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Control of a mobile Robot: Part I 
 
 
Introduction: 
This tutorial will discuss the basic elements in the control of a mobile robot.  The process 
will then be demonstrated through implementation of a follow-the- leader control on a lab 
robot.  This tutorial will provide an overview of the critical system elements, a discussion 
of system modeling, modeling and design of a controller, and finally implementation and 
testing on the lab robot.  This tutorial is designed to accompany labs 11-14 of the TTU 
ME3060 course.   
 
Outline: 
Elements of a motion-control system section 1 
Overview of motors  section 2 
Overview of the Brushed PM DC Motor: section 3 
Modeling Electro-mechanical Systems based on PM DC Motor: section 4 
Steady-State DC Motor Behavior section 5 
Using Simulink to Model the Open-Loop System section 6 
PID Control section 7 
Using Simulink to Add PID Control to the System section 8 
Implementation  section 9 
 
1. Elements of a motion-control system 
The primary motion control elements in our robot system are shown in the figure below.  
This diagram shows the system divided into three parts; the robot system or plant, a low-
level controller, and a high- level controller.  The robot system includes the robot motors, 
mass and inertia components, the motor drivers and power supply.  The low-level 
controller in our example will consist of a microcontroller (Motorola HC12) embedded 
on the robot capable of controlling two drive channels, left & right wheels for a 
differential drive or drive and steering for swivel wheel steer.  The high- level control 
provides the interface between the robot and human operator and in our case resides on a 
lab PC with wireless communication to the low-level controller.  In some cases the high-
level controller will perform advanced computations such as inverse kinematic solutions, 
mapping, localization with GPS, etc.   
 



 2

 
 
2. Overview of motors  
While there are many components in this robot system, a brief discussion of the drive 
motors and their selection will be provided since this selection influences the model of 
the electro-mechanical interaction in the system.  The primary motors used in robot (or 
other) systems are listed in Table I, followed by some general comments related to 
applicability.   
Brushed, PM DC 
Motors  

Stepper Motors  Brushless DC 
Motors  

Brushless AC 
Motors  

Cheap, rugged, 
high-reliability 

Cheap, rugged, 
high-reliability 

No brushes, suitable 
for any environment 

No brushes, suitable 
for any environment 

Low Torque ripple No brushes, suitable 
for any environment 

Historically 
available in lower 
power ratings 

Most commonly 
used in current 
industrial robots 

Encoder + controller 
+ feedback loop 
required to servo 

Does not require 
feedback for 
position/velocity 
control 

 Requires power 
conditioning 
electronics affecting 
cost 

Widely available, 
both commercial 
and surplus 

At low speeds, 
provide up to 5x 
torque of brushed 
motor, 2x torque of 
brushless motor  

  

 Suffers from 
resonance and long 
settling times 

  

 Consume current 
regardless of load or 
motion, run hot 

  

 Losses at speed are 
high 

  

High-level 
controller 

Low-level 
controller 

Driver 

Power 
Supply 

Motor  Gear 

robot 

Plant or Robot 

encoder 
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 Undetected position 
loss as a result of 
open loop operation 

  

 
The term servo motor or “servo” implies position and/or velocity control.  In order to 
create a servo motor based on a PM DC motor, the system requires a motor + encoder + 
feedback loop + controller.  However, once this expense is incurred the servo system 
becomes a highly robust system.  Therefore, the robot system considered here will be 
based on PM DC motors.  A brief review of PM DC motors will follow.  For more 
information on the technical and practical aspects of implementing all the motors in the 
table above, please refer to the tutorials on the ME 4370 (Mechatronics) website. 
 
3. Overview of the Brushed PM DC Motor: 
The iron-core brushed DC motor historically has been one of the most commonly used 
motors in servo-motor systems.  As its name implies, this motor contains brushes, 
permanent magnets, and operates on DC current.  The motor is often simply called a DC 
motor.  The primary components of this motor are shown in the following simple 
schematic and photograph.   
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3.1 PM DC Motor  
The permanent magnets of the stator are attached to the motor walls, while the armature 
is part of the motor shaft.  Current flow through the armature winding interacts with the 
magnetic field created by the stator magnets to create a couple or net torque  on the 
armature.  The armature contains many windings (many more than the one shown in this 
figure), and as the winding shown moves out of the field, another winding moves in.  
Therefore, this motor generates an output with fairly low torque ripple.  The commutators 
provide a mechanical means to sense the position of the motor and send current to a new 
set of windings.   
Based on this analysis, there are just a few factors the largely dictate the output torque 
and velocity (power) of this motor.  Primary factors affecting torque and speed are; 

1) Amount of current flowing through the windings, a function of voltage 
potential and winding inductance and resistance. 

2) Field strength created by the magnets 
3) Radius of the motor armature 
4) Back emf in the motor proportional to motor speed and magnetic field 

strength 
 
As an additional note, brushed DC motors have two primary difficulties; 

1) Contact between the brushes and commutator creates carbon dust, sparks and 
wear points 

2) The armature generates heat as a function of the power loss equation i2R  , and this 
heat must escape through the magnets or motor shaft.   

 
4. Modeling Electro-mechanical Systems based on PM DC Motor: 
The goal is to design a representative model of the robot system or plant shown in figure 
1.  The robot model will be based on a system of equations that relate the input to the 
system (a command voltage) to the robot output parameters (robot motion or position, 
velocity and acceleration under a given load).  This model will require; 1) a description of 
the current flow in the motor, 2) equations of motion for the robot with motor rotation the 
generalized coordinate, and 3) electrical/mechanical relations in the system.  These three 
parts are described in sections 4.1 – 4.3.   
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4.1 Motor Electronics: 
A circuit of the motor drive system is constructed and evaluated using Kirchoff’s voltage 
law.   

 
Summing voltages throughout the circuit gives 
 ωein kRidt

diLV ++= , (1) 

a first order ODE in current, i, with L, R the motor inductance and resistance, ke the 
electric constant, Vemf the back emf and ω the rotational speed of the motor (rad/s). 
 
4.2 Equations of Motion: 
The equations of motion for the robot will consider the simple case of single-degree-of-
freedom motion of the robot, moving forward and reverse.  A free-body diagram of a 
symmetric half of the robot is constructed and used to write the equations of motion: 

 
 loadTTCJ −=+ θθ &&&  (2) 
where J is the equivalent inertia as seen by the motor, C is the equivalent viscous 
damping seen by the motor, Tmotor is the input torque from the motor and Tload all other 
loads on the system.  The total inertia of the system as seen by the motor is given by the 
following equation,  

Motor  Gear 

Robot 

Jwheel 

Jgear Jmotor 
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where Jmotor, Jgear  are the inertias of the motor and gear train relative to the motor, Jwheel 
the robot wheel inertia, m the robot mass, r the wheel radius and GR the transmission 
ratio expressed as the ratio of input rotation to unit output rotation.  Equation 2 gives a 
second order ODE in motor rotation, θ.  
 
4.3 Electro-Mechanical Relation 
The electrical and mechanical components are coupled in two ways.  First, an 
approximate relation is generally used that describes motor torque as a linear function of 
current in the motor, 
 ikT t=  (4) 
where kt the motor torque constant.  In addition, the back emf in the motor is linearly 
related to the motor rotational velocity, 
 θ&eemf kV =  (5) 
 
4.4 Combined system model 
The electrical and dynamic relationships are now combined to result in a system of 
equations  that govern the robot response.  Equations 4 and 5 are substituted into Eqs. 2 
and 1 respectively to result in the final system equations; a 1st and 2nd order ODE with 
two unknowns, i and θ: 
 loadt TikCJ −=−+ θθ &&&  (6) 

 ine VkRiiL =++ θ&& . (7) 
This system can be cast into state-space form to result in a system of three 1st order 
ODE’s as,  
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or; 
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following the traditional state-space form for linear systems, 

 
Cxy

BuAxx
=

+=&
 (10) 
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where x is the state vector, A the state coefficient matrix, B the input coefficient matrix, u 
the input vector, y the output vector and C the linear transformation from state to output 
variables.  In this case, the output variables are robot linear position and velocity, and 
motor current.   
 
Matlab provides a variety of tools to easily model this system.  A simple first step could 
be to observe a step response of this system (step input of the motor voltage) using the 
command; 
>step(A,B,C,D)  
with A,B,C the matrices defined above.  More discussion on system modeling will be 
provided in the simulink section.   
 
5. Steady-State DC Motor Behavior 
At steady state, the dynamic motor model above can be greatly simplified ( 0== θ&&&i ) to 
yield the equations; 
 ine VkRi =+ ω   +  ikT t= à (11) 
  

 ω




−





= R

kkVk
RT te

in
t

, (12) 

This equation represents a linear torque/speed relation for a PM dc motor.  The response 
(assuming a constant input applied voltage) looks like; 

 
The maximum generated torque occurs at rest (stall), and decreases to zero at the 
maximum motor speed under no load.  At this speed, the back-emf voltage in the motor is 
equal to the input voltage (minus a small amount to overcome inefficiencies in the 
motor). 
To consider power in the motor, write a linear equation for T as a function of motor 
speed; 

 ( ) 




 −=

max
1 ω

ωω sTT  (13) 
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and then express power as; 

 ( ) ( ) 




 −==

max
1 ω

ωωωω sTTP . (14) 

The maximum power occurs at; 
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or 
 max2

1 ωω =  (16) 
 

 
The above information can be used in selecting a motor for your application, the first 
taking into account dynamic response, the second considering only steady-state behavior.  
More information can be found on this in the motor selection tutorial on the ME 4370 
website.   
 
6. Using Simulink to Model the Open-Loop System 
Simulink provide a means to represent the system graphically in terms of a block diagram 
and then simulate the behavior of the system.  Further, control loops can be easily added 
to this block diagram.  The block diagrams are described in Laplace space, requiring 
Laplace transformations of the state equations.  What follows is a derivation of the 
desired block diagram.  The process starts with the state space equations derive above.  
Laplace Transforms of these equations are taken, and these Laplace equations are 
converted to block diagram form.   
The state space equations derived earlier (ignoring the Tlosf term) were, 
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Taking the Laplace Transform of 
•

1x , 2

•
x , and 3

•
x  gives,  
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Rearranging the above equations into an 
input
output

 form yields (after some algebra),  
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These equations can now be represented as block diagrams as follows,  

 

 

 
Note that data flows in the direction of the arrows, and the arrow pointing into the block 
represents “input”, and the arrow pointing away from the block represents output.  The 
triangular blocks represent “gain”, which is a multiplication.  The circular block in the 
third configuration is a “summer” block (summer blocks can also be represented as 
rectangles).  In this instance, 2xkV b−+ is the input into the Transfer Function.  The 
Transfer Functions can even be thought of as “multipliers” of the input. 
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Connecting the above three block configurations so that the output of one will be the 
input of the next will give, 

 
The above block diagram is the SIMULINK representation of our system (often called 
the “plant”).  The input to this plant (robot) is a voltage signal and the output is the motor 
(wheel) rotation.  The Transfer Function blocks are located in the Continuous library 
along with the Integrator block.  Note that variables are used in the blocks.  SIMULINK 
will use the values in the MATLAB Workspace assigned to those variables.  Therefore, 
an M-file needs to be written to define these values.  The M-file must be run before 
starting the simulation.  Use the following parameters in your M-file: 
 

m_robot=5;             %Payload mass 
g=9.81;            %gravity 
rw=.02;         %Wheel radius 
GR=1/30;    %Gear ratio 
J_robot=m_robot*rw^2*1.1;  %Robot inertia 
J_motor=1.3e-4;   %Motor inertia 
J=J_motor+J_robot*(1/GR)^2;     %Total inertia at motor 
c=1.0791e-5;       %Viscous damping 
kt=.415;        % torque constant    
kb=50.68*60/(2*pi*1000);      %Back emf constant 
L=4.8*1e-3;        %Inductance 
R=9.65;             %Resistance  
V=12;                %Input voltage 

 

Initial conditions for the angular displacement can be defined by double-clicking the 
s
1

 

block.  The state variable x1 can be observed as a function of time using the scope block 
(labeled “graph” above).  Using the parameters given above, a plot is obtained from the 
simulation of the angular displacement as a function of time.  The length of the time 
vector used can be changed in SIMULINK’s Simulation Parameters.  Also, you may have 
to uncheck a Limit box in the Scope parameters to obtain the plot of all of your data 
points.  
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Angular Displacement vs. Time 

 

 
Current Draw vs. Time 

 
Several observations can be made from the open- loop response of this robot system.  
First, the robot motion takes a few seconds to reach a steady speed (linear slope of the 
wheel angular displacement curve) and maximum speed of the robot can be seem from 
the state variable x2.  In addition, the robot system draws about 1.25 A peak and 1.1 A 
continuous in operation according to this model.   
 
7. PID Control 
Closed- loop control of a system provides the most common technique to maximize 
performance of engineered systems.  A good online tutorial of this information can be 
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found at www.engin.umich.edu/group/ctm/ A controller added to our system is shown in 
the following figure.   

 
 The PID control technique provides a three term controller with gains kp, ki and kd 
where: 

Kp = proportional gain 
Ki = integral gain 
Kd = derivative gain 

 
These gains act on the error that occurs between the desired response and actual response 
to provide command information to the robot.  The proportional gain is directly 
multiplied by the error while the derivative gain is multiplied by the derivative of the 
error and the integral gain is multiplied by the integral of the error as, 
 
 ∫++= edtkekekV idp &   

 
This process is carried out continuously, with the actual response moving toward the 
desired response (and the desired response altered by the high- level controller).  It is 
desired that this process occur in real-time, which is generally considered to be in the 
range of 200 Hz for typical industrial manipulators.  However, the requirements here 
depend greatly on the system.   
Each of the three gains in the PID controller affects different aspects of the system 
response.  For example, the proportional gain will shorten the system rise time, but will 
also increase the system overshoot or oscillation about the desired response.  The 
derivative gain provides damping to the system, in generally decreasing any overshoot or 
oscillation in the system.  Finally, the integral gain is intended to primarily eliminate any 
steady-state error in the system.   
There are many formal means to select values for the kp, ki and kd gains in a PID 
controller.  There is also the approach of trial and error.  With a good system model and 
tools such as Matlab, trial and error is not an unreasonable approach.   
 
8. Using Simulink to Add PID Control to the System 
Next, a closed-loop controller will be added to the system.  This controller will be a 
three-term, PID controller with a unity feed-back loop.  The controller is located prior to 
the plant and following the sum of desired reference and feedback.  This can be 
represented in block diagram form as: 

High-level 
controller 

Controller 

Feedback 

Robot/ 
Plant 

Desired 
response 

Actual 
response 
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Here, u represents the desired response.  The PID Controller can be found in the 
SIMULINK Extras – Additional Linear library.  The first summer block takes the 
difference of our desired response u (here a constant) and our actual response from the 
plant x1 or ?  to give an error signal e.  It is obviously desired that the error term e be as 
close to zero as possible.  The PID controller will take the error term e and adjust the 
voltage accordingly in order to achieve a smaller error.  Double-clicking the PID block, 
allows change of the PID parameters.  Change the values to the variables kp, ki, and kd 
respectively.  Use your previous M-file to change the value of these variables as well.  
The desired u value was set to a constant 1 also in the M-file. 
 
The scope below shows response with the PID controller (kp=10, ki=0 , and kd=0 ).  The 
desired u value was set to a constant 1 also in the M-file. 

 
Angular Displacement vs. Time with PID Control 

 
 
 

plant 
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9. Implementation 
The modeling and controller design process will now be demonstrated on one of the TTU 
lab robots.  This robot is shown in the following figure.  In this example, the goal is to 
design a controller to make the robot track or follow another robot in one dimension 
(figure 2) 

 

 
The desired tracking distance, dd will be specified for the system.  The actual tracking 
distance will be measured using sensor s1 on the tracking robot.  This sensor is an analog 

Desired tracking distance, d 
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8-bit IR ranger (Sharp GP115).  Additional pertinent information on the lab robot is 
included in the table below: 
 
Component Details 
Embedded controller HC12 
Sensors Analog, 8bit IR sensors 
Robot Mass 5 kg 
Wheels 4 cm dia 
Motor: Kohl- 
  
  
 
 
9.1: Model of system + controller 
A model of the system + controller is first implemented.  This procedure is based on the 
simulink model developed in section 6 above, with the parameters from table III 
implemented.  A trial-and-error process is used to find a suitable set of controller gains.  
The controller gains and resulting system performance are shown below. 
 

 
 
9.2: Implement controller on robot platform.   
The controller designed in section 8.1 is used as a starting point for the robot system.  
The block diagram for our control system is shown as, 
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The control is implemented inside the HC12 controller based on the following flowchart: 
 
 

S  

High-level 
controller 

Controller 
– HC12 

Feedback 

Robot 

Tracking 
distance 

Start control 

Acquire tracking 
distance (da) 

Calculate error: 
e=dd-da 

Calculate error 
derivative: 

e_dot=(ei-ei-1)/∆t 

Calculate error 
integral 

esum= esum+e 

Calculate Input signal 
V=kp*e + kd*edot + 

ki*esum 

Calculate Input signal 
V=kp*e + kd*edot + 

ki*esum 

Update Motor PWM 
duty cycle 

Desired 
tracking 
distance 
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Experiment with the lab robot.  To do this, run the matlab file, gains.m.  Enter the desired 
values of gains kp, ki and kd in gains.m.  Turn on the lab robot, and run gains.m.  The 
robot will wait to receive the three gains and then will begin the tracking process using 
those gains in its PID controller.  The gains program in matlab will continue to acquire 
the real- time tracking distance for approximately one minute.  At the end of this time, the 
tracking distance can be plotted to observe the controllers performance.  Modify the gains 
as desired and continue to run until the robot performance is optimized.   
Two comments about this system are noted; 

1) The controller gains can quickly over-saturate the range of motor response.  Thus, 
the linear controller actually plateaus at the input limits (100 % duty cycle). 

2) There are a few lags in the motor response which affects the control performance.   
 


