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Abstract
The system design of an autonomous vehicle encompasses numerous different interconnected
sensing and control algorithms that can be devised in several ways, and the system has to be
extensively tested and verified before employed on roads. Full-scale testing of such a system
is complex due to the involved time effort, cost aspects, and safety considerations. In this
tutorial paper, we give an overview of the design, implementation, and testing of the control
stack in autonomous vehicles, based on our research on motion planning and control. We use
scaled vehicles as part of the testing and verification of the system design. Scaled vehicles
provide possibilities to test some of the relevant interplay in the control stack and robustness
to time delays and sensor errors. We illustrate how scaled vehicles can help reduce the amount
of full-scale testing, by finding shortcomings of the system design before deploying it on a
full-scale test setup.
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Abstract— The system design of an autonomous vehicle
encompasses numerous different interconnected sensing and
control algorithms that can be devised in several ways, and the
system has to be extensively tested and verified before employed
on roads. Full-scale testing of such a system is complex due to
the involved time effort, cost aspects, and safety considerations.
In this tutorial paper, we give an overview of the design,
implementation, and testing of the control stack in autonomous
vehicles, based on our research on motion planning and control.
We use scaled vehicles as part of the testing and verification
of the system design. Scaled vehicles provide possibilities to
test some of the relevant interplay in the control stack and
robustness to time delays and sensor errors. We illustrate how
scaled vehicles can help reduce the amount of full-scale testing,
by finding shortcomings of the system design before deploying
it on a full-scale test setup.

I. INTRODUCTION

Self-driving cars are decision-making systems whose com-
plexity scales with the level of autonomy. In the highest
level of autonomy, Level 5, the self-driving car should be
able to provide full-time operation of all aspects of driving
under different roadway and environmental conditions. The
control architecture and its components can be designed
and interconnected in different ways, but, at high level,
the system structure of a vehicle with at least partial self-
driving capabilities resembles that of Fig. 1 [1]. Each block
in Fig. 1 typically consists of several subcomponents, with
various communication and sensor interfaces connecting
each block [2], [3]. The sensing and mapping module uses
various sensor information, such as radar, Lidar, camera,
and global positioning system (GPS), together with prior
map information, to estimate the parts of the surrounding
environment relevant to the driving scenario. The motion-
planning block can be abstracted to include a route planner
that finds a route on the road network, a discrete decision
layer that determines the local driving behavior in terms of,
for example, whether to stop at an intersection or to change
lane, and a trajectory planner that determines a reference
trajectory the vehicle should follow. The vehicle-control
block computes adjusted control commands and tracks the
reference trajectories from the motion planner. The control
commands are subsequently realized by the actuator control
that is responsible for the low-level steering and acceleration
torque commands. While autonomous vehicles increasingly
begin testing on public roads, production vehicles are more
commonly being equipped with advanced driver-assistance
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Fig. 1. A high-level view of the system architecture of an autonomous
vehicle from a control perspective, with the control and guidance stack in
blue color. The different blocks can be interconnected in various ways but
the main building blocks remain the same.

systems (ADAS) such as adaptive cruise control and lane-
change assist. This is driven by both safety and economic as-
pects such as the high number of traffic accidents associated
with overtaking and lane-change maneuvers and potential
fuel savings [4].

There are a number of key issues to solve before self-
driving cars become fully operational on public roads. For
instance, designing a control stack that is inherently safe,
and with redundancy to handle cases when one or several
components fail, is a challenge by itself, as illustrated in
the DARPA Grand and Urban Challenges [2], [3], [5]–[7].
However, also verifying in practice that the control system
is indeed safe further complicates the task. A bottle-neck
in designing algorithms for enabling self-driving capabilities
is the amount of testing and verification of the different
components contained in Fig. 1 [8]. For full-scale tests,
the cost of maintaining testing infrastructure and personnel,
implementing safety precautions, as well as the time for de-
ploying the algorithms on the vehicle, may have a significant
impact on the time for developing the autonomous vehicle.

Computer simulations help in designing the algorithms,
but cannot entirely capture unmodeled failure modes and
circumstances [9]. Another way to complement full-scale
testing is to use scaled vehicles that resemble regular vehicles
in terms of kinematics, computation, and sensing capa-
bilities, but without enforcing the strict safety regulations
and costs associated with full-scale testing. While scaled
vehicles lack the ability to test the self-driving system under
every potential environment, they can help in reducing the
amount of time needed to be spent on full-scale testing while



still capturing the relevant interplay between the different
controllers and the connections to other building blocks of
an autonomous vehicle. For instance, the interaction between
the motion planner and vehicle controller, the driving behav-
ior, and the robustness to timing delays and sensing errors
can be evaluated using scaled vehicles.

Scaled vehicles have been used to verify parts of the
control stack in previous works, see, for example, [10]–[12].
Our recent research on vehicles with self-driving capabilities
has been on estimation [13], [14], motion planning [15]–
[17], and vehicle control algorithms [18], [19], which are
all important components for self-driving cars. In this paper,
we give an example design of the control architecture of an
autonomous vehicle. Based on some of our recent research
on control and estimation algorithms for enabling self-
driving cars [15], [18], [20], we show how a scaled vehicle
platform can be used to test and verify the operation of the
control stack. Based on the structure in Fig. 1, we describe a
systematic way of designing the different control blocks, and
estimators are designed to increase robustness of the system
to sensing errors and inherent timing delays. Specifically, we
leverage a recently developed sampling-based motion planner
[15] for generating desired trajectories and model predictive
control (MPC) [21], [22] for tracking the desired trajectories.
We point out important implementation details for achieving
good performance in practice and evaluate different aspects
of the control performance.

The rest of the paper starts with a description of our
vehicle test setup in Sec. II, and Sec. III discusses the
modeling and estimation aspects involved when designing
the control stack. Sec. IV provides the design of the planning
and control layer. The section focuses on the motion planning
and real-time vehicle control aspects of the system design.
The paper continues with an experimental evaluation in
Sec. V and is concluded in Sec. VI.

II. SCALED VEHICLE EXPERIMENTAL PLATFORM

We use the Hamster platform [23] for testing and verifying
our control stack before deploying on a full-scale vehicle,
see Fig. 2. The Hamster is a 25 × 20 cm mobile robot
for research and prototype development. It is equipped with
scaled versions of sensors commonly available on full-scale
research vehicles, such as a 6 m range mechanically rotating
360 deg Lidar, an inertial measurement unit, GPS receiver,
HD camera, and motor encoders. It uses two Raspberry
PI3 computing platforms, each with an ARM Cortex-A53
processor running Linux Ubuntu for processing. The robot
has Ackermann steering and is therefore kinematically equiv-
alent to a full-scale vehicle, and its dynamics, such as the
suspension system, resembles that of a regular vehicle. Our
setup consists of multiple Hamster robots. The Hamster has
a low-level controller with dedicated hardware for power
distribution and monitoring. By default, the Hamster is
controlled by setting the desired wheel-steering angle and
longitudinal velocity. In addition, the Hamster has built-in
mapping and localization capabilities, and object detection
and tracking can be done with the onboard Lidar and/or

Fig. 2. The Ackermann-steered Hamster mobile robot used in the
experiments. The markers (five visible in the figure) are used to track the
robot via an Optitrack motion-capture system (Fig. 3).

Fig. 3. A camera from the Optitrack motion-capture system used for
verifying our control and estimation algorithms.

camera. Hence, the platform is a good proxy for verifying
dynamic feasibility and for testing the performance of the
system in a realistic setting, with a sensor setup similar to the
one expected in full-scale autonomous vehicles. The Hamster
communicates and connects to external algorithms using the
robot operating system (ROS).

To be able to evaluate the control and estimation algo-
rithms in terms of tracking errors and resulting trajectories
in a controlled environment, we use an Optitrack motion-
capture system [24]. The Optitrack system is a flexible
camera-based (see Fig. 3) six degrees-of-freedom tracking
system that can be used for tracking drones, ground, and
industrial robots. Depending on the environment and quality
of the calibration, the system can track the position of the
Hamster within 0.9 mm and with a rotational error of less
than 3 deg. The OptiTrack can be connected to the ROS
network using the common VRPN protocol.

III. MODELING AND ESTIMATION

We refer to the autonomous vehicle as the ego vehicle
(EV). Other moving entities in the region of interest (ROI) of
the EV are designated as other vehicles (OV). The OVs can
be either in autonomous or manual mode. The modeling of
the EV can be done either with respect to the global inertial
frame, or in local vehicle frame coordinates with respect to a
road-aligned noninertial frame. In a practical implementation
the alternatives have different limitations depending on the
particular driving scenario. In the following, we model the
vehicle with respect to the global inertial frame.

The planning and control schemes typically employ reced-
ing horizon implementations, in that they rely on models of
the environment and the EV itself to predict its evolution in
relation to the environment, depending on the control inputs.
There is a tradeoff between the complexity and the accuracy
of the models, which has to be taken into consideration when
choosing the models. In this section we describe a specific
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Fig. 4. A schematic of the single-track model and related notation.

choice of EV and OV motion models, but the algorithms are
general and hence applicable to any EV and OV model.

A. Vehicle Model

For the vehicle, there are three categories of models;
point-mass models that represent the vehicle as a particle;
kinematic models that only consider the geometry of the
vehicle; and dynamic models that account for the force-
mass balances and tire models to more accurately capture the
vehicle motion under (highly) dynamic maneuvers. Although
a model based on force-mass balances is generally more
accurate than a kinematic model, the differences are small for
regular driving [25], and model errors are corrected for by the
feedback control functions (Fig. 1). Furthermore, a dynamic
model depends on more parameters, such as the wheel radii,
tire stiffness, and vehicle mass and inertia, which typically
are unknown/uncertain and may be difficult, or at least
tedious, to estimate. Under the assumption of normal driving
conditions (i.e., not at-the-limit maneuvers) the modeling can
be based on a single-track model, see Fig. 4, where the two
wheels on each wheel axle are lumped together. Hence, in
this paper we use the kinematic single-track model

ẋ =


ṗX
ṗY

ψ̇
v̇x
δ̇

 =


vx cos(ψ + β)/ cos(β)

vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1
u2

 , (1)

where pX , pY is the longitudinal and lateral position in
the world frame, respectively, ψ̇ is the heading rate of the
vehicle, vx is the longitudinal velocity of the vehicle, δ is the
steering angle of the front wheel, L := lf + lr is the wheel
base, and β is β := arctan (lr tan(δ)/L) is the body-slip
angle. The inputs u1, u2 are the acceleration and steering
rate, respectively. This choice of control inputs allows to
provide smooth velocity and steering profiles and to constrain
the allowed rate of changes of the velocity and steering angle.
In short, we write (1) as

ẋ = f(x) + g(x)u. (2)

We impose various state and input constraints on the
vehicle motion. For instance, the steering angle δ is subject
to the linear constraint

δmin ≤ δ ≤ δmax. (3)

This constraint is determined by the physical limitations of
the vehicle (i.e., maximum steering angle) or induced by

ensuring that the assumptions made for deriving (1) hold.
For instance, the linear single-track model is valid for lateral
accelerations up to approximately 0.4g on dry asphalt, where
g is the gravitational acceleration. Hence, limitations on δ can
be set by the relation to ψ̇ for steady-state cornering [26].

The input constraints on the steering rate δ̇ and acceler-
ation v̇x are formulated as linear constraints similar to (3),

δ̇min ≤ δ̇ ≤ δ̇max, (4a)
v̇x,min ≤ v̇x ≤ v̇x,max, (4b)

where the bounds in (4) are determined as a tradeoff between
the allowed level of aggressiveness and driving comfort.

B. Environment Model

For a trajectory-generation system it is necessary to deter-
mine the time-varying obstacle space

Xobs(t), (5)

which essentially boils down to predicting the motion of the
moving obstacles, as well as expressing the time-varying
and nonconvex road boundary constraint. Without motion
prediction, the motion planner and vehicle control have to
assume a static environment, which is unrealistic because
the environment is typically dynamic and highly uncertain.

Motion prediction (potentially including driver-intention
recognition) can be approached in several ways. For example,
deterministic methods predict a single future trajectory, while
stochastic methods represent the future trajectories with
probability density functions (PDFs), which are estimated
using statistical methods such as Monte-Carlo sampling [27].
Another common approach is to base the prediction on
Markov chains [25], [28] for reachable set computations [29].
The road boundaries and OVs in the ROI impose constraints
on the position of the EV. The road-boundary constraint can
be written as

Γ(pX , pY ) ≤ 0, (6)

where the function Γ is typically constructed from point-wise
data of the road and lane boundaries, for instance, obtained
from map data or cameras. In general the constraints due to
the OVs can take any shape. For instance, if the motion of
the OVs is estimated by means of Kalman filters, a natural
choice is to model the OVs as ellipsoids. Alternatively, the
OVs can be modeled as having rectangular shape [30], or be
represented by particles [27], [31].

The constraints resulting from (5), (6) are in general
nonconvex, and sometimes it may be too computationally
demanding to enforce such constraints in real-time in the
vehicle control. In that case, it is possible to enforce (5),
(6) with an additional margin in the motion-planning block,
which has more computation time available, and then make
sure that the vehicle stays within the same margin from the
reference trajectory generated by the motion planner [18],
thus enforcing the constraints.



In this paper, we model the OVs by assuming that they do
not change lane in the planning horizon of the motion plan-
ner, and that the velocity change within one planning phase
is approximately constant. The predicted trajectories of the
OVs are generated by designing lane-keeping controllers for
each OV, and uncertainty is incorporated by increasing the
size of the box surrounding the vehicle [30]. The predicted
trajectories are then used to create the obstacle region (5),
which is used to constrain the trajectories generated by the
motion planner. This approach is suitable if the update rate
of the motion planner is sufficiently fast. Another benefit
with such an approach is that the motion planner we employ
can straightforwardly find solutions to nonlinear/nonconvex
problems. As long as the vehicle control stays within the
tolerance levels of the path, safety is therefore guaranteed
for the whole system.

C. Sensor-Offset Compensation

Several of the sensors found in the current generation of
production vehicles are typically of low cost and as a con-
sequence prone to time-varying offset and scale errors, and
may have relatively low signal-to-noise ratio. For instance,
the lateral acceleration and heading-rate measurements are
known to have drift and large noise in the sensor measure-
ments, leading to measurements that are only reliable for
prediction over a very limited time interval. Similarly, the
sensor implicitly measuring the steering angle of the wheels
has an offset error that, when used for dead reckoning in
a vehicle model, leads to prediction errors that accumulate
over time.

Knowing the steering angle is crucial for ADAS and au-
tonomous vehicles, because the vehicle will operate without
human intervention for long periods of time. Without steer-
ing offset compensation, the vehicle control may become
unstable, or at least perform poorly, as errors accumulate.
Our method for steering offset compensation is based on
the vehicle model (1) with added Gaussian process noise to
account for modeling errors. We model the steering angle
offset bδ with a random walk model,

ḃδ = wδ, (7)

where wδ is assumed Gaussian distributed process noise. The
resulting six-dimensional nonlinear model consisting of (1),
(3), and (7) is estimated with an extended Kalman filter,
which at each time step k produces a state estimate x̂k|k that
is used in the vehicle control to compensate for the sensor
offset.

IV. PLANNING AND CONTROL

In this section we briefly discuss the control architecture,
and specifically the motion planning and vehicle control
aspects. Referring to Fig. 1, the actuator control is handled in
the low-level controllers in the scaled vehicle and is not part
of this evaluation. Similarly, the route planning, sometimes
inside the motion-planning block, is not treated in this paper.

A. Motion Planning

The objective of the motion planner is to determine a
collision-free trajectory the vehicle should follow based on
the outputs from the sensing and mapping module, while
obeying the vehicle dynamics and reaching the goal region
Xgoal determined by the decision-making module. The goal
region Xgoal can be a specific location on the road or a target
set, such as a desired lane.

Sampling-based methods, such as RRT and its variants
[32], have been subject to much research over the last two
decades, and have been used successfully in autonomous
vehicles [33]. Sampling-based methods are focused toward
incrementally building a feasible path, or a sequence of
feasible paths that converge to an optimal path, given enough
computation time. RRT is an important instance of sampling-
based methods, which has found various applications [32].
RRT-type algorithms incrementally build a tree by selecting a
random sample and expanding the tree towards that sample.
Checking if the sample and the corresponding edge is in
Xobs amounts to pointwise comparison. Therefore, RRT does
naturally integrate with some of the methods for determining
the drivable space, since it does not require a geometric ex-
pression for Xobs, as opposed to some graph-search methods,
during the construction phase.

In [15], we have developed a variant of the RRT based
on particle filtering (PF) for generating complex trajectories,
which optionally includes decision making embedded in the
planner. Particle filtering is a sampling-based technique for
solving the nonlinear filtering problem. The particle filter
(PF) numerically approximates the PDF of the variables of
interest given the measurement history, by generating N
random trajectories and assigning a weight qi to each one
according to how well they predict the observations. The
planner relies on the fact that driving requirements, such as
staying on the road, right-hand traffic, and avoid obstacles,
are known ahead of planning. The driving requirements are
modeled as measurements generated by an ideal system.
An interpretation is then that the PF determines trajectories
and scores them according to how likely they are to obey
the driving requirements. In each planning phase, the PF
approximates the joint probability density function of the
state trajectory conditioned on the decision and driving
requirements.

Specifically, our method formulates the vehicle model (1)
and driving requirements in discrete time as

xk+1 = f̄(xk) + ḡ(xk)wx,k, (8a)
zk = h(xk,m) + wz,k, (8b)

where f̄ and ḡ are discretized versions of (2) and k is
the discrete time index. The function h models the driving
requirements and is dependent on the chosen decision m by
the decision maker. The terms wx,k and wz,k are disturbances
on the vehicle model and driving requirements, respec-
tively. They are important to include for several reasons,
for example, due to sensor noise from estimation algorithms
responsible for estimating the vehicle state and road map



and to avoid infeasibility in trying to fulfill all driving
requirements exactly. The control inputs are in our approach
contained in the disturbance term wx,k.

Using a Bayesian framework, (8a) and (8b) can be refor-
mulated as

xk+1 ∼ p(xk+1|xk), (9a)
zk ∼ p(zk|xk,m), (9b)

where xk+1 and zk are regarded as samples from the
respective distributions. Given the vehicle dynamics (1), the
goal of the motion planner is to generate an input trajectory
uk, k ∈ [0, Tf ] over the planning horizon Tf satisfying the
input constraints (3), (4), such that when applied to (1) leads
to a trajectory ydes, k ∈ [0, Tf ] that obeys (6), ends up
in Xgoal, and avoids the obstacle set (5). The PF estimates
the PDF p(x0:k|z0:k) in each tree expansion toward the goal
region. In this paper we generate the desired trajectory by
extracting the minimum mean-square estimate,

ydes =

N∑
i=1

qikx
i
0:k, (10)

in each tree expansion. This procedure is repeated until
a solution is found. For more details, see [15]. For our
purposes, we have implemented a high-level target-point
generator to create the goal region Xgoal.

1) Implementation Aspects: Because of sensing errors and
unpredicted changes in the environment, for instance, due
to new obstacles (5) entering the ROI, we implement the
motion planner using a receding-horizon strategy. That is,
the computed trajectory is Tf long but is only applied for
the time period ∆t ≤ Tf , and the allocated computation
time for finding the motion plan is δt. We keep a committed
tree-branch, where the leaf coincides with the root node of
the next planning phase. The part of the tree that does not
originate from the end node is deleted. Similar to [18], we
propagate tracking-error information from the vehicle control
to the motion planner. This helps in determining when to
discard the current motion plan and restart the planner.
For instance, when the vehicle controller cannot maintain
the vehicle closer than some predefined threshold from the
desired trajectory ydes, the current motion plan is discarded
and a new plan is computed, starting with an empty tree.

Another aspect is the node to which we associate the
current position within the tree. At the start of the planning
phase the motion planner acquires the EV state. The allocated
computation time of the motion planner is δt s. Hence, to
associate the node in the tree with the position the vehicle
will be in when starting to apply the generated motion plan,
we predict the current estimated EV state for δt s using the
vehicle model (1) and the last control value, and associate the
predicted EV state with the closest node in the tree, which
becomes the root node of the next planning phase and allows
reusing at least part of the previously-computed tree.

B. Vehicle Control by Model Predictive Control
MPC [21], [34], [35] has recently evolved as an important

approach in the research literature for automotive control in

general and for vehicle-dynamics control in particular. MPC
solves at each time step a finite-horizon, possibly nonlinear
and nonconvex, optimal-control problem (OCP) and applies
the resulting control inputs to the system until the next
sampling time step. The MPC formulation depends on the
nature of the model, constraints, computational resources,
and performance guarantees. Most of the standard nonlinear
optimization tools are impractical in such a safety critical
embedded application as autonomous vehicle control. The
nonlinear and nonconvex OCP needs to be solved at each
sampling time instant under stringent timing requirements.
For this purpose, tailored continuation-based online algo-
rithms have been developed for solving these nonlinear OCPs
in real-time [36].

A common OCP formulation is

min
x(·), u(·)

∫ T

0

‖F (x(t), u(t))− ydes(t)‖2W dt (11a)

s.t. 0 = x(0)− x̂0, (11b)
0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ],

(11c)
0 ≥ h(x(t), u(t)), ∀t ∈ [0, T ],

(11d)
0 ≥ r(x(T )), (11e)

whose objective is tracking the desired trajectory ydes from
the motion planner. The objective in (11a) consists of a
nonlinear least-squares type Lagrange term. For simplicity of
notation, T defines both the control and prediction horizon
length and we do not consider a terminal (i.e., Mayer) cost
term. Note that the NMPC problem depends on the current
state estimate x̂0 through the initial condition (11b). The
vehicle dynamics in (11c) are described by an implicit system
of ordinary differential equations (ODE), which allows the
formulation of kinematic, as well as single- and double-track
vehicle dynamics as described in [37]. However, in this paper
we for simplicity use the vehicle model (2), which is an
explicit ODE. Eqs. (11d) and (11e) denote respectively the
path and terminal inequality constraints.

The constraints (11d) in the NMPC problem formulation
consist of geometric and physical limitations of the sys-
tem. Depending on the particular maneuver and on which
constraints are handled by the motion planner, one can
include constraints on the longitudinal and lateral position
of the vehicle. However, in practice, it is important to
reformulate these requirements as soft constraints because of
unknown disturbances and model approximations and errors.
For simplicity, we define a quadratic penalization of the slack
variable to ensure a feasible solution whenever possible. The
steering angle, steering rate, and acceleration constraints (3),
(4) are included in (11d).

The cost function in (11a) allows for formulating any stan-
dard tracking-type objective. In the presented experimental
results, the NMPC scheme is based on a direct tracking of
a reference trajectory for the state and control variables

‖x(t)− ydes(t)‖2Q + ‖u(t)− udes(t)‖2R + γ e2y(t), (12)



where Q and R are the corresponding weighting matrices of
suitable dimensions and γ is a scalar weight. The term

ey(·) = cos (ψref)(pY − pY,ref)− sin (ψref)(pX − pX,ref)
(13)

is the projected distance from the reference trajectory, which
ideally should be zero.

1) Online Tracking of the Desired Trajectory: Similar to
the work in [18] and based on [26], we model the reference
trajectory ydes from the motion planner as a piecewise
clothoidal trajectory, such that the desired yaw angle ψdes

and yaw rate ψ̇des of the vehicle can be described as

ψ̈des = vdes(t)κ̇(t), (14)

where vdes(t) denotes the reference velocity, and κ̇(t) de-
notes the curvature of the reference trajectory.

2) Implementation Aspects: The nonlinear, nonconvex
problem (11) renders analytical solutions intractable. Instead,
we transform the infinite dimensional OCP (11) into a nonlin-
ear program (NLP) by a control and state parameterization.
A popular approach is based on the direct multiple shooting
method from [38]. We formulate an equidistant grid over the
control horizon consisting of the collection of time points ti,
where ti+1 − ti = T

N =: Ts for i = 0, . . . , N − 1. Addition-
ally, we consider a piecewise constant control parametriza-
tion u(τ) = ui for τ ∈ [ti, ti+1). The time discretization for
the state variables can then be obtained by simulating the
system dynamics using a numerical integration scheme. This
corresponds to solving the following initial value problem

0 = f(ẋ(τ), x(τ), ui), τ ∈ [ti, ti+1], x(ti) = xi. (15)

We employ a tailored implementation using the open-
source ACADO code generation tool [39]. The nonlinear
optimal control solver in this toolkit uses an online variant
of Sequential Quadratic Programming (SQP), known as the
Real-Time Iteration (RTI) scheme [40]. Under some rea-
sonable assumptions, the stability of the closed-loop system
based on the RTI scheme can be guaranteed also in pres-
ence of inaccuracies and external disturbances [40]. ACADO
Toolkit exports efficient, standalone C-code implementing
the RTI scheme for fast optimal control. It supports exploit-
ing specific model structures as detailed in [39]. Specifically,
we use the recently proposed PRESAS solver [22], which
applies block structured factorization techniques with low-
rank updates to preconditioning of an iterative solver within
a primal active-set algorithm, which results in an efficient
solver suitable for embedded automotive applications. For
real-time applications, a primal active-set approach has the
advantage of providing a feasible, even though suboptimal,
solution when being terminated early.

Furthermore, we compensate for the timing delays due to
actuators commands and communication through the ROS
network by letting the NMPC use the predicted state values
instead of the most recent state estimate, using a buffer of
the past few control values. The prediction is based on the
kinematic vehicle model (1). This time-delay compensation

is important for ensuring that the NMPC does not use old
information in the feedback control, which otherwise may
lead to sluggish performance and even instability.

V. RESULTS

We evaluate the system architecture using our scaled
vehicle testing system (Sec. II). We use three Hamster robots
in the experimental validation, one acts as the EV and the
other two act as OVs. The objective is to avoid the obstacles
while circulating a two-lane closed circuit, with the left lane
as preferred lane. The track is designed as a super-ellipsoidal
track with the size of roughly 3×5 m. In this paper the OVs
are controlled by PID controllers that track the designated
lane, but in principle also the OVs can use the proposed
control architecture. The goal region Xgoal is a circle with
radius 0.1 m from the target point. The road boundary
constraint (6) is given by an analytic function expressed as
super-ellipses, and checking for feasibility of (6) amounts
to inequality satisfactions. In the experimental evaluation we
use a six minutes long data set. There is one OV in each lane,
both with the constant reference velocity vnom = 0.2 m/s.
Because one of the robots is in the inner lane, they have
different lap times and both regular lane change situations
and situations when both lanes are blocked occur. The EV
has a reference velocity of vnom = 0.4 m/s, which is sent as
a desired velocity to the motion planner.

Fig. 5 shows snapshots of a situation when the two
obstacles block both lanes. The sequence of snapshots lasts
for about 60 s. Red dots correspond to the planned trajectory
for the EV and the green dots are the particles generated
in the planning phase. First, a trajectory that overtakes the
OV in front of the EV is computed (t = 22 s). Then, the
EV slows down and stays behind until an opening appears
(t = 66 s), and the EV moves back to the preferred lane.

The planned (red) and resulting (black) steering and ve-
locity profiles are shown in Fig. 6 for the entire experiment.
The measured trajectories closely match the corresponding
planned quantities, which shows that the motion planner
computes dynamically feasible (i.e., drivable) trajectories.
The portion of the data set corresponding to the situation in
Fig. 5 is highlighted by the blue dashed lines, and the path of
the EV for the entire experiment is shown in Fig. 7. Fig. 8
displays the predicted steering and velocity profiles resulting
from the NMPC solution and the corresponding reference
profiles from the motion planner, over the prediction horizon
of the NMPC. The figure shows the results for every third
planning iteration. The NMPC profiles mostly match well
with the planner profiles, which indicates that the proposed
architecture provides reliable driving behavior. There are a
few discrepancies, which are mainly due to model differ-
ences. First, the vehicle model in the NMPC uses a first-
order actuator model, which is not captured in the motion
planner. Second, the steering offset compensator affects the
control performance, since it is used as a feedforward term
to the NMPC. This causes some deviations in the steering
profiles. However, the lower-level NMPC, as also indicated
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and the corresponding measured quantities throughout the experiment. The
portion of the data set in Fig. 5 is indicated by the blue dashed lines.

in Fig. 6, can reliably track the trajectories generated by the
motion planner.

VI. CONCLUSION

We provided a tutorial overview of the design, imple-
mentation, and evaluation of parts of the control stack in
autonomous vehicles. Scaled vehicles can be used for testing
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Fig. 7. Measured path for the entire experiment.

and verifying the interplay between the different control
layers, and also to evaluate the interaction with other parts
of the autonomous vehicle software and hardware stack.
We demonstrated that scaled vehicle testing can help with
avoiding some of the design issues before deployment,
thereby shortening the time needed for full-scale testing, with
the subsequent implications on cost, time, and safety.
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