
 1

Control of a mobile Robot: Part I

Introduction:
This tutorial will discuss the basic elements in the control of a mobile robot. The process
will then be demonstrated through implementation of a follow-the- leader control on a lab
robot. This tutorial will provide an overview of the critical system elements, a discussion
of system modeling, modeling and design of a controller, and finally implementation and
testing on the lab robot. This tutorial is designed to accompany labs 11-14 of the TTU
ME3060 course.

Outline:
Elements of a motion-control system section 1
Overview of motors section 2
Overview of the Brushed PM DC Motor: section 3
Modeling Electro-mechanical Systems based on PM DC Motor: section 4
Steady-State DC Motor Behavior section 5
Using Simulink to Model the Open-Loop System section 6
PID Control section 7
Using Simulink to Add PID Control to the System section 8
Implementation section 9

1. Elements of a motion-control system
The primary motion control elements in our robot system are shown in the figure below.
This diagram shows the system divided into three parts; the robot system or plant, a low-
level controller, and a high- level controller. The robot system includes the robot motors,
mass and inertia components, the motor drivers and power supply. The low-level
controller in our example will consist of a microcontroller (Motorola HC12) embedded
on the robot capable of controlling two drive channels, left & right wheels for a
differential drive or drive and steering for swivel wheel steer. The high- level control
provides the interface between the robot and human operator and in our case resides on a
lab PC with wireless communication to the low-level controller. In some cases the high-
level controller will perform advanced computations such as inverse kinematic solutions,
mapping, localization with GPS, etc.

 2

2. Overview of motors
While there are many components in this robot system, a brief discussion of the drive
motors and their selection will be provided since this selection influences the model of
the electro-mechanical interaction in the system. The primary motors used in robot (or
other) systems are listed in Table I, followed by some general comments related to
applicability.
Brushed, PM DC
Motors

Stepper Motors Brushless DC
Motors

Brushless AC
Motors

Cheap, rugged,
high-reliability

Cheap, rugged,
high-reliability

No brushes, suitable
for any environment

No brushes, suitable
for any environment

Low Torque ripple No brushes, suitable
for any environment

Historically
available in lower
power ratings

Most commonly
used in current
industrial robots

Encoder + controller
+ feedback loop
required to servo

Does not require
feedback for
position/velocity
control

 Requires power
conditioning
electronics affecting
cost

Widely available,
both commercial
and surplus

At low speeds,
provide up to 5x
torque of brushed
motor, 2x torque of
brushless motor

 Suffers from
resonance and long
settling times

 Consume current
regardless of load or
motion, run hot

 Losses at speed are
high

High-level
controller

Low-level
controller

Driver

Power
Supply

Motor Gear

robot

Plant or Robot

encoder

 3

 Undetected position
loss as a result of
open loop operation

The term servo motor or “servo” implies position and/or velocity control. In order to
create a servo motor based on a PM DC motor, the system requires a motor + encoder +
feedback loop + controller. However, once this expense is incurred the servo system
becomes a highly robust system. Therefore, the robot system considered here will be
based on PM DC motors. A brief review of PM DC motors will follow. For more
information on the technical and practical aspects of implementing all the motors in the
table above, please refer to the tutorials on the ME 4370 (Mechatronics) website.

3. Overview of the Brushed PM DC Motor:
The iron-core brushed DC motor historically has been one of the most commonly used
motors in servo-motor systems. As its name implies, this motor contains brushes,
permanent magnets, and operates on DC current. The motor is often simply called a DC
motor. The primary components of this motor are shown in the following simple
schematic and photograph.

+V
-V

i

N

S

commutator

Permanent
magnet /
Stator Armature/ rotor

B

F=iLxB

brushes

Armature

Brushes

Stator

Commutator

 4

3.1 PM DC Motor
The permanent magnets of the stator are attached to the motor walls, while the armature
is part of the motor shaft. Current flow through the armature winding interacts with the
magnetic field created by the stator magnets to create a couple or net torque on the
armature. The armature contains many windings (many more than the one shown in this
figure), and as the winding shown moves out of the field, another winding moves in.
Therefore, this motor generates an output with fairly low torque ripple. The commutators
provide a mechanical means to sense the position of the motor and send current to a new
set of windings.
Based on this analysis, there are just a few factors the largely dictate the output torque
and velocity (power) of this motor. Primary factors affecting torque and speed are;

1) Amount of current flowing through the windings, a function of voltage
potential and winding inductance and resistance.

2) Field strength created by the magnets
3) Radius of the motor armature
4) Back emf in the motor proportional to motor speed and magnetic field

strength

As an additional note, brushed DC motors have two primary difficulties;

1) Contact between the brushes and commutator creates carbon dust, sparks and
wear points

2) The armature generates heat as a function of the power loss equation i2R , and this
heat must escape through the magnets or motor shaft.

4. Modeling Electro-mechanical Systems based on PM DC Motor:
The goal is to design a representative model of the robot system or plant shown in figure
1. The robot model will be based on a system of equations that relate the input to the
system (a command voltage) to the robot output parameters (robot motion or position,
velocity and acceleration under a given load). This model will require; 1) a description of
the current flow in the motor, 2) equations of motion for the robot with motor rotation the
generalized coordinate, and 3) electrical/mechanical relations in the system. These three
parts are described in sections 4.1 – 4.3.

Driver

Power
Supply

Motor Gear

robot

Plant or Robot

encoder

 5

4.1 Motor Electronics:
A circuit of the motor drive system is constructed and evaluated using Kirchoff’s voltage
law.

Summing voltages throughout the circuit gives
 ωein kRidt

diLV ++= , (1)

a first order ODE in current, i, with L, R the motor inductance and resistance, ke the
electric constant, Vemf the back emf and ω the rotational speed of the motor (rad/s).

4.2 Equations of Motion:
The equations of motion for the robot will consider the simple case of single-degree-of-
freedom motion of the robot, moving forward and reverse. A free-body diagram of a
symmetric half of the robot is constructed and used to write the equations of motion:

 loadTTCJ −=+ θθ &&& (2)
where J is the equivalent inertia as seen by the motor, C is the equivalent viscous
damping seen by the motor, Tmotor is the input torque from the motor and Tload all other
loads on the system. The total inertia of the system as seen by the motor is given by the
following equation,

Motor Gear

Robot

Jwheel

Jgear Jmotor

m

θ,ω,α

Tmotor

r

Vin

+

- +

Vemf = keω

L R

Motor

 6

 ()
2

2 1

+++=

GR
mrJJJJ wheelgearmotorequiv (3)

where Jmotor, Jgear are the inertias of the motor and gear train relative to the motor, Jwheel
the robot wheel inertia, m the robot mass, r the wheel radius and GR the transmission
ratio expressed as the ratio of input rotation to unit output rotation. Equation 2 gives a
second order ODE in motor rotation, θ.

4.3 Electro-Mechanical Relation
The electrical and mechanical components are coupled in two ways. First, an
approximate relation is generally used that describes motor torque as a linear function of
current in the motor,
 ikT t= (4)
where kt the motor torque constant. In addition, the back emf in the motor is linearly
related to the motor rotational velocity,
 θ&eemf kV = (5)

4.4 Combined system model
The electrical and dynamic relationships are now combined to result in a system of
equations that govern the robot response. Equations 4 and 5 are substituted into Eqs. 2
and 1 respectively to result in the final system equations; a 1st and 2nd order ODE with
two unknowns, i and θ:
 loadt TikCJ −=−+ θθ &&& (6)

 ine VkRiiL =++ θ&& . (7)
This system can be cast into state-space form to result in a system of three 1st order
ODE’s as,

ix

x

x

=
=

=

3

2

1

θ

θ
&

L
VxL

RxL
kx

TxJ
kxJ

Cx

xx

inb

load
t

+−−=

−+−=

=

323

322

21

&

&
&

 (8)

or;

=

+

−−

−=

3

2

1

3

2

1

3

2

1

3

2

1

100
0/0
00/

0

0

0

010

x
x
x

GRr
GRr

y
y
y

L
VR

J
T

x
x
x

L
R

L
k

J
k

J
C

x
x
x

load

b

t

&
&
&

 (9)

following the traditional state-space form for linear systems,

Cxy

BuAxx
=

+=&
 (10)

 7

where x is the state vector, A the state coefficient matrix, B the input coefficient matrix, u
the input vector, y the output vector and C the linear transformation from state to output
variables. In this case, the output variables are robot linear position and velocity, and
motor current.

Matlab provides a variety of tools to easily model this system. A simple first step could
be to observe a step response of this system (step input of the motor voltage) using the
command;
>step(A,B,C,D)
with A,B,C the matrices defined above. More discussion on system modeling will be
provided in the simulink section.

5. Steady-State DC Motor Behavior
At steady state, the dynamic motor model above can be greatly simplified (0== θ&&&i) to
yield the equations;
 ine VkRi =+ ω + ikT t= à (11)

 ω

−

= R

kkVk
RT te

in
t

, (12)

This equation represents a linear torque/speed relation for a PM dc motor. The response
(assuming a constant input applied voltage) looks like;

The maximum generated torque occurs at rest (stall), and decreases to zero at the
maximum motor speed under no load. At this speed, the back-emf voltage in the motor is
equal to the input voltage (minus a small amount to overcome inefficiencies in the
motor).
To consider power in the motor, write a linear equation for T as a function of motor
speed;

 ()

 −=

max
1 ω

ωω sTT (13)

Torque

Power

T,P

Tstall

ωno load
ω

 8

and then express power as;

 () ()

 −==

max
1 ω

ωωωω sTTP . (14)

The maximum power occurs at;

() 021

max
=

 −= ω

ω
ω

ω
sTd

dP
 (15)

or
 max2

1 ωω = (16)

The above information can be used in selecting a motor for your application, the first
taking into account dynamic response, the second considering only steady-state behavior.
More information can be found on this in the motor selection tutorial on the ME 4370
website.

6. Using Simulink to Model the Open-Loop System
Simulink provide a means to represent the system graphically in terms of a block diagram
and then simulate the behavior of the system. Further, control loops can be easily added
to this block diagram. The block diagrams are described in Laplace space, requiring
Laplace transformations of the state equations. What follows is a derivation of the
desired block diagram. The process starts with the state space equations derive above.
Laplace Transforms of these equations are taken, and these Laplace equations are
converted to block diagram form.
The state space equations derived earlier (ignoring the Tlosf term) were,

ix

x

x

=
=

=
•

3

2

1

θ

θ

L
VxL

RxL
kx

xJ
kxJ

Cx

xx

inb

t

+−−=

+−=

=

•

•

•

323

322

21

 (8)

Torque

Power

T,P

Tstall

ωno load
ω

max Power

ωno load/2

 9

Taking the Laplace Transform of
•

1x , 2

•
x , and 3

•
x gives,

L
VxL

RxL
ksx

xJ
kxJ

Csx

xsx

inb

t

+−−=

+−=

=

323

322

21

 (17)

Rearranging the above equations into an
input
output

 form yields (after some algebra),

RLsxkV
x

CJs
k

x
x

sx
x

bin

t

+
=

−

+
=

=

1

1

1

2

3

3

2

2

1

 (18)

These equations can now be represented as block diagrams as follows,

Note that data flows in the direction of the arrows, and the arrow pointing into the block
represents “input”, and the arrow pointing away from the block represents output. The
triangular blocks represent “gain”, which is a multiplication. The circular block in the
third configuration is a “summer” block (summer blocks can also be represented as
rectangles). In this instance, 2xkV b−+ is the input into the Transfer Function. The
Transfer Functions can even be thought of as “multipliers” of the input.

 10

Connecting the above three block configurations so that the output of one will be the
input of the next will give,

The above block diagram is the SIMULINK representation of our system (often called
the “plant”). The input to this plant (robot) is a voltage signal and the output is the motor
(wheel) rotation. The Transfer Function blocks are located in the Continuous library
along with the Integrator block. Note that variables are used in the blocks. SIMULINK
will use the values in the MATLAB Workspace assigned to those variables. Therefore,
an M-file needs to be written to define these values. The M-file must be run before
starting the simulation. Use the following parameters in your M-file:

m_robot=5; %Payload mass
g=9.81; %gravity
rw=.02; %Wheel radius
GR=1/30; %Gear ratio
J_robot=m_robot*rw^2*1.1; %Robot inertia
J_motor=1.3e-4; %Motor inertia
J=J_motor+J_robot*(1/GR)^2; %Total inertia at motor
c=1.0791e-5; %Viscous damping
kt=.415; % torque constant
kb=50.68*60/(2*pi*1000); %Back emf constant
L=4.8*1e-3; %Inductance
R=9.65; %Resistance
V=12; %Input voltage

Initial conditions for the angular displacement can be defined by double-clicking the
s
1

block. The state variable x1 can be observed as a function of time using the scope block
(labeled “graph” above). Using the parameters given above, a plot is obtained from the
simulation of the angular displacement as a function of time. The length of the time
vector used can be changed in SIMULINK’s Simulation Parameters. Also, you may have
to uncheck a Limit box in the Scope parameters to obtain the plot of all of your data
points.

 11

Angular Displacement vs. Time

Current Draw vs. Time

Several observations can be made from the open- loop response of this robot system.
First, the robot motion takes a few seconds to reach a steady speed (linear slope of the
wheel angular displacement curve) and maximum speed of the robot can be seem from
the state variable x2. In addition, the robot system draws about 1.25 A peak and 1.1 A
continuous in operation according to this model.

7. PID Control
Closed- loop control of a system provides the most common technique to maximize
performance of engineered systems. A good online tutorial of this information can be

 12

found at www.engin.umich.edu/group/ctm/ A controller added to our system is shown in
the following figure.

 The PID control technique provides a three term controller with gains kp, ki and kd
where:

Kp = proportional gain
Ki = integral gain
Kd = derivative gain

These gains act on the error that occurs between the desired response and actual response
to provide command information to the robot. The proportional gain is directly
multiplied by the error while the derivative gain is multiplied by the derivative of the
error and the integral gain is multiplied by the integral of the error as,

 ∫++= edtkekekV idp &

This process is carried out continuously, with the actual response moving toward the
desired response (and the desired response altered by the high- level controller). It is
desired that this process occur in real-time, which is generally considered to be in the
range of 200 Hz for typical industrial manipulators. However, the requirements here
depend greatly on the system.
Each of the three gains in the PID controller affects different aspects of the system
response. For example, the proportional gain will shorten the system rise time, but will
also increase the system overshoot or oscillation about the desired response. The
derivative gain provides damping to the system, in generally decreasing any overshoot or
oscillation in the system. Finally, the integral gain is intended to primarily eliminate any
steady-state error in the system.
There are many formal means to select values for the kp, ki and kd gains in a PID
controller. There is also the approach of trial and error. With a good system model and
tools such as Matlab, trial and error is not an unreasonable approach.

8. Using Simulink to Add PID Control to the System
Next, a closed-loop controller will be added to the system. This controller will be a
three-term, PID controller with a unity feed-back loop. The controller is located prior to
the plant and following the sum of desired reference and feedback. This can be
represented in block diagram form as:

High-level
controller

Controller

Feedback

Robot/
Plant

Desired
response

Actual
response

 13

Here, u represents the desired response. The PID Controller can be found in the
SIMULINK Extras – Additional Linear library. The first summer block takes the
difference of our desired response u (here a constant) and our actual response from the
plant x1 or ? to give an error signal e. It is obviously desired that the error term e be as
close to zero as possible. The PID controller will take the error term e and adjust the
voltage accordingly in order to achieve a smaller error. Double-clicking the PID block,
allows change of the PID parameters. Change the values to the variables kp, ki, and kd
respectively. Use your previous M-file to change the value of these variables as well.
The desired u value was set to a constant 1 also in the M-file.

The scope below shows response with the PID controller (kp=10, ki=0 , and kd=0). The
desired u value was set to a constant 1 also in the M-file.

Angular Displacement vs. Time with PID Control

plant

 14

9. Implementation
The modeling and controller design process will now be demonstrated on one of the TTU
lab robots. This robot is shown in the following figure. In this example, the goal is to
design a controller to make the robot track or follow another robot in one dimension
(figure 2)

The desired tracking distance, dd will be specified for the system. The actual tracking
distance will be measured using sensor s1 on the tracking robot. This sensor is an analog

Desired tracking distance, d

 15

8-bit IR ranger (Sharp GP115). Additional pertinent information on the lab robot is
included in the table below:

Component Details
Embedded controller HC12
Sensors Analog, 8bit IR sensors
Robot Mass 5 kg
Wheels 4 cm dia
Motor: Kohl-

9.1: Model of system + controller
A model of the system + controller is first implemented. This procedure is based on the
simulink model developed in section 6 above, with the parameters from table III
implemented. A trial-and-error process is used to find a suitable set of controller gains.
The controller gains and resulting system performance are shown below.

9.2: Implement controller on robot platform.
The controller designed in section 8.1 is used as a starting point for the robot system.
The block diagram for our control system is shown as,

 16

The control is implemented inside the HC12 controller based on the following flowchart:

S

High-level
controller

Controller
– HC12

Feedback

Robot

Tracking
distance

Start control

Acquire tracking
distance (da)

Calculate error:
e=dd-da

Calculate error
derivative:

e_dot=(ei-ei-1)/∆t

Calculate error
integral

esum= esum+e

Calculate Input signal
V=kp*e + kd*edot +

ki*esum

Calculate Input signal
V=kp*e + kd*edot +

ki*esum

Update Motor PWM
duty cycle

Desired
tracking
distance

 17

Experiment with the lab robot. To do this, run the matlab file, gains.m. Enter the desired
values of gains kp, ki and kd in gains.m. Turn on the lab robot, and run gains.m. The
robot will wait to receive the three gains and then will begin the tracking process using
those gains in its PID controller. The gains program in matlab will continue to acquire
the real- time tracking distance for approximately one minute. At the end of this time, the
tracking distance can be plotted to observe the controllers performance. Modify the gains
as desired and continue to run until the robot performance is optimized.
Two comments about this system are noted;

1) The controller gains can quickly over-saturate the range of motor response. Thus,
the linear controller actually plateaus at the input limits (100 % duty cycle).

2) There are a few lags in the motor response which affects the control performance.

