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Abstract

The elimination of gadolinium contrast agent (CA) injections and manual seg-
mentation are crucial for ischemic heart disease (IHD) diagnosis and treatment.
In the clinic, CA-based late gadolinium enhancement (LGE) imaging and manual
segmentation remain subject to concerns about potential toxicity, interobserver
variability, and ineffectiveness. In this study, progressive sequential causal GANs
(PSCGAN) are proposed. This is the first one-stop CA-free IHD technology that
can simultaneously synthesize an LGE-equivalent image and segment diagnosis-
related tissues (i.e., scars, healthy myocardium, blood pools, and other pixels)
from cine MR images. To this end, the PSCGAN offer three unique properties: 1)
a progressive framework that cascades three phases (i.e., priori generation, con-
ditional synthesis, and enhanced segmentation) for divide-and-conquer training
synthesis and segmentation of images. Importantly, this framework leverages the
output of the previous phase as a priori condition to input the next phase and
guides its training for enhancing performance, 2) a sequential causal learning net-
work (SCLN) that creates a multi-scale, two-stream pathway and a multi-attention
weighing unit to extract spatial and temporal dependencies from cine MR images
and effectively select task-specific dependence. It also integrates the GAN archi-
tecture to leverage adversarial training to further facilitate the learning of interest
dependencies of the latent space of cine MR images in all phases; and 3) two
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specifically designed self-learning loss terms: a synthetic regularization loss term
leverages the spare regularization to avoid noise during synthesis, and a segmenta-
tion auxiliary loss term leverages the number of pixels for each tissue to compen-
sate for discrimination during segmentation. Thus, the PSCGAN gain unprece-
dented performance while stably training in both synthesis and segmentation. By
training and testing a total of 280 clinical subjects, our PSCGAN yield a synthetic
normalization root-mean-squared-error of 0.14 and an overall segmentation accu-
racy of 97.17%. It also produces a 0.96 correlation coefficient for the scar ratio in
a real diagnostic metric evaluation. These results proved that our method is able
to offer significant assistance in the standardized assessment of cardiac disease.

Keywords: Gadolinium contrast agents, Synthesis, Sequential learning, Ischemic
heart disease, Progressive framework

1. Introduction1

1.1. Clinical concerns about contrast-agents and manual segmentation2

Gadolinium-based contrast agents (CA) imaging and manual segmentation of3

diagnosis-related tissues are essential parts of the current ischemic heart disease4

(IHD) treatment workflow in cardiac radiology (Beckett et al., 2015; Bijnens et al.,5

2007). CA imaging uses chemical substances in MR scans (Moon et al., 2004).6

After the CA is injected into the body, CA imaging produces a late gadolinium7

enhancement (LGE) image to illustrate IHD scars that are invisible under regular8

MR imaging and improves the clarity of other internal and surrounding cardiac9

tissues (i.e., muscles, cavities, and even blood). Furthermore, manual segmenta-10

tion delineates diagnosis-related tissues (scars, myocardium, etc.). After the CA11

imaging, manual segmentation helps radiologists to segment multiple cardiac tis-12

sues, and the subsequent quantitative evaluation of these segmented tissues results13

in various diagnosis metrics to accurately report the presence of the progression14

of IHD (Fox et al., 2010).15

However, with this workflow (i.e., CA imaging first followed by manual seg-16

mentation), there are still faces concerns regarding toxicity, high interobserver17

variability, and ineffectiveness (Kali et al., 2014). 1) CAs have been highlighted in18

numerous clinical papers showing their potential toxicity, retention in the human19

body, and importantly, their potential to induce fatal nephrogenic systemic fibro-20

sis (Ordovas and Higgins, 2011). 2) Manual segmentation has well-known issues21

regarding high interobserver variability and non-reproducibility, which are caused22

by the difference in expertise among clinicians (Ordovas and Higgins, 2011). 3)23
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Figure 1: Gadolinium-based contrast agent (CA) imaging and scar manual segmentation are es-
sential parts of the current ischemic heart disease (IHD) treatment workflow.

CA imaging followed by segmentation leads to additional time and effort for both24

patients and clinicians, as well as high clinical resource costs (labor and equip-25

ment). (Ingkanisorn et al., 2004).26

1.2. Clinical limitations of existing initial CA-free scar segmentation methods27

To date, a few initial CA-free and automatic segmentation methods have been28

reported(Suinesiaputra et al., 2017; Wong et al., 2016). However, even the state-29

of-the-art methods only produce a binary scar image that fails to provide a credible30

diagnosis (Xu et al., 2018a,b). As shown in Figures 2 and 3, this binary scar im-31

age can only indicate two categories of pixels: scar and background. This limited32

resolution thus fails to highlight all the essential tissues (e.g., myocardium and33

healthy myocardium, blood pool) recommended according to the clinical proto-34

cols of comprehensive IHD evaluation. Subsequently, it fails to help radiologists35

quantitatively assess multiple tissues to obtain the most powerful metrics for a36

credible IHD diagnosis (e.g., scar ratio = size of the scar/size of the myocardium).37

Because the use of multiple metrics based on multiple tissues results in far greater38

accuracy than using only a metric based on scar tissue alone in a credible IHD39

diagnosis (Zhang et al., 2019), the limitations of existing segmentation methods40

need to be addressed.41

Thus, clinicians urgently desire the development of more advanced CA-free42

technology that should simultaneously produce an LGE-equivalent image (i.e.,43

an image that is equivalent to an LGE image in terms of usefulness in an IHD44

diagnosis or from which clinical metrics can be obtained without CA injections)45

and a segmented image (including all diagnosis-related tissues, i.e., scar, healthy46

myocardium, and blood pools, as well as other pixels) (Leiner, 2019).47
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Figure 2: PSCGAN as a one-stop CA-free technology for the simultaneous synthesis of LGE-
equivalent images and the segmentation of all diagnosis-related tissues (including scar, healthy
myocardium and blood pools, as well as other pixels) for IHD diagnosis. It provides an accurate
IHD diagnostic output that is equivalent to clinical CA-based imaging and manual segmentation
by experts, rather than only a binary scar image as produced by existing state-of-the-art methods.

1.3. Technical challenges of LGE equivalent image synthesis and multiple diagnosis-48

related tissue segmentation49

However, it is very challenging to synthesize an LGE-equivalent image and ac-50

curately segment all the diagnosis-related tissues (i.e., scar, healthy myocardium51

and blood pools) from 2D+T cine MR images. 1) The pixel-level understanding52

of LGE images by representation learning of the 2D+T cine MR images faces53

the issue of numerous instances. The differences in the enhancement effects of54

the CAs on different cardiac cells result in each of the numerous pixels of the55

LGE image requiring a definite non-linear mapping from the cine MR images. 2)56

Representation learning of the 2D+T cine MR has a number of high-complexity57

issues. The time series characteristics of 2D+T cine MR images result in each58

non-linear mapping requiring a complex mixing of the spatial and temporal de-59

pendencies of a mass of pixels in the images, especially since these pixels often60

have high local variations (Luc et al., 2016). 3) More importantly, a pixel-level61
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understanding of LGE images is needed to differentiate between pixels that have62

very similar appearances(Xu et al., 2017). The highly similar intensity of pixels63

within the tissue on an LGE image often results in high similarities between the64

learned spatial and temporal dependencies of these pixels and often causes inter-65

ference and inaccuracy during mixing. The combination of all three issues makes66

the synthesis and segmentation of LGE-equivalent images incredibly challenging.67

1.4. Existing progressive networks68

Recently, progressive generative adversarial networks (GAN) have shown great69

potential in the tasks of image synthesis and segmentation (Huang et al., 2017;70

Karras et al., 2017; Zhang et al., 2018b). Progressive GAN inherit the advantage71

of adversarial semi-supervised learning from GAN to effectively learn to map72

from a latent space to a data distribution of interest. More importantly, the pro-73

gressive framework of such progressive GAN stacks multiple sub-GAN networks74

as different phases to take advantage of the result of the previous phase to guide75

the performance of the next phase and greatly stabilize training. However, cur-76

rent progressive GAN are designed to train on a single task because they lack a77

two-task generation scheme to simultaneously handle the synthesis task and seg-78

mentation task.79

1.5. Progressive sequential causal GANs80

In this paper, we propose a progressive sequential causal GAN (PSCGAN) as81

a one-stop CA-free technology that can simultaneously synthesize an LGE equiv-82

alent image and segment a diagnosis-related tissue segmentation image from cine83

MR images to diagnose IHD. To the best of our knowledge, this is the first technol-84

ogy to synthesize an image equivalent to a CA-based LGE-image and to segment85

multiple tissues equivalently to the manual segmentation performed by experts, as86

well as offer simultaneous synthesis and segmentation.87

Our PSCGAN innovatively build three phases in a step-by-step cascade of88

three independent GANs (i.e., the priori generation GAN, the conditional syn-89

thesis GAN, and the enhanced segmentation GAN). The first phase uses the pri-90

ori generation GAN to train the network on a coarse tissue mask; the second91

phase uses the conditional synthesis GAN to synthesize the LGE-equivalent im-92

age; and the third phase uses the enhanced segmentation GAN to segment the93

diagnosis-related tissue image. Importantly, the PSCGAN create a pipeline to94

leverage the commonalities between the synthesis task and the segmentation task.95

This pipeline takes the pixel categories and distributions in the coarse tissues mask96

as a priori condition to guide the LGE-equivalent image synthesis. It also takes97
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the fine texture in the LGE-equivalent image as a priori condition to guide the98

diagnosis-related tissue segmentation. PSCGAN use these two reciprocal guid-99

ances between the two tasks to gain an unprecedentedly high performance in both100

tasks while performing stable training.101

Our PSCGAN further implement the following novelties: 1) a novel sequen-102

tial causal learning network (SCLN). The SCLN creatively builds a two-stream103

dependency-extraction pathway and a multi-attention weighing unit. The two-104

stream pathway multi-scale extracts the spatial and temporal dependencies sepa-105

rately in the spatiotemporal representation of images to include the short-range to106

the long-range scale variants; the multi-attention weighing unit computes the re-107

sponses within and between spatial and temporal dependencies at the task output108

as a weight and mixes them according to the assigned weights. This network also109

integrates with GAN architecture to further facilitate the learning of interest de-110

pendencies of the latent space of cine MR images in all phases, and 2) the adoption111

of two specially designed loss terms, i.e., a synthetic regularization loss term and a112

self-supervised segmentation auxiliary loss term for optimizing the synthesis task113

and the segmentation task respectively. The synthetic regularization loss term uses114

a spare regularization learned from the group relationship between the intensity of115

the pixels to avoid the noise during the synthesis, thereby improving the quality of116

the synthesized image, while the self-supervised segmentation auxiliary loss term117

uses the number of pixels in each tissue to balance the output rather than only the118

shape of the tissues to improve the discrimination performance of the segmented119

image and thereby improve the segmentation accuracy.120

1.6. Contribution121

In summary, the main contributions of this work are as follows:122

• For the first time, a CA-free synthesis and segmentation method is proposed.123

This method eliminates the CA-associated health risks and streamlines the124

clinical workflows.125

• A novel sequential causal learning framework is proposed. This framework126

strengthens the spatiotemporal repesentation learning of time-series images127

by gaining task-specific spatiotemporal dependencies.128

• A progressive framework cascading three reciprocal GANs is proposed for129

both image synthesis and segmentation. It exploits the commonalities of the130

synthesis task and the segmentation task, as well as obtaining high perfor-131

mance and stable training.132

6

                  



2. Related Work133

2.1. Existing IHD methods for CA injection and manual segmentation134

Currently, there is no method for both synthesizing LGE-equivalent images135

and segmenting all diagnosis-related tissues directly from cine MR images. Early,136

traditional CA-free IHD-diagnosing methods, such as energy-based and statis-137

tical shape model-based methods (Ledesma-Carbayo et al., 2005; Suinesiaputra138

et al., 2017), cannot perform automatic segmentation. These methods only pro-139

duce image-level IHD classification or region-level IHD scar localization from140

cine MR images; therefore, radiologists often need to further manually segment141

these classification or localization results for diagnosis. With the introduction of142

deep learning, some CA-free IHD-diagnosing methods, such as 3DConv-based143

or LSTM-based methods, have been used to segment a pixel-level scar from cine144

MR images and have been reported by the radiology community in a real clinical145

setting (as mentioned in section 1.2) (Duchateau et al., 2016; Xu et al., 2018b;146

Zhang et al., 2019; Tan et al., 2012).147

Moreover, existing IHD-diagnosing methods, even the state-of-the-art one148

proposed by us (Xu et al., 2018a), are inefficient in the representation learning149

of cine MR images. 1) Existing methods still must contend with a fixed local150

observation in both spatial dependency and temporal dependency extraction (e.g.,151

only adjacent temporal frames of optical flow and a fixed spatial convolutional152

kernel size for deep learning). However, pixels in 2D+T cine MR images often153

have high local variations (i.e., different positions and motion ranges in different154

regions and timestamps) (Luc et al., 2016; Su et al., 2020). 2) Current spatial-155

temporal feature learning methods still struggle with constant learning weights156

during the mixing of spatial dependencies with temporal dependencies (e.g., both157

3DConv and ConvLSTM often simply treat the two dependencies on each pixel as158

equal during learning) (Xu et al., 2017). However, different pixels have different159

selection requirements in terms of temporal dependencies and spatial dependen-160

cies (Tan et al., 2013b,a).161

2.2. Generative adversarial networks162

GANs (Goodfellow et al., 2014) have become one of the most promising deep163

learning architectures for either image segmentation tasks or synthesis tasks in164

recent years. However, GANs may produce inefficient and unstable results when165

two or more tasks need to be solved at the same time. GAN comprises two net-166

works, a generator and a discriminator, where one is pitted against the other. The167
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generator network learns to map from a latent space to a data distribution of inter-168

est, while the discriminator network distinguishes the candidates produced by the169

generator from the true data distribution. However, a GAN may learn an erroneous170

data distribution or a gradient explosion when the latent space of the distributions171

of two tasks interfere with each other. Conditional GAN, a type of GAN imple-172

mentation, has the potential to learn reciprocal commonalities of the two tasks173

to avoid interferes with each other because of its considerable flexibility in how174

two hidden representations are composed (Mirza and Osindero, 2014; Isola et al.,175

2017). In conditional GAN, a conditioned parameter y is added to the generator176

to generate the corresponding data using the following equation:177

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]
(1)

where pdata(x) represents the distribution of the real data and pz represents the178

distribution of the generator.179

2.3. Attention model180

The attention model successfully weighs the positions that are highly related181

to the task (Bahdanau et al., 2014), thereby improving the performance of the182

application in various tasks (Zhou et al., 2016; Vaswani et al., 2017). It is inspired183

from the way humans observe images, wherein more attention is paid to a key part184

of the image in addition to understanding an image as a whole. Such a model uses185

convolutional neural networks as basic building blocks and calculates long-range186

representations that respond to all positions in the input and output images. It then187

determines the key parts that have high responses in the long-range representations188

and weights these parts to motivate the networks to better learn the images. In189

particular, recent work on attention models embedded an auto regressive model to190

achieve image synthesis and segmentation by calculating the response at a position191

in a sequence through attention to all positions within the same sequence (Zhang192

et al., 2018a). This model has also been integrated into GANs by attending to193

internal model states to efficiently find global, long-range dependencies within the194

internal representations of the images. Importantly, the attention model has been195

formalized as a non-local operation to model the spatial-temporal dependencies196

in video sequences (Wang et al., 2018). Despite this progress, the attention model197

has not yet been explored for the internal effects of different spatial and temporal198

combinations on synthesis and segmentation in the context of GANs.199

8

                  



pixel 

categories

-

and

in 

the

Using divide-and-conquer as the next task’s priori condition  

-

Figure 3: The SCLN creatively builds a two-stream pathway (i.e., a spatial perceptual pathway
and a temporal perceptual pathway) to separately extract multi-scale and multi-level spatial and
temporal dependencies from cine MR images. Then, it also builds a multi-attention weighing unit
to compute and select the task-specific dependencies within and between these two dependencies.

3. Overview of PSCGAN200

As depicted in Figure 3, PSCGAN cascade three GANs to build three phases201

and connect them by taking the output of the previous GAN as an input of the202

next GAN. Moreover, to reduce the randomness during training, all three GANs203

encode the cine MR images by using the same foundational network architecture,204

a SCLN-based GAN (Sect. 4.2) that includes an encoder-decoder generator and a205

discriminator to specially design and handle time-series images. Thus, PSCGAN206

not only have great training stability by using divide-and-conquer to separate the207

segmentation task and synthesis task into different phases but also undergo effec-208

tive training by progressively taking the output of the previous phase as the priori209

condition input to guide the next phase .210

Phase I: priori generation GAN (Sect.5.1). This phase uses the priori gener-211

ation GAN (Pri) to generate a coarse tissue mask MPri from the cine MR images212

X by adversarial training. This coarse segmented image is a rich priori condition,213

as it contains all pixel categories and tissue shapes, locations, and boundaries.214

Phase II: conditional synthesis GAN (Sect.5.2). This phase uses the condi-215

tional synthesis GAN (Sys) to integrate the coarse tissue mask and the cine MR216
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image to build a conditional joint mapping to use the obtained pixel attributes and217

distributions from the mask to guide the image synthesis to generate a high-quality218

LGE-equivalent image Isys.219

Phase III: enhanced segmentation GAN (Sect.5.3). This phase uses the en-220

hanced segmentation GAN (Seg) to introduce the synthesized image from Sys221

as a priori condition to generate the diagnosis-related tissue segmentation image222

ISeg. The synthesized image and all detailed textures effectively guide the classi-223

fication of the tissue boundary pixels.224

4. Sequential causal learning network (SCLN)-based GAN225

The core of the SCLN-based GAN is our newly proposed SCLN. An SCLN226

is a novel spatiotemporal representation learning framework for the 2D+T time-227

series image. It has the ability to select the task-specific dependence between and228

within the extracted spatial and temporal dependencies from the 2D+T time-series229

image. Thus, in our work, the SCLN improves the spatiotemporal representation230

learning of 2D+T cine MR images and facilitates the accuracy of the pixel-level231

nonlinear mapping from the 2D T cine MR images to synthesis and segmentation.232

Moreover, by integrating an SCLN into the GAN architecture as the encoder of233

the cine MR images in the generator, the SCLN-based GAN improves the learn-234

ing effectiveness of the interest distribution from the latent space of the cine MR235

images, thereby effectively improving the generating performance on adversarial236

training.237

4.1. Sequential causal learning network (SCLN)238

The SCLN consists of a two-stream structure that includes a spatial percep-239

tual pathway and a temporal perceptual pathway and a multi-attention weighing240

unit. The SCLN leverages the two-stream structure to flexibly divide the spatial241

dependence and the temporal dependence in the 2D+T time-series image into two242

independent learning pathways. It enables both the spatial dependence and tem-243

poral dependence learning to be focused by their corresponding pathway, thereby244

avoiding the interference between these two types of dependencies during learn-245

ing. Moreover, the SCLN leverages the multi-attention weighing unit to weigh246

both the spatial dependence and temporal dependence, and it performs feature se-247

lection. It produces task-specific dependencies through the flexible mixing of the248

spatial dependence and temporal dependence by learnable weights, rather than249

mixing them based on constant learning weights, as in current spatiotemporal250
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Figure 4: SCLN creatively builds two-stream pathways (i.e. a spatial perceptual pathway and a
temporal perceptual pathway ) to separately extract multi-scale and multi-level spatial and tem-
poral dependencies from cine MR images. It also builds the multi-attention weighing unit to
respectively compute and select the task-specific dependence within and between these two de-
pendencies.

learning methods. Thus, the SCLN strengthens the accuracy of the spatiotempo-251

ral dependencies, thereby improving the representation of the 2D+T time-series252

images.253

4.1.1. Two-stream structure for multi-scale spatial and temporal dependency ex-254

traction255

As shown in Figure 4, the spatial perceptual pathway and the temporal percep-
tual pathway use two independent, stacked dilated convolution (Yu and Koltun,
2015) as multi-scale extractors to focus the spatial dependencies and the temporal
dependencies in the time-series images, respectively. Dilated convolution con-
sists of sparse filters that use skip points during convolution to exponentially grow
the receptive field to aggregate multi-scale context information. It improves the
diversity of both spatial dependencies and temporal dependencies to include all
the short-range to long-range scale variants. The 1D/2D dilated convolutions are
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formulated as follows:

1D : (kernel ∗l x)t =
∞∑

s=−∞
kernels · ft−ls (2)

2D : (x ∗l kernel) (p) =
∑

s+lt=p

x(s)kernel(t) (3)

where x is the 1D/2D signal/image, and l is the dilation rater.256

In our work, the spatial perceptual pathway uses 2D dilated convolution (Yu257

and Koltun, 2015), and the temporal perceptual pathway uses 1D dilated convo-258

lution (Oord et al., 2016). The inputs of both pathways are cine MR images. The259

spatial perceptual pathway regards 2D + T cine MR images as multiple (time260

t to time t + n) independent 2D images. Each input image is learned by a 2D261

dilated convolution, where the number of 2D dilated convolution is the same as262

the number of frames. The output of the 2D dilated convolution in time t is the263

spatial feature convolved with the frame of time t only. Thus, the spatial feature264

of 2D + T cine MR images can be effectively captured when combining all 2D265

dilated convolution from time t to time t + n. By contrast, the spatial perceptual266

pathway regards 2D + T cine MR images as a whole 1D data. This 1D data is267

learned by 1D dilated convolutions according to its order, where the hidden units268

of the 1D dilated convolution that are the same length as the 1D form of each269

frame (the length of a 64x64 frame is 4096). The output of each 1D dilated con-270

volution time t is the temporal feature convolved with the frame of time t and the271

earlier time in the previous layer. Thus, the temporal feature of 2D + T cine MR272

can be effectively captured when the 1D dilated convolution process reaches the273

time t+ n.274

Concretely, both pathways initially stack 6 dilated convolutions, and the cor-275

responding dilation rate is [1, 1, 2, 4, 6, 8]. This setting allows the learned repre-276

sentation to include all 3×3 to 65×65 motion and deformation scales. Note that277

the stack number still varies with the spatial and temporal resolution of the time-278

series image during encoding. Moreover, both spatial and temporal perceptual279

pathways stack 3 stacked dilated convolutions (1D/2D) again to build a residual280

block framework for deepening the network layers and enriching hierarchical fea-281

tures (He et al., 2016). Both paths also adopt a causal padding to ensure that the282

output at time t is only based on the convolution operation at the previous time283

(Oord et al., 2016). This causal-based convolution means that there is no informa-284

tion leakage from the future to the past.285

In summary, the advantages of this two-stream structure are as follows: 1) two286
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pathways are used to focus on two aspect dependencies independently; 2) dilated287

convolution with residual blocks and shortcut connections are used to extract mul-288

tiscale and multilevel dependencies and 3) causal padding is used to understand289

the time order within the dependencies.290

4.1.2. Multi-attention weighing unit for task-specific dependence selection291

The multi-attention weighing unit consists of three independent self-attention292

layers and an add operator to adaptively weigh the high-contribution dependences293

between and within spatial and temporal dependencies at the output to perform294

accurate task-specific dependence selection (Vaswani et al., 2017). Two self-295

attention layers first embed behind both the spatial perceptual pathway and the296

temporal perceptual pathway to adaptively compute the response of each path-297

ways dependence at the output as their weights; then, the add operator element-298

wise fuses the weighed spatial and temporal dependencies; finally, the third self-299

attention layer determines which of the fused spatial-temporal dependences is the300

task-specific dependence. Concretely, the spatial dependencies from the spatial301

perceptual pathway are defined as FSConv
∈ RC×N , where C is the number of302

channels and N is the number of dependencies. The spatial self-attention layer303

first maps these spatial dependencies into two feature spaces f(.) = WfFSConv
304

and g(.) = WgFSConv
. It calculates the weight αi to the ith dependencies, where305

α = (α1, α2, . . . , αj, . . . , αN) ∈ RC×N :306

αi =
exp (si)∑N
i=1 exp (si)

, where si = f (FSConv i)
T g (FSConv i) (4)

The weighed spatial dependencies αFSConv
are as follows:

v

(
N∑

i=1

αih (FSConv i)

)
, (5)

h (FSConv i) = WhFSConv i, v (FSConv i) = WvFSConv i (6)

where Wg,Wf ,Wh,Wv are the learned weight matrices. For memory efficiency,307

{Wg,Wf ,Wh,Wv} ∈ RC̃×C , where C̃ is the reduced channel number and C̃ =308

C/8. Note that 8 is a hyperparameter.309

By the same token, the temporal self-attention layer enhances the temporal310

dependencies FTConv
from the temporal perceptual path to an attention-weighted311

βFTConv
∈ RC×N , where β = (β1, β2, . . . , βj, . . . , βN) ∈ RC×N are the weights312

of the temporal dependencies.313
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The add operator elementwise fuses the weighed spatial dependencies and314

temporal dependencies:315

FSTConv
= αFSConv

+ βFTConv
(7)

The fused self-attention layer weighs the fused spatial-temporal dependencies316

FSTConv
. The output of this layer is OSTConv

∈ RC×N . This output further adds317

the input of the map layer after modification with a learnable scalar γ. Therefore,318

the final output is given by γOStConv
+ FSTConv

.319

4.2. Implementation of an SCLN-based GAN for the basic network architecture320

at all phases321

This network stacks 4 SCLNs and 4 corresponding up-sampling blocks to322

build a generator. The network further stacks 5 convolutional layers to build a323

discriminator. Both the generator and discriminator use conditional adversarial324

training to effectively perform the segmentation and synthesis.325

As shown in Figure 5, the generator is an encode-decode 2D+T to 2D frame-326

work modified from U-Net (Ronneberger et al., 2015). It first encodes the input327

X ∈ R25×64×64×1 (25 frames, image size per frame 64 × 64 × 1) by using 4328

SCLNs with 2, 2, 2, 2 strides on the spatial perceptual pathway and 4, 4, 4, 4329

strides on the temporal perceptual pathway. The first SLCN uses two copies of330

X as the inputs into its spatial perceptual pathway and temporal perceptual path-331

way. Thus, beginning from the second SCLN, the generator takes the spatial and332

temporal perceptual pathway outputs of the previous SCLN as the input and en-333

codes a 25× 4× 4× 128 feature from the multi-attention weighing unit output of334

the fourth SCLN. Then, this encoded feature is further reduced to 1 × 1 × 4096335

by a fully connected layer and is then passed to another fully connected layer to336

reshape the encoded feature into a 4 × 4 × 256 feature. Four upsampling blocks337

(Upsampling-Conv2D-LN) then use this reshaped feature to encode an image (i.e.,338

the coarse tissue mask, the LGE-equivalent image or the diagnosis-related tissue339

segmentation image ) ∈ R64×64×1. Moreover, the generator also uses a dot layer340

to reduce the first dimension of the multi-attention weighing unit output from the341

first to the third SCLN and a skip connection that is the same as the U-Net to feed342

the corresponding upsampling block with the same feature map size.343

The discriminator encodes the output of the generator of the corresponding344

phase and determines whether this output is consistent with the domain of its345

ground truth. All 5 convolutional layers have strides of 2. Note that the attention346

layer is added between the second convolutional layer and the third convolutional347
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Figure 5: By integrating SCLN into the GAN architecture as the encoder of cine MR images in
the generator, SCLN-based GAN improves the learning effectiveness of interest distribution from
the latent space of cine MR images, thereby effectively improving the generating.

layer. These attention layers endow the discriminator with the ability to verify that348

highly detailed features in distant portions of the image are consistent with each349

other and to improve the discrimination performance.350

In summary, the advantage of this SCLN-based GAN is an accurate encoding351

the interest dependencies from the latent space of cine MRI image.352

5. Three progressive phases of PSCGAN353

5.1. Phase I: priori generation GAN for coarse tissue mask generation354

The priori generation GAN (Pri) is built with the same architecture as the355

SCLN-based GAN, as shown in Figure 6(a). It consists of a generator GPri and356

a discriminator DPri. This GAN generates a coarse tissue mask MPri, which357

focuses on drawing the shape, contour and correct categories for the four clas-358

sifications (scar, healthy myocardium, blood pool, and other pixels). This GAN359

does not seek a final result in one step but takes advantage of the shape, contour,360

and categories of this rough segmentation as a priori information to guide the next361

module to learn the attributes and distributions of the pixels.362

Training of this generator uses multi-class cross-entropy loss. Although MPri

contains four classes, the generator is treated as a single classification problem
for the samples in one of these classes by encoding both the generator output
and ground truth to one-hot vector classes. The generator can be formulated as
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follows:

LGPri
=

N∑

n=1

mce
(
GPri (X) , ĨSeg

)
(8)

mce = − 1

N

N∑

n=1

[
ĨSeg logMPri +

(
1− ĨSeg

)
log (1−MPri)

]
(9)

where ĨSeg is the ground truth of MPri, and N = 4.363

The discriminator training uses the adversarial loss LPri
Adv, which adopts the364

recently developed hinge adversarial loss (Vaswani et al., 2017). This hinge ad-365

versarial loss maps the true sample to a range greater than 1 and maps the false366

sample to an interval less than -1. It better converges to the Nash equilibrium367

between the discriminator and generator, thus result in less mode collapsing and368

more stable training performance than other GAN losses Zhao et al. (2016). It can369

be formulated as follows:370

LDPri
Adv =− E(ĨSeg)∼pdata

[min(0,−1 +DPri(ĨSeg))]

− EX∼pX [min(0,−1−DPri(GPri(X)))]

LGPri
Adv =− EX∼pXDPri(GPri(X))

(10)

5.2. Phase II: conditional synthesis GAN for high-quality LGE-equivalent image371

synthesis372

The conditional synthesis GAN (Sys) consists of a generator GSys and a dis-373

criminator DSys to generate an LGE-equivalent image ISys. As shown in Figure374

6(b), this GAN introduces the previously generated course tissue mask to guide375

the network training by modifying the SCLN-based GAN with a fully connected376

layer in the generator to concatenate the 1 × 1 × 4096 feature and the mask, the377

output of which is then fed into the following fully connected layer and 4 upsam-378

pling blocks. Thus, this GAN builds a conditional joint mapping space between379

the segmentation and the synthesis to use the basic attributes and distributions380

(i.e., shape, contour, location, and categories) of the tissues to disentangle dif-381

ferent tissue-feature learning in the cine MR images and allows the generator to382

perform accurate and detailed synthesis.383

The generator uses the synthetic regularization loss LGSys
for the training.384

This loss incorporates an L2-regularization term and an overlapping group spar-385

sity anisotropic operator (Peyré and Fadili, 2011) into the recently developed total386
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 Fine 

Figure 6: All GANs in the three phases leverage the adversarial training and dedicated loss terms
to enhance the performance of synthesis and segmentation. Importantly, the conditional synthesis
GAN and enhanced segmentation GAN leverage the output of the respective previous GANs to
guide the training of the next GAN as part of its input.

variation loss to improve the quality of the synthesized image (Pumarola et al.,387

2018). The total variation loss has recently shown the ability to significantly re-388

duce the noise in the synthesized image during image synthesis. L2-regularization389

is further incorporated into the total variation loss to measure the computation390

complexity and prevent overfitting by penalizing this complexity. The overlap-391

ping group sparsity anisotropic operator is further incorporated into the total vari-392

ation loss. It takes into account group sparsity characteristics of image intensity393

derivatives, thereby avoiding staircase artifacts that erroneously consider smooth394

regions as piecewise regions (Peyré and Fadili, 2011). Concretely, this loss is395

formulated as follows:396

LGSys
= E

ISys∼PG

[
1

2
‖ISys‖22+ν(φ(ISysi+1,j

−ISysi,j)+φ(ISysi,j+1
−ISysi,j))] (11)

where i and j are the ith and jth pixel entry of ISys, ν > 0 is a regularization
parameter, and φ(.) is overlapping group sparsity function. Overlapping group
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sparsity anisotropic operator is described as

φ(u) =
n∑

i,j=1

‖ui,j,K(:)‖2 (12)

ũi,j,K =

[
ui−m1,j−m1 ui−m1,j−m1+1

ui−m1+1,j−m1 ui−m1+1,j−m1+1

]
(13)

where K is the group size, m1 =
⌊
K−1
2

⌋
and m2 =

⌊
K
2

⌋
.397

The discriminator is trained using an adversarial loss term and a synthetic con-398

tent loss term: 1) the synthesis adversarial loss LDSys

Adv adopts the hinge adversarial399

loss and can be formulated as:400

LDSys

Adv =− E(ĨSys)∼pdata
[min(0,−1 +DSeg(ĨSys))]

− EX∼pX [min(0,−1−DSys(GSys(X|MPri)))]

L
GSys

Adv =− EX∼pXDSys(GSys(X|MPri))

(14)

where ĨSys is the ground truth (i.e, LGE image).401

2) the synthetic content loss LSys
Cont is specially designed to use feature maps of402

the 2nd, 3rd and 4th convolution layers outputted from discriminator to evaluate403

ISys by comparing it to its ground truth ĨSys. This multiple feature map evaluation404

allows the discriminator to discriminate the image in terms of both the general405

detail content and higher detail abstraction during the activation of the deeper406

layers, thereby improving the discriminator performance (Johnson et al., 2016). It407

is defined as follows:408

E
ISys∼Pdata

[
1

WiHi

Wi∑

x=1

Hi∑

y=1

(D
Convi
Sys (ĨSys)x,y −DConvi

Sys (GSys(X|MPri)x,y))
2
] (15)

where D
Convi
Sys is the feature map and Wi and Hi obtained by the ith convolution409

layer (after activation).410

In summary, the advantages of the conditional synthesis GAN are as follows:411

1) the coarse tissue mask is used as an a priori condition to guide the accurate412

synthesis of the tissues, 2) the synthetic regularization loss is used to reduce the413

image noise during synthesis, and 3) the synthetic content loss is used to improve414

the detail restoration in the image synthesis.415
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5.3. Phase III: enhanced segmentation GAN for accurate diagnosis-related tis-416

sues segmentation417

The enhanced segmentation GAN (Seg) consists of a generator GSeg and a418

discriminator DSeg to generate an accurate diagnosis-related tissue segmentation419

image ISeg, as shown in Figure 6(c). Compared to the basic SCLN-based GAN,420

this GAN has following two differences: 1) it adds a fully connected layer into421

the generator at the same position as that of the conditional synthesis GAN to422

introduce the synthesized image output from phase II as a condition to guide the423

segmentation. The synthesized image already includes all detailed textures of the424

tissues, which effectively aids the fine classification of the tissue boundary pix-425

els, and 2) it adds a linear layer at the end of the discriminator to regress the426

size (number of pixels) of the 4 different segmentation categories at the end of427

the discriminator to perform a self-supervised segmentation auxiliary loss. This428

self-supervised loss prevents the discriminator from only judging the segmented429

image based on the segmentation shape, causing the discriminator to extract a430

compensate feature from the input image to improve its discrimination perfor-431

mance. Concretely, the generator with multi-class cross-entropy loss and the dis-432

criminator with segmentation adversarial loss are formulations as follows:433

LGSeg
=

N∑

n=1

mce
(
GSeg (X|ISys) , ĨSeg

)

LDSeg

Adv =− E(ĨSeg)∼pdata
[min(0,−1 +DSeg(ĨSeg))]

− EX∼pX [min(0,−1−DSeg(GSeg(X|ISys)))]
L
GSeg

Adv =− EX∼pXDSeg(GSeg(X|ISys))

(16)

The discriminator with self-supervised segmentation auxiliary loss is formu-434

lation as follows:435

LAux
Seg = EĨSeg∼Pdata

||DAux
Seg (Si|ĨSeg)−DAux

Seg (Si|GSeg(X|ISys)))||1 (17)

where Si =
∑4

n=1(Si1, Si2, Si3, Si4) is the size of the 4 segmentation categories436

of pixels in the image outputted from the linear layer of the discriminator DAux
Seg .437

In summary, the advantages of the enhanced segmentation GAN are as fol-438

lows: 1) the boundaries of tissues within synthesized images are used to guide the439

tissues boundary segmentation and 2) the self-supervised segmentation auxiliary440

loss is used to improve the segmentation adversarial.441
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Figure 7: PSCGAN cascade three GANs and connects them by taking the output of the previous
GAN as an input of the next GAN.

6. Materials and Implementation442

6.1. Materials443

A total of 280 (230 IHD and 50 normal control) patients with short-axis cine444

MR images were selected. Cardiac cine MR images were obtained using a 3-T445

MRI system (Verio, Siemens, Erlangen, Germany). Retrospectively gated bal-446

anced steady-state free-precession nonenhanced cardiac cine images with 25 re-447

constructed phases were acquired (repetition time/echo time, 3.36 msec/1.47 msec;448

field of view, 286×340 mm2; matrix, 216×256; average temporal resolution, 40449

msec). LGE MRI was performed in the same orientations and with the same450

section thickness using a two-dimensional segmented, fast low-angle shot, phase-451

sensitive inversion recovery sequence 10 minutes after intravenous injection of452

a gadolinium-based contrast agent (Magnevist, 0.2 mmol/kg; Bayer Healthcare,453

Berlin, Germany). Moreover, a network with heart localization layers, as de-454

scribed in (Xu et al., 2017), was used to automatically crop both cine MR im-455

ages and LGE images to 64×64 region-of-interest sequences, including the left456

ventricle. Furthermore, the cropped cine and LGE images were registered at the457

end-diastole phase.458

6.2. Ground truth459

The ground truth of the LGE-equivalent image is the real LGE images . The460

ground truth of the diagnosis-related tissue segmentation image is an LGE seg-461

mented image that includes the contours of the healthy myocardium, scar, and462

blood pool. These contours were manually delineated on the LGE MRI by a ra-463

diologist (N.Z., with 7 years of experience in cardiovascular MRI) from the LGE464

image. All manual segmentations were reviewed by another expert (L.X., with465

10 years of experience in cardiovascular MRI), and in cases of disagreement, a466

consensus was reached.467
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6.3. Implementation detail468

The PSCGAN randomly selected 3/4 of the patients for training and the re-469

maining 1/4 (70) patients were used for independent testing. All three GANs470

were trained using an ADAM solver (Kingma and Ba, 2014) with a batch size471

of 1 and an initial learning rate of 0.001. For every 2 optimization steps of the472

discriminator, we performed a single optimization step for the generator. Layer473

normalization (Ba et al., 2016) and LeakyReLU activation (Goodfellow et al.,474

2016) were used both in the generators and the discriminators. The pixel values475

were normalized to [-1, 1].476

6.4. Algorithm summary477

Figure 7 indicates that PSCGAN connect three GANs by taking the output of478

the previous GAN as an input of the next GAN. Each GAN includes a generator479

and a discriminator. All discriminators are used only during adversarial training.480

• Priori generation GAN inputs the 2D+T cine MR images X ∈ RH×W×T×C ,481

where H = W = 64 are the height and width of each temporal frame,482

T = 25 is a temporal step, C = 1 is the number of channels. This GAN483

outputs coarse tissue masks of 64 × 64 × 1. When adversarial training,484

the generator of this GAN inputs 2D+T cine MR images and outputs coarse485

tissue masks. The discriminator of this GAN inputs coarse tissue masks and486

the corresponding ground truth is 64 × 64 × 1. This discriminator outputs487

1× 4 probability values.488

• Conditional synthesis GAN inputs a combination of coarse tissue masks of489

64×64×1 and cine MR images of 25×64×64×1. This GAN outputs out-490

puts LGE-equivalent images of 64×64×1. During the adversarial training,491

the generator of this GAN inputs a combination of coarse tissue masks, and492

cine MR images, and ouputs LGE-equivalent images. The discriminator493

of this GAN inputs LGE-equivalent images and the corresponding ground494

truth of 64× 64× 1. This discriminator outputs 1× 1 probability values.495

• Enhanced segmentation GAN inputs the combination of LGE-equivalent496

images of 64× 64× 1 and cine MR images of 25× 64× 64× 1. This GAN497

outputs diagnosis-related tissue segmentation images of 64×64×1. During498

the adversarial training, the generator of this GAN inputs a combination of499

LGE-equivalent images and cine MR images, and outputs diagnosis-related500
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Figure 8: PSCGAN synthesize high-quality LGE-equivalent images and produces accurate
diagnosis-related tissue segmentation images. In LGE-equivalent images, the scar (dashed box,
the high contrast area in LV wall) has a clear and accurate presentation when compared to the
real LGE image. Note that this high contrast area is invisible in cine MR images without CA
injection. In diagnosis-related tissue segmentation images, the segmented scar (cyan ), health
myocardium (purple ), and blood pool (orange ) from our method are highly consistent with
the ground truth in terms of shape, location, and size.

tissue segmentation images. The discriminator of this GAN inputs LGE-501

equivalent images and the corresponding ground truth of 64× 64× 1. This502

discriminator outputs 1× 4 probability values, and 1× 4 vectors.503

Note that the 64×64×1 coarse tissue masks and segmented images are categorical504

data, which are quickly converted to and from 64 × 64 × 4 one-hot data during505

adversarial training.506

6.5. Metrics507

Our network evaluates its performance in two aspects: 1) clinical metrics and508

2) imageology metrics. In clinical metrics, our network evaluates the scar size,509

the segment-level scar localization (16-segment model), the MI ratio (scar pixels/510

healthy myocardium pixels), and the transmurality. All these metrics compare511

the results of our diagnosis-related tissue segmentation image with the results512

of the ground truth by using the correlation coefficient, Bland-Altman analysis513

(Altman and Bland, 1983), sensitivity, specificity and positive and negative pre-514

dictive values (PPV and NPV). In imageology metrics, our network compares our515
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Figure 9: PSCGAN generated an accurate diagnosis-related tissue segmentation image. Further-
more, each technologically innovative component in the PSCGAN effectively improve the seg-
mentation accuracy.

segmented image with the ground truth by calculating the accuracy, sensitivity,516

specificity, and Dice coefficient. The network also compares the LGE-equivalent517

image with the LGE image (ground truth) by calculating the structural similarity518

index (SSIM) (Wang et al., 2004), peak signal-to-noise ratio (PSNR) (Welstead,519

1999), and normalized root-mean-squared error (NRMSE).520

7. Experiments and Results521

Comprehensive experiments indicated that the PSCGAN synthesize high-quality522

LGE equivalent image and accurately segments all diagnosis-related tissues. PSC-523

GAN achieved an NRMSE of 0.14 when comparing the LGE equivalent image to524

ground truth and achieved 97%, 96%, and 97% segmentation accuracy when com-525

paring the clinicians manual segmentation of the scar, healthy myocardial tissues,526

and blood pools, respectively. The correlation coefficient between the scar ratio527

obtained from PSCGAN and that from the current clinical workflow was 0.96.528

These results demonstrated that PSCGAN could perform full diagnosis-related529

tissue observation and segmentation, thereby obtaining highly accurate diagnosis530

metrics in a real clinic setting.531
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7.1. High-quality LGE-equivalent image synthesis and accurate diagnosis-related532

tissues segmentation533

7.1.1. Imageology metrics534

Table 1 and Figure 8 indicate that PSCGAN were able to synthetize high-535

quality LGE-equivalent images, which were almost identical to the LGE image536

based on CA injection, in terms of the imageology metrics . It achieved an SSIM537

of 0.78±0.10, a PSNR of 23.03±1.42, and an NRMSE of 0.11±0.05. Moreover,538

PSCGAN achieved an average SSIM of 0.76±0.18, a PSNR of 23.17±1.60, and539

an NRMSE of 0.10±0.09 when using the 10-fold random cross-validation. Note540

that higher values for SSIM and PSNR and lower values for NRMSE indicated541

better performance.542

Table 1, Figure 8, and Figure 9 shows that PSCGAN accurately segmented543

IHD scars, healthy myocardium and blood pools in terms of the imageological544

metrics. Our method achieved an overall pixel segmentation accuracy of 97.17%545

with a sensitivity of 91.68% and a specificity of 98.53%. In particular, the accu-546

racy of the scar segmentation is 97.13%, that of the healthy myocardium segmen-547

tation is 96.34% and that of the blood pool segmentation is 97.97%. PSCGAN ob-548

tained Dice coefficients of 0.93 for the scar tissue, 0.90 forthe healthy myocardial549

tissue, and 0.93 for the blood pools. Moreover, when using the 10-fold random550

cross-validation, our method achieved an overall pixel segmentation accuracy of551

97.11% with a sensitivity of 91.24% and a specificity of 98.67%. In particular,552

the accuracy of the scar segmentation is 96.94%, that of the healthy myocardium553

segmentation is 96.37% and that of the blood pool segmentation is 98.01%. PSC-554

GAN obtained Dice coefficients of 0.90 for the scar tissue, 0.91 for the healthy555

Table 1: The PSCGAN achieved accurate diagnosis-related tissues segmentation image and high-
quality LGE-equivalent image synthesis in terms of imageology metrics

Accurate diagnosis-related tissues segmentation image
Accuracy Sensitivity Specificity Dice coefficient

Overall 97.17(0.48)% 91.68% 98.53% 0.918(0.17)
Scar 97.13(0.23)% 90.84% 98.48% 0.932(0.11)

Healthy myocardium 96.34(0.51)% 91.07% 99.11% 0.908(0.19)
Blood pool 97.97(0.44)% 91.84% 98.36% 0.936(0.15)

High-quality LGE-equivalent image synthesis
SSIM NRMSE PSNR

0.78(0.10) 0.11(0.05) 23.03(1.42)
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Figure 10: PSCGAN calculated scar sizes and scar ratios highly consistent with those from the
current clinical workflow as shown by comparisons with Bland-Altman analysis.

myocardial tissue, and 0.93 for the blood pools.556

7.1.2. Clinical metrics557

The experimental results also show that PSCGAN can provide radiologists558

with the same clinical metrics for diagnosis as current clinical workflows, as559

shown in Figure 10 and Table 3. When compared to the ground truth, the PSC-560

GAN achieved a correlation coefficient of 0.97 and -0.1 (0.98,-1.2) cm2 for the561

corresponding biases (limits of agreement) in scar size, a sensitivity of 85.27%562

and a specificity of 97.47% in the segment-level scar localization, a correlation563

coefficient of 0.96 and 0.41 (8.0, -8.8)% for the corresponding biases (limits of564

agreement) in scar ratio, and a sensitivity of 86.95% and a specificity of 97.87%565

in scar transmurality. Moreover, when using the 10-fold random cross-validation,566

the PSCGAN achieved a correlation coefficient of 0.95 in scar size, a sensitiv-567

ity of 84.80% and a specificity of 97.67% in the segment-level scar localization,568
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Table 2: Clinical metrics obtained by PSCGAN are highly consistent with those obtained from the
current clinical workflow.

Sensitivity Specificity AUC
Scar segment-level

localization
85.27% 97.47% 0.90

Scar transmurality 86.95% 97.87% 0.91

PSCGAN Ground truth Pearson’s r (P-value)
Scar size (cm2) 7.37 ± 2.17 5.64 ± 1.93 0.97 (0.24)
Scar ratio(%) 29.10±19.73 25.31±17.62 0.96 (0.11)

a correlation coefficient of 0.94, in scar ratio, and a sensitivity of 82.61% and a569

specificity of 98.17% in scar transmurality.570

7.2. Advantage of the generative adversarial learning571

Figure 6 and Table 3 indicates that generative adversarial learning improves572

the performance of both the segmentation and the synthesis. Among them, the im-573

provement of synthesis is particularly obvious. The generative adversarial learn-574

ing of PSCGAN improved overall segmentation accuracy by 1.2%, the SSIM by575

0.23, and the pearsons r of scar size by 0.02 compared to a network with adver-576

sarial learning removed, which only uses an SCLN-based generator with parallel577

output for segmentation and synthesis. Moreover, PSCGAN improved overall seg-578

mentation accuracy by 0.94%, the SSIM by 0.21, and the pearsons r of scar size by579

0.02 when using the 10-fold random cross-validation. This improved performance580

fully proves that generative adversarial learning using game theory enables the581

Table 3: Each technological innovation component in PSCGAN has effectively improved the its
performance.

Accuracy of overall
segmentation image

SSIM of CA-free
enhancement image

Pearsons r of scar
size

PSGAN 97.17(0.48)% 0.78(0.10) 0.97
Adversarial learning

removed
95.92(0.57)% 0.55(0.21) 0.95

Progressive training
removed

94.91(0.59)% 0.61(0.19) 0.93

Sequential causal learning
removerd (3DConv)

95.13(0.50)% 0.64(0.17) 0.96
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Figure 11: Each technologically innovative component in the PSCGAN effectively improves LGE-
equivalent images quality.

learning of better representations from a latent space of data distribution, thereby582

optimizing the segmentation contours and enhancing the fine synthesis details.583

7.3. Advantage of the progressive training framework584

Figures 9 and 11 and Table 3 indicate that the progressive framework of the585

PSCGAN significantly improves the training stability while improving the learn-586

ing efficiency and accuracy in both the segmentation and the synthesis. The PSC-587

GAN improved the overall segmentation accuracy by 2.2%, the SSIM by 0.17,588

and the pearsons r of scar size by 0.04 compared with a network with the pro-589

gressive framework removed that produced a parallel output of segmentation and590

synthesis using one generator (Gpri) and one discriminator (Dpri). The PSCGAN591

improved the overall segmentation accuracy by 1.92%, the SSIM by 0.11, and the592

pearsons r of scar size by 0.03 when using the 10-fold random cross-validation593

and progressive framework removed network. The standard deviation of the seg-594

mentation accuracy of the full PSCGAN was also reduced by 0.11% compared595

to the network with the framework removed, while the standard deviation of the596

SSIM was reduced by 0.09. Furthermore, the progressive framework also reduced597

the difference between the segmentation results from the ground truth and those598
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Figure 12: The hinge adversar-
ial loss term in the PSCGAN
achieved the best performance in
LGE-equivalent image synthesis.

Figure 13: PSCGAN obviously correct the overestima-
tion and boundary error issues in existing state-of-the-
art scar segmentation methods.

from the LGE-equivalent images (0.09% in the PSCGAN and 1.20% in the pro-599

gressive framework-removed version). All these improvements proved that our600

progressive framework created joint mappings that successively augmented the601

tissue mask and LGE-equivalent images in the synthesis and segmentation train-602

ing. These joint mappings successfully exploited the commonalities between the603

LGE-equivalent images and the diagnosis-related segmentation images, thereby604

avoiding interference between the conditional probability distribution of the gen-605

erative model-based synthetic task and the decision function of the discriminative606

model-based segmentation task.607

Table 4: SCLN outperforms recent time-series image learning methods, and each component in
the SCLN effectively improves performance.

Full SCLN
Spatial

perceptual
pathway only

Temporal
perceptual

pathway only

multi-attention
weighing
removed

ConvLSTM
3DConv
+LSTM

Accuracy
(Overall)

97.17% 73.61% 89.42% 96.72% 95.97% 96.47%

SSIM 0.78 0.48 0.57 0.74 0.71 0.70
Pearsons r
(scar size)

0.97 0.71 0.83 0.94 0.91 0.93
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Figure 14: The two-stream pathways and the weighing unit in the SCLN effectively improve
segmentation accuracy, as does multi-scale, causal dilated convolution.

7.4. Advantage of the sequential causal learning network608

Figures 9, 11, and 14 and Tables 3 and 4 indicate that the SCLN effectively609

improved both segmentation accuracy and synthesis quality. Compared with the610

current 2D+T time-series learning methods, SCLN improved the segmentation611

accuracy, the SSIM and the pearsons r of scar size by 2.14%, 0.14 and 0.01, re-612

spectively, compared to Conv3D, by 1.13%, 0.07 and 0.06, respectively, com-613

pared to ConvLSTM, and by 0.73%, 0.08 and 0.04, respectively, compared to614

3DConv+LSTM. This is because SCLN creates a multi-scale, two-stream ex-615

tractor to match spatial and temporal dependencies in time-series image learn-616

ing, thereby avoiding the interference between these two dependencies during617

Table 5: Synthetic regularization loss effectively improved the quality of the LGE-equivalent im-
ages. Segmentation auxiliary loss also effectively improved the accuracy of the diagnosis-related
tissue segmentation images.

PSCGAN
Synthetic regularization

loss removed
SSIM PSNR SSIM PSNR

0.78(0.10) 23.03(1.42) 0.77(0.12) 21.50(2.07)

PSCGAN
Segmentation auxiliary

loss removed
Accuracy(overall) Accuracy(overall)

97.17(0.48)% 97.04(0.58)%
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learning, and a multi-attention weighing unit is used to select the task-specific618

dependencies between and within the spatial and temporal dependencies. Partic-619

ularly, the experimental results also indicate that each component of the SLCN620

effectively improved performance, especially that of synthesis, as shown in Fig-621

ure 14 and Table 4. Compared with the spatial perceptual pathway-alone version,622

the temporal perceptual pathway-alone version, and the multi-attention weighing623

unit-removed version, the SCLN shows improvements of 23.56%, 7.75%, and624

0.45%, respectively, in segmentation accuracy, improvements of 0.30, 0.21, and625

0.04, respectively, in SSIM, and improvements of 0.26, 0.14, and 0.03, respec-626

tively, in the Pearsons r of the scar size. Furthermore, Figure 14 and Table 4 also627

indicate that, within the SCLN, multi-scale 2D causal dilated convolution + 1D628

causal dilated convolution drive both the spatial perceptual pathway and the tem-629

poral perceptual pathway to achieve better performance. Compared with the other630

temporal information and spatial information separating learning methods, SCLN631

improved the segmentation accuracy and the SSIM by 2.65% and 0.08, respec-632

tively, compared to 2DConv+1DConv, by 1.95% and 0.05, respectively, compared633

to LSTM+2DConv, by 1.87% and 0.03, respectively, compared to GRU+2DConv,634

and by 4.06% and 0.17, respectively, compared to RNN+2DConv. This is because635

multi-scale, causal dilated convolution successfully handles the high local varia-636

tions of pixels in the cine MR images by changing the dilation ratio to extract both637

long-range and short-range spatial and temporal dependencies.638

The cases where our method fails are illustrated in Figure. 15, and mainly639

focus on the inaccurate synthesis and segmentation of scars. The main reason640

for these failures may be because our method only relies on the cine MR im-641

ages for the spatiotemporal representation learning of the heart. The spatiotem-642

poral representation of the heart is a very complex 3D change in both kinematics643

and morphology. Although cardiac cine MR images are the most effective and644

widely protocol for imaging the beating heart, they are single short-axis images645

and are insufficient for presenting a complete spatiotemporal representation of the646

3D swirl and spiral of the muscle cells in the heart. Nevertheless, this problem647

can be improved by introducing extra modality images (such as T2WI images)648

and extra view images (such as long-axis images) in the further work.649

7.5. Advantage of synthetic regularization loss and segmentation auxiliary loss650

Figure 11 and Table 5 indicate that synthetic regularization loss improved the651

quality of the synthesized image, especially in terms of PSNR. Synthetic regu-652

larization loss improved the PSNR by 1.8 compared to the network with the loss653
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Figure 15: Visual examples of the synthesis and segmentation, including both good case and bad
cases (red arrows). Note that segmented scars appear as green and cyan areas in our method and
the ground truth, respectively. The segmented myocardium appear as yellow and purple areas in
our method and the ground truth, respectively.

term removed. This is because synthetic regularization loss builds a group spar-654

sity structure that has a natural grouping of its components and the components655

within a group. Thus, this loss reduces the degrees of freedom in the total vari-656

ation during noise optimization, thereby leading to better synthesis performance.657

Moreover, Table 5 indicates that segmentation auxiliary loss improved the overall658

segmentation accuracy by 0.13% compared with the version with this loss term re-659

moved. This is because the segmentation auxiliary loss adds additional tissue size660

information to the discriminator, thereby motivating the network to learn more as-661

pects of the distribution of the segmented images to improve the performance of662

the network. In addition, the experimental results indicated that hinge adversarial663

loss has the overall best performance when compared with other, recently devel-664

oped adversarial losses. In terms of segmentation, hinge adversarial loss term665

achieved the highest accuracy (97.17%), which was the same as that of WGAN-666

GP loss (Gulrajani et al., 2017) and LSGAN loss terms (Mao et al., 2017). In667

terms of synthesis, the hinge adversarial loss term achieved the highest SSIM668

31

                  



(0.78), and the WGAN-GP loss term achieved the second highest SSIM (0.76).669

7.6. Comparison with other state-of-the-art methods670

The PSCGAN represent the first networks to combine CA-free IHD-diagnosing671

image synthesis and segmentation technologies, produced a greater number of di-672

agnosis metrics and yielded higher IHD segmentation and diagnosis accuracies673

than existing state-of-the-art methods (Zhang et al., 2019; Bleton et al., 2015; Xu674

et al., 2017; Popescu et al., 2016; Xu et al., 2018a), as shown in Table 6. Con-675

cretely, PSCGAN improved scar segmentation accuracy 0.36%-12.74% compared676

to the other methods. PSCGAN obviously correct the overestimation and bound-677

ary error issues in existing state-of-the-art scar segmentation methods, as shown in678

Figure 13, by leveraging the textures and edges in LGE-equivalent images as pri-679

ori conditions and by also leveraging the novel segmentation auxiliary loss terms.680

Moreover, PSCGAN successfully synthesized LGE-equivalent images. Note that681

some existing segmentation methods can be used mechanically for the synthesis682

Table 6: PSCGAN achieved more diagnosis metrics and higher segmentation and diagnosis accu-
racy than existing state-of-the-art methods in IHD diagnosis and segmentation.

Seg/Sys
Accuracy

(Scar)
Accuracy
(Overall)

SSIM
Pearson’s r

for scar ratio

PSGAN
Sys

/Multi-Seg
97.13% 97.17% 0.78 0.96

(Xu et al., 2018a)
only scar

Seg
96.77% NaN (94.60%) 0.59∗ NaN (0.93)

(Zhang et al., 2019)
only scar

Seg
95.03% NaN (92.37%) 0.31∗ NaN (0.84)

(Xu et al., 2017)
only scar

Seg
94.93% NaN (92.51%) 0.31∗ NaN (0.83)

(Popescu et al., 2016)
only scar

Seg
86.47% - - -

(Bleton et al., 2015)
only scar

Seg
84.39% - - -

NaN(.) means that this method can only estimate this index after the radiolo-
gist manually segments the endocardium and epicardium.
∗ means that the framework of this method can be used to synthesize LGE-
equivalent image.
- means that this method is completely incapable of estimating this index.
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task due to having the same input and output formats. PSCGAN achieved the683

highest SSIM values and improved the image quality in terms of scar presenta-684

tion, boundary clarity, texture accuracy, and noise control, as shown in Figure685

11. This is because the specially designed progressive framework, the SCLN, and686

the synthetic regulation loss terms built accurate spatiotemporal representations687

of the cine MR images for each pixel of the LGE image. Importantly, the PSC-688

GAN produced credible diagnosis metrics that cannot be produced by all existing689

IHD diagnosis and segmentation methods, such as scar ratio. This is because690

PSCGAN enable the segmentation of all diagnosis-related tissues used for cred-691

ible diagnosis metrics, rather than only scar-based metrics produced by existing692

binary segmentation methods.693

8. Conclusion694

For the first time, a progressive sequential causal GAN was used as a suc-695

cessful one-stop IHD-diagnosing CA-free technology to simultaneously synthe-696

size an LGE-equivalent image and segment all diagnosis-related tissues from cine697

MR images. The PSCGAN were run using data from 180 subjects and yielded698

an SSIM for the synthesized image of 0.78, a scar pixel classification accuracy of699

97.13%, and an overall, diagnosis-related tissue segmentation accuracy of 97.17%.700

These results demonstrate that the PSCGAN can be an efficient and accurate clin-701

ical tool for the substantial standardization of IHD diagnosis and can avoid all of702

the emerging toxicity concerns associated with CA.703
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