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Abstract –In this paper, a lower limb exoskeleton robot based on 

upper limb sEMG signal controlledby designed for patients with 

lower limb functional injury in the middle and late stage of 

rehabilitation. It realized the patient's active and random control 

when wearing the lower limb exoskeleton for rehabilitation 

training. It solved the problem that the lower limb sEMG signal 

strength of patients with mobility difficulties leads to low 

acquisition accuracy, and the lower limb space of patients with 

wearing exoskeleton robot was compacted, which was 

inconvenient to collect sEMG signal. In this paper, three kinds of 

gait, which are static, normal walking and high leg lifting to 

avoid obstacles, are preliminarily formulated, and controlled by 

three different upper arm movements. This paper first 

introduced the research status at home and abroad. Then the 

principle and characteristics of sEMG signal are studied. Then 

the surface EMG signal was preprocessed and features were 

extracted, and the Angle prediction model was established by BP 

neural network. Finally, it is analyzed and verified by our 

experimental platform. 

Index Terms - EMG signal, Active control, Angle prediction 

model. 

I. INTRODUCTION 

With the continuous improvement of the quality of life of 

our people, the phenomenon of aging population is becoming 

more and more serious, which brings great pressure and 

challenges to the development of medical care, pension and 

economy. The elderly's limb function will gradually decline 

with the increase of age and the decline of physical function, 

which leads to the increasing number of elderly patients with 

hemiplegia and disability. Relevant studies show that for most 

patients with stroke caused by moderate diseases, the more 

reasonable and effective rehabilitation training is carried out 

as soon as possible, the more likely the patients' limb motor 

function will be improved or even recovered. However, the 

traditional rehabilitation treatment requires rehabilitation 

physiotherapists to carry out one-to-one repetitive 

rehabilitation training for patients, which has many problems 

such as low rehabilitation efficiency and high rehabilitation 

cost. At the same time, China's limited medical resources, a 

small number of rehabilitation physiotherapists and expensive 

rehabilitation equipment lead to many patients can't get 

effective rehabilitation treatment and miss the best 

opportunity of rehabilitation treatment. Rehabilitation robot 

technology is developed to solve the problems and pain points 

in the process of traditional rehabilitation treatment, and has 

great potential in improving rehabilitation efficiency and 

treatment effect. In addition, many lower limb rehabilitation 

equipment is mainly used to assist patients in passive lower 

limb training in practical clinical application, which can't 

provide adaptive auxiliary training according to the 

rehabilitation status of patients' lower limbs. It is easy to cause 

patients fatigue or even secondary injury in the training 

process, and the rehabilitation training time is long and the 

effect is poor. Therefore, in order to better assist patients with 

lower limb rehabilitation training, it is of great social value 

and significance to study how to improve the effect of patients' 

active motion intention in the control system of lower limb 

rehabilitation robot, and realize the interactive collaborative 

control between lower limb rehabilitation robot and patients 

[1]. 

In the 21st century, with the rapid development of robot 

technology and automatic control technology, exoskeleton 

robot has entered a new stage of development. Foreign 

research on rehabilitation robot began in the 1980s. The 

United States, Germany, Japan, Israel and other countries are 

at the leading level in the world. The most representative is the 

exoskeleton assisted robot developed by the laboratory of 

Tsukuba University in Japan. Its comfort assisted control 

system takes the EMG signal sensor as the control input 

signal. When the sensor detects the EMG signal, the controller 

immediately analyzes the force required by the wearer to 

complete the target movement, and then analyzes the 

quantitative assistance provided by the exoskeleton. The 

representative of domestic wearable lower limb rehabilitation 

robot is the wearable exoskeleton robot designed by Shenzhen 

Institute of advanced technology, Chinese Academy of 

Sciences. Through the combination of under structure driving 

structure and EMG signal sensing technology to ensure the 

coordination between the wearer and the exoskeleton; based 

on the gait analysis of exoskeleton four legged crutches, the 

appropriate gait trajectory is obtained through continuous 

correction calculation, and the patient's gait planning is 

realized [2]-[4]. 

The following is the arrangement of this paper. The second 

part is the introduction of the experimental platform and the 

principle and characteristics of sEMG signal. The third part is 

the pretreatment and feature extraction of sEMG signal. The 

fourth part is the action classification by BP neural network. 

The last part is the experiment and conclusion. 
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II. HARDWARE PLATFORM AND PRINCIPLE 

INTRODUCTION 

A. Overall structure 

Our exoskeleton structure is divided into five parts: drive 

module, back plate, waist link, thigh and calf. The foot structure 

is completed by other students in our group. Because it is only 

in the experimental stage at present, only the complete structure 

of one leg has been fabricated to verify the accuracy of the 

theory, as shown in Fig.1 [5]-[7]. 

 

Fig. 1 Exoskeleton structure of lower limb 

Safety and comfort are fully considered in the connection 

of all parts. According to the range of motion of human joints, 

the limiting device of joints is designed. The connecting part of 

the leg and the waist is also provided with a connecting rod 

structure, which has a certain range of adjustment. To meet the 

requirements of most wearers. The edge of the whole structure 

is arc structure, which further improves the safety of the 

structure and makes the appearance more beautiful. sEMG 

acquisition equipment is the instant noodle electromechanical 

instrument of Anhui Eli technology intelligent as shown in 

Fig.2. The device supports 8-channel wireless transmission, has 

large storage capacity, and the wireless transmission rate is 

19.2kb/s. It is portable and portable. At the same time, it can 

analyze a variety of frequency and time domain characteristics, 

including median frequency, average power frequency, zero 

crossing rate, spectrum area, muscle activity time and muscle 

attack time [8][9]. 

 

Fig. 2 EMG acquisition equipment 

B. Principle of sEMG signal generation 

sEMG signal is also called sEMG, which can be generated 

in any tissue and organ, which is usually a function of time and 

amplitude, frequency and waveform. Myoelectric signal is a 

bioelectrical signal which is produced by muscle contraction. 

The sEMG signal on the skin surface is called sEMG. The 

essence of sEMG is the sum of local electric fields formed by a 

cluster of motion units, which contains the information of 

human motion. It is an important direction to understand the 

characteristics of others by decoding sEMG and then to give the 

machine the ability to understand the human motion intention. 

As shown in Fig.3, the central nervous system first produces a 

set of pulse electrical stimulation, and then transmits to the 

muscle fibers to form a set of potential responses. When the 

response exceeds a certain threshold, myofibroblasts are 

activated, producing an action potential and transmitting along 

the muscle fibers to both ends, stimulating all muscle sections 

connected with the muscle fibers, which shortens them, 

namely, the completion of a muscle contraction. Through the 

study of the central nervous control system of human body, it 

can be found that with the increase of the frequency of 

electrical stimulation pulse of muscle fiber, muscle contraction 

will continue to increase, and the external strength will be 

continuously enhanced. According to the relevant research, the 

contraction of muscle shows that there is a certain non-linear 

positive correlation between muscle fiber electrical stimulation 

and muscle force. Muscle electrical signals can not only reflect 

the degree of activation of muscle stimulation, but also reflect 

the size of muscle force. The bandwidth of the sEMG signal is 

generally 0.5-2 kHz, the amplitude is mainly concentrated in 

0-1.5 mV, and the time history of one action potential is 

generally within 5-20 ms, and the main energy is concentrated 

in the range of 10-200 Hz. Because the sEMG signal is the 

superposition of a large number of muscle fiber action 

potentials on the skin surface, its waveform is more complex 

and has more noise. After skin filtration and external 

environment interference, sEMG signal is often weak voltage 

signal, and the signal-to-noise ratio is relatively low. The 

sEMG signal can be collected by attaching the electrode to the 

skin surface, and it will not cause harm to the human body and 

the user will not feel pain. The method has good safety and 

relatively high comfort, and can be worn for a long time [10]. 

 

Fig. 3 Generation of sEMG signal 



C. Introduction of muscle 

The human upper limb is composed of bone, joint and 

skeletal muscle. Bone and joint constitute the skeleton 

supporting the whole body. These movements are the 

compound movements of multiple degrees of freedom 

coordinated by shoulder joint, elbow joint and wrist joint. 

When the upper limb is performing the corresponding action, 

each action is a single joint movement or a compound 

movement of multiple joints, which is dominated by different 

muscle groups, and the participation of each muscle group in 

different upper limb actions is also different. The main muscles 

involved in upper limb movement are pectoralis major, biceps 

brachii, triceps brachii, deltoid and brachioradialis. Their 

functions in each movement mode are shown in Table 1. The 

experiment shows that biceps brachii and brachioradialis 

brachii have higher accuracy in distinguishing arm throwing 

and arm lifting. sEMG signals of these two muscles are 

collected as input signals of BP neural network [11]. 
TABLE I 

THE ROLE OF DIFFERENT MUSCLES 

Motion joint Motion mode Corresponding muscle 

Shoulder joint 

Adduction Pectoralis major,Deltoid 

Abduction Deltoid,Triceps 

Front swing Pectoralis major,Triceps 

Back swing Triceps,Supraspinatus 

Elbow joint 

Flexion Biceps, Brachioradialis muscle 

Extension Triceps 

Ⅲ. PRETREATMENT AND FEATURE EXTRACTION OF 

SEMG SIGNAL 

A. Pretreatment 

Because the intensity of sEMG signal itself is very weak, 

it is easy to introduce other noises in the process of acquisition, 

such as power frequency interference, inherent noise of 

acquisition equipment, and other biological signal noises such 

as electrocardiogram signal. The introduction of a large amount 

of noise will seriously affect the accuracy of sEMG signal 

analysis and motion control. Therefore, in addition to 

minimizing the acquisition error in the process of sEMG 

acquisition, it is necessary to further process the collected 

sEMG signal [12][13]. 

This paper preprocesses the sEMG signal according to the 

common forms and characteristics of noise interference, 

including band-pass filtering, power frequency removal and 

harmonic interference. 

Firstly, a notch filter is used to deal with the 50 Hz 

common frequency interference caused by the power supply. 

The principle of notch filter is band stop filter. The blocking 

frequency is set to a small distance near the notch. Taking 

biceps brachii as an example, the frequency domain of the 

signal processed by the 50 Hz notch filter is shown in the Fig.4. 

The green curve is the original signal, and the black curve is the 

filtered curve. It can be seen that the noise of the processed 

signal is obviously reduced [14][15]. 

 

Fig. 4 Signal after frequency notch of biceps brachii 

Then, since the effective signals of sEMG signal are 

basically concentrated in 10-200Hz, Butterworth band-pass 

filter is used for further processing to remove the noise of other 

bands. The processed muscle signal is shown in the Fig.5.The 

red curve is the curve after pretreatment. Compared with the 

original signal, the time-domain waveform of the pretreated 

sEMG signal is smoother, and the signal energy is mainly 

concentrated in 10-200Hz. 

 

Fig. 5 Signal processing of biceps brachii Butterworth band pass filter 

B. Feature extraction 

sEMG has the characteristics of non-stationary signal, so it 

is difficult to obtain enough information from a single channel 

for gesture recognition in this application scenario, so it is 

necessary to collect data from multiple channels as recognition 

signals. If all the signals of the whole active segment are used 

as input for recognition and extraction, it is a heavy workload 

and difficult to achieve. Feature extraction can not only 

compress the dimension of feature space, but also distinguish 

the differences of feature signals corresponding to different 

gesture actions, and highlight their significance, so as to 

improve the recognition rate of the classification system. 

Therefore, we need to use the feature extraction method to 

extract the characteristics of a group of signals for data 

description, so as to more effectively classify and identify, 

which is the main target of feature extraction [16]. 

At present, the characteristics of sEMG signal can be 



analyzed in time domain or frequency domain. Considering that 

the sEMG signal can reflect the muscle force information better 

in time domain and has high real-time performance, this paper 

uses the time domain eigenvalue analysis of sEMG. In this 

paper, four time-domain features with large discrimination are 

selected: absolute mean value, root mean square value, integral 

sEMG value and wavelength. 

Their expressions and physical meanings are as follows: 

The absolute mean represents the mean value of sEMG 

signal in a certain period of time. The expression is as follows: 

 ���� � 1��|
��|�
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Root mean square value reflects the energy of 

myoelectric signal in a certain period of time. The expression 

is as follows: 
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The integral sEMG value reflects the intensity change of 

sEMG signal with time.The expression is as follows: 

 ���� � 1��|�����|�����
���  （3） 

The wavelength reflects the cumulative length of the 

wave in a certain period of time. The expression is as follows: 

 �� � 1��|
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��|�
���  （4） 

Finally, the feature extraction of sEMG data is carried out 

by sliding window method. The length of the window is 

500ms and the sliding distance is 50ms. The following 

waveform is obtained. 

 

Fig. 6 Feature extraction results of biceps brachii 

 

Fig. 7 Feature extraction results of brachioradialis 

Ⅳ.ACTION CLASSIFICATION 

In this paper, BP neural network is selected to establish the 

angle prediction model. Its propagation direction is one-way 

propagation, which belongs to multi-layer forward feedback 

network. Back propagation algorithm is used to train the 

network. The layer of BP neural network can be divided into 

three types, namely input layer, hidden layer and output layer. 

There is a complete connection between layers, but there is no 

connection between neurons in each layer. A three-layer BP 

neural network can realize any mapping from n-dimension to 

m-dimension, so this paper selects three-layer BP neural 

network to build angle estimation model [17]. 

The number of nodes in the input layer is determined by 

the number of channels of sEMG signal. The experiment shows 

that the absolute average value and wavelength of the two 

muscles collected have the highest degree of discrimination for 

the two arm movements set. Therefore, the absolute average 

value and wavelength of each muscle are selected as the input 

signal of BP neural network, which has four input nodes. The 

number of nodes in the output layer is determined by the 

number of actions to be classified. In this paper, it is initially set 

to classify the arm lifting and arm throwing actions, so the 

number of nodes in the output layer is 2. There are many 

choices for the number of hidden layer units, but the choice of 

the number has a great impact on the network performance. Its 

selection needs to be determined according to the problem to be 

studied, the number of nodes in the input and output layer, the 

designer's experience and many experiments. Finally, the 

number of nodes selected in this paper is 8 [18]. 

sEMG signal can accurately reflect the degree of 

contraction of related muscles, and then predict the 

corresponding action through sEMG signal. After 

preprocessing and feature extraction, the collected original 

signal is taken as the input data, and the corresponding two 

actions are replaced by 0 and 1 as the output data to the BP 

neural network. After training, the BP neural network model 

which can predict the joint angle can be obtained. The flow 

chart of joint angle prediction based on sEMG signal is shown 

in Fig.8. 



 

Fig. 8 Control process 

In this paper, two kinds of motion states are initially set, 

which are normal walking gait and high leg lifting gait, 

corresponding to normal arm swing and arm lifting. When the 

left arm swings, the motors at the four joints cooperate with 

each other to complete a gait movement followed by the left leg 

after the right leg moves forward; when the right arm swings, 

the left leg moves forward and the right leg follows; when the 

same wearer lifts the arm, the wearer carries out a gait 

movement of high leg lifting across obstacles or up steps [19]. 

In the experiment, sEMG signals of 10 healthy subjects 

aged 20-50 were collected, including 5 males and 5 females. 

sEMG signals of their right upper limbs were collected to 

simulate the clinical rehabilitation process of hemiplegic 

patients. Each subject was in good health, full of rest, no muscle 

fatigue and relaxed. Before collection, 75% alcohol was used to 

wipe the surface of the muscle group to remove the dirt and 

enhance the conductivity. After waiting for the skin to dry 

naturally, the sensor was pasted on the right upper limb of the 

subject according to the muscle group position selected above. 

During the collection, considering the influence of 

long-time muscle fatigue on the experimental data, each subject 

repeated each action 10 times, with an interval of about 3 

seconds. In order to facilitate the extraction of active segments, 

2-3 seconds of idle time is reserved before and after each 

action, and the time to complete a complete action is about 7-8 

seconds. Fig.9 shows the signal acquisition site of two types of 

actions. 

 

Fig 9 Collection of subjects' sEMG signal 

After the sEMG signal acquisition experiment, 650 groups 

of data were obtained by feature extraction, 500 groups of each 

action were used for classifier training, and the other 150 

groups were used for test experiment. The experiment shows 

that the absolute average value and wavelength of the two 

muscles collected have the highest degree of difference 

between the two arm movements, so these two features are 

selected as the input signals of BP neural network. The output 

signal is set to 0 and 1, corresponding to normal walking and 

obstacle avoidance gait respectively. The classification results 

are shown in Fig.10.It can be seen that basically two kinds of 

actions can be distinguished accurately. If the output result is 

set to be greater than 50%, it is regarded as the arm lifting 

action, otherwise it is the arm throwing action. Therefore, even 

if a few results are not very accurate, it will not affect the 

subsequent control of the motor. 

 

Fig. 10 The classification results of two movements 

Ⅴ.EXPERIMENTS AND RESULTS 

Finally, the theoretical method is combined with the 

experimental platform to carry out preliminary experimental 

verification, and the knee joint elevation is used to replace the 

normal walking gait with knee joint elevation of 30 degrees, 

and the knee joint is raised 60 degrees instead of the high leg 

lifting gait. Because the risk of patients with lower limb 

dysfunction participating in the experiment, healthy young men 

were selected as subjects. The experimental process is shown in 

Fig.11. 

 

(a)Normal gait          (b)High leg up gait 

 

(c) The motion curves of the two gaits 

Fig. 11 Switching experiment of two kinds of gait 



The real-time data collected by sEMG sensor is imported 

into the BP neural network model trained by Matlab. When the 

output of neural network is less than 0.5, it is considered that 

the normal gait should be performed at this time, and the 

corresponding control signal is sent to the MCU through 

USART serial port. When the output is greater than 0.5, the 

high leg lifting gait is performed. After repeated experiments, it 

is found that the neural network can effectively classify the arm 

swing and arm lift, and then control the motor to execute the 

corresponding gait. However, due to the instability of the 

real-time sEMG signal, there are a few cases of classification 

delay, that is, the whole arm lifting action is judged as arm 

lifting after it is executed, and the real-time performance will be 

affected to a certain extent. It is necessary to further optimize 

the classification algorithm to improve the real-time control. 

Ⅵ.CONCLUSION 

This paper mainly designed a lower limb exoskeleton 

robot based on the upper limb sEMG signal control, which 

changed the traditional control method, solved the problem that 

the lower limb sEMG signal strength of hemiplegic patients 

was weak and affected the classification effect. And also solved 

the problem that the lower limb space was insufficient after 

wearing the lower limb exoskeleton robot, which was not easy 

to collect the sEMG signal. The angle prediction model of BP 

neural network based on sEMG signal was established, and the 

corresponding mode of upper limb movement and gait 

movement was designed. The real-time performance and 

accuracy of motion prediction based on sEMG signal were 

verified by experiments. Through this control method, the 

human-computer interaction ability was greatly improved, and 

the rehabilitation enthusiasm of patients was increased. 

Although the project has achieved the expected goal and 

achieved certain research results, there is still a lot of work to be 

further improved: on the one hand, it is necessary to carry out 

further experimental design and verification for patients with 

lower limb dysfunction who are really in the middle and late 

stage of rehabilitation; on the other hand, the reaction time of 

gait switching and the classification accuracy of sEMG signal 

need to be improved. 
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