Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
2) representation that such use or results of such use would not infringe privately owned rights; or
3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Position-sensitive virtual Frisch-grid CdZnTe detectors for the future gamma-ray telescopes

A. Bolotnikov ${ }^{\text {a }}$, G. Carinia ${ }^{\text {a }}$ A. Dellapenna ${ }^{\text {a }}$, J. Fried ${ }^{\text {a }}$, G. Deptuch ${ }^{\text {a }}$, J. Haupt ${ }^{\text {a }}$, S. Herrmann ${ }^{\text {a }}$, R. James ${ }^{\text {b }}$, A. Moiseev ${ }^{\text {c }}$, G. Pinarolia, M. Sasaki ${ }^{\text {a }}$

aBrookhaven National Laboratory, Upton, NY 11793, USA

${ }^{\mathrm{b}}$ Savannah River National Laboratory, Aiken, SC 29808, USA
${ }^{c}$ CRESST/NASA/GSFC and University of Maryland, College Park, MD 20771, USA

[^0]
Introduction

- Position-sensitive virtual Frisch-grid (VFG) detectors are a mature technology that can be used in applications for imaging and spectroscopy of gamma-ray sources
- Originally these detectors were proposed for nuclear nonproliferation and national security tasks
- Recently, this technology attracted attention of gamma-ray astronomers interested in gamma rays from a particular energy range from 100 keV up to 50 MeV
- This is the least explored and most difficult energy range, which requires large effective area detectors with good position and energy resolutions
- Arrays of CdZnTe (CZT) position-sensitive virtual Frisch-grid (VFG) detectors with dimensions of the individual elements in the array up to $8 \times 8 \times 30 \mathrm{~mm}^{3}$ are promising candidates for such instruments
- Such large size CZT bars have recently become available from commercial suppliers: Redlen and Kromek

Gamma ray flux sensitivity limits achieved with space instruments

Artist concept of the proposed Coded Aperture Mask Compton Telescope (GECCO)

Advantageous features of CZT position-sensitive VFG detectors

- The VFG design represents an economical way for making CZT detectors with good energy resolution, high detection efficiency and sub 1-mm position resolution
- 3D position sensitivity allows for correcting response nonuniformities often seen in large-volume CZT crystals, which is one of technological barriers limiting application of CZT detectors (3D corrections)
- The bar shaped geometry is beneficial for making arrays to substitute big CZT crystals, which are more expensive to produce
- Good characteristics of VFG detectors make them capable to compete with H3D pixelated detectors in large-area arrays
- Previously, we reported spectroscopic performance of VFG detectors. Here, I concentrate on achieving high position resolution that is important for gamma-ray astronomy

These images illustrate a progress in availability of CZT bars for VFG detectors

$10 \times 10 \times 30 \mathrm{~mm}^{3}$

Crystals available today
$8 \times 8 \times 30 \mathrm{~mm}^{3}$

Such bars are available from Redlen and other vendors

Detector design

Schematic of position-sensitive VFG detector

Position
sensitive pads

Encapsulated detectors

Coordinate system

- Bar shaped CZT crystals are encapsulated inside insulating shells
- 4 position-sensing pads are attached to the sides near the anode
- The pads signals provide $X-Y$ coordinates, while the cathode signals are used to measure Z coordinates: the drift time and C/A ratio give two independent estimates for Z
- The pads are virtually grounded to ensure the virtual Frisch-grid effect
- The simplest approach to evaluate $X-Y$ coordinates is to use the center of gravity method
- This approach works well for correcting response non-uniformities, but causes some image distortion, especially near the edges

$$
\begin{aligned}
& X=\frac{A_{x}^{2}}{A_{x}^{1}+A_{x}^{2}} \\
& Y=\frac{A_{y}^{2}}{A_{y}^{1}+A_{y}^{2}}
\end{aligned}
$$

- The main advantage of position-sensitive VFG detectors is the ability to correct response non-uniformity caused by crystal defects
- Typical energy resolution is $<2 \%$ at 200 keV and $<1 \%$ at above 1 MeV
- Use unselected (standard grade) crystals to reduce cost and improve performance

Examples of the arrays

Conceptual design of the array proposed for NASA Coded Aperture Mask Compton Telescope (GECCO)

Artistic concept (like Lego blocks)

Spectra measured with the 4×4 array from ${ }^{232} \mathrm{U}$ and ${ }^{137} \mathrm{Cs}$

4×4 array of $6 \times 6 \times 20 \mathrm{~mm}^{3}$ detectors read out with AVG2 ASIC
Combined spectrum

- Arrays show good performance in a wide energy range
- Resolution: < 2\% at < 200 keV and $<1 \%$ at 662 keV

Spectra measured with a large-volume $10 \times 10 \times 32 \mathrm{~mm}^{3}$ detector

U-232 source through 5-mm lead
Gamma ray lines with energies up 2.6 MeV

- Thick CZT detectors are suitable for high-energy gamma rays

Charge signals generated in position-sensitive VFG detectors

Charge signals generated in position-sensitive VFG detectors (captured from the cathode, anode and 4 pads)

- Positive steps of the anode signals give the collected charge (deposited energy)
- Negative steps of the cathode signals gives Z coordinates
- The sums of the pad signals are equivalent to the cathode signals and can substitute them (simplify the design)
- Z coordinate can be evaluated by measuring: (1) drift time, (2) C/A ratio, or (3) P/A ratio
- Negative steps of the pad signals give $X-Y$ coordinates; however, it is important to use time correlated samples of the pad signals

The waveform sampling is the best approach for processing signals from these detectors

Using pad signals to evaluate $X-Y$ coordinates

Detector coordinate systems

Four amplitudes: $A_{x}^{1}, A_{x}^{2}, A_{y}^{1}$ and A_{y}^{2} can be used to evaluate (x, y)

- We define a pad response function as the dependence of the pad amplitudes on (x, y) coordinates:

$$
\begin{aligned}
& A_{x}^{i}=R_{x}^{i}(x, y) \\
& A_{y}^{i}=R_{y}^{i}(x, y), \text { where } i=1,2
\end{aligned}
$$

- Each point from the space domain (x, y) corresponds to 4 points $\left(A_{x}^{i}, A_{y}^{i}\right)$ from the amplitude domains formed by two orthogonal pads from each corner
- The reverse response functions give 4 estimates for (x, y) :

$$
\binom{x}{y}=\binom{R_{x}^{-1}\left(A_{x}^{1}, A_{y}^{1}\right)}{R_{y}^{-1}\left(A_{x}^{1}, A_{y}^{1}\right)} \text { (for upper left corner) }
$$

- Similar estimates can be obtained for each pair of orthogonal pads, but only 2 are independent. Combining two estimates from opposite corners:

$$
\binom{x}{y}=\sum_{i=1}^{2}\binom{x_{i}}{y_{i}} w_{i}
$$

- where w_{i} are the weights (proportional to pad amplitudes)
- If assume linear approximations for the response functions, we can get the center of gravity formulas:

$$
X=\frac{A_{x}^{1}}{A_{x}^{1}+A_{x}^{2}} \quad Y=\frac{A_{y}^{1}}{A_{y}^{1}+A_{y}^{2}}
$$

- The center of gravity formular is a very robust estimator, but it causes geometrical distortions near the edGROKHMUEN

Using a focused pulsed laser beam to investigate position resolution of a VFG detector: Geometrical distortions caused by the center of gravity formula

Readout box

- Focused lased laser beam: ~10 $\mu \mathrm{m}, 100 \mu \mathrm{~m}$ steps
- Injected charge is equivalent to an energy of $\sim 500 \mathrm{keV}$
- Use a simple center of gravity formula to evaluate $X-Y$ coordinates

Cross scan Use the laser beam to write "BNL" Raster scan of a $6 \times 6 \times 20 \mathrm{~mm}^{3}$ director with $100 \mu \mathrm{~m}$ steps

400
Each cluster of dots represents a beam position (~100 laser shots per position)

The width of these clusters represents the intrinsic resolution, < $50 \mu \mathrm{~m}$ (due to diffusion and electrostatic repulsion)

There are two kinds of distortions:

1) Dots wiggling, which is due to local variations of electric field
2) Image clipping near the edges caused by using the center of gravity formula

Total ="Intrinsic"+ "Electric field variations" + "Geometrical distortions"

Using analytical response functions to avoid distortion caused by the center of gravity formulas

- Response functions can be calculated or measured experimentally during calibration
- Here, we used the analytical response functions to convert 4 pads amplitudes into (x, y) coordinates
- This approach helps to minimize geometrical distortions but not eliminates them completely, because it is not possible to accurately evaluate response functions near the detector edges

Use the conformal transformation matrix to correct the distortions

Events distribution in amplitude domain

After averaging maps from 2 pairs of orthogonal pads

All events >200 keV from ${ }^{137} \mathrm{Cs}$ integrated over Z

Events distributions along X and Y directions

Same distribution in $X-Y$ domain after applying the analytical response function

- We expected a uniform events distribution
- Events are still piling up around the detector edges

Using conformal transformation matrix to correct geometrical distortions

- First, we apply the analytical response function to convert amplitudes to positions
- Then, we apply the conformal matrix to correct the distortions
- With conformal transformation, we can avoid using the actual response functions by replacing them with the center of gravity formulas

$X-Y$ events distribution evaluated using the analytical response function (center

Almost uniform event distribution after corrections

Correcting geometrical distortions caused by the center of gravity formulas

- A $6 \times 6 \times 20 \mathrm{~mm}^{3}$ detector exposed to an uncollimated Cs-137 source (all events projected onto $X Y$ plane)
$X Y$ events distribution evaluated using the center of gravity formula

More counts are near the detector edges and corners

Same events after geometrical corrections using the conformal map

After corrections, the event distribution is almost flat

Using signals from 2 orthogonal pads to evaluate $X-Y$ coordinates

- Such situations happen when adjacent detectors in arrays share their pads
- If an interaction happens in two adjacent detectors, it creates ambiguity of using the signal generated by two electron clouds

To deal with such events, we use the transformation matrices (generated during calibration) that convert the measured 2-pad amplitude distributions into the $X-Y$ maps

Example of a 2×2 array with interconnected pads

Measured 2-pad signal distributions in the amplitude domains

Evaluating position resolution: $6 \times 6 \times 20 \mathrm{~mm}^{3}$ detector

Geometry of the experiment using a tungsten collimator

Image of the tungsten slits generated with a $6 \times 6 \times 20 \mathrm{~mm}^{3}$ detector irradiated by the uncollimated $\mathrm{Cs}-137$ source

$X-Y$ distribution of the interactions over entire detector depth projected onto the $X-Y$ plane after geometrical corrections

> Events distribution projected onto a perpendicular plane

By comparing this distribution to Monte-Carlo simulations we estimated the spatial resolution to be < 1 mm

Correcting geometrical distortions

The image of the tungsten slits illustrates how the corrections improves position resolution, $6 \times 6 \times 20 \mathrm{~mm}^{3}$ detector

Response map generated using the center of gravity formulas

Same map after applying corrections using the conformal maps

Evaluating position resolution: $10 \times 10 \times 32 \mathrm{~mm}^{3}$ detector

Geometry of the experiment using 0.8 mm tungsten slits

Image of the tungsten slits generated with a $10 \times 10 \times 32 \mathrm{~mm}^{3}$ detector irradiated by the uncollimated Cs-137 source

$X-Y$ distribution of the interaction events projected onto the $X-Y$ plane after geometrical corrections

Based on Monte-Carlo

 simulation we estimated the spatial resolution to be $<1 \mathrm{~mm}$
Position sensitivity measured with Ag X-Ray tube: $8 \times 8 \times 32 \mathrm{~mm}^{3}$ detector

Collimated down to ~200 $\mu \mathrm{m}$ X-ray beam from Ag X-Ray tube, 22 keV

Cd source was used for calibration

Linear scan from the left edge to the center

Beam splitting at the edge

Beam positioned close to the corner

Conclusions and future plans

- We developed techniques for evaluating $X-Y-Z$ coordinates in positionsensitive VFG
- We demonstrated the intrinsic position resolution of $<50 \mu \mathrm{~m}$, while the actual resolution could be affected by local electric field variations and geometrical distortions caused by the signal processing method
- Overall position resolution measured with collimated sources was found to be < 1 mm
- Our next step will be to use the beam at the HIGS facility to evaluate detector responses and position resolution for several MeV gamma rays

Acknowledgments

We would like to thank Graham Smith for letting us use his X-ray system and Matthew Chekhov for helping with data analysis.
This work was supported by U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research \& Development (DNN R\&D) and Office of International Nuclear Safeguards - Safeguards Technology Development Program.

Comparison of using the cathode signals Vs . the sum of the pad signals
$10 \times 10 \times 32 \mathrm{~mm}^{3}$ detector
Cathode bias: 3700 V, ${ }^{137} \mathrm{Cs}$ source

- The sum of the pad signals can be used to substitute the cathode signals

Correlation plot used to apply corrections

[^0]: Virtual Nuclear Science Symposium (NSS) and Medical Imaging Conference International Symposium on Room Temperature Semiconductor Detectors October 31 - November 7, 2020

