CONTINUUM MECHANICS
 - Introduction to tensors

Attila KOSSA

Budapest University of Technology and Economics Department of Applied Mechanics
2016.09.13.

Geometrical meaning of the scalar (or dot) product

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \varphi \tag{1}
\end{equation*}
$$

where φ is the angle between the tips of \mathbf{a} and \mathbf{b}, whereas $|\mathbf{a}|$ and $|\mathbf{b}|$ represent the length of \mathbf{a} and \mathbf{b}. Vectors \mathbf{a} and \mathbf{b} are orthogonal (or perpendicular to each other) if their scalar product is zero, i.e. $\mathbf{a} \cdot \mathbf{b}=0$. Obviously we can observe that $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$.

Geometrical meaning of the cross (or vector) product

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin \varphi) \mathbf{e} \tag{2}
\end{equation*}
$$

where \mathbf{e} is a unit vector perpendicular to the plane spanned by vectors \mathbf{a} and \mathbf{b}. Rotating \mathbf{a} about \mathbf{e} with positive angle φ carries \mathbf{a} to \mathbf{b}. \mathbf{a} and \mathbf{b} are parallel if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$. It follows that $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$.

Projection

Let the projection of vector a along the direction designated by the unit vector \mathbf{e} be denoted by $\mathbf{a}_{\mathbf{e}}$. Then

$$
\begin{equation*}
\mathbf{a}_{\mathbf{e}}=(\mathbf{a} \cdot \mathbf{e}) \mathbf{e} \tag{3}
\end{equation*}
$$

Cartesian basis

A Cartesian basis defined by three mutually perpendicular vectors, \mathbf{e}_{1}, \mathbf{e}_{2} and \mathbf{e}_{3}, with the following properties:

$$
\begin{align*}
& \mathbf{e}_{1} \cdot \mathbf{e}_{2}=0, \quad \mathbf{e}_{1} \cdot \mathbf{e}_{3}=0, \quad \mathbf{e}_{2} \cdot \mathbf{e}_{3}=0, \tag{4}\\
& \mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2} . \tag{5}
\end{align*}
$$

$\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} are unit vectors. A Cartesian coordinate frame is defined by its origin O together with the right-handed orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.

Component representation

Any vector a can be uniquely defined with the linear combination of the basis vectors ($\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3}) as

$$
\begin{equation*}
\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}, \tag{6}
\end{equation*}
$$

where the components (a_{1}, a_{2} and a_{3}) are real numbers. The components of a along the bases are obtained by calculating the projections

$$
\begin{equation*}
a_{1}=\mathbf{a} \cdot \mathbf{e}_{1}, \quad a_{2}=\mathbf{a} \cdot \mathbf{e}_{2}, \quad a_{3}=\mathbf{a} \cdot \mathbf{e}_{3} . \tag{7}
\end{equation*}
$$

Arranging the components into a 3×1 column matrix we arrive at the matrix representation of vector a as

$$
[\mathbf{a}]=\left[\begin{array}{l}
a_{1} \tag{8}\\
a_{2} \\
a_{3}
\end{array}\right]
$$

Obviously, the components of a vector a in other Cartesian basis will be different numbers.

Index notation I

Consider the component representation of vector a:

$$
\begin{equation*}
\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}=\sum_{i=1}^{3} a_{i} \mathbf{e}_{i} \tag{9}
\end{equation*}
$$

In order to abbreviate (or simplify) the expression we can adopt the Einstein's summation convention: if and index appears twice in a term, then a sum must be applied over that index. Consequently, vector a can be given as

$$
\begin{equation*}
\mathbf{a}=\sum_{i=1}^{3} a_{i} \mathbf{e}_{i}=a_{i} \mathbf{e}_{i} \tag{10}
\end{equation*}
$$

- Vectors

Index notation II

$$
\begin{equation*}
\mathbf{a}=\sum_{i=1}^{3} a_{i} \mathbf{e}_{i}=a_{i} \mathbf{e}_{i} \tag{11}
\end{equation*}
$$

The index used to represent the sum is called dummy index. Replacing the index i in the above expression does not affect the final result, thus we can use any symbol:

$$
\begin{equation*}
a_{i} \mathbf{e}_{i}=a_{b} \mathbf{e}_{b}=a_{M} \mathbf{e}_{M}=a_{\beta} \mathbf{e}_{\beta} \quad \text { etc. } \tag{12}
\end{equation*}
$$

Any other index in an equation is a free index.

Kronecker delta symbol

The Kronecker delta symbol can be used to represents the components of the 3×3 identity matrix [$\mathbf{I}]$ as

$$
\delta_{i j}= \begin{cases}0 & \text { if } i \neq j \tag{13}\\ 1 & \text { if } i=j\end{cases}
$$

Therefore the identity matrix can be written as

$$
[\mathbf{I}]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{14}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{21} & \delta_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right] .
$$

In addition, the Kronecker delta symbol represents the scalar product of the orthonormal basis:

$$
\begin{equation*}
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j} \tag{15}
\end{equation*}
$$

Permutation symbol I

The permutation symbol is also called as alternating symbol or LeviCivita symbol. It can be imagined as a symbol which represents 27 numbers (either 0,1 or -1) depending on the value of the indices:

$$
\epsilon_{i j k}=\left\{\begin{align*}
1 & \text { for even permutation of } i j k \tag{16}\\
-1 & \text { for odd permutation of } i j k \\
0 & \text { if there is a repeated index }
\end{align*}\right.
$$

Consequently

$$
\begin{align*}
& \epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1 \tag{17}\\
& \epsilon_{132}=\epsilon_{213}=\epsilon_{321}=-1 \tag{18}\\
& \epsilon_{111}=\epsilon_{122}=\epsilon_{113}=\ldots=0 \tag{19}
\end{align*}
$$

Permutation symbol II

The cross product of the basis vectors can be easily expressed using the permutation symbol as

$$
\begin{align*}
& \mathbf{e}_{i} \times \mathbf{e}_{j}=\epsilon_{i j k} \mathbf{e}_{k}, \tag{20}\\
& \mathbf{e}_{1} \times \mathbf{e}_{2}=\epsilon_{123} \mathbf{e}_{3}=\mathbf{e}_{3}, \tag{21}\\
& \mathbf{e}_{2} \times \mathbf{e}_{3}=\epsilon_{231} \mathbf{e}_{1}=\mathbf{e}_{1}, \tag{22}\\
& \mathbf{e}_{3} \times \mathbf{e}_{1}=\epsilon_{312} \mathbf{e}_{2}=\mathbf{e}_{2} . \tag{23}
\end{align*}
$$

Scalar product

The scalar product of vectors $\mathbf{a}=a_{i} \mathbf{e}_{i}$ and $\mathbf{b}=b_{j} \mathbf{e}_{j}$ is calculated as

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\left(a_{i} \mathbf{e}_{i}\right) \cdot\left(b_{j} \mathbf{e}_{j}\right)=a_{i} b_{j} \mathbf{e}_{i} \cdot \mathbf{e}_{j}=a_{i} b_{j} \delta_{i j}=a_{i} b_{i}, \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} . \tag{25}
\end{equation*}
$$

Observe the replacement property of $\delta_{i j}$: If $\delta_{i j}$ appears in a term, where i (or j) is a dummy index, then it can be changed to j (or i) and $\delta_{i j}$ can be removed from the term. For example:

$$
\begin{align*}
& a_{i} b_{j} \delta_{i j}=a_{i} b_{i}=a_{j} b_{j} \tag{26}\\
& \sigma_{a b} \delta_{b k}=\sigma_{a k} \tag{27}\\
& c_{i j k} \delta_{j r} \delta_{s k}=c_{i r k} \delta_{s k}=c_{i r s} \tag{28}
\end{align*}
$$

Cross product I

The cross product of vectors $\mathbf{a}=a_{i} \mathbf{e}_{i}$ and $\mathbf{b}=b_{j} \mathbf{e}_{j}$ is calculated as

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=\left(a_{i} \mathbf{e}_{i}\right) \times\left(b_{j} \mathbf{e}_{j}\right)=a_{i} b_{j} \mathbf{e}_{i} \times \mathbf{e}_{j}=\underbrace{a_{i} b_{j} \epsilon_{i j k}}_{c_{k}} \mathbf{e}_{k}, \tag{29}
\end{equation*}
$$

where (20) was applied. Using the summation convention it can be clearly concluded that $a_{i} b_{j} \epsilon_{i j k}$ is a quantity having only one index, namely k. We can denote this new quantity with c_{k} for simplicity, which is nothing else just the component of the new vector resulting from the cross product.

Cross product II

Therefore

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=\underbrace{a_{i} b_{j} \epsilon_{i j k}}_{c_{k}} \mathbf{e}_{k}=c_{k} \mathbf{e}_{k}=\mathbf{c}, \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{1}=a_{i} b_{j} \epsilon_{i j 1}=a_{2} b_{3} \epsilon_{231}+a_{3} b_{2} \epsilon_{321}=a_{2} b_{3}-a_{3} b_{2}, \tag{31}\\
& c_{2}=a_{i} b_{j} \epsilon_{i j 2}=a_{3} b_{1} \epsilon_{312}+a_{1} b_{3} \epsilon_{132}=a_{3} b_{1}-a_{1} b_{3}, \tag{32}\\
& c_{3}=a_{i} b_{j} \epsilon_{i j 3}=a_{1} b_{2} \epsilon_{123}+a_{2} b_{1} \epsilon_{213}=a_{1} b_{2}-a_{2} b_{1}, \tag{33}\\
& {[\mathbf{c}]=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] .} \tag{34}
\end{align*}
$$

- Tensor algebra

- Vectors

Cross product III

We get the same result using the classical method to compute the cross product:

$$
\begin{aligned}
& \mathbf{a} \times \mathbf{b}=\left|\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& \mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{e}_{1}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{e}_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{e}_{3} .
\end{aligned}
$$

Triple scalar product I

Geometrically, the triple scalar product between vectors \mathbf{a}, \mathbf{b} and \mathbf{c} defines the volume of a paralelepiped spanned by \mathbf{a}, \mathbf{b} and \mathbf{c} forming a right-handed system. Let

$$
\begin{equation*}
\mathbf{a}=a_{i} \mathbf{e}_{i}, \quad \mathbf{b}=b_{j} \mathbf{e}_{j}, \quad \mathbf{c}=c_{m} \mathbf{e}_{m} \tag{37}
\end{equation*}
$$

Then

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\left(a_{i} b_{j} \epsilon_{i j k} \mathbf{e}_{k}\right) \cdot\left(c_{m} \mathbf{e}_{m}\right)=a_{i} b_{j} \epsilon_{i j k} c_{m}\left(\mathbf{e}_{k} \cdot \mathbf{e}_{m}\right), \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=a_{i} b_{j} \epsilon_{i j k} c_{m} \delta_{k m}=a_{i} b_{j} c_{k} \epsilon_{i j k} \tag{39}
\end{equation*}
$$

It can be verified that

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}=(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} . \tag{40}
\end{equation*}
$$

Triple scalar product II

The triple scalar product can be calculated using determinant as

$$
\begin{align*}
& (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=|[\mathbf{a}],[\mathbf{b}],[\mathbf{c}]|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|, \tag{41}\\
& (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+b_{1}\left(a_{3} c_{2}-a_{2} c_{3}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right) . \tag{42}\\
& (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=a_{1} b_{j} c_{k} \epsilon_{1 j k}+b_{1} a_{i} c_{k} \epsilon_{i 1 k}+c_{1} a_{i} b_{j} \epsilon_{i j 1} . \tag{43}
\end{align*}
$$

Triple vector product

Let

$$
\begin{equation*}
\mathbf{a}=a_{q} \mathbf{e}_{q}, \quad \mathbf{b}=b_{i} \mathbf{e}_{i}, \quad \mathbf{c}=c_{j} \mathbf{e}_{j} \tag{44}
\end{equation*}
$$

Then the triple vector product is obtained as

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\left(a_{q} \mathbf{e}_{q}\right) \times\left(b_{i} c_{j} \epsilon_{i j k} \mathbf{e}_{k}\right)=a_{q} b_{i} c_{j} \epsilon_{i j k}\left(\mathbf{e}_{q} \times \mathbf{e}_{k}\right), \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\underbrace{a_{q} b_{i} c_{j} \epsilon_{i j k} \epsilon_{q k p}}_{d_{p}} \mathbf{e}_{p} . \tag{46}
\end{equation*}
$$

Thus, the matrix representation of the resulting vector is

$$
[\mathbf{a} \times(\mathbf{b} \times \mathbf{c})]=\left[\begin{array}{c}
a_{q} b_{i} c_{j} \epsilon_{i j k} \epsilon_{q k 1} \tag{47}\\
a_{q} b_{i} c_{j} \epsilon_{i j k} \epsilon_{q k 2} \\
a_{q} b_{i} c_{j} \epsilon_{i j k} \epsilon_{q k 3}
\end{array}\right]=\ldots
$$

Epsilon-delta identities

The following useful identities can be easily verified:

$$
\begin{align*}
\delta_{a a} & =3, \tag{48}\\
\epsilon_{a b c} \epsilon_{a b c} & =6, \tag{49}\\
\epsilon_{a b m} \epsilon_{a d m} & =\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}, \tag{50}\\
\epsilon_{a c d} \epsilon_{b c d} & =2 \delta_{a b} . \tag{51}
\end{align*}
$$

Definition

A second-order tensor $\boldsymbol{\sigma}$ can be imagined as a linear operator. Applying $\boldsymbol{\sigma}$ on a vector \mathbf{n} generates a new vector $\boldsymbol{\rho}$:

$$
\begin{equation*}
\rho=\sigma \mathbf{n} \tag{52}
\end{equation*}
$$

thus it defines a linear transformation. In hand-written notes we use double underline to indicate second-order tensors. Thus, the expression above can be written as

$$
\begin{equation*}
\underline{\rho}=\underline{\underline{\sigma}} \underline{\mathrm{n}} . \tag{53}
\end{equation*}
$$

The second-order identity tensor \mathbf{I} and the second order zero tensor $\mathbf{0}$ have the properties

$$
\begin{equation*}
\mathbf{I n}=\mathbf{n}, \quad \mathbf{0} \mathbf{n}=\mathbf{0} \tag{54}
\end{equation*}
$$

The projection (3) can be expressed using second-order tensor \mathbf{P} : Acting \mathbf{P} on a generates a new vector $\mathbf{a}_{\mathbf{e}}$.

Representation in a coordinate frame

The second-order tensor $\boldsymbol{\sigma}$ has nine components in a given coordinate frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$. The components $\sigma_{i j}$ are computed by

$$
\begin{equation*}
\sigma_{i j}=\mathbf{e}_{i} \cdot\left(\boldsymbol{\sigma} \mathbf{e}_{j}\right) \tag{55}
\end{equation*}
$$

The matrix representation of $\boldsymbol{\sigma}$ in a given coordinate frame is

$$
[\boldsymbol{\sigma}]=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \tag{56}\\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

- Tensor algebra

-Second-order tensors

Dyadic product of two vectors

The matrix representation of the dyadic (or tensor or direct) product of vector \mathbf{a} and \mathbf{b} is

$$
[\mathbf{a} \otimes \mathbf{b}]=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \tag{57}\\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right],
$$

$$
[\mathbf{a} \otimes \mathbf{b}]=[\mathbf{a}][\mathbf{b}]^{T}=\left[\begin{array}{c}
a_{1} \tag{58}\\
a_{2} \\
a_{3}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] .
$$

The $i j$-th component of the resulting second-order tensor is $a_{i} b_{j}$. It can be seen that

$$
\begin{equation*}
(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{c}=(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} . \tag{59}
\end{equation*}
$$

Representation of second-order tensors with dyads

The second-order tensor \mathbf{A} can be written as the linear combination of the dyads formed by the basis vectors:

$$
\begin{equation*}
\mathbf{A}=A_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{60}
\end{equation*}
$$

Thus, the identity tensor can be written as

$$
\begin{equation*}
\mathbf{I}=\delta_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{61}
\end{equation*}
$$

The dyad $\mathbf{a} \otimes \mathbf{b}$ is a 2 nd-order tensor, but not all 2 nd-order tensor can be written as a dyadic product of two vectors! In general, a 2nd-order tensor has 9 components, whereas a dyad has only 6 components (2×3)

Indical notation I

Consider the equation

$$
\begin{equation*}
\mathbf{a}=\mathbf{b}+\mathbf{M c} . \tag{62}
\end{equation*}
$$

Its matrix representation is

$$
\begin{align*}
& {[\mathbf{a}]=[\mathbf{b}]+[\mathbf{M}][\mathbf{c}],} \tag{63}\\
& {\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]+\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] .} \tag{64}
\end{align*}
$$

It can be formulated using indical notation as

$$
\begin{equation*}
a_{i}=b_{i}+M_{i j} c_{j} \tag{65}
\end{equation*}
$$

Indical notation II

- It should be observed that the same free index must appear in every term of an equation.
- The indical notation is an order-independent representation. In matrix notation the order of the multiplication cannot be changed, however, in the indical notation (using the summation convention) the terms can be rearranged without altering the result. Example: $\mathbf{A b} \neq \mathbf{b A}$, but $A_{i j} b_{j}=b_{j} A_{i j}$.
- "The essence of the Einstein summation notation is to create a set of notational defaults so that the summation sign and the range of the subscripts do not need to be written explicitly in each expression."
- "It is a collection of time-saving conventions. After an initial investment of time, it converts difficult problems into problems with workable solutions. It does not make easy problem easier, however."
-Second-order tensors

Trace

The trace of the second-order tensor \mathbf{A} is

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\operatorname{tr}[\mathbf{A}]=A_{11}+A_{22}+A_{33}=A_{i i} . \tag{66}
\end{equation*}
$$

It is an invariant quantity.

Determinant

The determinant of the second-order tensor \mathbf{A} is

$$
\begin{equation*}
\operatorname{det} \mathbf{A}=\operatorname{det}[\mathbf{A}], \tag{67}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{det} \mathbf{A} & =A_{11}\left(A_{22} A_{33}-A_{23} A_{32}\right)-A_{12}\left(A_{21} A_{33}-A_{23} A_{31}\right) \\
& +A_{13}\left(A_{21} A_{32}-A_{22} A_{31}\right), \tag{68}\\
\operatorname{det} \mathbf{A} & =\epsilon_{i j k} A_{1 i} A_{2 j} A_{3 k}, \tag{6}
\end{align*}
$$

It is an invariant quantity. \mathbf{A} is singular when $\operatorname{det} \mathbf{A}=0$. Useful relation
$\operatorname{det}(\mathbf{A B})=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}, \quad \operatorname{det} \mathbf{A}^{T}=\operatorname{det} \mathbf{A}$

Double contraction

The double contraction (or double-dot product) between 2nd-order tensors \mathbf{A} and \mathbf{B} is defined as

$$
\begin{equation*}
\mathbf{A}: \mathbf{B}=A_{i j} B_{i j}=A_{11} B_{11}+A_{12} B_{12}+\ldots, \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{A}: \mathbf{B}=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{B}\right)=\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{A}\right)=\operatorname{tr}\left(\mathbf{A B}^{T}\right)=\operatorname{tr}\left(\mathbf{B} \mathbf{A}^{T}\right) . \tag{72}
\end{equation*}
$$

Thus, the trace of \mathbf{A} can be written as

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\mathbf{I}: \mathbf{A}=\left(\delta_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right):\left(A_{m n} \mathbf{e}_{m} \otimes \mathbf{e}_{n}\right)=\delta_{i j} A_{m n} \delta_{i m} \delta_{j n_{i j}}, \tag{73}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\delta_{i j} A_{i j}=A_{i i}=A_{11}+A_{22}+A_{33} . \tag{74}
\end{equation*}
$$

Norm

The norm of the second-order tensor \mathbf{A} is calculated as

$$
\begin{equation*}
\|\mathbf{A}\|=\sqrt{\mathbf{A}: \mathbf{A}} \geq 0 . \tag{75}
\end{equation*}
$$

Symmetric and skew-symmetric parts I

The following identity holds for the transpose of \mathbf{A} :

$$
\begin{equation*}
(\mathbf{A} \mathbf{u}) \cdot \mathbf{v}=\left(\mathbf{u} \mathbf{A}^{T}\right) \cdot \mathbf{v} . \tag{76}
\end{equation*}
$$

A can be decomposed into the sum of a symmetric and a skew-symmetric parts as

$$
\begin{align*}
& \mathbf{A}=\mathbf{A}_{\text {symm }}+\mathbf{A}_{\text {skew }} \tag{77}\\
& \mathbf{A}_{\text {symm }}=\operatorname{symm}(\mathbf{A})=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right) \tag{78}\\
& \mathbf{A}_{\text {skew }}=\operatorname{skew}(\mathbf{A})=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{T}\right) \tag{79}
\end{align*}
$$

Symmetric and skew-symmetric parts II

Thus

$$
\begin{align*}
& \mathbf{A}_{\text {symm }}=\mathbf{A}_{\text {symm }}^{T}, \quad \mathbf{A}_{\text {skew }}=-\mathbf{A}_{\text {skew }}^{T} . \tag{80}\\
& \left(\mathbf{A}_{\text {symm }}\right)_{a b}=\left(\mathbf{A}_{\text {symm }}\right)_{b a} \tag{81}\\
& \left(\mathbf{A}_{\text {skew }}\right)_{a b}=-\left(\mathbf{A}_{\text {skew }}\right)_{b a} \tag{82}
\end{align*}
$$

Symmetric part has 6, whereas the skew-symmetric part has 3 independent components.

Symmetric and skew-symmetric parts III

A skew-symmetric tensor \mathbf{W} behaves like a vector. The following relation can be easily verified:

$$
\begin{equation*}
\mathbf{W u}=\boldsymbol{\omega} \times \mathbf{u}, \tag{83}
\end{equation*}
$$

$$
\begin{align*}
& {[\mathbf{W}]=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \quad \Longrightarrow \quad[\boldsymbol{\omega}]=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]} \tag{84}\\
& |\boldsymbol{\omega}|=\frac{1}{\sqrt{2}}\|\mathbf{W}\| . \tag{85}
\end{align*}
$$

Inverse

The inverse \mathbf{A}^{-1} of \mathbf{A} is defined as

$$
\begin{equation*}
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \tag{86}
\end{equation*}
$$

A necessary and sufficient condition for the existence of \mathbf{A}^{-1} is that $\operatorname{det} \mathbf{A} \neq 0$.
For invertible tensors \mathbf{A} and \mathbf{B} :

$$
\begin{align*}
(\mathbf{A B})^{-1} & =\mathbf{B}^{-1} \mathbf{A}^{-1}, \tag{87}\\
(k \mathbf{A})^{-1} & =\frac{1}{k} \mathbf{A}^{-1}, \tag{88}\\
\left(\mathbf{A}^{T}\right)^{-1} & =\left(\mathbf{A}^{-1}\right)^{T}=\mathbf{A}^{-T}, \tag{89}\\
\operatorname{det}\left(\mathbf{A}^{-1}\right) & =\frac{1}{\operatorname{det} \mathbf{A}} . \tag{90}
\end{align*}
$$

Lecond-order tensors

Orthogonal tensor

A tensor \mathbf{Q} is said to be orthogonal if

$$
\begin{equation*}
\mathbf{Q}^{T}=\mathbf{Q}^{-1}, \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{Q Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I} \tag{92}
\end{equation*}
$$

proper orthogonal	$\operatorname{det} \mathbf{Q}=1$
inproper orthogonal	$\operatorname{det} \mathbf{Q}=-1$

Proper orthogonal tensors represent rotation, whereas inproper orthogonal tensors represent reflection.
-Second-order tensors

Definiteness

For all $\mathbf{v} \neq 0$:

Positive semi-definite	$\mathbf{v} \cdot \mathbf{A v} \geq 0$
Positive definite	$\mathbf{v} \cdot \mathbf{A v}>0$
Negative semi-definite	$\mathbf{v} \cdot \mathbf{A v} \leq 0$
Negative definite	$\mathbf{v} \cdot \mathbf{A v}<0$

Change of basis I

Let the bases vectors of two Cartesian coordinate system (having the same origin) be denoted by

$$
\begin{equation*}
\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \quad \text { and } \quad \widetilde{\mathbf{e}}_{1}, \widetilde{\mathbf{e}}_{2}, \widetilde{\mathbf{e}}_{3} . \tag{93}
\end{equation*}
$$

Then, a vector a can be written as

$$
\begin{equation*}
\mathbf{a}=a_{i} \mathbf{e}_{i} \equiv \widetilde{a}_{j} \widetilde{\mathbf{e}}_{j} \tag{94}
\end{equation*}
$$

where the components a_{i} and \widetilde{a}_{j} are obviously different. Denote $Q_{i j}$ the scalar products between the two bases as

$$
\begin{equation*}
Q_{i j}=\mathbf{e}_{i} \cdot \widetilde{\mathbf{e}}_{j} . \tag{95}
\end{equation*}
$$

Change of basis II

Then

$$
\begin{align*}
\widetilde{\mathbf{e}}_{1} & =\left(\mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{1}\right) \mathbf{e}_{1}+\left(\mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{1}\right) \mathbf{e}_{2}+\left(\mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{1}\right) \mathbf{e}_{3}, \tag{96}\\
\widetilde{\mathbf{e}}_{2} & =\left(\mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{2}\right) \mathbf{e}_{1}+\left(\mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{2}\right) \mathbf{e}_{2}+\left(\mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{2}\right) \mathbf{e}_{3}, \tag{97}\\
\widetilde{\mathbf{e}}_{3} & =\left(\mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{3}\right) \mathbf{e}_{1}+\left(\mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{3}\right) \mathbf{e}_{2}+\left(\mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{3}\right) \mathbf{e}_{3} . \tag{98}
\end{align*}
$$

Thus

$$
\begin{equation*}
\widetilde{\mathbf{e}}_{j}=Q_{i j} \mathbf{e}_{i} \quad \text { and } \quad \mathbf{e}_{i}=Q_{i j} \widetilde{\mathbf{e}}_{j} \tag{99}
\end{equation*}
$$

Combining (94) and (99) gives

$$
\begin{equation*}
a_{i} \mathbf{e}_{i}=\widetilde{a}_{j} Q_{i j} \mathbf{e}_{i} \quad \text { and } \quad a_{i} Q_{i j} \widetilde{\mathbf{e}}_{j}=\widetilde{a}_{j} \widetilde{\mathbf{e}}_{j} \tag{100}
\end{equation*}
$$

Thus

$$
\begin{equation*}
a_{i}=Q_{i j} \widetilde{a}_{j} \quad \text { and } \quad \widetilde{a}_{j}=a_{i} Q_{i j} \tag{101}
\end{equation*}
$$

-Second-order tensors

Change of basis III

It can be more easily expressed using matrix notation as

$$
\begin{equation*}
[\mathbf{a}]=[\mathbf{Q}][\widetilde{\mathbf{a}}] \quad \text { and } \quad[\widetilde{\mathbf{a}}]=[\mathbf{Q}]^{T}[\mathbf{a}], \tag{102}
\end{equation*}
$$

where \mathbf{Q} contains the angle cosines as

$$
[\mathbf{Q}]=\left[\begin{array}{lll}
\mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{1} \cdot \widetilde{\mathbf{e}}_{3} \tag{103}\\
\mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{2} \cdot \widetilde{\mathbf{e}}_{3} \\
\mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{2} & \mathbf{e}_{3} \cdot \widetilde{\mathbf{e}}_{3}
\end{array}\right] .
$$

For 2nd-order tensor A:

$$
\begin{equation*}
[\mathbf{A}]=[\mathbf{Q}][\widetilde{\mathbf{A}}][\mathbf{Q}]^{T} \quad \text { and } \quad[\widetilde{\mathbf{A}}]=[\mathbf{Q}]^{T}[\mathbf{A}][\mathbf{Q}] . \tag{104}
\end{equation*}
$$

Deviatoric and spherical parts

Every tensor A can be decomposed into a deviatoric and spherical part as

$$
\begin{equation*}
\mathbf{A}=\operatorname{dev}(\mathbf{A})+\operatorname{sph}(\mathbf{A}), \tag{105}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{sph}(\mathbf{A})=p \mathbf{I}=\left(\frac{1}{3} \operatorname{tr} \mathbf{A}\right) \mathbf{I} \tag{106}\\
& \operatorname{dev}(\mathbf{A})=\mathbf{A}-\left(\frac{1}{3} \operatorname{tr} \mathbf{A}\right) \mathbf{I} . \tag{107}
\end{align*}
$$

Eigenvalues, eigenvectors I

An eigenpair of a 2 nd-order tensor \mathbf{A} mean a scalar λ_{i} and unit vector \mathbf{n}_{i} satisfying

$$
\begin{equation*}
\mathbf{A n}_{i}=\lambda_{i} \mathbf{n}_{i} \quad \text { with } \quad i=1,2,3 \tag{108}
\end{equation*}
$$

λ_{i} are the eigenvalues (or principal values), whereas \mathbf{n}_{i} denote the normalized eigenvectors (principal directions, principal axes).

The eigenvalues are the roots of the characteristic cubic equation

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)=0 \tag{109}
\end{equation*}
$$

Eigenvalues, eigenvectors II

The eigenvectors are defined by the linear homogeneous equations

$$
\begin{equation*}
\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{n}_{i}=\mathbf{0} . \tag{110}
\end{equation*}
$$

- Eigenvalues of symmetric \mathbf{A} are reals.
- Eigenvalues of positive definite symmetric \mathbf{A} are strictly positive.

■ Eigenvectors of symmetric \mathbf{A} form mutually orthogonal basis.

Spectral decomposition

Any symmetric 2 nd-order tensor \mathbf{A} can be represented by its eigenvalues λ_{i} and eigenvectors \mathbf{n}_{i} as

$$
\begin{equation*}
\mathbf{A}=\sum_{i=1}^{3} \lambda_{i}\left(\mathbf{n}_{i} \otimes \mathbf{n}_{i}\right)=\sum_{i=1}^{3} \lambda_{i} \mathbf{m}_{i} \tag{111}
\end{equation*}
$$

where $\mathbf{m}_{i}=\mathbf{n}_{i} \otimes \mathbf{n}_{i}$ is the basis tensor (or projection tensor).
Matrix representation of \mathbf{A} in the coordinate system formed by its eigenvectors \mathbf{n}_{i} is

$$
[\mathbf{A}]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{112}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Principal invariants

The principal scalar invariants of the 2nd-order tensor \mathbf{A} are

$$
\begin{align*}
& I_{1}=\operatorname{tr} \mathbf{A}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \tag{113}\\
& I_{2}=\frac{1}{2}\left((\operatorname{tr} \mathbf{A})^{2}-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right)=\operatorname{tr}\left(\mathbf{A}^{-1}\right) \operatorname{det} \mathbf{A}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \tag{114}\\
& I_{3}=\operatorname{det} \mathbf{A}=\lambda_{1} \lambda_{2} \lambda_{3} . \tag{115}
\end{align*}
$$

Cayley-Hamilton theorem

The Cayley-Hamilton theorem states that the 2nd-order tensor A satisfies its characteristic equation. Thus

$$
\begin{equation*}
\mathbf{A}^{3}-I_{1} \mathbf{A}^{2}+I_{2} \mathbf{A}-I_{3} \mathbf{I}=\mathbf{0}, \tag{116}
\end{equation*}
$$

where I_{1}, I_{2} and I_{3} are the principal invariants of \mathbf{A}.

Indical notation

Commas in the subscript mean that a partial derivative is to be applied. The index after the comma represents partial derivatives with respect to the default arguments, which are usually the coordinates x_{1}, x_{2} and x_{3}.

$$
\begin{equation*}
u_{i, j}=\frac{\partial u_{i}}{\partial x_{j}} \tag{117}
\end{equation*}
$$

Example:

$$
\begin{equation*}
a_{i} u_{i, j}=a_{i} \frac{\partial u_{i}}{\partial x_{j}}=a_{1} \frac{\partial u_{1}}{\partial x_{j}}+a_{2} \frac{\partial u_{2}}{\partial x_{j}}+a_{3} \frac{\partial u_{3}}{\partial x_{j}} \tag{118}
\end{equation*}
$$

Nabla operator

The nabla operator (or del operator or vector-differential operator) is defined as

$$
\begin{equation*}
\nabla(\bullet)=\frac{\partial(\bullet)}{\partial x_{i}} \mathbf{e}_{i}, \tag{119}
\end{equation*}
$$

$$
\begin{equation*}
\nabla(\bullet)=\frac{\partial(\bullet)}{\partial x_{1}} \mathbf{e}_{1}+\frac{\partial(\bullet)}{\partial x_{2}} \mathbf{e}_{2}+\frac{\partial(\bullet)}{\partial x_{3}} \mathbf{e}_{3} . \tag{120}
\end{equation*}
$$

Gradient of a scalar field

The gradient of the smooth scalar field $T(\mathbf{x})$ (or $T\left(x_{i}\right)$ or $T\left(x_{1}, x_{2}, x_{3}\right)$) is the vector field

$$
\begin{equation*}
\operatorname{grad} T=\nabla T=\frac{\partial T}{\partial x_{i}} \mathbf{e}_{i}=\frac{\partial T}{\partial x_{1}} \mathbf{e}_{1}+\frac{\partial T}{\partial x_{2}} \mathbf{e}_{2}+\frac{\partial T}{\partial x_{3}} \mathbf{e}_{3} \tag{121}
\end{equation*}
$$

Indical notation:

$$
\begin{equation*}
T_{, i}=\frac{\partial T}{\partial x_{i}} \tag{122}
\end{equation*}
$$

The matrix representation of the resulting vector:

$$
[\operatorname{grad} T]=\left[\begin{array}{c}
T_{, 1} \tag{123}\\
T_{, 2} \\
T_{, 3}
\end{array}\right]
$$

Directional derivative

- $T(\mathbf{x})=$ constant denotes level surface
- The normal to the surface is $\operatorname{grad} T$
- The unit normal is $\mathbf{n}=\frac{\operatorname{grad} T}{\operatorname{|grad} T \mid}$
- The directional derivative of T at \mathbf{x} in the direction of a normalized vector \mathbf{u} is $(\operatorname{grad} T) \cdot \mathbf{u}$
- It takes the maximum (minimum) when $\mathbf{u}=\mathbf{n}(\mathbf{u}=-\mathbf{n})$
- The particular directional derivative $(\operatorname{grad} T) \cdot \mathbf{n}=|\operatorname{grad} T|$ is called as normal derivative

- Tensor calculus

L Gradient

Gradient of a vector field

The gradient of the vector field $\mathbf{u}(\mathbf{x})$ is the second-order tensor field

$$
\begin{equation*}
\operatorname{grad} \mathbf{u}=\nabla \mathbf{u}=\frac{\partial \mathbf{u}}{\partial \mathbf{x}}=\mathbf{u} \otimes \nabla=\frac{\partial u_{i}}{\partial x_{j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{124}
\end{equation*}
$$

Matrix representation:

$$
[\operatorname{grad} \mathbf{u}]=\left[\begin{array}{lll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \frac{\partial u_{1}}{\partial x_{3}} \tag{125}\\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\
\frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right]=\left[\begin{array}{lll}
u_{1,1} & u_{1,2} & u_{1,3} \\
u_{2,1} & u_{2,2} & u_{2,3} \\
u_{3,1} & u_{2,2} & u_{3,3}
\end{array}\right]
$$

Transposed gradient:

$$
\begin{equation*}
\operatorname{grad}^{T} \mathbf{u}=\nabla \otimes \mathbf{u}=\frac{\partial u_{i}}{\partial x_{j}} \mathbf{e}_{j} \otimes \mathbf{e}_{i} \tag{126}
\end{equation*}
$$

L Gradient

Gradient of a 2nd-order tensor field

The gradient of the second-order tensor field \mathbf{A} is the third-order tensor field

$$
\begin{align*}
\operatorname{grad} \mathbf{A} & =\mathbf{A} \otimes \nabla=\left(A_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right) \otimes\left(\frac{\partial(\bullet)}{\partial x_{k}} \mathbf{e}_{k}\right) \tag{127}\\
& =\frac{\partial A_{i j}}{\partial x_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k}=A_{i j, k} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \tag{128}
\end{align*}
$$

Thus, the $i j k$-th component is

$$
\begin{equation*}
(\operatorname{grad} \mathbf{A})_{i j k}=A_{i j, k} \tag{129}
\end{equation*}
$$

-Divergence
Divergence of a scalar field

Meaningless

L Divergence

Divergence of a vector field

The divergence of the vector field $\mathbf{a}=a_{i} \mathbf{e}_{i}$ is the scalar field

$$
\begin{equation*}
\operatorname{div} \mathbf{a}=\nabla \cdot \mathbf{a}=\left(\frac{\partial(\bullet)}{\partial x_{j}} \mathbf{e}_{j}\right) \cdot\left(a_{i} \mathbf{e}_{i}\right)=\frac{\partial a_{i}}{\partial x_{j}} \delta_{i j}=\frac{\partial a_{i}}{\partial x_{i}}=a_{i, i} \tag{130}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{diva}=\operatorname{tr}(\operatorname{grad} \mathbf{a}) \tag{131}
\end{equation*}
$$

If diva $=0$ then a is said to be solenoidal (or divergence-free or incompressible).

L Divergence

Divergence of a 2nd-order tensor field

The divergence of the 2 nd-order tensor field $\boldsymbol{\sigma}$ is the vector field

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}=\boldsymbol{\sigma} \cdot \nabla=\left(\sigma_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right) \cdot\left(\frac{\partial(\bullet)}{\partial x_{k}} \mathbf{e}_{k}\right)=\frac{\partial \sigma_{i j}}{\partial x_{k}} \delta_{j k} \mathbf{e}_{i}=\sigma_{i j, j} \mathbf{e}_{i} \tag{132}
\end{equation*}
$$

Thus, the matrix representation is

$$
[\operatorname{div} \boldsymbol{\sigma}]=\left[\begin{array}{c}
\sigma_{1 j, j} \tag{133}\\
\sigma_{2 j, j} \\
\sigma_{3 j, j}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{13}}{\partial x_{3}} \\
\frac{\partial \sigma_{21}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{23}}{\partial x_{3}} \\
\frac{\partial \sigma_{31}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{33}}{\partial x_{3}}
\end{array}\right]
$$

Curl of a scalar field

Meaningless

Curl of a vector field

The curl of the vector field $\mathbf{a}=a_{j} \mathbf{e}_{j}$ is the vector field

$$
\begin{align*}
\mathrm{curl} \mathbf{a} & =\operatorname{rot} \mathbf{a}=\nabla \times \mathbf{a}=\left(\frac{\partial}{\partial x_{i}} \mathbf{e}_{i}\right) \times\left(a_{j} \mathbf{e}_{j}\right) \tag{134}\\
& =\frac{\partial a_{j}}{\partial x_{i}} \epsilon_{i j k} \mathbf{e}_{k}=a_{j, i} \epsilon_{i j k} \mathbf{e}_{k} \tag{135}
\end{align*}
$$

$$
[\text { curl } \mathbf{a}]=\left[\begin{array}{c}
a_{3,2}-a_{2,3} \tag{136}\\
a_{1,3}-a_{3,1} \\
a_{2,1}-a_{1,2}
\end{array}\right]
$$

If curla $=0$ then the vector field is irrotational (or conservative or curl-free).
If a can be expressed as $\mathbf{a}=\operatorname{grad} \phi$, where ϕ is the potential of \mathbf{a}, then \mathbf{a} is irrotational, beacause of the identity $\operatorname{curl}(\operatorname{grad} \phi)=\mathbf{0}$.

- Tensor calculus

LCurl

Curl of a 2nd-order tensor field

The curl of the 2nd-order tensor field $\mathbf{A}=A_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}$ is the 2nd-order tensor field

$$
\begin{align*}
\operatorname{curl} \mathbf{A} & =\nabla \times \mathbf{A}=\left(\frac{\partial}{\partial x_{k}} \mathbf{e}_{k}\right) \times\left(A_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right) \tag{137}\\
& =\frac{\partial A_{i j}}{\partial x_{k}} \epsilon_{k i m} \mathbf{e}_{m} \otimes \mathbf{e}_{j}=A_{i j, k} \epsilon_{k i m} \mathbf{e}_{m} \otimes \mathbf{e}_{j} \tag{138}
\end{align*}
$$

$$
[\operatorname{curl} \mathbf{A}]=\left[\begin{array}{ccc}
A_{i 1, k} \epsilon_{k i 1} & A_{i 2, k} \epsilon_{k i 1} & A_{i 3, k} \epsilon_{k i 1} \tag{139}\\
A_{i 1, k} \epsilon_{k i 1} & A_{i 2, k} \epsilon_{k i 1} & A_{i 3, k} \epsilon_{k i 1} \\
A_{i 1, k} \epsilon_{k i 1} & A_{i 2, k} \epsilon_{k i 1} & A_{i 3, k} \epsilon_{k i 1}
\end{array}\right]
$$

where $A_{i 1, k} \epsilon_{k i 1}=A_{31,2}-A_{21,3}=\frac{\partial A_{31}}{\partial x_{2}}-\frac{\partial A_{21}}{\partial x_{3}}$ for instance.

Laplacian of a scalar field

The Laplacian operator is defined as

$$
\begin{align*}
& \triangle(\bullet)=\nabla^{2}(\bullet)=\nabla(\bullet) \cdot \nabla(\bullet)=\left(\frac{\partial(\bullet)}{\partial x_{i}} \mathbf{e}_{i}\right) \cdot\left(\frac{\partial(\bullet)}{\partial x_{j}} \mathbf{e}_{j}\right) \tag{140}\\
& \triangle(\bullet)= \frac{\partial^{2}(\bullet)}{\partial x_{i} \partial x_{j}} \mathbf{e}_{i} \cdot \mathbf{e}_{j}=\frac{\partial^{2}(\bullet)}{\partial x_{i} \partial x_{j}} \delta_{i j}=\frac{\partial^{2}(\bullet)}{\partial x_{i} \partial x_{i}} \tag{141}\\
& \triangle(\bullet)= \frac{\partial^{2}(\bullet)}{\partial x_{i}^{2}}=\frac{\partial^{2}(\bullet)}{\partial x_{1}^{2}}+\frac{\partial^{2}(\bullet)}{\partial x_{2}^{2}}+\frac{\partial^{2}(\bullet)}{\partial x_{3}^{2}} \tag{142}
\end{align*}
$$

The Laplacian of a scalar field T is the scalar field

$$
\begin{equation*}
\triangle T=\frac{\partial^{2} T}{\partial x_{1}^{2}}+\frac{\partial^{2} T}{\partial x_{2}^{2}}+\frac{\partial^{2} T}{\partial x_{3}^{2}}=T_{, i i} \tag{143}
\end{equation*}
$$

- Tensor calculus

Laplacian

Laplacian of a vector field

The Laplacian of a vector field $\mathbf{u}=u_{i} \mathbf{e}_{i}$ is the vector field

$$
\begin{align*}
\Delta \mathbf{u} & =\frac{\partial^{2}\left(u_{i} \mathbf{e}_{i}\right)}{\partial x_{j}^{2}}=\left(u_{i, j}\right)_{, j} \mathbf{e}_{i}=u_{i, j j} \mathbf{e}_{i} \tag{144}\\
{[\triangle \mathbf{u}] } & =\left[\begin{array}{l}
\frac{\partial^{2} u_{1}}{\partial x_{1}^{1}}+\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}} \\
\frac{\partial^{2} u_{2}}{\partial x_{1}}+\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}} \\
\frac{\partial^{2} u_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}
\end{array}\right] \tag{145}
\end{align*}
$$

