Control Design (CD) – Control Design Process

CD – PID Controller

CD – PID Controller Remarks

- Most popular in process and robotics industries
 - Good performance
 - Functional simplicity (Operators can easily tune.)
- To avoid high frequency noise amplification, derivative term is implemented as

$$K_d s \approx \frac{K_d s}{\tau_d s + 1}$$

with τd much smaller than plant time constant.

1

• PI controller C(s) =

$$C(s) = K_p + \frac{K_i}{s}$$

• PD controller

$$C(s) = K_p + K_d s$$

- We plot y(t) for step reference r(t) with
 - P controller
 - PI controller
 - PID controller

CD – A Simple Example (P Controller (2))

$$C(s) = K_p$$

- Simple
- Steady state error
 - Higher gain gives smaller error
- Stability
 - Higher gain gives faster and more oscillatory response

CD – A Simple Example (PI Controller (3))

$$C(s) = K_p + \frac{K_i}{s}$$

- Zero steady state error (provided that CL is stable.)
- Stability
 - Higher gain gives faster and more oscillatory response

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

- Zero steady state error (due to integral control)
- Stability
 - Higher gain gives more damped response
- Too high gain worsen performance.

CD – How to Turn PID Parameters

- Model-based
 - Root locus
 - Frequency response approach
 - Useful only when a model is available
 - Necessary if a system has to work at the first trial

- Empirical (without model)
 - Ziegler-Nichols tuning rule (1942)
 - Simple
 - Useful even if a system is too complex to model
 - Useful only when trial-and-error tuning is allowed

CD – Ziegler-Nichols PID Tuning Rules (1)

• Step response method (for only stable systems)

CD – Ziegler-Nichols PID Tuning Rules (2)

• Ultimate sensitivity method

CD – A Simple Example (Revisited (5))

Step response method

Ultimate sensitivity •

CD – OL Step Response for "Step Response method"

CD – CL Step Responses for "Ultimate Sensitivity method"

CD – PID Controller Realization

• One example: Using OP amp

CD – PID Control Summary and Exercise

- PID control
 - Most popular controller in industry
 - Model-free methods for design are available.
 - Simple controller structure
 - Simple controller tuning
 - Widely applicable
- Ziegler-Nichols tuning rules provide a starting point for fine tuning, rather than final settings of controller parameters in a single shot.

CD – Nyquist Stability Criterion (Review)

CL system is stable $\Leftrightarrow Z := P + N = 0$

- *Z*: # of CL poles in open RHP
- *P*: # of OL poles in open RHP (given)
- *N*: # of clockwise encirclement around -1

by Nyquist plot of OL transfer function *L*(*s*) (counted by using Nyquist plot of *L*(*s*))

Remark: N = -1: a counter-clockwise encirclement

CD – Nyquist Stability Criterion: A Special Case

CL system is stable $\Leftrightarrow Z := P + N = 0$

IF P=0 (i.e., if L(s) has no pole in open RHP or stable)
 CL system is stable ⇔ N = 0
 This fact is very important since open-loop systems in many practical problems have no pole in open RHP!

2009 Spring ME451 - GGZ

CD - Examples with P = 0 (stable OL system)

CD – Nyquist Stability Remarks

- Nyquist stability criterion gives not only *absolute* but also *relative stability*.
 - Absolute stability: Is the closed-loop system stable or not? (Answer is yes or no.)
 - Relative stability: How "much" is the closed-loop system stable? (Margin of safety)
- Relative stability is important because a math model is never accurate.
- How to measure relative stability?
 - Use a "distance" from the critical point -1.
 - Gain margin (GM) & Phase margin (PM)

CD – Nyquist Gain Margin (GM)

Phase crossover \bullet $j \operatorname{Im} L$ frequency ωp: $L(j\omega)$ -plane $\angle L(j\omega_p) = -180$ Phase crossover Gain margin (in dB) $\omega = \omega_n$ $\omega + \infty$ $GM = 20\log_{20} \frac{1}{|L(j\omega_p)|}$ 0 Re L -1 $|L(j\omega_p)|$ Indicates how much OL • gain can be multiplied Nyquist plot of L(s) -00 without violating CL stability.

CD – Why GM Alone is Inadequate

CD – Nyquist Phase Margin (PM)

 Gain crossover frequency ωg:

$$\angle L(j\omega_g) = 1$$

• Phase margin

$$PM = \angle L(j\omega_g) - 180^\circ$$

 Indicates how much OL phase can be added without violating CL stability.

CD – PM Example

CD – Nyquist Plot Remarks

- Advantages
 - Nyquist plot can be used for study of closed-loop stability, for open loop systems which is unstable and includes time-delay.
- Disadvantage
 - Controller design on Nyquist plot is difficult.
 (Controller design on Bode plot is much simpler.)

We translate GM and PM on Nyquist plot into those in Bode plot!

CD – Bode Diagram Relative Stability

CD – Bode Diagram Remarks

- Advantages
 - Without computer, Bode plot can be sketched easily.
 - GM, PM, crossover frequencies are easily determined on Bode plot.
 - Controller design on Bode plot is simple.
- Disadvantage
 - If OL system is unstable, we cannot use Bode plot for stability analysis.

CD – Bode Diagram Example

CD – Bode Diagram Relative Stability (time Delay)

CD – Body Diagram of A Time Delay

• TF

As can be explained with Nyquist stability criterion, this phase lag causes instability of the closed-loop system, and hence, the difficulty in control.

CD – Body Diagram Unstable CL Case

CD – Body Diagram Summary and Exercises

- Relative stability: Closeness of Nyquist plot to the critical point -1
 - Gain margin, phase crossover frequency
 - Phase margin, gain crossover frequency
- Relative stability on Bode plot
- We normally emphasize PM in controller design.

Design specifications in time domain

(Rise time, settling time, overshoot, steady state error, etc.)

Approximate translation

Desired closed-loop pole location in s-domain Constraints on open-loop frequency response in s-domain

Root locus shaping

Frequency response shaping (Loop shaping)

CD – Feedback Control System Design

- Given G(s), design C(s) that satisfies time domain specs, such as stability, transient, and steady-state responses.
- We learn typical qualitative relationships between openloop Bode plot and time-domain specifications.

CD – Typical Desired OL Body Diagram

CD – Steady State Accuracy (1)

For steady-state accuracy, L should have high gain at low frequencies.

 $20\log_{10}|L(j\omega)|$ $Large|L(j\omega)|$ $Y(j\omega) = \frac{L(j\omega)}{1 + L(j\omega)} \approx 1$ y(t) tracks r(t) composed of low frequencies very well.
CD – Steady State Accuracy (2)

- Step r(t)
 Increase
 - $K_p := L(0)$

W

 $20\log_{10}|L(j\omega)|$

Ramp *r*(*t*)
 Increase

$$K_{v} \coloneqq \lim_{s \to 0} sL(s)$$

$$20\log_{10}|L(j\omega)|$$

For Kv to be nonzero, L must contain at least one integrator.

W

Parabolic r(t)
 Increase

$$K_a := \lim_{s \to 0} s^2 L(s)$$

$$20\log_{10}|L(j\omega)|$$

For Ka to be nonzero, L must contain at least two integrators.

CD – Typical Desired OL Body Diagram (Revisited)

CD – A 2nd Order System Example

• For illustration, we use the feedback system:

CD – Percent Overshoot

For small percent overshoot, L should have larger phase margin.

CD – Typical Desired OL Body Diagram (Revisited)

CD – Response Speed

For fast response, L should have larger gain crossover frequency.

CD – Typical Desired OL Body Diagram (Revisited)

CD – Relative Stability

- We require adequate GM and PM for:
 - safety against inaccuracies in modeling
 - reasonable transient response
- It is difficult to give reasonable numbers of GM and PM for general cases, but usually,
 - GM should be at least 6dB
 - PM should be at least 45deg

(These values are not absolute but approximate!)

 In controller design, we are especially interested in PM (which typically gives good GM).

CD – Typical Desired OL Body Diagram (Revisited)

For noise rejection, L should have small gain at high frequencies.

CD – Frequency Shaping (Loop Shaping)

 Reshape Bode plot of G(jω) into a "desired" shape of

 $L(j\omega) \coloneqq G(j\omega) C(j\omega)$

by a series connection of appropriate C(s).

CD – Advantages of Body Diagram

- Bode plot of a series connection G₁(s)G₂(s) is the addition of each Bode plot of G₁ and G₂.
 - Gain

 $20\log_{10} |G_1(j\omega)G_2(j\omega)| = 20\log_{10} |G_1(j\omega)| + 20\log_{10} |G_2(j\omega)|$

– Phase

 $\angle G_1(j\omega)G_2(j\omega) = \angle G_1(j\omega) + \angle G_1(j\omega)$

• We use this property to design *C*(*s*) so that *G*(*s*)*C*(*s*) has a "desired" shape of Bode plot.

CD – Typical Shaping Goal (Review)

CD – Simple Controllers

• We use simple controllers for shaping.

– Gain

$$C(s) = K$$

Lead and lag compensators

$$C(s) = \frac{(1\text{st - order poly.})}{(1\text{st - order poly.})} = \frac{\frac{s}{z} + 1}{\frac{s}{p} + 1}$$

CD – Effect of a Gain C(s) of L(s)

$$C(s) = K(>0)$$

In case of K > 1,

- Gain increases uniformly, but phase does not change.
- Typically,
 - (Steady state) L(0)
 - (Speed) ω_g
 - (Stability & overshoot) PM

CD – Bode Diagrams of a Lead and Lag C(s)

CD – Guideline of a Lead and Lag Design

CD – Effect of a Lag C(s) on L(s)

Page 55

CD – Lag + Gain C(s) Design

CD – Guideline of a Lead and Lag Design (revisited)

CD – Effect of a Lead C(s) on L(s)

Increasing ω_a

Select z&p around ω_{g}

CD – Example of a Lead Design

CD – Lead-Lag Compensator

CD – Example of a Lead-Lag Design

CD – Ramp Responses

Smaller steady-state error is due to larger K_{ν} .

CD – Loop Shaping Summary

- Frequency shaping (Loop shaping) on Bode plot
- Effect of lead, lag, and lead-lag compensators
- Qualitative explanation
- In actual design, one needs to use Matlab.
- Next, more detail about
 - Lag design
 - Lead design

CD – Typical Desired OL Body Diagram

CD – Sensitivity Reduction

- Sensitivity indicates the influence of plant variations (due to temperature, humidity, age.) on closed-loop performance.
- Sensitivity function

$$S(s) \coloneqq \frac{\partial T(s)/T(s)}{\partial G(s)/G(s)} = \frac{1}{1 + G(s)C(s)} = \frac{1}{1 + L(s)}$$

For sensitivity reduction, L should have large gain at low frequencies. Large $|L(j\omega)| \longrightarrow S(j\omega) = \frac{1}{1+L(j\omega)} \approx 0$

CD – Disturbance Rejection

For disturbance rejection, L should have large gain at low frequencies.

CD – Disturbance

- Unwanted signals
- Examples
 - Wind turbulence in airplane altitude control
 - Wave in ship direction control
 - Sudden temperature change outside the temperaturecontrolled room
 - Air pressure brake to DC motor
 - Bumpy road in cruise control
- Often, disturbance is neither measurable nor predictable. (Use feedback to compensate it!)

CD – Summary

• Next, frequency shaping (loop shaping) design

CD – Body Diagram of a Lead/Lag C(s) (Review)

CD – Straight-Line Approximations

CD – Frequency Shaping (Loop Shaping)

- Design C(s) so that L(jω):=G(jω)C(jω) has a desired shape.
- We study the design of simple compensators:
 - Gain compensator (Today)
 - Lag compensator (Today)
 - Lead compensator (Next lecture)
CD – Guideline of Lead-Lag Design (Review)

CD – An Example (Lead-Lag Design)

Consider a system

$$G(s) = \frac{4}{s(s+1)(s+2)}$$

- Analysis for C(s) = 1
 - Stable
 - PM at least 12 deg
 - GM at least 3.5 dB
 These values are too small for good transient response!

CD – Gain Margin Compensation (Example (2))

- PM is specified to be 50 deg.
- In this example, to increase PM by gain compensation, we need to lower the gain curve.

CD - Bode Diagram for C(s) = 0.286 (Example (3))

CD – Phase-Lag Compensator (Review)

CD – Phase-Lag Compensator C(s) Design

We try to design phase-lag C(s) which gives

- PM 50deg
- Low frequency gain same as the original plant.
- Step 1: To satisfy low frequency requirement, adjust DC gain of OL system by a constant gain K.

CD – Phase-Lag Design Step 1 (C(s) = 1)

Step 2: Find the frequency ωg (which will become gain crossover frequency after compensation) where

 $\angle G(j\omega_g) = -180^\circ + \phi_m + 5^\circ, \ \phi_m : \text{ required PM}$

In this example,

$$\angle G(j\omega_g) = -180^\circ + 50^\circ + 5^\circ = -125^\circ \implies \omega_g = 0.4$$

Note: The reason of +5 deg is explained later.

CD – Phase-Lag Design Step 2 (C(s) = 1)

CD – Phase-Lag Design Step 3 (C(s) = 1)

Step 3:

CD – Phase-Lag Design Step Responses

CD – Phase-Lag Design Ramp Responses

Smaller steady-state error is due to larger Kv.

CD – Phase-Lag Design Summary

- Gain controller design in Bode plot
 - Gain changes uniformly over frequencies.
 - Phase does not change.
- Lag compensator design in Bode plot
 - Lag compensator can be used for
 - Improving PM by maintaining low freq. gain, or
 - Improving low freq. gain by maintaining PM
- Low freq. gain determines steady state error, disturbance rejection, while PM does overshoot.
- Next, lead compensator design

CD – If G(s) has OL RHP Poles

- What is problematic?
 - Nyquist stability criterion says that, for closed-loop stability, Nyquist plot of open-loop system must encircle -1 point.
 - It is hard to translate this condition into Bode plot.
- To use FR technique...

- 1. Select z near uncompensated ω_g . In the example, $\omega_g = 1.14$. So, select, for example, z = 1.
- 2. Select p > z by trial-and-error.
- 3. Check PM and settling time. If not satisfactory, move the pole p. If moving pole does not give the desired results, try to move the zero z.

CD – Phase-Lead Design Example

CD – Phase-Lead Design Step Responses

CD – Phase-Lead Design Ramp Responses

CD – Phase Lead-Lag Design Example (1)

CD – Phase Lead-Lag Design Example (2)

CD – Phase Lead-Lag Design Step Responses

CD – Phase Lead-Lag Ramp Responses

CD – Lead-Lag Compensator Summary

- Lead compensator can be used for improving
 - Gain crossover frequency
 - Phase margin

by maintaining low frequency gain,

- Lead-lag compensator can improve
 - Transient (ω_q for speed, PM for overshoot)
 - Steady state (low frequency gain for error constant)
- Next, case studies
 - Antenna azimuth position control
 - Hard disk drive control