
CONTINUOUS VALUATIONS AND THE ADIC SPECTRUM

TAKUMI MURAYAMA

Abstract. Following [Hub93, §3], we introduce the spectrum of continuous valuations Cont(A) for
a Huber ring A and the adic spectrum Spa(A,A+) for a Huber pair (A,A+). We also draw heavily
from [Con14; Wed12]. These notes are from the arithmetic geometry learning seminar on adic spaces
held at the University of Michigan during the Winter 2017 semester, organized by Bhargav Bhatt.
See [Dat17; Ste17] for other notes from the seminar.

Contents

1. Introduction 1
2. The spectrum of continuous valuations 2
2.1. Definitions 2
2.2. Spectrality 3
2.3. Analytic points 5
3. The adic spectrum 7
3.1. Definitions and the “adic Nullstellensatz” 7
3.2. Spectrality 10
3.3. Nonemptiness criteria 10
3.4. Invariance under completion 12
References 13

1. Introduction

Last time, we defined the following space of valuations on a (commutative, unital) ring A:

Definition 1.1. Let A be a ring. The valuation spectrum of A is

Spv(A) :=

{
valuations

v : A→ Γ ∪ {0}

}/ Γv ∪ {0}

A

Γw ∪ {0}

ordered∼

v

w

where Γv = 〈im(v) r 0〉 ⊆ Γ is the value group of v. The topology on Spv(A) is generated by open
sets of the form

R

(
f

g

)
:=
{
v ∈ Spv(A)

∣∣ v(f) ≤ v(g) 6= 0
}

f, g ∈ A.

We spent a long time discussing topological rings, but Spv(A) is not able to detect this topology.
For Huber rings, our goal today is the following:

Goal 1.2. For A a Huber ring, define spectral subspaces

Spa(A,A+) ⊆ Cont(A) ⊆ Spv(A).

The spectrum of continuous valuations Cont(A) will respect the topology of A, and the adic spectrum
Spa(A,A+) will keep track of a subring of “integral elements.”
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These adic spectra will accomplish some of our motivational goals in this seminar:

• They give an algebro-geometric notion of “punctured tubular neighborhoods;”
• Affinoid perfectoid spaces [Sch12] will be of the form Spa(A,A+) for A a perfectoid algebra;
• If A is Tate, then Spa(A,A◦) satisfies nice comparison results connecting Huber’s theory to

Tate’s theory of rigid analytic spaces ([Hub93, §4], to be discussed next time).

A helpful way to organize our work will be the following diagram of functors. The functor
A 7→ Cont(A) factors Spv:

Ringop HubRingopad Top

SpecSp

discrete

Spv

Cont

∃? ⊂ (1)

We have seen that Spv(A) is spectral [Hub93, Prop. 2.6(i)], hence we have the factorization of the
functor Spv : Ringop → Top through SpecSp, the category of spectral spaces with spectral maps. To
show the factorization of Cont through SpecSp exists, we will use the construction Spv(A, I) from
last time [Hub93, §2]. There is a similar story for Huber pairs (A,A+):

Ringop HubRingopad HubPairopad

SpecSp

discrete

Spv

A 7→(A,Z·1+A◦◦)

Cont
Spa

The subscripts ad denote that morphisms in the corresponding categories are restricted to adic
homomorphisms. In particular, each new space we introduce is more general than the last.

2. The spectrum of continuous valuations

From now on, let A be a Huber ring.

2.1. Definitions. Note that the following definition works for an arbitrary topological ring A,
although we will only discuss it in the Huber case.

Definition 2.1. A valuation v ∈ Spv(A) is continuous if, equivalently,

•
{
f ∈ A

∣∣ v(f) < γ
}

is open for every γ ∈ Γv;
• v : A→ Γv ∪ {0} is continuous, where Γv is given the order topology; or
• The topology on A is finer than the valuation topology induced by v.

The continuous valuation spectrum is

Cont(A) := {continuous valuations} ⊆ Spv(A),

which we equip with the subspace topology induced by Spv(A).

All valuation spectra are continuous valuation spectra, in the following sense:

Example 2.2. If A is a ring with the discrete topology, then Cont(A) = Spv(A).

Example 2.3. Let v ∈ Spv(A) with Γv = 1. Then, v is continuous if and only if supp(v) is open.

Example 2.4. Consider k((y))JxK with the x-adic topology. We can visualize some points of the
valuation spectrum Spv

(
k((y))JxK

)
as in Figure 1. Since (0) ⊆ k((y))JxK is not open, we see that η is

not continuous by Example 2.3. Every other valuation depicted in Figure 1 is continuous, where we
note the xy-adic valuation w has Γw = w(x)Z ×w(y)Z with the lexicographic ordering w(x) < w(y).

The argument in [Con14, Ex. 6.2.1] shows that the x-adic and xy-adic topologies coincide, and
so Cont

(
k((y))JxK

)
is the same subset of Spv

(
k((y))JxK

)
in either topology. For the y-adic topology,

however, only the point w is continuous (see [Con14, Ex. 8.2.2] for a proof that w is not continuous).
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Cont
(
k((y))JxK

)

RZ
(
k((y))((x))

)

ηtrivial

vx-adic

wxy-adic

RZ
(
k((y))

)

η trivial

w y-adic

(0) (x)

Spv
(
k((y))JxK

)

Spec
(
k((y))JxK

)
supp

Figure 1. A picture of Cont
(
k((y))JxK

)
.

Just as for valuation spectra, continuous valuation spectra define a functor. A continuous map
f : A→ B of Huber rings induces a map

Cont(f) : Cont(B) Cont(A)

v v ◦ f
since the pullback of a continuous valuation is continuous. This map Cont(f) is continuous since it
is the restriction of the continuous map Spv(B)→ Spv(A) induced by f . Thus, we have a functor

Cont: HubRingop −→ Top

which factors Spv as in (1).

2.2. Spectrality. We now want to show that Cont(A) is spectral, and the factorization of functors
through SpecSp in (1) exists. The idea is to realize Cont(A) as a closed subspace of the space
Spv(A, I), which we showed was spectral last time.

Definition 2.5. Let v ∈ Spv(v). The characteristic subgroup cΓv of v is

cΓv := convex subgroup of Γ generated by
{
v(a)

∣∣ v(a) ≥ 1
}
, (2)

We say an element γ ∈ Γ∪{0} is cofinal in a subgroup H ⊆ Γ if for every h ∈ H, there exists n ∈ N
such that γn < h.

Proposition 2.6 [Hub93, Prop. 2.6]. The space

Spv(A, I) =

{
v ∈ Spv(A)

∣∣∣∣
• Γv = cΓv, or
• v(a) is cofinal in Γv for all v ∈ I

}
(3)

is spectral with a quasi-compact basis of constructible sets

R

(
T

s

)
=
{
v ∈ Spv(A, I)

∣∣ v(fi) ≤ v(s) 6= 0 for all i
}

∅ 6= T = {f1, . . . , fn} ⊂ A, s ∈ A, I ⊆
√
T ·A

called rational domains. This basis is stable under finite intersections.

Here, we are using [Hub93, Lem. 2.5] to identify the description on the right-hand side of (3) with
the usual definition for Spv(A, I). To use Proposition 2.6 to show that Cont(A) is spectral, we first
need to find a suitable ideal I for this construction. Recall that the topologically nilpotent elements
of A are

A◦◦ :=
{
a ∈ A

∣∣ an → 0 as n→∞
}
.

The following suggests what we could do:

Lemma 2.7. Let T = {f1, . . . , fn} ⊂ A be nonempty. Then, T · A is open in A if and only if

A◦◦ ·A ⊆
√
T ·A.
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Proof. Let I be an ideal of definition for A. Then, T · A is open if and only if In ⊆ T · A for
some n ≥ 0. By properties of radical ideals, this holds if and only if A◦◦ · A ⊆

√
T ·A, since√

A◦◦ ·A =
√
I ·A for any ideal of definition I: “⊇” holds since any element of I is topologically

nilpotent, and “⊆” holds since A◦◦ ⊆
√
I ·A [Con14, Rem. 8.4.3]. See Figure 2. �

A◦◦

I a

an

Figure 2.
√
A◦◦ ·A =

√
I ·A for any ideal of definition I.

Thus, choosing I = A◦◦ · A makes Spv(A, I) detect the topology of A, and seems like a good
candidate for Cont(A). This guess is almost correct; we have to restrict further to a particular
subset of Spv(A,A◦◦ ·A) to ensure that topologically nilpotent elements are nilpotent with respect
to continuous valuations.

Theorem 2.8 [Hub93, Thm. 3.1]. We have

Cont(A) =
{
v ∈ Spv(A,A◦◦ ·A)

∣∣ v(a) < 1 for all a ∈ A◦◦
}

(4)

in Spv(A).

Theorem 2.8 will be the key result necessary to achieve Goal 1.2 for Cont(A):

Corollary 2.9 [Hub93, Cor. 3.2]. Cont(A) is a closed subset of Spv(A,A◦◦ ·A), hence is spectral
and closed under specialization.

Proof of Corollary 2.9, following [Wed12, Cor. 7.12]. The set

Spv(A,A◦◦ ·A) r Cont(A) =
⋃

a∈A◦◦
Spv(A,A◦◦ ·A)

(
1
a

)

is open since each set on the right-hand side is open. Thus, Cont(A) is closed in Spv(A,A◦◦ · A),
hence spectral by [Hub93, Rem. 2.1(iv)]. �

Proof of Theorem 2.8. “⊆”. Let w ∈ Cont(A) and a ∈ A◦◦. For n� 0, we have

w(an) = w(a)n < γ

by continuity for any γ ∈ Γw. Thus, w(a) < 1 by choosing γ = 1, and w(a) is cofinal in Γw, so
w ∈ Spv(A,A◦◦ ·A) by (3).

“⊇”. Let v as on the right-hand side of (4).

Step 1. v(a) is cofinal in Γv for all a ∈ A◦◦.
If Γv 6= cΓv, then we are done by (3).
If Γv = cΓv, then let γ ∈ Γv be given. If γ ≥ 1, then we are done since v(a) < 1 by hypothesis.

Otherwise, suppose γ < 1. Then, by the definition of the characteristic subgroup (2), there exist
t, t′ ∈ A such that v(t) 6= 0, and

v(t)−1 ≤ v(t′)
v(t)

≤ γ < 1.

Now choose n ∈ N such that tan ∈ A◦◦. Then, v(tan) < 1, hence v(a)n < γ. We can visualize this
situation as in Figure 3.
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Γ0
v(t′)
v(t)

1γv(t)−1

Figure 3. A visualization of Theorem 2.8, Step 1.

Step 2. v ∈ Cont(A).

Let S = {t1, . . . , tr} be a set of generators for an ideal of definition I of A. Set δ = max{v(ti)};
we have δ < 1 since ti ∈ A◦◦ for all i. Since each ti ∈ A◦◦, by Step 1 there exists n ∈ N such that
δn < γ. Thus, v(Sn · I) = v(In+1) < γ and so In+1 ⊆ {f ∈ A | v(f) < γ}. �

What is left is to show that the spectrality of Cont(A) gives a factorization of the functor Cont
through SpecSp as in (1).

Proposition 2.10 [Hub93, Prop. 3.8(iv)]. The functor Spa: HubRingop → Top maps adic homo-
morphisms to spectral maps.

Proof. It suffices to check rational domains pull back to rational domains, since the constructible
topology is generated by finite boolean combinations of rational domains. We see that

g−1

(
R

(
T

s

))
= R

(
f(T )

f(s)

)
,

where the adic condition ensures the set on the right is indeed rational. �

2.3. Analytic points. We now come to a notion that is a bit unmotivated at first glance, but
will come up again when we discuss the relationship between adic spaces and other flavors of
non-Archimedean geometry using formal schemes and rigid-analytic spaces in [Hub94].

Definition 2.11. We say v ∈ Cont(A) is analytic if the support supp(v) is not open in A. We put

Cont(A)a :=
{
v ∈ Cont(A)

∣∣ v is analytic
}

Cont(A)na := Cont(A) r Cont(A)a

Example 2.12. If A has the discrete topology, then every point is not analytic.

We give an alternative characterization for analyticity, which is related to our original goal of
finding an algebro-geometric definition for a punctured tubular neighborhood:

Proposition 2.13 [Con14, Prop. 8.3.2]. Let T ⊂ A◦◦ be a finite set such that A◦◦ · A ⊆
√
T ·A.

Then, v ∈ Cont(A) is analytic if and only if v(t) 6= 0 for some t ∈ T .

Proof. supp(v) ⊆ A is open if and only if (T ·A)n ⊆ supp(v) for some n� 0. But supp(v) is prime,
hence radical, so this is equivalent to having T ⊆ supp(v), i.e., v(T ) = 0. �

The following statement justifies why we will not study analytic points in too much detail, since
perfectoid algebras are Tate.

Corollary 2.14 [Con14, Cor. 8.3.3]. If A is Tate, then Cont(A) = Cont(A)a.

Proof. This follows from Proposition 2.13 since the topologically nilpotent unit u satisfies un ∈ T ·A,
and v(u) cannot be zero. �

We now illustrate analyticity with an example:

Example 2.15. Let A = k((y))JxK with the x-adic topology as in Example 2.4. Then,

(x) =
{
f ∈ A

∣∣ vx(f) < 1
}
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is open in A, and so the analytic points are those lying over (0) that are also in Cont(A). Alternatively,
an ideal of definition for A is given by (x), and so the analytic points are those such that v(x) 6= 0,
using Proposition 2.13. See Figure 4. This suggests that the analytic points of Cont(A) look like a
punctured tubular neighborhood.

Cont
(
k((y))JxK

)
Cont

(
k((y))JxK)

a

Cont
(
k((y))JxK)

na

η

v

w

η

w

(0) (x)

Spv
(
k((y))JxK

)

Spec
(
k((y))JxK

)
supp

Figure 4. (Non-)analytic points in Cont
(
k((y))JxK

)
.

Proposition 2.16 [Con14, Prop. 8.3.8]. As subsets of Cont(A), the analytic points Cont(A)a form
an open set, and the non-analytic points Cont(A)na form a closed set.

Proof. Let T ⊂ A◦◦ be a finite subset of A◦◦ such that A◦◦ · A ⊆
√
T ·A. Then, Proposition 2.13

implies

Cont(A)a =
{
v ∈ Cont(A)

∣∣ v(t) 6= 0 for some t ∈ T
}

=
⋃

t∈T
R

(
T

t

)
,

which is open. �

Remark 2.17. One can show that A
(
T
t

)
is a Tate ring, whose adic spectrum can be identified with

R
(
T
t

)
[Con14, Rem. 8.3.9]. This suggests another way to think about analytic points: x is analytic

if and only if there is an open neighborhood of x that is the adic spectrum of a Tate ring [Hub94,
Rem. 3.1]. Spaces where all points are analytic are the well-behaved spaces in Huber’s theory,
reminiscent of “good” k-analytic spaces in Berkovich’s theory.

Lemma 2.18. There are no horizontal specializations in Cont(A)a. In particular, if A is Tate,
then there are no horizontal specializations.

Proof. A horizontal specialization v|H satisfies

supp(v|H) =
⋃

γ∈ΓvrH

{
a ∈ A

∣∣ v(a) < γ
}
,

which is open. Thus, v|H is not analytic. The last statement follows from Corollary 2.14. �

This next result suggests that restricting to analytic points takes out the trivially valued points:

Lemma 2.19. For every v ∈ Cont(A)a, rk Γv ≥ 1, and rk Γv = 1 if and only if v is a maximal
point of Cont(A)a, i.e., a point with no generizations.

Proof Sketch. The first statement follows since any continuous valuation such that Γv = {1} must
have open support Example 2.3. Now if rk Γv = 1, then only way a generization could occur is if
it were vertical by Lemma 2.18. Let w be such a generization. One can show that v and w both
induce the same topology, hence (since they are of rank 1) must coincide [Con14, Prop. 9.1.5]. �

Proposition 2.20 [Hub93, Prop. 3.8]. Let f : A→ B be continuous, and let g : Cont(B)→ Cont(A)
be the map induced by f . Then,

(i) g preserves non-analytic points;
(ii) If f is adic, then g preserves analytic points;
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(iii) If B is complete and g preserves analytic points, then f is adic;

We won’t prove (iii); see [Hub93, Prop. 3.8(iii)].

Proof of (i) and (ii). Consider the composition

A
f−→ B

v−→ Γv ∪ {0},
and consider the preimage of zero supp(v).

For (i), if supp(v) is open, then f−1(supp(v)) = supp(v ◦ f) is open by continuity.
For (ii), let I ⊆ A0 be an ideal of definition for A. Then, if supp(v) ⊆ B is not open, it does not

contain the ideal of definition f(I)B0, and so supp(v ◦ f) ⊆ B cannot contain I ⊆ A0. �

3. The adic spectrum

To give better comparison results with rigid-analytic geometry [Hub93, §4] and for applications
[Hub94; Sch12], we need to restrict to even smaller pro-constructible subspaces of Spv(A).

3.1. Definitions and the “adic Nullstellensatz”. To not lose “too much information” when
we pass to a smaller pro-constructible set, we will restrict to the case when these subspaces are
dense. The following Nullstellensatz-type result motivates our definition for which pro-constructible
sets should be permissible.

Lemma 3.1 (“adic Nullstellensatz”1 [Hub93, Lem. 3.3]).

(i) There is a inclusion-reversing bijection

GA :=

{
open, integrally closed

subrings of A

}




pro-constructible subsets
of Cont(A) that are
intersections of sets{

v ∈ Cont(A)
∣∣ v(a) ≤ 1

}





=: FA

G
{
v ∈ Cont(A)

∣∣ v(g) ≤ 1 for all g ∈ G
}

{
a ∈ A

∣∣ v(a) ≤ 1 for all v ∈ F
}

F

σ

τ

(ii) If G ∈ GA satisfies G ⊆ A◦, then σ(G) is dense in Cont(A).
(iii) The converse of (ii) holds if A is a Tate ring that has a noetherian ring of definition.

Example 3.2. The subring A◦ of power-bounded elements is open (it is the union of all rings of
definition by [Hub93, Cor. 1.3(iii)]) and integrally closed, so σ(A◦) is dense in Cont(A) by (ii).

This description of pro-constructible sets in Cont(A) motivates the following:

Definition 3.3.

(i) A subring A+ ⊆ A that is open, integrally closed, and contained in A◦ is called a ring of
integral elements of A.

(ii) A Huber pair2 is a pair (A,A+) where A is a Huber ring and A+ is a ring of integral elements
of A. A morphism of Huber pairs (A,A+)→ (B,B+) is a ring homomorphism f : A→ B
such that f(A+) ⊆ B+, and (A,A+)→ (B,B+) is continuous or adic if f is.

1This name is inspired by the discussion in [Con14, §10.3].
2These are called affinoid rings in [Hub93; Wed12, §7.3]. Affinoid algebras are something different in [Sch12, Def.

2.6], so we use Conrad’s terminology instead [Con14, Def. 10.3.3].
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(iii) For a Huber pair (A,A+), the adic spectrum is

Spa(A,A+) := σ(A+) =
{
v ∈ Cont(A)

∣∣ v(a) ≤ 1 for all a ∈ A+
}
⊆ Cont(A),

where the topology is the subspace topology induced from Cont(A). If f : (A,A+)→ (B,B+)
is continuous, we get a continuous map

Spa(f) : Spa(B,B+) −→ Spa(A,A+)

via restriction from Cont(f). We therefore obtain a functor

Spa: HubPairop −→ Top,

where HubPair is the category of Huber pairs with continuous morphisms.

Remark 3.4. By Lemma 3.1(i), if f ∈ A is such that v(f) ≤ 1 for all v ∈ Spa(A,A+), then f ∈ A+.
This justifies the idea that Spa(A,A+) keeps track of a ring of integral elements A+.

Remark 3.5. In [Hub94, §1], Huber constructs a presheaf on Spa(A,A+) for any Huber pair (A,A+).
This is what is necessary to make the statement in Remark 2.17 make sense.

We will see in §3.2 that the functor Spa factors through SpecSp.

Example 3.6. Let A be a Huber ring. Let B be the integral closure of Z · 1 +A◦◦ in A. This is
the smallest ring of integral elements of A, since any other open subring B′ contains a power of A◦◦,
and if B′ is integrally closed, then it contains A◦◦. Moreover, Cont(A) = Spa(A,B), since v(a) ≤ 1
for all a ∈ B.

Remark 3.7. One may think the only example we need to consider is when A+ = A◦. We give two
reasons why we need the flexibility of changing A+ from [Sch12, p. 254]:

(1) Points v ∈ Spa(A,A+) give rise to pairs (L,L+) where L is some non-Archimedean extension
of K = Frac

(
A/ supp(v)

)
, where L+ ⊂ L◦ is an open valuation subring [Sch12, Prop. 2.27].

If rk(Γv) 6= 1, then L+ 6= L◦.
(2) The condition R+ = R◦ is not necessarily preserved under passage to a rational domain.

We only show (i) and (ii) in Lemma 3.1; for (iii), see [Hub93, Lems. 3.3(iii), 3.4].

Proof of Lemma 3.1(i). We first note σ(G) is pro-constructible since every set of the form
{
v ∈ Cont(A)

∣∣ v(a) ≤ 1
}

is constructible Proposition 2.6. The fact that σ ◦ τ = id follows by definition, and so the hard part
is showing that τ ◦ σ = id.

Let G ∈ GA. Then, by definition, we have G ⊆ τ(σ(G)). Suppose, for the sake of contradiction,
that there exists a ∈ τ(σ(G)) r G. We will show that v(a) > 1 for some valuation v on A. The
idea will be to construct a valuation on A, and then to use horizontal specialization to ensure it is
continuous. See Figure 5 for a geometric representation of the steps involved.

Consider the inclusion of rings
G[a−1] ⊆ Aa.

Step 1. There exists s ∈ Spv
(
G[a−1]

)
such that s(a) > 1 and s(g) ≤ 1 for all g ∈ G.

Note a−1 /∈ G×; otherwise, a is integral over G, hence in G. Thus, there exists p ∈ Spec
(
G[a−1]

)

containing a−1, and a minimal prime q contained in p. Now consider a valuation ring

R ⊆ Frac
(
G[a−1]/q

)

dominating the local ring
(
G[a−1]/q

)
p/q

. The valuation ring R corresponds to s ∈ Spv
(
G[a−1]

)
.

• s(g) ≤ 1 for all g ∈ G, since
(
G[a−1]/q

)
p/q
⊆ R.

• s(x) < 1 for all x ∈ p, since R dominates the local ring
(
G[a−1]/q

)
p/q

. Thus, s(a−1) < 1.
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a
a−1

· · ·

Spec(G[a−1])
p

q

Spv(G[a−1])

supp

s
Corr. to a valuation ring
R ⊂ Frac(G[a−1]/q)
dominating (G[a−1]/q)p/q

Spv(Aa)

t abstract extension

dominant

Spec(Aa)

supp

q̃

Spv(A)

⊆

u

re
st
ric
tio
n

v
·|cΓu

Figure 5. A visualization of the proof of Lemma 3.1.

Step 2. There exists u ∈ Spv(A) such that u(a) > 1 and u(g) ≤ 1 for all g ∈ G.

We first claim s extends to a valuation t ∈ Spv(Aa). But we have an inclusion

G[a−1]q (Aa)q,

so the latter is nonzero, and contains a prime q̃ whose contraction is contained in q hence equals q
by minimality. We then get an extension of fields

Frac
(
G[a−1]/q

)
Frac

(
Aa/q̃

)
,

hence s abstractly extends to some valuation t ∈ Spv(Aa) by Zorn’s lemma. Finally, the restriction
u = t|A ∈ Spv(A) satisfies u(a) > 1 and u(g) ≤ 1 for all g ∈ G.

Step 3. There exists v ∈ Cont(A) such that v(a) > 1 and v(g) ≤ 1 for all g ∈ G.

Let v = u|cΓu ∈ Spv(A) be the horizontal specialization of u along cΓu; this satisfies v(a) > 1 and
v(g) ≤ 1 for all g ∈ G by definition since these hold for u, and so it suffices to show v ∈ Cont(A).
By Theorem 2.8, it suffices to show

• v(x) < 1 for all x ∈ A◦◦;
• v ∈ Spv(A,A◦◦ ·A).

The latter holds by (3) since v = u|cΓu satisfies Γv = cΓv = cΓu. For the latter, let x ∈ A◦◦. Then,
G is open, so there exists n ∈ N with xna ∈ G. Thus, v(xna) ≤ 1, so v(x)n ≤ v(a−1) < 1, hence
v(x) < 1.

Finally, v(a) > 1 implies a /∈ τ(σ(G)), contradicting our assumption that a ∈ τ(σ(G)). �

Proof of Lemma 3.1(ii). We show something a bit stronger: Every point v ∈ Cont(A) is a vertical
specialization of a point in σ(G). Let v ∈ Cont(A).

If v is not analytic, i.e., supp(v) is open, then the trivial valuation v/Γv is in σ(G) ⊆ Cont(A) by
Example 2.3.

Suppose v is analytic, i.e., supp(v) is not open. Then, supp(v) cannot contain A◦◦, and so there
exists a ∈ A◦◦ such that v(a) > 0. Let H be the largest convex subgroup of Γv with v(a) /∈ H. We



10 TAKUMI MURAYAMA

claim that w := v/H ∈ σ(G). Note w is continuous since it is the composition

A Γv ∪ {0}

Γv/H ∪ {0}

v

w

and the vertical quotient map is continuous. Now let g ∈ G; we have to show that w(g) ≤ 1. Assume
w(g) > 1. Since Γw has rank 1 and w(a) 6= 0, there exists n ∈ N with w(gna) > 1. On the other
hand, since a ∈ A◦◦ and g ∈ A◦, we have gna ∈ A◦◦ hence w(gna) < 1 by continuity of w, which is
a contradiction. �

Remark 3.8. This proof shows that any non-trivial vertical generization of a continuous valuation
remains continuous [Con14, Thm. 8.2.1], and that any v ∈ Cont(A)a has a vertical generization
w ∈ Cont(A)a with rk(Γw) = 1 [Con14, Prop. 9.1.5].

3.2. Spectrality. We saw in [Hub93, Prop. 2.6] that Spv(A, I) is spectral, and rational domains
form a basis; we want an analogous result for Spa(A,A+). We first define rational domains:

Definition 3.9. Let (A,A+) be a Huber pair. A rational domain in Spa(A,A+) is a set

R

(
T

s

)
:=
{
v ∈ Spa(A,A+)

∣∣ v(t) ≤ v(s) 6= 0 for all t ∈ T
}

where s ∈ A and T ⊂ A is a finite nonempty subset such that T ·A is open in A.

We can now state what Huber calls his “first main theorem,” which is an immediate consequence
of our work so far.

Theorem 3.10 [Hub93, Thm. 3.5]. Let X = Spa(A,A+).

(i) X is a spectral space.
(ii) Rational domains form a quasi-compact basis of X that is closed under finite intersection,

and every rational domain is constructible in X.

Proof of Theorem 3.10(i). For (i), we note any pro-constructible subset of a spectral space is spectral
[Hub93, Rem. 2.1(iv)]. But Spa(A,A+) is a pro-constructible subset of Cont(A) by Lemma 3.1(i).

To prove (ii), we recall that rational domains of the form
{
v ∈ Spv(A,A◦◦ ·A)

∣∣ v(t) ≤ v(s) 6= 0 for all t ∈ T
}
⊆ Spv(A,A◦◦ ·A)

for s ∈ A and T ⊂ A a finite subset such that A◦◦ ·A ⊆
√
T ·A form a basis for Spv(A,A◦◦ ·A) by

Proposition 2.6. We showed in Lemma 2.7 that this condition on T is equivalent to the condition
in Definition 3.9. Constructible sets remain constructible after restriction to a pro-constructible
subspace [Hub93, Rem. 2.1(iv)], so rational domains are constructible. Finally, constructible opens
are quasi-compact [Hub93, Rem. 2.1(i)]. �

3.3. Nonemptiness criteria. Recall that for a ring B, Spec(B) = ∅ if and only if B = 0. We
have a similar statement for Spa(A,A+):

Proposition 3.11 . Let (A,A+) be a Huber pair. Then,

(i) Spa(A,A+) = ∅ if and only if A/{0} = 0.

(ii) Spa(A,A+)a = ∅ if and only if the topology of A/{0} is discrete.

Proof. We first note that the map

Spa
(
A/{0}, A+/{0}

)
Spa(A,A+)

(
A/{0} v−→ Γv ∪ {0}

) (
A A/{0} v−→ Γv ∪ {0}

)
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is a bijection, since v({0}) = 0 for any v ∈ Cont(A) by continuity.
⇐. For (i), note that the zero ring has no valuations. For (ii), a discrete ring has no analytic

points by Example 2.12.
⇒. We first show (i), assuming (ii). If Spa(A,A+) = ∅, then Spa(A,A+)a = ∅, and so A/{0}

is discrete. If it were not zero, then the trivial valuation at a residue field of A/{0} would be in
Spa(A,A+), contradicting that Spa(A,A+) = ∅. We now show (ii) in three steps.

Step 1 [Hub93, Lem. 3.7]. Let B be an open subring of A. Let f : Spec(A) → Spec(B) be the
morphism of schemes induced by the inclusion B ⊆ A. Let

T =
{
p ∈ Spec(B)

∣∣ p is open
}
⊆ Spec(B)

be the locus of primes that support non-analytic valuations. Then,

f−1(T ) =
{
p ∈ Spec(A)

∣∣ p is open
}
⊆ Spec(A)

and the restriction Spec(A) r f−1(T )→ Spec(B) r T of f is an isomorphism.

Let p ∈ Spec(B) r T , and let s ∈ B◦◦ such that s /∈ B. For every a ∈ A there exists n ∈ N with
sna ∈ B since B is open in A. Then, the ring homomorphism Bs → As is an isomorphism. The
description of f−1(T ) follows from Proposition 2.20(i).

Step 2. Let B be a ring of definition for A, with ideal of definition I. Let p ⊆ q be two prime ideals
in B. If I ⊆ q, then I ⊆ p, that is, we have a diagram

p

q

I

Geometrically, V (I) contains every irreducible component of Spec(B) that it touches.3

Suppose I 6⊆ p. Let u be a valuation of B with p = supp(u) such that the valuation ring for
u dominates the local ring (B/p)q/p. Let r : Spv(B) → Spv(B, I) be the retraction from [Hub93,
Prop. 2.6(iii)]. Then, r(u) is a continuous valuation of B with I 6⊆ supp(r(u)) by Theorem 2.8 and
[Hub93, Prop. 2.6(iv)], and so supp(r(u)) is not open. By Step 1, there then exists v ∈ Cont(A)
with r(u) = v|B, and by Lemma 3.1(ii), there exists a vertical generization w ∈ Spa(A,A+) of v,
which is analytic by Step 1, a contradiction.

Step 3. The topology of A/{0} is discrete.

Consider the localization

ϕ : B −→ (1 + I)−1B =: C.

Then, ϕ(I) · C ⊆ R(C), where R denotes the Jacobson radical [AM69, Exc. 3.2]. Thus, every
maximal ideal in C contains I, and Step 2 implies that ϕ(I) ·C is contained in every prime ideal of
C, i.e., ϕ(I) · C ⊆ N(C), the nilradical of C. Since I is finitely generated, there exists n ∈ N with

ϕ(In) · C = {0}.

By definition of the localization, there exists i ∈ I with (1 + i)In = {0} in B. Thus, In ⊂ In+1, so
In = In+1 and In = Ik for every k ≥ n by multiplying by appropriate powers of I on both sides.
Thus, the topology of A/{0} is discrete. �

3We owe this geometric interpretation to [Con14, Prop. 11.6.1], who also says “Huber employ[s] a fluent command
of valuation theory (using vertical generization and horizontal specialization i[n] clever ways)” to prove Step 2.
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3.4. Invariance under completion. We now come to our last result, which really gives credence
to the interpretation of Spa(A,A+) as a “punctured tubular neighborhood.” Let (A,A+) be a

Huber pair. Then, (Â, Â+) is also a Huber pair (after possibly taking the integral closure of Â+; see
[Con14, Rem. 11.5.2]).

Proposition 3.12 [Hub93, Prop. 3.9]. The canonical map

g : Spa(Â, Â+) −→ Spa(A,A+)

is a homeomorphism identifying rational domains.

We start with two preparatory Lemmas.

Lemma 3.13 [Hub93, Lem. 3.11]. Let X be a quasi-compact subset of Spa(A,A+), and let s ∈ A
such that v(s) 6= 0 for all x ∈ X. Then, there exists a neighborhood U of 0 in A such that v(u) < v(s)
for all v ∈ X,u ∈ U .

Proof. Let T ⊂ A◦◦ be finite such that T ·A◦◦ is open. For each n ∈ N, put

Xn = R

(
Tn

s

)
⊆ Spa(A,A+).

Each Xn is open, and X ⊆ ⋃n∈NXn. By quasi-compactness, X ⊆ Xm for some m ∈ N. The set

U = Tm ·A◦◦

is then an open neighborhood of 0 in A, and v(u) < v(s) for all v ∈ X,u ∈ U . �

The next Lemma says that rational domains in Spa(Â, Â+) are insensitive to small perturbations
in defining parameters. This is the trickiest part of the proof; see [Con14, §11.5].

Lemma 3.14 [Hub93, Lem. 3.10]. Suppose A is complete, and let s, t1, . . . , tn ∈ A such that the
ideal I = (t1, . . . , tn)A is open in A. Then, there is a neighborhood U ⊆ A of 0 such that

R

(
t1, . . . , tn

s

)
= R

(
t′1, . . . , t

′
n

s′

)

for all s′ ∈ s+ U and t′i ∈ ti + U such that I ′ = (t′1, . . . , t
′
n)A is open in A.

Proof. Let B be a ring of definition of A. Let r1, . . . , rm ∈ B ∩ I such that J := (r1, . . . , rm)B is
open in B. By [Bou98, Ch. III, §2, no 8, Cor. 2 to Thm. 1], there exists a neighborhood V ⊆ B of 0
such that J = (r′1, . . . , r

′
m)B for any r′i ∈ ri + V . There therefore exists a neighborhood U ′ of 0 in A

such that (t′1, . . . , t
′
n)A is open in A where t′i ∈ ti + U .

Now let t0 := s. For each i ∈ {0, . . . , n}, let

Ri = R

(
t0, . . . , tn

ti

)
.

Then, Ri is quasi-compact by Theorem 3.10(ii), and v(ti) 6= 0 for every v ∈ Ri. By applying
Lemma 3.13 to each Ri separately, and then taking the intersection of the resulting open sets, there
exists a neighborhood U ′′ of 0 in A such that v(u) < v(ti) for every u ∈ U ′′, i ∈ {0, . . . , n}, v ∈ Ri.
Claim. The open set U = U ′ ∩ U ′′ ∩A◦◦ works.

Step 1. R0 ⊆ R
( t′1,...,t′n

t′0

)
.

Let v ∈ R0 be given. Since t′i − ti ∈ U ′′ for i = 0, . . . , n, we have

v(t′i − ti) < v(t0)

for i = 0, . . . , n. This implies for every i = 1, . . . , n,

v(t′i) = v
(
ti + (t′i − ti)

)
≤ max

{
v(ti), v(t′i − ti)

}
≤ v(t0) = v

(
t0 + (t′0 − t0)

)
= v(t′0).
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Thus, v ∈ R
( t′1,...,t′n

t′0

)
.

Step 2. R0 ⊇ R
( t′1,...,t′n

t′0

)
.

Suppose v /∈ R0. First suppose v(ti) = 0 for all i. Then, supp(v) ⊇ I, hence supp(v) is open.

Thus, t′0 − t0 ∈ supp(v) (since t′0 − t0 ∈ A◦◦) which implies t′0 ∈ supp(v). Thus, v /∈ R
( t′1,...,t′n

t′0

)
.

Otherwise, suppose v(ti) 6= 0 for some i. Let j such that

v(tj) = max
{
v(t0), . . . , v(tn)

}
.

We have v(t0) < v(tj), for otherwise v ∈ R0. Since t′i − ti ∈ U ′′ for every i and v ∈ Rj , we have
v(t′i − ti) < v(tj) for all i. Then,

v(t′0) = v
(
t0 + (t′0 − t0)

)
≤ max

{
v(t0), v(t′0 − t0)

}
< v(tj) = v

(
tj + (t′j − tj)

)
= v(t′j),

hence v /∈ R
( t′1,...,t′n

t′0

)
. �

We can now show Proposition 3.12.

Proof of Proposition 3.12. Since continuous valuations extend continuously when taking completions
in a unique way, the map g is a bijection. Since we already know rational domains pull back

Proposition 2.10, it suffices to show that if U ⊆ Spa(Â, Â+) is a rational domain, then g(U) is a
rational domain in Spa(A,A+).

Let i : A→ Â be the natural map. By Lemma 3.14, since i(A) is dense in Â, there exist s ∈ A
and T ⊆ A such that

U = R

(
i(T )

i(S)

)
.

Since U is quasi-compact by Theorem 3.10(ii), and since v
(
i(s)

)
6= 0 for every v ∈ G, there exists

a neighborhood G of 0 in A such that v
(
i(g)

)
≤ v

(
i(s)

)
for all v ∈ U and g ∈ G by Lemma 3.13.

Finally, let D be a finite subset of G such that D ·A is open. Then,

g(U) = R

(
T ∪D
s

)
. �
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