
page 1

PIC LOGO
Language Reference Manual

Overview
PIC Logo is the programming environment for the PIC Tower and the PIC Logo Chips

based on a PIC16F87x microcontroller. (See the PIC Tower and the PIC Logo Chip hardware
overview document.) PIC Logo supports:

• the ability to directly write and read all microcontroller registers

• control structures like if, repeat, wait, waituntil and loop

• global and local variables

• procedure definition with inputs and return values

• a multitasking when primitive

• a 16-bit number system (addition, subtraction, multiplication, division,
comparison);

• timing functions and a random number function

When using PIC Logo, user programs are entered on a desktop computer and
compiled into tokens that are transferred to the Tower through the serial port of the host
computer. Logo commands can be executed by typing a line in the “command center”
under the PIC Logo tab in the Tower Development Environment and pressing the <ENTER>
key.

PIC Logo is a procedural language; procedures are defined using Logo to and end
syntax:

to <procedure-name>
<procedure-body>
end

User defined procedures are downloaded to a PIC Tower or Logo Chip by clicking the

“Select File” under the PIC Logo tab of the Tower Development environment, choosing
the text file where these procedures are defined, and then clicking on “Compile & Download
File”.

Procedures can also be brought in from another file with “include”. For example, in
the PIC Logo test.pl file, the procedures from the basic.inc file are included with the
following line:

include logochip/include/basic.inc

Note that the full path name relative to the folder in which the TDE resides. Using
several includes, procedures from multiple text files can be incorporated into one document.

CONTROL STRUCTURES

page 3

if

DESCRIPTION

Executes a block of code if a condition expression is non-zero.

USAGE FORMAT

if (conditional-expression)
 [code-block]

The conditional-expression is the expression whose value
determines whether the code block is evaluated and code-
block is the block of code to be evaluated.

Note: This primitive only actually checks the low byte of the
result of the conditional expression (See the second sample
code below.)

SAMPLE CODE AND OUTPUT

if 42 [print-string "Hi! cr]
>Hi!

if $4000 [print-string "Hi! cr]
>

if 0 [print-string “Hi! Cr]
>

ifelse

DESCRIPTION

Executes one of two blocks of code, depending on an
expression's results. If the expression is non-zero, the first
block of code is evaluated. If not, the second block of code is
executed.

USAGE FORMAT

ifelse (conditional-expression)
 [code-block-ture]
 [code-block-false]

The conditional-expression is the expression whose value
determines which code block is evaluated. The code-block-
true is the block of code to be evaluated if the condition is
true and the code-block-false is the block of code to be
evaluated if the condition is false.

Note: As for the if primitive, this primitive only checks the
low byte of its conditional expression.

SAMPLE CODE AND OUTPUT

ifelse (0 = 1) [print 1][print 0]
>0

ifelse (1 = 1) [print 1][print 0]
>1

ifelse ($4000) [print 1][print 0]
>0

ifelse (42) [print 1][print 0]
>1

ifelse (0) [print 1][print 0]
>0

page 5

loop

DESCRIPTION

Repeats a block of code forever.

USAGE FORMAT

loop [code-block]

The code-block is the block of code to be repeated forever.

Note: The loop can be broken by a stop, stop!, or output
primitive.

SAMPLE CODE AND OUTPUT

to mwait :msecs
resett
loop [
if (timer > :msecs) [stop]
]
end

output

DESCRIPTION

Exits the currently running procedure and returns a value.

USAGE FORMAT

output value

The value is value to return.

SAMPLE CODE AND OUTPUT

to add-numbers :x :y
output :x + :y
end

page 7

repeat

DESCRIPTION

Repeats a block of code for a given number of times.

USAGE FORMAT

repeat count [code-block]

The code-block is the block of code to be repeated and count
is the numbers of times to repeat.

SAMPLE CODE AND OUTPUT

repeat 2 + 2 [print-string "Hi! send 10]
>Hi!
>Hi!
>Hi!
>Hi!

stop!

DESCRIPTION

Halts the virtual machine and whatever program is running.

USAGE FORMAT

stop!

SAMPLE CODE AND OUTPUT

if btst 3 porta [stop!]

page 9

stop

DESCRIPTION

Immediately exits the currently running procedure.

USAGE FORMAT

stop

SAMPLE CODE AND OUTPUT

to mwait :msecs
resett
loop [
if (timer > :msecs) [stop]
]
end

wait

DESCRIPTION

Waits for a specified number of tenths of a second. The
process started by the when primitive continues to be checked
during the wait.

USAGE FORMAT

wait duration

The duration argument is the number of tenths of seconds
to wait.

SAMPLE CODE AND OUTPUT

wait 10

page 11

waituntil

DESCRIPTION

Repeatedly checks a condition until it becomes true, at which
point it continues with the subsequent commands in the
program.

USAGE FORMAT

waituntil [condition]

SAMPLE CODE AND OUTPUT

to mwait :msecs
resett
waituntil [timer > :msecs]
end

when-off

DESCRIPTION

Stops a previously started when process.

USAGE FORMAT

when-off

SAMPLE CODE AND OUTPUT

when-off

page 13

when

DESCRIPTION

The when primitive starts a background process which checks
a condition between each line of logo code running in the
main process. If the condition becomes true, a specific block
of code is executed.

USAGE FORMAT

when [condition] [code-block]

The condition is what is checked in the background and
code-block is what is executed every time the condition
becomes true.

Note: the when condition is edge-triggered. That is, if the
condition becomes true and remains true after the code is
executed, the code will not be executed again until the
condition becomes false and then true again.

SAMPLE CODE AND OUTPUT

when [btst 3 porta]
 [print-string "|Switch pressed!|]

SYSTEM COMMANDS

page 15

constant

DESCRIPTION

Declares constant variables that are replaced with their
values by the compiler at compile time.

USAGE FORMAT

constant [constant-list]

Note: The declarative constant should be used along with
procedure definitions in the source code and cannot be used
in the command-center.

SAMPLE CODE AND OUTPUT

Constant [[a 2][b 3]]

write-reg

DESCRIPTION

Short for ”write register”, writes to a PIC register.

USAGE FORMAT

write-reg address value

The argument address is the address of a PIC register to
which we want to write and value is the value to write.

SAMPLE CODE AND OUTPUT

to ad :chan
write-reg adcon1 $80
write-reg adcon0 ((:chan - 1) * 8) + $81
bset adgo adcon0
waituntil [not btst adgo adcon0]
output ((read-reg adresh) * 256) + read-reg adresl
end

page 17

read-reg

DESCRIPTION

Short for ”read-reg”, examines and returns the content of
one of the internal PIC registers.

USAGE FORMAT

read-reg address

The argument address is the address of the PIC register we
want to examine.

SAMPLE CODE AND OUTPUT

print read-reg 5
>(the conent of register with address 5)

read-prog-mem

DESCRIPTION

Reads and returns a byte from program flash eeprom.

USAGE FORMAT

read-prog-mem address

The argument address is the program memory location from
which we want to read.

SAMPLE CODE AND OUTPUT

to print-string :n
setnn :n
loop
[if (read-prog-mem nn) = 0 [stop]
put-serial read-prog-mem nn
setnn nn + 1]
end

page 19

global

DESCRIPTION

Returns the value of a global.

USAGE FORMAT

global pointer

The argument pointer is a pointer to the global.

Note 1: In most cases, it is easier to get a global variable’s
value by just using its name.

Note 2: The primitive global is only useful when using
pointers to globals. This is done using macros defined when
you define a global variable. For example, if you define a
global using global [foo] then the macro *foo is defined as a
pointer to the global variables. Globals are stored sequentially
as they are declared, two bytes apiece. Thus the pointers are
also sequential, increasing by two each time.

SAMPLE CODE AND OUTPUT

global [foo]

setfoo 15
print foo
>15

on-startup

DESCRIPTION

Declares what needs to run when the Tower is first turned on
or power-cycled.

USAGE FORMAT

on-startup [command-list]

Note: The declarative on-startup should only be used along
with procedure definitions in the source code and cannot be
used in the command-center.

SAMPLE CODE AND OUTPUT

on-startup [your-favorite-startup-procedure-and/or-
list-of-commands]

page 21

on-white-button

DESCRIPTION

Declares what commands should run when the white button
is pressed.

USAGE FORMAT

on-white-button [command-list]

Note 1: The declarative on-white-button should only be
used along with procedure definitions in the source code and
cannot be used in the command-center.

Note 2: If the Tower is already running a program (indicated
by a pulsating blue LED), pressing the white button stops the
program. When the white button is pressed for a second
time, the Tower runs the list of commands declared by the
on-white-button declarative.

SAMPLE CODE AND OUTPUT

on-white-button [your-favorite-run-procedure-and/or-
list-of-commands]

resett

DESCRIPTION

Resets the timer to zero.

USAGE FORMAT

resett

Note: Affects only the value that the timer primitive reports.

SAMPLE CODE AND OUTPUT

resett wait 10 print timer
>100

page 23

setglobal

DESCRIPTION

Sets the value of a global.

USAGE FORMAT

setglobal pointer new-value

The argument pointer is the pointer to the global and the
argument new-value is the new value to be assigned to the
global variable.

Note 1: In most cases, this is easier to use set and the name
of the global to set the value of the global; for example, using
global [foo] to declare a global, you can use setfoo to set
its value. Note that globals are declared along with the
procedure definitions in the source code and cannot be used
in the command-center.

Note 2: The primitive setglobal itself is only useful when
you use pointers to globals. This is done using macros defined
when you define a global variable. For example, if you define
a global using global [foo] then the macro *foo is defined
as a pointer to the global variables. Globals are stored
sequentially as they are declared, two bytes apiece. Thus the
pointers are also sequential, increasing by two each time.

SAMPLE CODE AND OUTPUT

global [foo]

setglobal *foo 14
print foo
>14
setglobal *foo + 2 1234
print global *foo + 2
>1234

timer

DESCRIPTION

Returns the current value of the timer.

USAGE FORMAT

timer

Note: The timer overflows after 32767 milliseconds and
resets to zero. (It never has a negative value.)

SAMPLE CODE AND OUTPUT

resett wait 10 print timer
>100

page 25

PIN CONTROL

flip-bit

DESCRIPTION

Toggles a bit on an internal PIC register.

USAGE FORMAT

flip-bit bit-number register

The argument bit-number is the bit number (0-7) of the PIC
register, with address register, that you want toggle.

Note: If the register corresponds to a PIC i/o port, the bit
number would correspond to the pin number on the port.

SAMPLE CODE AND OUTPUT

to toggle :chan :port
clear-bit :chan (:port + $80)
flip-bit :chan :port
end

page 27

clear-bit

DESCRIPTION

Clears a bit on an internal PIC register.

USAGE FORMAT

clear-bit bit-number register

The argument bit-number is the bit number (0-7) of the PIC
register, with address register, that you want clear.

Note: If the register corresponds to a PIC i/o port, the bit
number would correspond to the pin number on the port.

SAMPLE CODE AND OUTPUT

to clear :chan :port
clear-bit :chan (:port + $80)
clear-bit :chan :port
end

set-bit

DESCRIPTION

Sets a bit on an internal PIC register.

USAGE FORMAT

set-bit bit-number register

The argument bit-number is the bit number (0-7) of the PIC
register, with address register, that you want set.

Note: If the register corresponds to a PIC i/o port, the bit
number would correspond to the pin number on the port.

SAMPLE CODE AND OUTPUT

to set-bit :chan :port
bclr :chan (:port + $80)
bset :chan :port
end

page 29

test-bit

DESCRIPTION

Returns true if the bit on an internal PIC register is set and
false otherwise.

USAGE FORMAT

test-bit bit-number register

The argument bit-number is the bit number (0-7) of the PIC
register, with address register, that you want test.

Note: If the register corresponds to a PIC i/o port, the bit
number would correspond to the pin number on the port.

SAMPLE CODE AND OUTPUT

print test-bit 1 5
>(prints a 1 if bit 1 of register 5 is set)
>(prints a 0 if bit 1 of register 5 is clear)

COMMUNICATION

page 31

get-serial

DESCRIPTION

Returns the last byte received on the serial port, or –1 if no
byte has been received.

USAGE FORMAT

get-serial

SAMPLE CODE AND OUTPUT

waituntil [new-serial?] print get-serial

i2c-read-byte

DESCRIPTION

Reads a specified number of bytes from the i2c bus.

USAGE FORMAT

i2c-read-byte last-byte-argument

Use a 0 for last-byte-argument when asking an i2c slave for
the last byte (and when asking for just one byte) and a 1
otherwise.

SAMPLE CODE AND OUTPUT

to sensor :n
i2c-start
i2c-write-byte $0a
i2c-write-byte 2
i2c-write-byte 0
i2c-write-byte (:n - 1)
i2c-stop
i2c-start
i2c-write-byte $0b
ignore i2c-read-byte 1
seti2c-byte (lsh i2c-read-byte 1 8)
seti2c-byte i2c-byte or i2c-read-byte 0
i2c-stop
output i2c-byte
end

page 33

i2c-start

DESCRIPTION

Starts an i2c communication sequence.

USAGE FORMAT

i2c-start

SAMPLE CODE AND OUTPUT

to sensor :n
i2c-start
i2c-write-byte $0a
i2c-write-byte 2
i2c-write-byte 0
i2c-write-byte (:n - 1)
i2c-stop
i2c-start
i2c-write-byte $0b
ignore i2c-read-byte 1
seti2c-byte (lsh i2c-read-byte 1 8)
seti2c-byte i2c-byte or i2c-read-byte 0
i2c-stop
output i2c-byte
end

i2c-stop

DESCRIPTION

Ends an i2c communication sequence.

USAGE FORMAT

i2c-stop

SAMPLE CODE AND OUTPUT

to sensor :n
i2c-start
i2c-write-byte $0a
i2c-write-byte 2
i2c-write-byte 0
i2c-write-byte (:n - 1)
i2c-stop
i2c-start
i2c-write-byte $0b
ignore i2c-read-byte 1
seti2c-byte (lsh i2c-read-byte 1 8)
seti2c-byte i2c-byte or i2c-read-byte 0
i2c-stop
output i2c-byte
end

page 35

i2c-write-byte

DESCRIPTION

Writes a byte on the i2c bus.

USAGE FORMAT

i2c-write-byte byte

The argument byte is the value to be sent on the i2c bus.

Note: Look at the example below to learn what byte
represents depending on the argument to which i2c-write-
byte command after the i2c-start it is. The first i2c-write-
byte command takes the address of the i2c-slave as an
argument. The argument to each subsequent i2c-write-
byte commands, prior to an i2c-stop command, depend on
the functionality of the i2c slave board.

SAMPLE CODE AND OUTPUT

to sensor :n
i2c-start
i2c-write-byte $0a
i2c-write-byte 2
i2c-write-byte 0
i2c-write-byte (:n - 1)
i2c-stop
i2c-start
i2c-write-byte $0b
ignore i2c-read-byte 1
seti2c-byte (lsh i2c-read-byte 1 8)
seti2c-byte i2c-byte or i2c-read-byte 0
i2c-stop
output i2c-byte
end

new-serial?

DESCRIPTION

Returns true if a byte has been received on the serial port
since the last time the new-serial? command was issued.

USAGE FORMAT

new-serial?

SAMPLE CODE AND OUTPUT

waituntil [new-serial?] print get-serial

page 37

put-serial

DESCRIPTION

Sends a byte over the serial port.

USAGE FORMAT

put-serial value

The argument value is the byte to send over serial.

Note: When the byte is sent back to the TDE, it will print the
ASCII character corresponding to the byte sent.

SAMPLE CODE AND OUTPUT

print put-serial 65
>A

setbaud-2400

DESCRIPTION

Sets the serial communication rate to 2400 bps.

USAGE FORMAT

setbaud-2400

Note: This the default baud rate for the serial communication.

SAMPLE CODE AND OUTPUT

Setbaud-2400
>

page 39

setbaud-9600

DESCRIPTION

Sets the serial communication rate to 9600 bps.

USAGE FORMAT

setbaud-9600

Note: This the default baud rate for the serial communication
is 2400.

SAMPLE CODE AND OUTPUT

Setbaud-9600
>

ARITHMETIC AND LOGIC

page 41

arithmetic

+, -, *, /, %
DESCRIPTION

Returns the result of arithmetical operators (+, -, *, /)
applied to 16-bit numerical operands.

USAGE FORMAT

num1 (+, -, *, /, %) num2

Note: The / operator returns the integer part of the result if
dividing num1 by num2. The % operator returns the remainder
of a dividing num1 by num2.

SAMPLE CODE AND OUTPUT

print 4 + -10
>-6

print 42 - 8
>34

print 4 * -10
>-40

print 35 / 10
>3

print 35 % 10
>5

comparisons

=, >, <
DESCRIPTION

Returns a Boolean depending on the result of arithmetical
comparison operators (=, <, >) applied to 16-bit numerical
operands.

USAGE FORMAT

num1 (=, >, <) num2

SAMPLE CODE AND OUTPUT

print 10 = 10
>1

print 4 > 2
>1

print 4 < 2
>0

page 43

bit-wise logic

and, or, xor
DESCRIPTION

Returns the result of bit-wise logical operators (and, or, xor)
applied to 16-bit numerical operands.

USAGE FORMAT

num1 (and, or, xor) num2

SAMPLE CODE AND OUTPUT

print 20 and 4
>4

print 16 or 4
>20

print 7 xor 3
>4

print (1 = 1) and (1 = 0)
>0

print (1 = 1) or (1 = 0)
>1

print (1 = 1) or (1 = 0)
>1

highbyte

DESCRIPTION

Returns the high byte of a 16 bit value.

USAGE FORMAT

highbyte num

SAMPLE CODE AND OUTPUT

print highbyte $4000
>64

page 45

lowbyte

DESCRIPTION

Returns the low byte of a 16 bit value.

USAGE FORMAT

lowbyte num

SAMPLE CODE AND OUTPUT

print lowbyte $6560
>96

lsh

DESCRIPTION

Used to left shift or right shift a number by a specified
number of bits.

USAGE FORMAT

lsh num dist

The argument num is the number to shift and dist is the
numbers bits by which to shift num.

Note: A negative value for dist represents a right shift, while
a positive value for dist represents a right shift.

SAMPLE CODE AND OUTPUT

print lsh 4 1
>8

print lsh 64 -2
>16

page 47

random

DESCRIPTION

Returns a random number between 0 and 32767, inclusive.

USAGE FORMAT

random

SAMPLE CODE AND OUTPUT

print random
>5622

not

DESCRIPTION

Returns a Boolean not of a number.

USAGE FORMAT

not num

Note: This operation is a Boolean not and not a bit-wise not.

SAMPLE CODE AND OUTPUT

print not 42
>0

print not 0
>1

