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Geometrical meaning of the scalar (or dot) product

a-b = |a| |b| cosp (1)

where ¢ is the angle between the tips of a and b, whereas |a| and |b|
represent the length of a and b. Vectors a and b are orthogonal (or
perpendicular to each other) if their scalar product is zero, i.e. a-b = 0.
Obviously we can observe that a-a = |a|*.
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Geometrical meaning of the cross (or vector) product

___________________________________________________________________________|
a x b= (|a|]|b|sinp)e (2)
where e is a unit vector perpendicular to the plane spanned by vectors

a and b. Rotating a about e with positive angle ¢ carries a to b. a
and b are parallel if a x b = 0. It follows that a x b = —b x a.
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Projection

Let the projection of vector a along the direction designated by the
unit vector e be denoted by ae. Then

a.=(a-e)e (3)
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Cartesian basis

A Cartesian basis defined by three mutually perpendicular vectors, ey,
e, and e3, with the following properties:

e ey =0, e -e3 =0, ey-e3 =0, (4)
€] X ey = es3, €y X ez =eq, €3 X e = eq. (5)

e1, ey and ez are unit vectors. A Cartesian coordinate frame is de-
fined by its origin O together with the right-handed orthonormal basis
{e1,eq,e3}.
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Component representation

Any vector a can be uniquely defined with the linear combination of
the basis vectors (e, es and e3) as

a = aje; + azes + ases, (6)

where the components (a1, as and ag) are real numbers. The compo-
nents of a along the bases are obtained by calculating the projections
ap =a-ey, as = a- ey, a3 = a-es. (7)

Arranging the components into a 3 x 1 column matrix we arrive at the
matrix representation of vector a as

[a] = | a2 |. (8)
as

Obviously, the components of a vector a in other Cartesian basis will
be different numbers.
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Index notation 1

Consider the component representation of vector a:

3

a=aje; + azes + azez = E a;e; 9)
=1

In order to abbreviate (or simplify) the expression we can adopt the
Einstein’s summation convention: if and index appears twice in a term,
then a sum must be applied over that index. Consequently, vector a
can be given as

3
a = Zaiei = a;€;. (10)
i=1
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Index notation II

3
a = Zaiei = a;€;. (11)
i=1

The index used to represent the sum is called dummy index. Replacing
the index 7 in the above expression does not affect the final result, thus
we can use any symbol:

a;€; = ape, = apen = ageg etc. (12)

Any other index in an equation is a free index.
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Kronecker delta symbol

The Kronecker delta symbol can be used to represents the components
of the 3 x 3 identity matrix [I] as

/0 ifi#£j
5”_{ 1 ifi=j (13)
Therefore the identity matrix can be written as
1 00 011 12 d13
M=|0 1 0|=/|0du 60 03 |. (14)
0 01 031 032 033

In addition, the Kronecker delta symbol represents the scalar product
of the orthonormal basis:

€;-€; = (5” (15)
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Permutation symbol I

The permutation symbol is also called as alternating symbol or Levi—
Civita symbol. It can be imagined as a symbol which represents 27
numbers (either 0, 1 or —1) depending on the value of the indices:

1 for even permutation of ijk
€k =4 —1 for odd permutation of ijk (16)
0 if there is a repeated index
Consequently
€123 = €231 = €312 = 1, (17)
€132 = €213 = €321 = —1, (18)

€111 = €122 = €113 = ... = 0. (19)
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Permutation symbol II

The cross product of the basis vectors can be easily expressed using the
permutation symbol as

€e; X €; = €;;k€, (20

)
€1 X €2 = €123€3 = €3, (21)
€2 X €3 = €231€1 = €y, (22)

)

€3 X €] = €312€9 = €q. (23
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Scalar product

The scalar product of vectors a = a;e; and b = bje; is calculated as
1 ——

a-b= (aiei) . (b]‘e]‘) = aibjei - €5 = aibjdij = aibi, (24)

aibi = a1b1 + (l2b2 + a3b3. (25)

Observe the replacement property of §;;: If 4;; appears in a term, where
i (or j) is a dummy index, then it can be changed to j (or i) and d;;
can be removed from the term. For example:

a;bjd;; = a;b; = a;by, (26)
TabObk = Oak, (27)

Cijkajr(ssk = CirkOsk = Cirs- (28)
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Cross product I

The cross product of vectors a = a;e; and b = b;e; is calculated as

axb= (aiei) X (bjej) = aibjei X e; = aibjeijkek, (29)
~—

Ck

where (20) was applied. Using the summation convention it can be
clearly concluded that a;bje;;, is a quantity having only one index,
namely k. We can denote this new quantity with ¢; for simplicity,
which is nothing else just the component of the new vector resulting
from the cross product.
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Cross product 11

Therefore
axb=a;bje e = cre, = c, (30)
N——
Ck
where
1 = aibjeijl = agbzeazr + azbaesnr = azbs — asby, (31)
ca = a;bje;jo = azbiesin + arbzeize = azby — arbs, (32)
3 = aibjeijZS = a1ba€123 + azbie213 = arbs — asby, (33)
C1 G,ng — (lng
[C] = Co = a3b1 - a1b3 . (34)
c3 a1bs — azby
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Cross product I11

We get the same result using the classical method to compute the cross
product:

€e; ey es3
axb=|a ay a3z |, (35)
by by b3

axb = (a2bs — azbz) e1 + (azby — a1bs) ez + (a1b2 — azb;) e3. (36)
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Triple scalar product I

Geometrically, the triple scalar product between vectors a, b and c
defines the volume of a paralelepiped spanned by a, b and ¢ forming a
right-handed system. Let

a = q;e;, b =bje;, C = Cmem. (37)
Then
(axb)-c=(abjeijrer) - (cmem) = aibje;jkem (ex - en), (38)

(a X b) cC = aibjeijkcmékm = aibjckeijk. (39)

It can be verified that

(axb)-c=(bxc)-a=(cxa)-b. (40)



(axb)-c=| [a],[b],[c] |=| a2z b2 ¢ |, (41)

(a X b) - C =aq (bg(}g — bgcg) + by (a362 — CLQCg) +c1 (agb3 — agbg) .
(42)

(a X b) - C :albjCkGUk + blaickeilk + claibjeijl. (43)



CONTINUUM MECHANICS - Introduction to tensors

Triple vector product

Let

a=agqeq, b = be;, c = cje;. (44)
Then the triple vector product is obtained as

ax (b xc)=(ageq) x (bicjeijrer) = agbicj€iji (eq X €r),  (45)

a X (b X C) = aqbicjeijkeqkpep. (46)
(A ———

dp

Thus, the matrix representation of the resulting vector is
aqbichjkeqkl
[a X (b X C)] = aqbicjeijkequ = ... (47)
aqbiCjEZ'jqukg



The following useful identities can be easily verified:

6aa
€abc€abe
€abm€adm

€acd€bcd

6a05bd - 5ad5b07
204p-
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nd- r tensors

Definition

A second-order tensor o can be imagined as a linear operator. Applying
o on a vector n generates a new vector p:

p=on, (52)

thus it defines a linear transformation. In hand-written notes we use
double underline to indicate second-order tensors. Thus, the expression
above can be written as

p—cn. (53)

IS}

The second-order identity tensor I and the second order zero tensor 0
have the properties

In =n, On = 0. (54)

The projection (3) can be expressed using second-order tensor P: Act-
ing P on a generates a new vector ae.
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nd-order tensors

Representation in a coordinate frame

The second-order tensor o has nine components in a given coordinate
frame {ei, e2,e3}. The components o;; are computed by

___________________________________________________________________________|
O0ij =€; - (Uej). (55)
The matrix representation of o in a given coordinate frame is
011 012 013

[0’}: 0921 092 023 . (56)
031 032 033



Dyadic product of two vectors

The matrix representation of the dyadic (or tensor or direct) product
of vector a and b is

|
arby  aiby  aibs

[a@b]: a2b1 a2b2 a2b3 5 (57)
a3b1 agbg a3b3

[a@bl=[a][b]" = | a | [ b1 b b3]. (58)

The ij-th component of the resulting second-order tensor is a;b;.
It can be seen that

(a®@b)-c=(b-c)a. (59)
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nd-order tensors

Representation of second-order tensors with dyads

The second-order tensor A can be written as the linear combination of
the dyads formed by the basis vectors:

A= Aijei X €;. (60)

Thus, the identity tensor can be written as

I= 51-jel- ® €; (61)

The dyad a®b is a 2nd-order tensor, but not all 2nd-order tensor can
be written as a dyadic product of two vectors! In general, a 2nd-order
tensor has 9 components, whereas a dyad has only 6 components (2 x 3)



Indical notation I

Consider the equation
a=b+ Mec. (62)

Its matrix representation is

[a] = [b] + [M][c], (63)
ai b1 My Mia Mg €1
az | = | ba |+ | Mar Moy Mos c2 |- (64)
as b3 M3z Mszs Mss 3

It can be formulated using indical notation as

a; = b; + MijCj. (65)
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nd-order tensors

Indical notation 11

m It should be observed that the same free index must appear in
every term of an equation.

m The indical notation is an order-independent representation. In
matrix notation the order of the multiplication cannot be
changed, however, in the indical notation (using the summation
convention) the terms can be rearranged without altering the
result. Example: Ab # bA, but A;;b; = b; A;;.

m “The essence of the Einstein summation notation is to create a
set of notational defaults so that the summation sign and the
range of the subscripts do not need to be written explicitly in each
expression.”

m “It is a collection of time-saving conventions. After an initial
investment of time, it converts difficult problems into problems
with workable solutions. It does not make easy problem easier,
however.”
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ond-order tensors

Trace

The trace of the second-order tensor A is

trA = tr[A] = Ay1 + Aoy + Azz = Ay (66)

It is an invariant quantity.
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Determinant

The determinant of the second-order tensor A is
I

detA = det [A], (67)

detA = Ayy (A Asz — AxzAsa) — Ao (A1 Az — AxzAsy)
+ Ay3 (Ag1 Age — AgoAsi) (68)
detA = €;,A1;42; Ay, (69)

It is an invariant quantity. A is singular when detA = 0.
Useful relation

det (AB) =detAdetB,  detAT=detA (70)



Double contraction

The double contraction (or double-dot product) between 2nd-order ten-
sors A and B is defined as

A:B= AijBij = A11B11 + A12312 aF ceey (71)
A:B=tr(ATB) = tr (B'A) = tr (AB”) = tr (BAT). (2)
Thus, the trace of A can be written as

trA=1:A= (5ijei ® ej) : (Amnem X en) = 6ijAmn6im6jnij,
(73)

tI‘A = 5iinj = A“ = A11 + A22 + A33- (74)

28 /58
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ond-order tensors

Norm

The norm of the second-order tensor A is calculated as

|A = VA :A >0 (75)
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Symmetric and skew-symmetric parts I

The following identity holds for the transpose of A.:
I

(Au)-v = (uA”) -v. (76)

A can be decomposed into the sum of a symmetric and a skew-symmetric
parts as

A= Asymm + Askevw (77)

(A+AT), (78)

l\D\»—l

Agymm = symm (A) =

Agew = skew (A) =

—

% A—AT). (79)



Symmetric and skew-symmetric parts I1

Thus
Asymm = Agymm» Agkew = _Az;{eW' (80>
(Asymm)ab = (Asymm)ba (81)
(Askew)ab = - (Askew)ba (82)

Symmetric part has 6, whereas the skew-symmetric part has 3 inde-
pendent components.



A skew-symmetric tensor W behaves like a vector. The following rela-
tion can be easily verified:

Wu =w X u, (83)
0 —Ws w2 w1
W] = w3 0 —wq = |[w=| w2 |, (84)
—WwWo w1 0 w3
1
w| = —= [W]| (85)

0
o
o



Inverse

The inverse A~! of A is defined as

AAT ' =ATA=1 (86)

A necessary and sufficient condition for the existence of A~! is that

detA #£ 0.
For invertible tensors A and B:
(AB)"' = B 'Al (87)
(kA" = %A‘H (88)
(A" = (A=A, (39)
det (A7) = ! (90)

detA’
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nd-order tensors

Orthogonal tensor

A tensor Q is said to be orthogonal if
I

Q' =qQ ", (91)

proper orthogonal | detQ =1
inproper orthogonal | det@Q = —1

Proper orthogonal tensors represent rotation, whereas inproper orthog-
onal tensors represent reflection.
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ond-order tensors

Definiteness

For all v # 0:
I

Positive semi-definite | v- Av >0
Positive definite | v - Av > 0
Negative semi-definite | v- Av <0
Negative definite | v-Av <0
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Change of basis |

Let the bases vectors of two Cartesian coordinate system (having the
same origin) be denoted by

e, es, e3 and €1, 6, e3. (93)
Then, a vector a can be written as
a=aqae; = Zij'éj, (94)

where the components a; and a; are obviously different. Denote Q;;
the scalar products between the two bases as

Qij = e; - €;. (95)




Change of basis 11

Then
e =(e;-€1)e; +(ex-€1)es+ (e3-€1)es, (96)
e = (e;-ez)e; +(ex-ex)ex + (e3-€y)es, (97)
63 = (e1 . 63) e —+ (eg . 63) €9 + (83 . 63) €es. (98)
Thus
Ej = Qijei and e, = QijAéj. (99)

Combining (94) and (99) gives
a;e; = anijei and aiQij'éj = Zij'éj. (100)

Thus

a; = Qijaj and Ej = aiQij. (101)



a]=[QIE and  [&@]=(Q]" [al, (102)

where Q contains the angle cosines as

e -€ e -e e -e3
[Q] = [SHI 62 €9 -62 €es - 63 . (103)

e3-€ e3-€ e3-e3

For 2nd-order tensor A:



Deviatoric and spherical parts

Every tensor A can be decomposed into a deviatoric and spherical part
as

A =dev(A)+sph(A), (105)

where

sph(A) = pI = <étrA> I, (106)

dev(A) = A — (étrA) I (107)



CONTINUUM MECHANICS - Introduction to tensors

nd-order tensors

Eigenvalues, eigenvectors I

An eigenpair of a 2nd-order tensor A mean a scalar \; and unit vector
n; satisfying

A; are the eigenvalues (or principal values), whereas n; denote the
normalized eigenvectors (principal directions, principal axes).

The eigenvalues are the roots of the characteristic cubic equation

det (A — \;I) = 0. (109)
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Eigenvalues, eigenvectors 11

The eigenvectors are defined by the linear homogeneous equations

m Eigenvalues of symmetric A are reals.
m Eigenvalues of positive definite symmetric A are strictly positive.

m Eigenvectors of symmetric A form mutually orthogonal basis.

41 /58
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nd-order tensors

Spectral decomposition

Any symmetric 2nd-order tensor A can be represented by its eigenval-
ues \; and eigenvectors n; as

A:Z/\l n; n;) Z)\ m;, (111)

where m; = n; ® n; is the basis tensor (or projection tensor).
Matrix representation of A in the coordinate system formed by its
eigenvectors n; is

A0 0
Al=] 0 X o0 |. (112)
0 0 X
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Principal invariants

The principal scalar invariants of the 2nd-order tensor A are

I =trA = \{ + Ao + A3, (113)

I, = % ((trA)2 — tr (A2)> =tr (A7") detA = A A2+ A1 A3+ A2,
(114)

13 = detA = )\1)\2)\3. (115)
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nd-order tensors

Cayley-Hamilton theorem

The Cayley-Hamilton theorem states that the 2nd-order tensor A sat-
isfies its characteristic equation. Thus

A3 -~ A? + LA - I=0, (116)

where I, I, and I3 are the principal invariants of A.

44 /58
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Indical notation

Commas in the subscript mean that a partial derivative is to be applied.
The index after the comma represents partial derivatives with respect
to the default arguments, which are usually the coordinates x1, x2 and
xs3.

8’LLZ‘
Y 117
U ) 67,']‘ ( )
Example:
Ou,; Ouy Ous Ous
Ui = G — = 4] — — —. 118
Gitlinj = i = Mg T2, T By, (118)



The nabla operator (or del operator or vector-differential operator) is

defined as

V(o) 83(9;) - (119)
\Y% (0) = a (.) (3] a (.) €9 8 (.) €s. (120)

8%3

46 / 58
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Gradient of a scalar field

The gradient of the smooth scalarfield T (x) (or T (z;) or T (x1, 22, x3))
is the vector field

oT oT oT oT

AT = VT = Z—e; = —— - - 121
. c’)xie 31'1 et 8172 e+ 81173 - ( )
Indical notation:
oT
T,=— 122
= o (122)
The matrix representation of the resulting vector:
T,
[gradT] = | T2 (123)
T3
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calculus

Directional derivative

m T (x) = constant denotes level surface

m The normal to the surface is gradT

gradT
lgradT|

m The directional derivative of T" at x in the direction of a
normalized vector u is (gradT) - u

m The unit normal is n =

m It takes the maximum (minimum) when u =n (u = —n)

m The particular directional derivative (gradT’) - n = |gradT| is
called as normal derivative

48 / 58
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calculus

Gradient of a vector field

The gradient of the vector field u (x) is the second-order tensor field

gradu:Vu:g—z:uQ@V:%ei@ej (124)

Matrix representation:

Ouy  Ouy  Oduy

gzl gm gm3 U1 Ur2 U3

u u U

[gradu] = Txf Ta:;) ng = U2,1 U2 U223 (125)
Quz  Qua  Juy Uzl U2 U33

8361 8$2 3903

Transposed gradient:

gradflu=Vou= Z;L; e;®e; (126)
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Gradient of a 2nd-order tensor field

The gradient of the second-order tensor field A is the third-order tensor
field

gradA =A®V = (4;e;¢e;) ® (%ek) (127)
k
0A;;
= axkj e, Re;Re, = A;re;Qe; e, (128)

Thus, the ijk-th component is

(gradA)ijk = Aij,k (129)
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L Divergence

Divergence of a scalar field

Meaningless
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L Divergence

Divergence of a vector field

The divergence of the vector field a = a;e;is the scalar field

diva=V-.-a= (8(0)ej> '(aiei):%(s":%:aii (130)

(9£Ej (92Ej @ sz ’

diva = tr (grada) (131)

If diva = 0 then a is said to be solenoidal (or divergence-free or incom-
pressible).

0
o
o
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Divergence

Divergence of a 2nd-order tensor field

The divergence of the 2nd-order tensor field o is the vector field

dive =0 -V = (Uijei ®e]) . <a(.)ek) _ 80'”

djrei = 0ij jei

83?k axk
(132)
Thus, the matrix representation is

do11 do1a 0013

O1j,5 85361 + gﬂf2 + gﬁva

3 — L. 021 022 023
[dive] = | o2 JITa + s (133)

;S 9031 9032 9033

0-3‘7"7 Oxq + Oxo + Oxs
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(I

url

Curl of a scalar field

Meaningless
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Curl

Curl of a vector field

The curl of the vector field a = aje; is the vector field

d
curla =rota=V x a= (3 ei) X (a;e;) (134)
T
Oa;
= 8—$Jieijkek = Gji€ijkCk (135)
az2 — a23
[curla] = | a1,3 —as1 (136)
a2,1 — 41,2

If curla = 0 then the vector field is irrotational (or conservative or
curl-free).

If a can be expressed as a = grad¢, where ¢ is the potential of a, then
a is irrotational, beacause of the identity curl (grad¢) = 0.



Curl of a 2nd-order tensor field

The curl of the 2nd-order tensor field A = A;je; ® e; is the 2nd-order
tensor field

curlA =V x A = (aiek) X (Aijei X ej) (137)
Tk
Ajj
88 €im®m ® €5 = A;j Lekimem ® e; (138)
Tk

Ait kerin Aiz k€ril A3 k€kil
[curlA] = | Ai1kerin  Aizk€rit  Ais k€rin (139)
A kerin Aiz k€kil A3 k€kil

where A1 pegin = Az1 2 — A1 3 = %A—gf; - %A—:fsl for instance.



Laplacian of a scalar field

The Laplacian operator is defined as
___________________________________________________________________________|

A(e) =V?(e) =V (o) V(o) = (682)@) : <%;)ej) (140)
(e (e (e
B 8961(9% €= 8x18xj 61] B 8:@8:61
_ 9% (e) 0*(e)  0*(e) (o)

£(0) ox?  0x? * ox3 * 023 (142)

A (o) (141)

The Laplacian of a scalar field T is the scalar field
___________________________________________________________________________|
. o*T 0°T O°T

AT=—S+-5+57=Tu
ox?  Ox3  Ox3 ’

(143)
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The Laplacian of a vector field u = u;e; is the vector field

0? (u;e;)
= T%l = (ui;) ;€ = uijje; (144)
8 u1 + 63;1 + 6 u1

[Au] = 7‘9 Uz 4 O +% 42 (145)
%—zg+—9+—i
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