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Control Structures that Allow Repetition

Types of Repeated Execution

e Loop: Group of instructions that are executed
repeatedly while some condition remains true.

How loops are controlled?

Counter Sentinel

Controlled Condition Controlled

Controlled
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e Counter-controlled repetition

Definite repetition — know how many times loop will execute.

Control variable used to count repetitions.

e Condition-controlled repetition

Loop executes as long as some specified condition is true.

e Sentinel-controlled repetition

Indefinite repetition.
Used when number of repetitions not known.

Sentinel value indicates “end of data”.
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Counter-controlled Repetition

e Counter-controlled repetition requires:

name of a control variable (or loop counter).
initial value of the control variable.

condition that tests for the final value of the control
variable (i.e., whether looping should continue).

increment (or decrement) by which the control
variable is modified each time through the loop.
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Counter Controlled Loop

Read 5 integers
and display the
value of their
sum.

q>

| counter=1, sum =0

int counter=1, sum=0, n; true

while (counter <6 ) {
scanf (“%d”, &n);
sum = sum + n;
counter++;

}

printf ("\nSum is: %d”,

false

| sum =sum +n

!
_|

counter++

sum) ;

for (counter=1l;

{

scanf ("%d",

}

int counter, sum=0, n;

sum = sum + n;

printf ("\nSum is: %d”, sum);

counter<6; counter++)

&n) ;

Programming and Data Structure

/output sum /e——
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while Statement

e The “while” statement is used to carry out looping
operations, in which a group of statements is executed
repeatedly, as long as some condition remains satisfied.

while (condition)

statement_ to_repeat;

Programming and Data Structure

true

false

statement(s)

Programming and Data Structure

while (condition)
statement_1;

statement N;

37

Single-entry /
single-exit
structure

38
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while :: Examples

int digit = 0;

while (digit <= 9)
printf ("%d \n"”, digit++);

int weight=100;

while (weight > 65)

{

printf ("Go, exercise,”);

printf ("then come back.

\n") ;

printf ("Enter your weight:”);

scanf (”"%d"”, &weight) ;

Programming and Data Structure

Example: Sum of N Natural Numbers

SUM =0
COUNT=1

| SUM = SUM + COUNT |

!

| COUNT = COUNT + 1 |

COUNT > N?

NO /75\ YES

39

int main () {
int N, count, sum;
scanf ("%d”, &N);
sum = 0;
count = 1;
while (count <= N)

{

sum = sum + count;

count = count

}

+ 1;

printf ("Sum=%d\n”, sum);

return 0;

Programming and Data Structure
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Example: Maximum of inputs

printf ("Enter positive numbers, end with -1.0\n");
max = 0.0;

scanf ("$f”, &next) ;

while (next !'= -1.0) {
if (next > max)
max = next;
scanf ("$f", &next);
}

printf ("The maximum number is %£f\n”, max)

’

Example of Sentinel-controlled loop
Inputs: 10 5 100 25 68 -1
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do-while Statement

e Similar to “while”, with the difference that the
check for continuation is made at the end of
each pass.

— In “while”, the check is made at the beginning.

e Loop body is executed at least once.

do do {
statement to_ repeat; statement-1,

while (condition ); statement-2;

statement-n;
} while (condition );

Programming and Data Structure 42

01/24/2020



statement(s)
Single-entry /
single-exit
structure
false
true

Programming and Data Structure

do-while :: Examples

int digit = 0;

do

printf ("%d \n”, digit++);

while (digit <= 9);

int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight:”);
scanf ("%d", &weight);

} while (weight > 65 );

Programming and Data Structure
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for Statement

e The “for” statement is the most commonly used

looping structure in C.

e General syntax:

statement-to-repeat;

for (expressionl; expression2; expression3)

{

statement_1;

statement_N;

for (expressionl; expression2; expression3)
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e How it works?

— “expressionl” is used to initialize some variable (called
index) that controls the looping action.

— “expression2” represents a condition that must be true

for the loop to continue.

— “expression3” is used to alter the value of the index
initially assigned by “expressionl”.

int digit;
for (digit=0; digit<=9;digit++)

printf ("%d \n”, digit);

int digit;
for (digit=9;digit>=0;digit--)
printf ("%d \n”, digit);
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l

expressionl
false .
expression2 Single-entry /
single-exit
structure

statement(s)

expression3

v
Programming and Data Structure a7

for :: Examples

int fact =1, i, N;

scanf ("%d", &N);

for (i=1; i<=N; i++)

fact = fact * i;

printf ("%d \n", fact);

int sum = 0, N, i;

scanf ("%d"”, &N);

for (i=1; i<=N, i++)

sum = sum + i * i;

Compute factorial

printf ("%d \n”, sum);

Sum of squares of N
natural numbers
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Print
¥ %k %k ¥ %k

% %k %k k %k

%k %k ¥ k k

Print

* ¥
% ¥k %k
% %k %k 3k

%k %k %k k k

2-D Figure

#define ROWS 3
#define COLS 5

for (row=1l; row<=ROWS; row++) {
for (col=1l; col<=COLS; col++) {
printf ("*") ;
}
printf ("\n") ;

Programming and Data Structure

Another 2-D Figure

#define ROWS 5

int row, col;
for (row=1l; row<=ROWS; row++) {
for (col=1l; col<=row; col++) {
printf£("* ") ;
}
printf ("\n") ;

Programming and Data Structure
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e The comma operator

— We can give several statements separated by commas in

place of “expressionl”, “expression2”, and “expression3”.

for (fact=1l, i=1l; i<=10; i++)

fact = fact * i;

| expressionl I

for (sum=0, i=1; i<=N, i++)

sum = sum + i*i;

Programming and Data Structure

expression2

statement(s)

expression3

for :: Some Observations

e Arithmetic expressions

false

51

— Initialization, loop-continuation, and increment can

contain arithmetic expressions.

for (k=x; k <= 4*x*y;

k += y/x)

e "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)
* If loop continuation condition initially false:

— Body of for structure not performed.

— Control proceeds with statement after for structure.

Programming and Data Structure
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A common mistake (; at the end)

int fact =1, i;

for (i=1; i<=10; i++)
fact = fact * i;

printf ("%d \n”, fact):;

int fact =1, i;

=

for (i=1; i<=10; i++);
fact = fact * i;

printf ("%d \n”, fact);

Loop body will execute only
once!
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Specifying “Infinite Loop”

while (1) { for (; /)
statements {
} statements
}
do
statements
} while (1);
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The “break” Statement Revisited

¢ Break out of the loop { }
— can use with
e while
e do while
o for
e switch
— does not work with
o if
o else

e Causes immediate exit from a while, do/while, for or switch
structure.

e Program execution continues with the first statement after
the structure.
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An example with “break”

#include <stdio.h>
main ()
{

int fact, i;
fact =1; i=1;

while (i<10) { /* break when fact >100 */
fact = fact * i;
if ( fact > 100 ) {
printf ("Factorial of %d above 100", i) ;
break; /* break out of the loop */

it+;
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The “continue” Statement

e Skips the remaining statements in the body of a while, for
or do/while structure.

— Proceeds with the next iteration of the loop.

¢ while and do/while

— Loop-continuation test is evaluated immediately after
the continue statement is executed.

e for structure
— expression3 is evaluated, then expression2 is evaluated.
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An example with “break” and “continue”

fact = 1; i = 1; /* a program to calculate 10! */
while (1) {

fact = fact * i;

i ++;
if (i<10)
continue; /* not done yet ! Go to loop and
perform next iteration*/
break;
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Some Examples

Example: sum=12+22+32+N?

SUM =0
COUNT =1

o —

int main () {
int N, count, sum;
scanf ("%d"”, &N) ;
sum = 0;
count = 1;
while (count <= N)

}

| SUM = SUM + COUNT # COUNT

return 0;

]

| COUNT = COUNT + 1 |

{

| printf ("Sum = %d\n”, sum)

sum = sum + count*count;
count = count + 1;

’

Programming and Data Structure
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Example: computing Factorial

PROD =1
COUNT =1

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=1l;count <= N; count++)
prod = prod*count;

printf ("Factorial = %d\n"”, prod)

return 0;

’

{

| PROD = PROD * COUNT |

| COUNT = COUNT + 1 |

NO YES
/OUTPUT PROD/
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Example: Computing e* series up to N terms

TERM =1
SUM =0
COUNT =1

—

ex

SUM = SUM + TERM
TERM = TERM * X / COUNT

!

| COUNT = COUNT + 1 |

1+ x/1!
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Example: Computing e* series up to 4 decimal places

TERM =1
SUM =0
COUNT =1

|
y

SUM = SUM + TERM
TERM = TERM * X / COUNT

¥

| COUNT = COUNT + 1 |

NO

IS
TERM < 0.0001?

Programming and Data Structure

Example: Test if a number is prime or not

#include <stdio.h>
main ()
{
int n, i=2;
scanf (”%d”, &n);
while (i < n) {
if (n $ 1 == 0) {
printf (”%d is not a prime \n”, n);
exit;
}
i++;
}

printf (”%d is a prime \n”, n);

Programming and Data Structure
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More efficient??

#include <stdio.h>
#include <math.h>
main ()
{
int n, i=3;
scanf (”%d”, &n);
while (i < sqrt(n)) {
if (n $ i == 0) {
printf (”%d is not a prime \n”, n);
exit(0);

printf (”%d is a prime \n”, n);
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Example: Find the sum of digits of a number

#include <stdio.h>
main ()
{
int n, sum=0;
scanf (”%d”, &n);
while (n '= 0) {
sum = sum + (n % 10);
n=n/ 10;
}

printf (”The sum of digits of the number is %d \n”, sum);

Programming and Data Structure 66
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Example: Decimal to binary conversion

#include <stdio.h>

main ()
{
int dec;
scanf (”%d”, &dec);
do
{

dec = dec / 2;
} while (dec !'= 0);
printf (”\n”);

printf (”%2d”, (dec % 2));
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Example: Compute GCD of two numbers

#include <stdio.h>
main ()
{
int A, B, temp;
scanf (”%d %d”, &A, &B);

if (A > B)
{temp = A; A = B; B = temp;}
while ((B % A) '= 0) {
temp = B $ A;
B = A;
A = temp;
}

printf (”The GCD is %d”, A);

12) 45 ( 3
36
T9)12 (1
9

3)9 (3

9
0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B%A=0 = GCDis3
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Shortcuts in Assignments

e Additional assignment operators:

te, =8, Y5, /:’ % =
a+=b is equivalentto a=a+b
a *=(b+10) is equivalentto a=a* (b + 10)

and so on.
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More about scanf and printf
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Entering input data :: scanf function

e General syntax:

scanf (control string, argl, arg2, ..., argn);

— “control string refers to a string typically containing data types of
the arguments to be read in;

— the arguments argl, arg2, ... represent pointers to data items in

memory.

Example: scanf ("%d %f %c”, &a, &average, &type);

e The control string consists of individual groups of

characters, with one character group for each input data

item.

— ‘%’ sign, followed by a conversion character.

— Commonly used conversion characters:

c
d
f
s
X

— We can also specify the maximum field-width of a

Programming and Data Structure

single character

decimal integer

floating-point number

string terminated by null character
hexadecimal integer

71

data item, by specifying a number indicating the field

width before the conversion character.

Example: scanf ("%3d %5d”, &a, &b);

Programming and Data Structure
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Writing output data :: printf function

e General syntax:
printf (control string, argl, arg2, ..., argn);

— “control string refers to a string containing formatting
information and data types of the arguments to be output;

— the arguments argl, arg2, ... represent the individual output
data items.

¢ The conversion characters are same as in scanf.

e Can specify the width of the data fields.
— %5d, %7.2f, etc.
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e Examples:
printf ("The average of %d and %d is %f”, a, b, avg);
printf ("Hello \nGood \nMorning \n");
printf ("%3d %3d %5d”, a, b, a*b+2);
printf ("%7.2f %5.1f", x, y);

e Many more options are available:
— Read from the book.
— Practice them in the lab.
e String 1/0:
— Will be covered later in the class.
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An example

#include <stdio.h>
main ()
{

int fahr;

for (fahr=0; fahr<=100; fahr+=20)
printf (”%$3d %6.3f\n”,
fahr, (5.0/9.0)* (fahr-32)) ;

20
40
60
80
100

-17.778
-6.667
4.444
15.556
26.667
37.778
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Print with leading zeros

#include <stdio.h>
main ()
{

int fahr;

for (fahr=0; fahr<=100; fahr+=20)
printf (“%03d %6.3f\n”,
fahr, (5.0/9.0)* (fahr-32));

75

000
020
040
060
080
100

-17.778
-6.667
4.444
15.556
26.667
37.778
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