Continuum Models of Dislocation Dynamics and Dislocation Structures

M. Ortiz California Institute of Technology

Gordon Research Conference on Physical Metallurgy The Holderness School, Plymouth, NH July 27, 2004

Outline

- The case for multiscale simulation
- The case for multiscale modeling
- The lengthscale hierarchy of polycrystalline metals
- The quasicontinuum method
- Phase-field dislocation dynamics
- Subgrid models of martensite
- Subgrid models of dislocation structures

Machining – Experimental Validation

Chip Morphology Validation (Courtesy of Third Wave Systems Inc)

(Courtesy of IWH, Switzerland) FE simulation

(Marusich and Ortiz, IJNME '95)

Machining – Experimental Validation

(Courtesy of Third Wave Systems Inc)

Cutting Force Validation

Residual Stress Validation

General trends predicted, but discrepancies remain!

Validation and Verification

- Fidelity of simulation codes is critically limited by uncertainties in engineering (empirical) material models
- Main sources of error and uncertainty
 - Discretization errors (spatial + temporal)
 - Uncertainties in data:
 - Material properties
 - Model geometry
 - Loading and boundary conditions...
 - Empiricism of constitutive models
- Need to reduce uncertainty in engineering constitutive models for codes to be predictive!

Limitations of empirical models

Deep-drawn cup

Grain structure of polycrystalline W (Courtesy of Clyde Briant)

- Conventional engineering plasticity models fail to predict earing in deep drawing
- Prediction of earing requires consideration of polycrystalline structure, texture development

Limitations of empirical models

Hall-Petch scaling (NJ Petch, J. Iron and Steel Inst., 174, 1953, pp. 25-28.)

Lamellar structure Dislocation pile-up in shocked Ta at Ti grain boundary (MA Meyers et al [^]95) (I. Robertson)

- A CHILDREE OF CHIL
- Conventional plasticity models fail to predict scaling, size effects.

The case for multiscale computing

- Empirical models fail because they do not properly account for microstructure
- The empirical approach does not provide a systematic means of eliminating uncertainty from material models
- Instead, concurrent multiscale computing:
 - Model physics at first-principles level, fine lengthscales
 - Compute on multiple lengthscales simultaneously
 - Fully resolve the fine scales
- Bypasses the need to model at coarse lengthscales

Metal plasticity - Multiscale modeling

ASCI computing systems roadmap

THE REAL PROPERTY OF THE REAL

FCC ductile fracture (Courtesy F.F. Abraham) Au nanoindentation (F.F. Abraham ´03) (Knap and Ortiz ´03)

Computing power is growing rapidly, but $10^9 < < 10^{23}$

Polycrystalline W (Courtesy of C. Briant)

Grain-boundary sliding model Single-crystal plasticity model

(A.M. Cuitiño and R. Radovitzky '02)

The second secon

(A.M. Cuitiño and R. Radovitzky '03)

DNS of polycrystals: Convergence

Intermediate mesh Coarse mesh 1536 elmts/grain 12288 el/grain 192 elmts/grain

Fine mesh

(A.M. Cuitiño and R. Radovitzky (03)

Numerical convergence extremely slow! Michael Ortiz GRC 07/04

- ~ 10⁹ elements at our disposal (10⁶ elements/processor x 1000 processors)
- ~ 1000 elements/coordinate direction
- ~ 20 elements/grain/direction (8000 elements/grain)
- ~ 50 grains/direction (125K grains)
- ~ 2.5 mm specimen for 50 μm grains
- Not enough for complex engineering simulations!
- Subgrain scales still unresolved, need modeling!

Metal plasticity - Multiscale modeling

The case for multiscale modeling

- It is not possible to fully resolve material and deformation microstructures in complex engineering applications directly by brute force
- Instead, multiscale modeling:
 - Identify relevant structures and mechanisms at all lengthscales
 - Bridge lengthscales by:
 - Building models of effective behavior (coarse graining)
 - Computing material parameters from first principles (parameter passing)
- Approaches?

Multiscale modeling - Approaches

Multiscale modeling - Approaches

Quasicontinuum - Reduction

Tadmor, Ortiz and Phillips, *Phil. Mag. A*, **76** (1996) 1529. Knap and Ortiz, *J. Mech. Phys. Solids*, **49** (2001) 1899.

Quasicontinuum – Cluster sums

Merging of clusters near atomistic limit

Quasicontinuum - Adaptivity

- $E(K) \equiv$ Lagrangian strain in simplex K
- Refinement criterion: *Bisect* K if

$$|\boldsymbol{E}(K)| \geq \mathsf{TOL}rac{b}{h(K)}$$

Longest-edge bisection of tetrahedron (1,4,a,b) along longest edge (a,b) and of ring of tetrahedra incident on (a,b)

- Nanoindentation of [001] Au, 2x2x1 micrometers
- Spherical indenter, R=7 and 70 nm
- Johnson EAM potential
- Total number of atoms ~ 0.25 10^12
- Initial number of nodes
 ~ 10,000
- Final number of nodes
 ~ 100,000

Detail of initial computational mesh

(Knap and Ortiz, PRL 90 2002-226102)

7 nm indenter, depth = 0.92 nm

THE THE OF THE OWNER

7 nm indenter, depth = 0.92 nm

70 nm indenter, depth = 0.75 nm

70 nm indenter, depth = 0.75 nm

Close-up of internal void

(Marian, Knap and Ortiz ´04)

Michael Ortiz GRC 07/04

72x72x72 cell sample

Initial radius R=2a

583, 1994) EAM

potential.

 $\sim 16 \times 10^{6}$

~ 34,000

Ercolessi and Adams

(Europhys. Lett. 26,

Total number of atoms

Initial number of nodes

Dislocation structures, first yield point

Dislocation types: **A** - Conventional $\frac{1}{2}(110){111}$ **B** - Anomalous

 $\frac{1}{2}\langle 110\rangle\{001\}$

Dislocation structures, hardening stage

Unconfined plastic flow carried by conventional $\frac{1}{2}(110)\{111\}$ dislocations

Dislocation structures, second yield point

Quasicontinuum

- The Quasicontinuum method is an example of a multiscale method based on:
 - Kinematic constraints (coarse-graining)
 - Clusters (sampling)
 - Adaptivity (spatially adapted resolution)
- The Quasicontinuum method is an example of a concurrent multiscale computing: it resolves continuum and atomistic lengthscales concurrently during same calculation
 - Challenges:
 - Dynamics (internal reflections)
 - Finite temperature (heat conduction)
 - Transition to dislocation dynamics

Multiscale modeling - Approaches

 Irreversible accommodation of shear deformation by crystallographic slip

Volterra dislocation: $\llbracket u \rrbracket = b$, on slip area

• Interaction with short-range obstacles:

(Koslowski, Cuitiño and Ortiz, JMPS '02)

• Assumption: The energy is of the form

$$E(u) = \underbrace{\int \frac{1}{2} c_{ijkl} u_{i,j} u_{k,l} dx}_{\text{Elastic energy}} + \underbrace{\int_{S} \phi(\llbracket u \rrbracket) dS}_{\text{Peierls energy}}$$

• Piecewise-quadratic Peierls potential:

- Problem: Minimize energy E(u) subject to:
 - Interaction with obstacles (pinning or dissipative)

- Applied shear stress

- Phase field $\xi(x)$: Counts (signed) crossings of dislocations over $x \equiv$ Peierls energy well, or *phase*
- Pinning case can be solved analytically.

 Penetrable obstacle case can be reduced to determining value of phase field on obstacles.

- Dislocation dynamics approaches rely on analytical solutions of linear elasticity to reduce the dimensionality of the problem from 3 (crystal) to 1 (dislocation lines): semi-inverse approach
- Phase-field dislocation dynamics with pairwise Peierls potential reduces dimensionality further, from 3 (crystal) to 0 (point obstacles)
- Challenges:
 - Large three-dimensional ensembles
 - Atomistic dislocation cores
 - Dislocation reactions, junctions

Multiscale modeling - Approaches

Twinning - Microstructures

(Cu-Al-Ni, C. Chu and R. D. James)

Crystal plasticity - Microstructures

Dipolar dislocation walls

Labyrinth structure in fatigued copper single crystal (Jin and Winter ´84)

Nested bands in copper single crystal fatigued to saturation (Ramussen and Pedersen ´80)

Michael Ortiz GRC 07/04

Crystal plasticity - Microstructures

Dislocation walls

Dislocațion walls

Lamellar dislocation structure in 90% cold-rolled Ta (Hughes and Hansen ´97) Lamellar structure in shocked Ta (Meyers et al [^]95)

• Lamellar structures are universally found on the micron scale in highly-deformed crystals

Microstructures – Sequential lamination

Nematic elastomers - Lamination

(Courtesy of de Simone and Dolzmann)

 $W(F,n) = A \operatorname{tr}(FF^{T}) - B ||F^{T}n||^{2}$

Central region of sample at moderate stretch (Courtesy of Kunder and Finkelmann)

Blandon *et al.* ´93 De Simone and Dolzmann ´00 De Simone and Dolzmann ´02

Solid/solid transitions in iron

- Commonly observed solid/solid transitions in Fe:
 - $\alpha(bcc) \rightarrow \epsilon(hcp) at p = 13 GPa$, coexisting phases $p < \infty$

ε platelets in 0.1%C steel shocked to 20 GPa (Bowden and Kelly, 1967) Michael Ortiz GRC 07/04

Phase transitions in Fe – Effect of shear

Initial model with 7 total variants (1 bcc/6 hcp)

Phase transitions in Fe – Effect of shear

Phase transitions in Fe – Effect of shear

• Shear lowers bcc to hcp transition pressure.

bcc to hcp transition path involves mixed states
 The form of rank-1 and rank-3 laminates

Crystal plasticity – size effects

 Optimal scaling constructions for double slip, antiplane shear (Conti and Ortiz '04)

Shocked Ta (Meyers et al '95)

Laminate

Branching LiF impact $au_c \sim d^{-1/2}$ $au_c \sim d^{-2/3}$ (Meir and Clifton ´86)

Hall-Petch effect!

Subgrid microstructures - Lamination

- Sequential lamination supplies microstructures 'on demand' and is another example of concurrent multiscale computing
- Sub-grid microstructural information is recovered locally at the Gauss-point level
- But: Effective response is known explicitly in very few cases (e.g., nematic elastomers)
- Instead: Consider easy-to-generate special microstructures, such as sequential laminates – Off-line (Dolzmann '99; Dolzmann & Walkington '00) – Concurrently with the calculations (Aubry et al. '03)

Summary and conclusions

- The multiscale modeling paradigm provides a systematic means of eliminating empiricism and uncertainty from material models
- Present computing capacity is not sufficient to integrate entire multiscale hierarchies into largescale engineering simulations
- There remains a need for modeling at all lengthscales, including:
 - subgrid models of microstructure (a la sequential lamination)
 - analytical methods, algorithms, for computing effective behavior, coarse graining

- Kinetics, dynamics, rare events...