t)$
\Rightarrow Study change in $P_{i j}(t)$ when time changes slightly
- Separate in two subproblems (divide and conquer)
\Rightarrow Transition probabilities for small time $h, P_{i j}(h)$
\Rightarrow Transition probabilities in $t+h$ as function of those in t and h
- We can combine both results in two different ways

1) Jump from 0 to t then to $t+h \Rightarrow$ Process runs a little longer \Rightarrow Changes where the process is going to \Rightarrow Forward equations
2) Jump from 0 to h then to $t+h \Rightarrow$ Process starts a little later
\Rightarrow Changes where the process comes from \Rightarrow Backward equations

Transition probability in infinitesimal time

Theorem
The transition probability functions $P_{i i}(t)$ and $P_{i j}(t)$ satisfy the following limits as t approaches 0

$$
\lim _{t \rightarrow 0} \frac{P_{i j}(t)}{t}=q_{i j}, \quad \lim _{t \rightarrow 0} \frac{1-P_{i i}(t)}{t}=\nu_{i}
$$

- Since $P_{i j}(0)=0, P_{i i}(0)=1$ above limits are derivatives at $t=0$

$$
\left.\frac{\partial P_{i j}(t)}{\partial t}\right|_{t=0}=q_{i j},\left.\quad \frac{\partial P_{i i}(t)}{\partial t}\right|_{t=0}=-\nu_{i}
$$

- Limits also imply that for small h (recall Taylor series)

$$
P_{i j}(h)=q_{i j} h+o(h), \quad P_{i i}(h)=1-\nu_{i} h+o(h)
$$

- Transition rates $q_{i j}$ are "instantaneous transition probabilities"
\Rightarrow Transition probability coefficient for small time h

Probability of event in infinitesimal time (reminder)

- Q: Probability of an event happening in infinitesimal time h ?
- Want $\mathrm{P}(T<h)$ for small h

$$
\begin{aligned}
& \qquad \mathrm{P}(T<h)=\int_{0}^{h} \lambda e^{-\lambda t} d t \approx \lambda h \\
& \Rightarrow \text { Equivalent to }\left.\frac{\partial \mathrm{P}(T<t)}{\partial t}\right|_{t=0}=\lambda
\end{aligned}
$$

- Sometimes also write $\mathrm{P}(T<h)=\lambda h+o(h)$
$\Rightarrow o(h)$ implies $\lim _{h \rightarrow 0} \frac{o(h)}{h}=0$
\Rightarrow Read as "negligible with respect to h "
- Q: Two independent events in infinitesimal time h ?

$$
\mathrm{P}\left(T_{1} \leq h, T_{2} \leq h\right) \approx\left(\lambda_{1} h\right)\left(\lambda_{2} h\right)=\lambda_{1} \lambda_{2} h^{2}=o(h)
$$

Transition probability in infinitesimal time (proof)

Proof.

- Consider a small time h, and recall $T_{i} \sim \exp \left(\nu_{i}\right)$
- Since $1-P_{i i}(h)$ is the probability of transitioning out of state i

$$
1-P_{i i}(h)=\mathrm{P}\left(T_{i}<h\right)=\nu_{i} h+o(h)
$$

\Rightarrow Divide by h and take limit to establish the second identity

- For $P_{i j}(t)$ notice that since two or more transitions have $o(h)$ prob.

$$
P_{i j}(h)=\mathrm{P}(X(h)=j \mid X(0)=i)=P_{i j} \mathrm{P}\left(T_{i}<h\right)+o(h)
$$

- Again, since T_{i} is exponential $\mathrm{P}\left(T_{i}<h\right)=\nu_{i} h+o(h)$. Then

$$
P_{i j}(h)=\nu_{i} P_{i j} h+o(h)=q_{i j} h+o(h)
$$

\Rightarrow Divide by h and take limit to establish the first identity

Chapman-Kolmogorov equations

Theorem

For all times s and t the transition probability functions $P_{i j}(t+s)$ are obtained from $P_{i k}(t)$ and $P_{k j}(s)$ as

$$
P_{i j}(t+s)=\sum_{k=0}^{\infty} P_{i k}(t) P_{k j}(s)
$$

- As for discrete-time MCs, to go from i to j in time $t+s$
\Rightarrow Go from i to some state k in time $t \Rightarrow P_{i k}(t)$
\Rightarrow In the remaining time s go from k to $j \Rightarrow P_{k j}(s)$
\Rightarrow Sum over all possible intermediate states k

Chapman-Kolmogorov equations (proof)

Proof.

$$
\begin{aligned}
& P_{i j}(t+s) \\
&=\mathrm{P}(X(t+s)=j \mid X(0)=i) \\
&=\sum_{k=0}^{\infty} \mathrm{P}(X(t+s)=j \mid X(t)=k, X(0)= \\
& \text { Definition of } P_{i j}(t+s) \\
&=\sum_{k=0}^{\infty} \mathrm{P}(X(t)=k \mid X(0)=i) \\
& \text { Law of total probability } \\
&=\sum_{k=0}^{\infty} P_{k j}(s) P_{i k}(t) \text { and definition of } P_{i k}(t)
\end{aligned}
$$

Combining both results

- Let us combine the last two results to express $P_{i j}(t+h)$
- Use Chapman-Kolmogorov's equations for $0 \rightarrow t \rightarrow h$

$$
P_{i j}(t+h)=\sum_{k=0}^{\infty} P_{i k}(t) P_{k j}(h)=P_{i j}(t) P_{j j}(h)+\sum_{k=0, k \neq j}^{\infty} P_{i k}(t) P_{k j}(h)
$$

- Substitute infinitesimal time expressions for $P_{j j}(h)$ and $P_{k j}(h)$

$$
P_{i j}(t+h)=P_{i j}(t)\left(1-\nu_{j} h\right)+\sum_{k=0, k \neq j}^{\infty} P_{i k}(t) q_{k j} h+o(h)
$$

- Subtract $P_{i j}(t)$ from both sides and divide by h

$$
\frac{P_{i j}(t+h)-P_{i j}(t)}{h}=-\nu_{j} P_{i j}(t)+\sum_{k=0, k \neq j}^{\infty} P_{i k}(t) q_{k j}+\frac{o(h)}{h}
$$

- Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove ...

Kolmogorov's forward equations

Theorem
The transition probability functions $P_{i j}(t)$ of a CTMC satisfy the system of differential equations (for all pairs i, j)

$$
\frac{\partial P_{i j}(t)}{\partial t}=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{i k}(t)-\nu_{j} P_{i j}(t)
$$

- Interpret each summand in Kolmogorov's forward equations
- $\partial P_{i j}(t) / \partial t=$ rate of change of $P_{i j}(t)$
- $q_{k j} P_{i k}(t)=($ transition into k in $0 \rightarrow t) \times$ (rate of moving into j in next instant)
- $\nu_{j} P_{i j}(t)=($ transition into j in $0 \rightarrow t) \times$ (rate of leaving j in next instant)
- Change in $P_{i j}(t)=\sum_{k}($ moving into j from $k)-($ leaving $j)$
- Kolmogorov's forward equations valid in most cases, but not always

Kolmogorov's backward equations

- For forward equations used Chapman-Kolmogorov's for $0 \rightarrow t \rightarrow h$
- For backward equations we use $0 \rightarrow h \rightarrow t$ to express $P_{i j}(t+h)$ as

$$
P_{i j}(t+h)=\sum_{k=0}^{\infty} P_{i k}(h) P_{k j}(t)=P_{i i}(h) P_{i j}(t)+\sum_{k=0, k \neq i}^{\infty} P_{i k}(h) P_{k j}(t)
$$

- Substitute infinitesimal time expression for $P_{i i}(h)$ and $P_{i k}(h)$

$$
P_{i j}(t+h)=\left(1-\nu_{i} h\right) P_{i j}(t)+\sum_{k=0, k \neq i}^{\infty} q_{i k} h P_{k j}(t)+o(h)
$$

- Subtract $P_{i j}(t)$ from both sides and divide by h

$$
\frac{P_{i j}(t+h)-P_{i j}(t)}{h}=-\nu_{i} P_{i j}(t)+\sum_{k=0, k \neq i}^{\infty} q_{i k} P_{k j}(t)+\frac{o(h)}{h}
$$

- Right-hand side equals a "derivative" ratio. Let $h \rightarrow 0$ to prove ...

Kolmogorov's backward equations

Theorem
The transition probability functions $P_{i j}(t)$ of a CTMC satisfy the system of differential equations (for all pairs i, j)

$$
\frac{\partial P_{i j}(t)}{\partial t}=\sum_{k=0, k \neq i}^{\infty} q_{i k} P_{k j}(t)-\nu_{i} P_{i j}(t)
$$

- Interpret each summand in Kolmogorov's backward equations
- $\partial P_{i j}(t) / \partial t=$ rate of change of $P_{i j}(t)$
- $q_{i k} P_{k j}(t)=($ transition into j in $h \rightarrow t) \times$
(rate of transition into k in initial instant)
- $\nu_{i} P_{i j}(t)=($ transition into j in $h \rightarrow t) \times$
(rate of leaving i in initial instant)
- Forward equations \Rightarrow change in $P_{i j}(t)$ if finish h later
- Backward equations \Rightarrow change in $P_{i j}(t)$ if start h earlier
- Where process goes (forward) vs. where process comes from (backward)

Determination of transition probability function

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

A CTMC with two states

Ex: Simplest possible CTMC has only two states. Say 0 and 1

- Transition rates are q_{01} and q_{10}
- Given q_{01} and q_{10} can find rates of transitions out of $\{0,1\}$

$$
\nu_{0}=\sum_{j} q_{0 j}=q_{01}, \quad \nu_{1}=\sum_{j} q_{1 j}=q_{10}
$$

- Use Kolmogorov's equations to find transition probability functions

$$
P_{00}(t), \quad P_{01}(t), \quad P_{10}(t), \quad P_{11}(t)
$$

- Transition probabilities out of each state sum up to one

$$
P_{00}(t)+P_{01}(t)=1, \quad P_{10}(t)+P_{11}(t)=1
$$

Kolmogorov's forward equations

- Kolmogorov's forward equations (process runs a little longer)

$$
P_{i j}^{\prime}(t)=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{i k}(t)-\nu_{j} P_{i j}(t)
$$

- For the two state CTMC

$$
\begin{array}{ll}
P_{00}^{\prime}(t)=q_{10} P_{01}(t)-\nu_{0} P_{00}(t), & P_{01}^{\prime}(t)=q_{01} P_{00}(t)-\nu_{1} P_{01}(t) \\
P_{10}^{\prime}(t)=q_{10} P_{11}(t)-\nu_{0} P_{10}(t), & P_{11}^{\prime}(t)=q_{01} P_{10}(t)-\nu_{1} P_{11}(t)
\end{array}
$$

- Probabilities out of 0 sum up to $1 \Rightarrow$ eqs. in first row are equivalent
- Probabilities out of 1 sum up to $1 \Rightarrow$ eqs. in second row are equivalent
\Rightarrow Pick the equations for $P_{00}^{\prime}(t)$ and $P_{11}^{\prime}(\mathrm{t})$

Solution of forward equations

- Use \Rightarrow Relation between transition rates: $\nu_{0}=q_{01}$ and $\nu_{1}=q_{10}$ \Rightarrow Probs. sum 1: $P_{01}(t)=1-P_{00}(t)$ and $P_{10}(t)=1-P_{11}(t)$

$$
\begin{aligned}
& P_{00}^{\prime}(t)=q_{10}\left[1-P_{00}(t)\right]-q_{01} P_{00}(t)=q_{10}-\left(q_{10}+q_{01}\right) P_{00}(t) \\
& P_{11}^{\prime}(t)=q_{01}\left[1-P_{11}(t)\right]-q_{10} P_{11}(t)=q_{01}-\left(q_{10}+q_{01}\right) P_{11}(t)
\end{aligned}
$$

- Can obtain exact same pair of equations from backward equations
- First-order linear differential equations \Rightarrow Solutions are exponential
- For $P_{00}(t)$ propose candidate solution (just differentiate to check)

$$
P_{00}(t)=\frac{q_{10}}{q_{10}+q_{01}}+c e^{-\left(q_{10}+q_{01}\right) t}
$$

\Rightarrow To determine c use initial condition $P_{00}(0)=1$

Solution of forward equations (continued)

- Evaluation of candidate solution at initial condition $P_{00}(0)=1$ yields

$$
1=\frac{q_{10}}{q_{10}+q_{01}}+c \Rightarrow c=\frac{q_{01}}{q_{10}+q_{01}}
$$

- Finally transition probability function $P_{00}(t)$

$$
P_{00}(t)=\frac{q_{10}}{q_{10}+q_{01}}+\frac{q_{01}}{q_{10}+q_{01}} e^{-\left(q_{10}+q_{01}\right) t}
$$

- Repeat for $P_{11}(t)$. Same exponent, different constants

$$
P_{11}(t)=\frac{q_{01}}{q_{10}+q_{01}}+\frac{q_{10}}{q_{10}+q_{01}} e^{-\left(q_{10}+q_{01}\right) t}
$$

- As time goes to infinity, $P_{00}(t)$ and $P_{11}(t)$ converge exponentially
\Rightarrow Convergence rate depends on magnitude of $q_{10}+q_{01}$

Convergence of transition probabilities

- Recall $P_{01}(t)=1-P_{00}(t)$ and $P_{10}(t)=1-P_{11}(t)$
- Limiting (steady-state) probabilities are

$$
\begin{array}{rlrl}
\lim _{t \rightarrow \infty} P_{00}(t) & =\frac{q_{10}}{q_{10}+q_{01}}, & \lim _{t \rightarrow \infty} P_{01}(t) & =\frac{q_{01}}{q_{10}+q_{01}} \\
\lim _{t \rightarrow \infty} P_{11}(t) & =\frac{q_{01}}{q_{10}+q_{01}}, & \lim _{t \rightarrow \infty} P_{10}(t)=\frac{q_{10}}{q_{10}+q_{01}}
\end{array}
$$

- Limit distribution exists and is independent of initial condition
\Rightarrow Compare across diagonals

Kolmogorov's forward equations in matrix form

- Restrict attention to finite CTMCs with N states
\Rightarrow Define matrix $\mathbf{R} \in \mathbb{R}^{N \times N}$ with elements $r_{i j}=q_{i j}, r_{i i}=-\nu_{i}$
- Rewrite Kolmogorov's forward eqs. as (process runs a little longer)

$$
P_{i j}^{\prime}(t)=\sum_{k=1, k \neq j}^{N} q_{k j} P_{i k}(t)-\nu_{j} P_{i j}(t)=\sum_{k=1}^{N} r_{k j} P_{i k}(t)
$$

- Right-hand side defines elements of a matrix product

Kolmogorov's backward equations in matrix form

- Similarly, Kolmogorov's backward eqs. (process starts a little later)

$$
P_{i j}^{\prime}(t)=\sum_{k=1, k \neq i}^{N} q_{i k} P_{k j}(t)-\nu_{i} P_{i j}(t)=\sum_{k=1}^{N} r_{i k} P_{k j}(t)
$$

- Right-hand side also defines a matrix product

Kolmogorov's equations in matrix form

- Matrix form of Kolmogorov's forward equation $\Rightarrow \mathbf{P}^{\prime}(t)=\mathbf{P}(t) \mathbf{R}$
- Matrix form of Kolmogorov's backward equation $\Rightarrow \mathbf{P}^{\prime}(t)=\mathbf{R P}(t)$
\Rightarrow More similar than apparent
\Rightarrow But not equivalent because matrix product not commutative
- Notwithstanding both equations have to accept the same solution

Matrix exponential

- Kolmogorov's equations are first-order linear differential equations
\Rightarrow They are coupled, $P_{i j}^{\prime}(t)$ depends on $P_{k j}(t)$ for all k
\Rightarrow Accepts exponential solution \Rightarrow Define matrix exponential
- Def: The matrix exponential $e^{\mathbf{A} t}$ of matrix $\mathbf{A} t$ is the series

$$
e^{\mathbf{A} t}=\sum_{n=0}^{\infty} \frac{(\mathbf{A} t)^{n}}{n!}=\mathbf{I}+\mathbf{A} t+\frac{(\mathbf{A} t)^{2}}{2}+\frac{(\mathbf{A} t)^{3}}{2 \times 3}+\ldots
$$

- Derivative of matrix exponential with respect to t

$$
\frac{\partial e^{\mathbf{A} t}}{\partial t}=\mathbf{0}+\mathbf{A}+\mathbf{A}^{2} t+\frac{\mathbf{A}^{3} t^{2}}{2}+\ldots=\mathbf{A}\left(\mathbf{I}+\mathbf{A} t+\frac{(\mathbf{A} t)^{2}}{2}+\ldots\right)=\mathbf{A} e^{\mathbf{A} t}
$$

- Putting \mathbf{A} on right side of product shows that $\Rightarrow \frac{\partial e^{\mathbf{A} t}}{\partial t}=e^{\mathbf{A t}} \mathbf{A}$

Solution of Kolmogorov's equations

- Propose solution of the form $\mathbf{P}(t)=e^{\mathbf{R} t}$
- $\mathbf{P}(t)$ solves backward equations, since derivative is

$$
\frac{\partial \mathbf{P}(t)}{\partial t}=\frac{\partial e^{\mathbf{R} t}}{\partial t}=\mathbf{R} e^{\mathbf{R} t}=\mathbf{R} \mathbf{P}(t)
$$

- It also solves forward equations

$$
\frac{\partial \mathbf{P}(t)}{\partial t}=\frac{\partial e^{\mathbf{R} t}}{\partial t}=e^{\mathbf{R} t} \mathbf{R}=\mathbf{P}(t) \mathbf{R}
$$

- Notice that $\mathbf{P}(0)=\mathbf{I}$, as it should $\left(P_{i i}(0)=1\right.$, and $\left.P_{i j}(0)=0\right)$

Computing the matrix exponential

- Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, i.e., $\mathbf{A}=\mathbf{U D U}^{-1}$
\Rightarrow Diagonal matrix $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ collects eigenvalues λ_{i} \Rightarrow Matrix \mathbf{U} has the corresponding eigenvectors as columns
- We have the following neat identity

$$
e^{\mathbf{A} t}=\sum_{n=0}^{\infty} \frac{\left(\mathbf{U D} \mathbf{U}^{-1} t\right)^{n}}{n!}=\mathbf{U}\left(\sum_{n=0}^{\infty} \frac{(\mathbf{D} t)^{n}}{n!}\right) \mathbf{U}^{-1}=\mathbf{U} e^{\mathrm{D} t} \mathbf{U}^{-1}
$$

- But since \mathbf{D} is diagonal, then

$$
e^{\mathbf{D} t}=\sum_{n=0}^{\infty} \frac{(\mathbf{D} t)^{n}}{n!}=\left(\begin{array}{ccc}
e^{\lambda_{1} t} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & e^{\lambda_{n} t}
\end{array}\right)
$$

Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

- Transition rates are $q_{01}=3$ and $q_{10}=1$

- Recall transition time rates are $\nu_{0}=q_{01}=3, \nu_{1}=q_{10}=1$, hence

$$
\mathbf{R}=\left(\begin{array}{cc}
-\nu_{0} & q_{01} \\
q_{10} & -\nu_{1}
\end{array}\right)=\left(\begin{array}{cc}
-3 & 3 \\
1 & -1
\end{array}\right)
$$

- Eigenvalues of \mathbf{R} are $0,-4$, eigenvectors $[1,1]^{T}$ and $[-3,1]^{T}$. Thus

$$
\mathbf{U}=\left(\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right), \quad \mathbf{U}^{-1}=\left(\begin{array}{cc}
1 / 4 & 3 / 4 \\
-1 / 4 & 1 / 1
\end{array}\right), \quad e^{\mathrm{D} t}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-4 t}
\end{array}\right)
$$

- The solution to the forward equations is

$$
\mathbf{P}(t)=e^{\mathbf{R} t}=\mathbf{U} e^{\mathbf{D} t} \mathbf{U}^{-1}=\left(\begin{array}{ll}
1 / 4+(3 / 4) e^{-4 t} & 3 / 4-(3 / 4) e^{-4 t} \\
1 / 4-(1 / 4) e^{-4 t} & 3 / 4+(1 / 4) e^{-4 t}
\end{array}\right)
$$

- $\mathbf{P}(t)$ is transition prob. from states at time 0 to states at time t
- Define unconditional probs. at time $t, p_{j}(t):=P(X(t)=j)$ \Rightarrow Group in vector $\mathbf{p}(t)=\left[p_{1}(t), p_{2}(t), \ldots, p_{j}(t), \ldots\right]^{T}$
- Given initial distribution $\mathbf{p}(0)$, find $p_{j}(t)$ conditioning on initial state

$$
p_{j}(t)=\sum_{i=0}^{\infty} \mathrm{P}(X(t)=j \mid X(0)=i) \mathrm{P}(X(0)=i)=\sum_{i=0}^{\infty} P_{i j}(t) p_{i}(0)
$$

- Using compact matrix-vector notation $\Rightarrow \mathbf{p}(t)=\mathbf{P}^{\top}(t) \mathbf{p}(0)$ \Rightarrow Compare with discrete-time $\mathrm{MC} \Rightarrow \mathbf{p}(n)=\left(\mathbf{P}^{n}\right)^{T} \mathbf{p}(0)$

Limit probabilities and ergodicity

Continuous-time Markov chains

Transition probability function

Determination of transition probability function

Limit probabilities and ergodicity

- Recall the embedded discrete-time MC associated with any CTMC \Rightarrow Transition probs. of MC form the matrix \mathbf{P} of the CTMC
\Rightarrow No self transitions ($P_{i i}=0, \mathbf{P}$'s diagonal null)
- States $i \leftrightarrow j$ communicate in the CTMC if $i \leftrightarrow j$ in the MC
\Rightarrow Communication partitions MC in classes
\Rightarrow Induces CTMC partition as well
- Def: CTMC is irreducible if embedded MC contains a single class
- State i is recurrent if it is recurrent in the embedded MC
\Rightarrow Likewise, define transience and positive recurrence for CTMCs
- Transience and recurrence shared by elements of a MC class
\Rightarrow Transience and recurrence are class properties of CTMCs
- Periodicity not possible in CTMCs

Limiting probabilities

Theorem

Consider irreducible, positive recurrent CTMC with transition rates ν_{i} and $q_{i j}$. Then, $\lim _{t \rightarrow \infty} P_{i j}(t)$ exists and is independent of the initial state i, i.e.,

$$
P_{j}=\lim _{t \rightarrow \infty} P_{i j}(t) \quad \text { exists for all }(i, j)
$$

Furthermore, steady-state probabilities $P_{j} \geq 0$ are the unique nonnegative solution of the system of linear equations

$$
\nu_{j} P_{j}=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{k}, \quad \sum_{j=0}^{\infty} P_{j}=1
$$

- Limit distribution exists and is independent of initial condition
\Rightarrow Obtained as solution of system of linear equations
\Rightarrow Like discrete-time MCs, but equations slightly different

Algebraic relation to determine limit probabilities

- As with MCs difficult part is to prove that $P_{j}=\lim _{t \rightarrow \infty} P_{i j}(t)$ exists
- Algebraic relations obtained from Kolmogorov's forward equations

$$
\frac{\partial P_{i j}(t)}{\partial t}=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{i k}(t)-\nu_{j} P_{i j}(t)
$$

- If limit distribution exists we have, independent of initial state i

$$
\lim _{t \rightarrow \infty} \frac{\partial P_{i j}(t)}{\partial t}=0, \quad \lim _{t \rightarrow \infty} P_{i j}(t)=P_{j}
$$

- Considering the limit of Kolomogorov's forward equations yields

$$
0=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{k}-\nu_{j} P_{j}
$$

- Reordering terms the limit distribution equations follow

Two state CTMC example

Ex: Simplest CTMC with two states 0 and 1

- Transition rates are q_{01} and q_{10}

- From transition rates find mean transition times $\nu_{0}=q_{01}, \nu_{1}=q_{10}$
- Stationary distribution equations

$$
\begin{array}{lll}
\nu_{0} P_{0}=q_{10} P_{1}, & \nu_{1} P_{1}=q_{01} P_{0}, & P_{0}+P_{1}=1, \\
q_{01} P_{0}=q_{10} P_{1}, & q_{10} P_{1}=q_{01} P_{0} &
\end{array}
$$

- Solution yields $\Rightarrow P_{0}=\frac{q_{10}}{q_{10}+q_{01}}, \quad P_{1}=\frac{q_{01}}{q_{10}+q_{01}}$
- Larger rate q_{10} of entering $0 \Rightarrow$ Larger prob. P_{0} of being at 0
- Larger rate q_{01} of entering $1 \Rightarrow$ Larger prob. P_{1} of being at 1

Ergodicity

- Def: Fraction of time $T_{i}(t)$ spent in state i by time t

$$
T_{i}(t):=\frac{1}{t} \int_{0}^{t} \mathbb{I}\{X(\tau)=i\} d \tau
$$

$\Rightarrow T_{i}(t)$ a time/ergodic average, $\lim _{t \rightarrow \infty} T_{i}(t)$ is an ergodic limit

- If CTMC is irreducible, positive recurrent, the ergodic theorem holds

$$
P_{i}=\lim _{t \rightarrow \infty} T_{i}(t)=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbb{I}\{X(\tau)=i\} d \tau \quad \text { a.s. }
$$

- Ergodic limit coincides with limit probabilities (almost surely)

Function's ergodic limit

- Consider function $f(i)$ associated with state i. Can write $f(X(t))$ as

$$
f(X(t))=\sum_{i=1}^{\infty} f(i) \mathbb{I}\{X(t)=i\}
$$

- Consider the time average of $f(X(t))$

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(X(\tau)) d \tau=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \sum_{i=1}^{\infty} f(i) \mathbb{I}\{X(\tau)=i\} d \tau
$$

- Interchange summation with integral and limit to say

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(X(\tau)) d \tau=\sum_{i=1}^{\infty} f(i) \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbb{I}\{X(\tau)=i\} d \tau=\sum_{i=1}^{\infty} f(i) P_{i}
$$

- Function's ergodic limit $=$ Function's expectation under limiting dist.

Limit distribution equations as balance equations

- Recall limit distribution equations $\Rightarrow \nu_{j} P_{j}=\sum_{k=0, k \neq j}^{\infty} q_{k j} P_{k}$
- $P_{j}=$ fraction of time spent in state j
- $\nu_{j}=$ rate of transition out of state j given CTMC is in state j

$$
\Rightarrow \nu_{j} P_{j}=\text { rate of transition out of state } j \text { (unconditional) }
$$

- $q_{k j}=$ rate of transition from k to j given CTMC is in state k

$$
\begin{aligned}
& \Rightarrow q_{k j} P_{k}=\text { rate of transition from } k \text { to } j \text { (unconditional) } \\
& \Rightarrow \sum_{k=0, k \neq j}^{\infty} q_{k j} P_{k}=\text { rate of transition into } j \text {, from all states }
\end{aligned}
$$

- Rate of transition out of state $j=$ Rate of transition into state j
- Balance equations \Rightarrow Balance nr. of transitions in and out of state j

Limit distribution for birth and death process

- Birth/deaths occur at state-dependent rates. When $X(t)=i$
- Births \Rightarrow Individuals added at exponential times with mean $1 / \lambda_{i}$
\Rightarrow Birth rate $=$ upward transition rate $=q_{i, i+1}=\lambda_{i}$
- Deaths \Rightarrow Individuals removed at exponential times with mean $1 / \mu_{i}$
\Rightarrow Death rate $=$ downward transition rate $=q_{i, i-1}=\mu_{i}$
- Transition time rates $\Rightarrow \nu_{i}=\lambda_{i}+\mu_{i}, i>0$ and $\nu_{0}=\lambda_{0}$

- Limit distribution/balance equations: Rate out of $j=$ Rate into j

$$
\begin{aligned}
\left(\lambda_{i}+\mu_{i}\right) P_{i} & =\lambda_{i-1} P_{i-1}+\mu_{i+1} P_{i+1} \\
\lambda_{0} P_{0} & =\mu_{1} P_{1}
\end{aligned}
$$

Finding solution of balance equations

- Start expressing all probabilities in terms of P_{0}
- Equation for P_{0}
$\lambda_{0} P_{0}=\mu_{1} P_{1}$
- Sum eqs. for P_{1} and P_{0}

$$
\left(\lambda_{1}+\mu_{1}\right) P_{1}=\lambda_{0} P_{0}+\mu_{2} P_{2}
$$

- Sum result and eq. for P_{2}

$$
\lambda_{1} P_{1}=\mu_{2} P_{2}
$$

$$
\left(\lambda_{2}+\mu_{2}\right) P_{2}=\lambda_{1} P_{1}+\mu_{3} P_{3}
$$

- Sum result and eq. for P_{i}

$$
\lambda_{i-1} P_{i-1}=\mu_{i} P_{i}
$$

$$
\left(\lambda_{i}+\mu_{i}\right) P_{i}=\lambda_{i-1} P_{i-1}+\mu_{i+1} P_{i+1}
$$

$\lambda_{i} P_{i}=\mu_{i+1} P_{i+1}$

Finding solution of balance equations (continued)

- Recursive substitutions on red equations on the right

$$
\begin{aligned}
& P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0} \\
& P_{2}=\frac{\lambda_{1}}{\mu_{2}} P_{1}=\frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} P_{0} \\
& \vdots \\
& P_{i+1}=\frac{\lambda_{i}}{\mu_{i+1}} P_{i}=\frac{\lambda_{i} \lambda_{i-1} \ldots \lambda_{0}}{\mu_{i+1} \mu_{i} \ldots \mu_{1}} P_{0}
\end{aligned}
$$

- To find P_{0} use $\sum_{i=0}^{\infty} P_{i}=1 \Rightarrow 1=P_{0}+\sum_{i=1}^{\infty} \frac{\lambda_{i} \lambda_{i-1} \ldots \lambda_{0}}{\mu_{i+1} \mu_{i} \ldots \mu_{1}} P_{0}$

$$
\Rightarrow P_{0}=\left[1+\sum_{i=1}^{\infty} \frac{\lambda_{i} \lambda_{i-1} \ldots \lambda_{0}}{\mu_{i+1} \mu_{i} \ldots \mu_{1}}\right]^{-1}
$$

Glossary

- Continuous-time Markov chain
- Markov property
- Time-homogeneous CTMC
- Transition probability function
- Exponential transition time
- Transition probabilities
- Embedded discrete-time MC
- Transition rates
- Birth and death process
- Poisson process
- $\mathrm{M} / \mathrm{M} / 1$ queue
- Chapman-Kolmogorov equations
- Kolmogorov's forward equations
- Kolmogorov's backward equations
- Limiting probabilities
- Matrix exponential
- Unconditional probabilities
- Recurrent and transient states
- Ergodicity
- Balance equations

