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Introduction
This worksheet demonstrates the use of continuum mechanics framework for deriving constitutive 
equations for various materials.  The constitutive relations can further be incorporated into balance laws
to obtain laws like Fourier's law of heat transfer, Navier-Stokes equation of fluid flow, Hooke's law for
elastic materials, stress-strain relations for viscoelastic materials etc.  Although, , these engineering laws
have been discovered through theoretical and experimental research spanning several decades, it can be 
demonstrated that by knowing the basic dependency relations, these can be obtained using the 
framework of continuum mechanics in a straightforward manner.  Once the basic procedure is 
understood, one can play with dependent and independent variables in Constitutive Theory section of 
different materials to obtain new types of laws.  For example, one can derive relations for studying the 
interaction of viscoelastic polymers with surrounding fluids.

The purpose of this worksheet is to demonstrate the use of continuum mechanics framework to 
students in science and engineering.  I have tried to adhere to the notation used in classical textbook 
"Mechanics of Continua" by A.C. Eringen.  When I started this work, very little information existed on
the use of Maple package to perform tensorial manipulations in fields like fluid and continuum 
mechanics.  Most available information made the use of the software package Mathematica.  I initially 
started using MathTensor under Mathematica, but my love for open-source approach of Maple brought
me back to it.   Thanks to Maplesoft for adding Einstein's summation-convention based tensorial 
capabilities to release 11, which made this work possible.

Notes

1) Eulerian and Lagrangian coordinates are indicated by vectors, X and Y, respectively.  X=(x1,x2,x3) 
and Y=(y1,y2,y3).
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2) Continuum mechanics literature uses capital indices for Lagrangian coordinates and small indices for
Eulerian coordinates.  However, in current version of Physics package, this type of use is not clearly 
described.  Therefore, I will use c, i, j, k and l for Eulerian, and p, q, r and s for Lagrangian indices.  In 
future Maple releases, if mixing of small and capital indices in single equations is allowed, I may 
update this worksheet.
2) Equations are in Cartesian coordinates, where the metric, Gij=δij (Kronecker Delta), and the 
components of the Christoffel symbols vanish.
3) Transformation between Eulerian and Lagrangian coordinates is denoted by the function X=f(Y) or 
X=f(y1, y2, y3).  It could have been denoted by X=X(Y) but the current version of Physics package 
does not allow this type of relation (see my blog on Mapleprimes).

Nomenclature
X (Eulerian coordinates), Y (Lagrangian coordinates), rho (density), v (velocity), sigma (stress tensor),
E (Lagrangian strain tensor), d (deformation tensor), Mu (Generalized coefficient of viscosity), Nu 
(shear viscosity for isotropic fluids), lambda (dilational viscosity for isotropic fluids).

pi (thermodynamic pressure), Q (surface heat flux), H (body source of heat), epsilon (internal energy 
density), A (Helmholtz free energy), b (body source of entropy), S (surface flux of entropy), bf (body 
force), theta (temperature), eta (entropy), f  (X=f(Y), function relating Eulerian and Lagrangian 
coordinates), md (Material time derivative), Md (inert form of md).

Settings
restart
with PDEtools :
with Physics :
Setup coordinatesystems = X, Y , spacetimeindices = lowercaselatin, dimension = 3,

 differentiationvariables = X, signature = `C`
The dimension and signature of the tensor space are set to: [3, C] 

Systems of spacetime Coordinates are: {X, Y} 

Systems of spacetime Coordinates are: {X, Y} 

Default differentiation variables for d_ and dAlembertian are: [X] 

coordinatesystems = X, Y , differentiationvariables = X , dimension = 3, signature = `C`,
spacetimeindices = lowercaselatin

Define Tensors
2D Tensors
Define sigma, E, d, Mu, symmetric

Defined objects with tensor properties

E, M, d, s, g
µ
, s

µ
, X

µ
, Y

µ
, d_

µ
, g_

µ, n
, d

µ, n
, e

µ, a, n

1D Tensors
Define S, Q, bf, f, v
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Defined objects with tensor properties

E, M, Q, S, bf, d, f, s, v, g
µ
, s

µ
, X

µ
, Y

µ
, d_

µ
, g_

µ, n
, d

µ, n
, e

µ, a, n

Declarations and Operators
declare rho, pi, sigma, d, Nu, lambda, S, Q, epsilon, A, bf, v, H, b, theta, eta X, t

r x1, x2, x3, t  will now be displayed as r

p x1, x2, x3, t  will now be displayed as p

s x1, x2, x3, t  will now be displayed as s

d x1, x2, x3, t  will now be displayed as d

N x1, x2, x3, t  will now be displayed as N

l x1, x2, x3, t  will now be displayed as l

S x1, x2, x3, t  will now be displayed as S

Q x1, x2, x3, t  will now be displayed as Q

e x1, x2, x3, t  will now be displayed as e

A x1, x2, x3, t  will now be displayed as A

bf x1, x2, x3, t  will now be displayed as bf

v x1, x2, x3, t  will now be displayed as v

H x1, x2, x3, t  will now be displayed as H

b x1, x2, x3, t  will now be displayed as b

q x1, x2, x3, t  will now be displayed as q

h x1, x2, x3, t  will now be displayed as h

declare E, f i Y, t
E y1, y2, y3, t  will now be displayed as E

f y1, y2, y3, t  will now be displayed as f

Material Time Derivative
md d zeta/diff zeta, t C v c $d_ c zeta

z/
v

vt
 zC vc Physics:-d_c z

Inert form of Material Derivative (Md)
alias Md = %md

e, d, g, s, X, Y, Md
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Balance Equations

Mass Balance
eqb1 d Md rho X, t C rho X, t $d i, j X, t $KroneckerDelta i, j  = 0

Md r C r di, j dj, i = 0

Momentum Balance
eqb2 d d_ i sigma i, j X, t =Krho X, t $ bf j X, t KMd v j X, t

v
i
si, j = Kr bfj KMd vj

Energy Balance
eqb3 dKrho X, t $Md epsilon X, t C sigma i, j X, t $d i, j X, t C d_ i Q i X, t

C rho X, t $H X, t = 0
Kr Md e Csi, j di, j C v

i
Qi C r H = 0

Entropy Inequality
Net production rate of entropy
eqee1 d rho X, t $Md eta X, t Krho X, t $b X, t Kd_ i S i X, t R 0

0 % r Md h K r bK v
i

Si

Assuming, it is a simple thermomechanical process, the surface and body sources of entropy 
depend only on 
eqm2 d S i X, t = Q i X, t / theta X, t , b X, t = H X, t / theta X, t

b =
H
q

, Si =
Qi

q
eqee2 d subs eqm2, eqee1

0 % r Md h K
r H
q

K v
i

Qi

q
Substitute the energy equation (eqb5) into the above entropy inequality (eqee2) via "rho*H" term
eqb4 d H X, t = solve eqb3, H X, t

H = K
Kr Md e Csi, j di, j C v

i
Qi

r
eqee3 d subs eqb4, eqee2
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0 % r Md h C
Kr Md e Csi, j di, j C v

i
Qi

q
K

v
i

Qi

q
C

Qi vi
q

q
2

eqee4 d expand eqee3

0 % r Md h K
r Md e

q
C

si, j di, j

q
C

Qi vi
q

q
2

Internal energy (ε) in the above equation is a function of entropy, which is difficult to measure.  To 
make it a function of easily measurable, temperature, perform the Legendre transformation that 
relates Helmholtz free energy (A) to ε via is ε=A+θη.
Relation between epsilon and A:
eqm4 d epsilon X, t = A X, t C theta X, t $eta X, t

e = AC q h

Take material time derivative of both sides:
eqm5 d Md epsilon X, t = Md A X, t C theta X, t $Md eta X, t C eta X, t

$Md theta X, t
Md e = Md A C q Md h Ch Md q

eqee5 d subs eqm5, eqee4

0 % r Md h K
r Md A C q Md h Ch Md q

q
C

si, j di, j

q
C

Qi vi
q

q
2

eqee6 d Simplify eqee5

0 %K
r Md A  qC r h Md q  qKsj, i dj, i qKQi vi

q

q
2

Constitutive Theory: Elastic Materials
Up to the balance laws, number of variables are more than the number of equations.  This is expected 
because while making the continuum assumption, the molecular scale information has been averaged 
out.  This eliminated the information on nature of materials.  To include nature of materials at the 
continuum scale, constitutive theory is formulated.  First, let us formulate this theory for elastic 
materials.
eqEL1 d A X, t = fA theta X, t , E i, j Y, t

A = fA q, Ei, j

Chain rule
eqEL2 d Md A X, t = diff fA theta, E , theta $Md theta X, t C diff fA theta, E r, s , E p,

q $md E p, q Y, t
Md A = fA

q
 Md q C fAE

r, s
 g_r, q g_s, p Ep, q, t

eqEL3 d Simplify eqEL2
Md A = fA

q
 Md q C fAE

r, s
 Er, s, t

The following relation relates the Lagrangian strain tensor (E[p,q]) to the rate of deformation tensor d
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(k,l).

eqEL4 d md E r, s Y, t , t = d i, j X, t $d_ r f i Y, t , Y $d_ s f j Y, t , Y
Er, s, t = di, j vr

fi, Y  v
s

fj, Y

Notice that on left hand side of previous equation, material derivative turns out to be equal to the partial 
time derivative.  This is expected as E[p,q] is in Lagrangian coordinates.  In Lagrangian coordinates, 
material derivative is equal to partial time derivative.  The Lagrangian coordinates are indicated by 
capital indices and the variable "Y=(y1,y2,y3)".

eqEL5 d subs eqEL4, eqEL3
Md A = fA

q
 Md q C fAE

r, s
 di, j vr

fi, Y  v
s

fj, Y

eqEL6 d subs eqEL5, eqee6

0 %K
1

q
2 r fA

q
 Md q C fAE

r, s
 di, j vr

fi, Y  v
s

fj, Y  qC r h Md q  q

Ksj, i dj, i qKQi vi
q

eqEL7 d collect eqEL6, d i, j X, t , Md theta X, t

0 %K

r fAE
r, s

 v
r

fi, Y  v
s

fj, Y  di, j

q
K

r fA
q
 qC r h q  Md q

q
2

K
Ksj, i dj, i qKQi vi

q

q
2

Imposing Restrictions Using Entropy Inequality to obtain Constitutive Relations 
for Elastic Materials
From constitutive equation (eqEL1) it can be concluded that coefficients of variables di, j, Md(q) and 

v
i
q  in (eqEL7)  are independent of these variables.  Therefore, to satisfy the inequality these 

coefficients must be zero.  This leads to non-equilibrium relations, which are satisfied both at and 
away from equilibrium.
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Indep variables: θ, E

Net 
Production
of Entropy

Non 
Equilibrium

Equilibrium

Near 
Equilibrium

EqEL8 d sigma i, j X, t  = solve op 1, rhs eqEL7  = 0, sigma i, j X, t
si, j =

Constitutive Theory: Viscous Fluids
Now, let us formulate the constitutive theory for viscous fluids.  
eqVisc1a:=A(X,t)=fA(theta(X,t),rho(X,t),d[k,l](X,t));

A = fA q, r, dk, l

Like A, other  dependent variables,  stress (σ)  and  heat flux (Q)  are  also considered to be a function 
of  theta, rho and d[k,l].

eqVisc2a:=sigma[i,j](X,t)=fsigma[i,j](theta(X,t),rho(X,t),d[k,l](X,t)
);

si, j = fsigmai, j q, r, dk, l

eqVisc3a:=Q(X,t)=fQ(theta(X,t),rho(X,t),d[k,l](X,t));
Q = fQ q, r, dk, l

Chain rule
eqVisc2:=Md(A(X,t))=diff(fA(theta,rho,d),theta)*Md(theta(X,t))+diff
(fA(theta,rho,d),rho)*Md(rho(X,t))+diff(fA(theta,rho,d[g,h]),d[i,j])*
md(d[i,j](X,t));



(10.6)(10.6)

> > 
(10.5)(10.5)

> > 

(10.4)(10.4)

(8.4.5)(8.4.5)

(10.8)(10.8)

(10.7)(10.7)

> > 

Md A = fA
q
 Md q C fA

r
 Md r C fAd

g, h
 g_j, g g_i, h di, j, t C vc vc

di, j

eqVisc3:=Simplify(eqVisc2);
eqVisc3 := Md A = fA

q
 Md q C fA

r
 Md r C fAd

j, i
 dj, i, t C fAd

j, i
 vc vc

dj, i

eqVisc4:=subs(eqVisc3,eqee6);

0 %K
1

q
2 r fA

q
 Md q C fA

r
 Md r C fAd

j, i
 dj, i, t C fAd

j, i
 vc vc

dj, i  q

C r h Md q  qKsj, i dj, i qKQi vi
q

In the next step, we mass solve balance equation (eqb1) and substitute the resulting Md(rho) value in 
eqVisc4.  Direct substitution does not work, so we have aid Maple package by solving for Md(rho), 
before it is substituted in eqVisc4.  This will eliminate Md(rho).
eqVisc5:=subs(Md(rho(X,t))=solve(eqb1,Md(rho(X,t))),eqVisc4);

eqVisc5 := 0 %K
1

q
2 r fA

q
 Md q K fA

r
 r di, j dj, i C fAd

j, i
 dj, i, t

C fAd
j, i

 vc vc
dj, i  qC r h Md q  qKsj, i dj, i qKQi vi

q

eqVisc6:=collect(eqVisc5, [d[i,j](X,t),Md(theta(X, t))]);

eqVisc6 := 0 %
r

2
 fA

r
 dj, i di, j

q
K

r fA
q
 qC r h q  Md q

q
2

K

r fAd
j, i

 dj, i, t C fAd
j, i

 vc vc
dj, i  qKsj, i dj, i qKQi vi

q

q
2

Imposing Restrictions Using Entropy Inequality to obtain Constitutive Relations 
for Elastic Materials

Non-Equilibrium Relations
From constitutive equation (eqVisc1) it can be concluded that coefficients of variables Md(q), Md(d
[i, j]) and v

i
q  in (eqVisc6)  are independent of these variables.  Therefore, to satisfy the 

inequality these coefficients must be zero.  This leads to non-equilibrium relations, which are 
satisfied both at and away from equilibrium.
Helmholtz Free Energy-Deformation Rate Tensor Relation
Note in third term of Entropy inequality (eqVisc6) involves Md(d[i,j]). Coefficient of this variable 
is independent of Md(d[i,j].  Therefore to satisfy the entropy inequality, this coefficient must be 
zero.
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eqVisc7:=diff(fA(theta,rho,d[g,h]),d[i,j])=0;
eqVisc7 := fAd

g, h
 g_j, g g_i, h = 0

eqVisc8:=Simplify(eqVisc7);
eqVisc8 := fAd

j, i
= 0

Therefore, Helmholtz free energy, fA for viscous fluids is independent of the deformation rate 
tensor.
Entropy Equation
eqVisc9:=eta(X,t)=solve(op(2,rhs(eqVisc6))=0,eta(X,t));

eqVisc9 := h = KfA
q

This indicates that entropy and temperature are related.  They form a dual.
Heat Equation
eqVisc10:=Q[i](X,t)=solve(op(4,rhs(eqVisc6))=0,Q[i](X,t));

Since, thermal gradient was not considered in the constitutive equation for the elastic material, heat 
flux is zero.

Equilibrium Relations
Stress Equation
eqVisc11:=sigma[i,j](X,t)=solve(op(1,rhs(eqVisc6))=0,sigma[i,
j](X,t));

eqVisc11 := si, j =

Let us define, thermodynamic pressure (π) as:
eqVisc12:=diff(fA(theta,rho,d),rho)=pi(X,t)/rho(X,t)^2;

eqVisc12 := fA
r

=
p

r
2

eqVisc13:=subs(eqVisc12,eqVisc11);
eqVisc13 := si, j =

Near-Equilibrium Results
Now let us derive near-equilibrium equation for stress.  First, let us substitute the non-Equilibrium 
equations (eqVisc8, eqVisc9 and eqVisc10) in the entropy inequality (eqVisc6) to obtain the 
residual (non-zero) terms.  Since, we have substituted non-equilibrium terms the resulting residual 
inequality will hold for processes both near and away from equilibrium.
eqVisc14:=subs({eqVisc8,eqVisc9,eqVisc10},eqVisc6);
eqVisc15:=subs(eqVisc12,eqVisc14);

eqVisc14
eqVisc16:=collect(eqVisc15,{theta(X,t),d[i,j](X,t)});

eqVisc16 := eqVisc14
In above equation, since the coefficient of d[i,j] is a function of d[i,j], it needs to be linearized 
around d[i,j] using Taylor series expansion to satisfy inequality for all independent processes.  The 
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first order expansion leads to:

eqVisc17:=op(1,rhs(eqVisc16))=Mu[i,j,k,l]*d[k,l](X,t);
eqVisc18:=sigma[i,j](X,t)=solve(eqVisc17,sigma[i,j](X,t));

si, j =

The near-equilibrium equation is same as the classical equation for viscous flow.  M[i,j,k,l] is 
generalized coefficient of viscosity for anisotropic fluids.  For isotropic fluids, it has the form (Segel
and Handelman, 1977):
eqVisc19:=Mu[i,j,k,l]=lambda*KroneckerDelta[i,j]*KroneckerDelta[k,
l]+Nu*(KroneckerDelta[i,k]*KroneckerDelta[j,l]+KroneckerDelta[i,l]*
KroneckerDelta[j,k]);

Mi, j, k, l = l dj, i dl, kCN dk, i dj, l C dl, i dj, k

eqVisc20:=subs(eqVisc19,eqVisc18);
si, j =

eqVisc21:=Simplify(eqVisc20);
si, j = algebrarules, bracketrules, completeprojector, indices, int,

noncommutativeproducts, quiet, sum
This is the classical stress constitutive equation for both compressible and incompressible isotropic 
fluids.

Navier-Stokes Equation
By substituting the above stress-constitutive equation (eqVisc21) in the momentum balance 
equation (eqb2), one obtains the celebrated Navier-Stokes equation.
eqVisc22:=subs(eqVisc21,value(eqb2));
v

i
algebrarules, bracketrules, completeprojector, indices, int,

noncommutativeproducts, quiet, sum = Kr bfj K vj, t K vc vc
vj

eqVisc23:={d[i,j](X,t)=1/2*(d_[i](v[j](X,t))+d_[j](v[i](X,t))),
Simplify(d[k,l](X,t)*KroneckerDelta[k,l]=d_[k](v[k](X,t)))};

di, j =
1
2

 v
i

vj C
1
2

 v
j

vi , Trace d = v
k

vk

eqVisc24:=subs(eqVisc23,eqVisc22);
eqVisc25:=Simplify(%);

di, j =
1
2

 v
i

vj C
1
2

 v
j

vi , Trace d = v
k

vk

eqVisc26:=collect(eqVisc25,[d_[i](d_[j](v[i](X,t))),rho(X,t)]);

di, j =
1
2

 v
i

vj C
1
2

 v
j

vi , Trace d = v
k

vk

Here the square box represents the dAlembertian  (or Laplacian ) operator ( ∇2v).  This is the 
Navier-Stokes equation for compressible viscous fluids.  Thus, we can obtain the Navier-Stokes
equation using the framework of continuum mechanics by using general balance laws and 
constitutive knowledge of dependent and independent variables.

Summary
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The framework of continuum mechanics allows deriving most engineering laws by using the general 
balance laws, knowledge of dependent and independent variables and imposing restrictions via entropy 
inequality.  In this worksheet I demonstrate the procedure for obtaining equations for elastic and 
viscous materials.  Once the procedure is understood, one can play with constitutive theory to obtain 
new types of resulting equations.  
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