01/24/2020

Control Structures that Allow Repetition

Types of Repeated Execution

e Loop: Group of instructions that are executed
repeatedly while some condition remains true.

How loops are controlled?

Counter Sentinel

Controlled Condition Controlled

Controlled

Programming and Data Structure 32

e Counter-controlled repetition

Definite repetition — know how many times loop will execute.

Control variable used to count repetitions.

e Condition-controlled repetition

Loop executes as long as some specified condition is true.

e Sentinel-controlled repetition

Indefinite repetition.
Used when number of repetitions not known.

Sentinel value indicates “end of data”.

Programming and Data Structure 33

Counter-controlled Repetition

e Counter-controlled repetition requires:

name of a control variable (or loop counter).
initial value of the control variable.

condition that tests for the final value of the control
variable (i.e., whether looping should continue).

increment (or decrement) by which the control
variable is modified each time through the loop.

Programming and Data Structure 34

01/24/2020

Counter Controlled Loop

Read 5 integers
and display the
value of their
sum.

q>

| counter=1, sum =0

int counter=1, sum=0, n; true

while (counter <6) {
scanf (“%d”, &n);
sum = sum + n;
counter++;

}

printf ("\nSum is: %d”,

false

| sum =sum +n

!
_|

counter++

sum) ;

for (counter=1l;

{

scanf ("%d",

}

int counter, sum=0, n;

sum = sum + n;

printf ("\nSum is: %d”, sum);

counter<6; counter++)

&n) ;

Programming and Data Structure

/output sum /e——

36

01/24/2020

while Statement

e The “while” statement is used to carry out looping
operations, in which a group of statements is executed
repeatedly, as long as some condition remains satisfied.

while (condition)

statement_ to_repeat;

Programming and Data Structure

true

false

statement(s)

Programming and Data Structure

while (condition)
statement_1;

statement N;

37

Single-entry /
single-exit
structure

38

01/24/2020

while :: Examples

int digit = 0;

while (digit <= 9)
printf ("%d \n"”, digit++);

int weight=100;

while (weight > 65)

{

printf ("Go, exercise,”);

printf ("then come back.

\n") ;

printf ("Enter your weight:”);

scanf (”"%d"”, &weight) ;

Programming and Data Structure

Example: Sum of N Natural Numbers

SUM =0
COUNT=1

| SUM = SUM + COUNT |

!

| COUNT = COUNT + 1 |

COUNT > N?

NO /75\ YES

39

int main () {
int N, count, sum;
scanf ("%d”, &N);
sum = 0;
count = 1;
while (count <= N)

{

sum = sum + count;

count = count

}

+ 1;

printf ("Sum=%d\n”, sum);

return 0;

Programming and Data Structure

40

01/24/2020

Example: Maximum of inputs

printf ("Enter positive numbers, end with -1.0\n");
max = 0.0;

scanf ("$f”, &next) ;

while (next !'= -1.0) {
if (next > max)
max = next;
scanf ("$f", &next);
}

printf ("The maximum number is %£f\n”, max)

’

Example of Sentinel-controlled loop
Inputs: 10 5 100 25 68 -1

Programming and Data Structure 41

do-while Statement

e Similar to “while”, with the difference that the
check for continuation is made at the end of
each pass.

— In “while”, the check is made at the beginning.

e Loop body is executed at least once.

do do {
statement to_ repeat; statement-1,

while (condition); statement-2;

statement-n;
} while (condition);

Programming and Data Structure 42

01/24/2020

statement(s)
Single-entry /
single-exit
structure
false
true

Programming and Data Structure

do-while :: Examples

int digit = 0;

do

printf ("%d \n”, digit++);

while (digit <= 9);

int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight:”);
scanf ("%d", &weight);

} while (weight > 65);

Programming and Data Structure

43

01/24/2020

for Statement

e The “for” statement is the most commonly used

looping structure in C.

e General syntax:

statement-to-repeat;

for (expressionl; expression2; expression3)

{

statement_1;

statement_N;

for (expressionl; expression2; expression3)

Programming and Data Structure 45

e How it works?

— “expressionl” is used to initialize some variable (called
index) that controls the looping action.

— “expression2” represents a condition that must be true

for the loop to continue.

— “expression3” is used to alter the value of the index
initially assigned by “expressionl”.

int digit;
for (digit=0; digit<=9;digit++)

printf ("%d \n”, digit);

int digit;
for (digit=9;digit>=0;digit--)
printf ("%d \n”, digit);

Programming and Data Structure 46

01/24/2020

l

expressionl
false .
expression2 Single-entry /
single-exit
structure

statement(s)

expression3

v
Programming and Data Structure a7

for :: Examples

int fact =1, i, N;

scanf ("%d", &N);

for (i=1; i<=N; i++)

fact = fact * i;

printf ("%d \n", fact);

int sum = 0, N, i;

scanf ("%d"”, &N);

for (i=1; i<=N, i++)

sum = sum + i * i;

Compute factorial

printf ("%d \n”, sum);

Sum of squares of N
natural numbers

Programming and Data Structure 48

01/24/2020

Print
¥ %k %k ¥ %k

% %k %k k %k

%k %k ¥ k k

Print

* ¥
% ¥k %k
% %k %k 3k

%k %k %k k k

2-D Figure

#define ROWS 3
#define COLS 5

for (row=1l; row<=ROWS; row++) {
for (col=1l; col<=COLS; col++) {
printf ("*") ;
}
printf ("\n") ;

Programming and Data Structure

Another 2-D Figure

#define ROWS 5

int row, col;
for (row=1l; row<=ROWS; row++) {
for (col=1l; col<=row; col++) {
printf£("* ") ;
}
printf ("\n") ;

Programming and Data Structure

49

50

01/24/2020

10

e The comma operator

— We can give several statements separated by commas in

place of “expressionl”, “expression2”, and “expression3”.

for (fact=1l, i=1l; i<=10; i++)

fact = fact * i;

| expressionl I

for (sum=0, i=1; i<=N, i++)

sum = sum + i*i;

Programming and Data Structure

expression2

statement(s)

expression3

for :: Some Observations

e Arithmetic expressions

false

51

— Initialization, loop-continuation, and increment can

contain arithmetic expressions.

for (k=x; k <= 4*x*y;

k += y/x)

e "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)
* If loop continuation condition initially false:

— Body of for structure not performed.

— Control proceeds with statement after for structure.

Programming and Data Structure

52

01/24/2020

11

A common mistake (; at the end)

int fact =1, i;

for (i=1; i<=10; i++)
fact = fact * i;

printf ("%d \n”, fact):;

int fact =1, i;

=

for (i=1; i<=10; i++);
fact = fact * i;

printf ("%d \n”, fact);

Loop body will execute only
once!

Programming and Data Structure 53

Specifying “Infinite Loop”

while (1) { for (; /)
statements {
} statements
}
do
statements
} while (1);
Programming and Data Structure 54

01/24/2020

12

01/24/2020

The “break” Statement Revisited

¢ Break out of the loop { }
— can use with
e while
e do while
o for
e switch
— does not work with
o if
o else

e Causes immediate exit from a while, do/while, for or switch
structure.

e Program execution continues with the first statement after
the structure.

Programming and Data Structure 55

An example with “break”

#include <stdio.h>
main ()
{

int fact, i;
fact =1; i=1;

while (i<10) { /* break when fact >100 */
fact = fact * i;
if (fact > 100) {
printf ("Factorial of %d above 100", i) ;
break; /* break out of the loop */

it+;

Programming and Data Structure 56

13

01/24/2020

The “continue” Statement

e Skips the remaining statements in the body of a while, for
or do/while structure.

— Proceeds with the next iteration of the loop.

¢ while and do/while

— Loop-continuation test is evaluated immediately after
the continue statement is executed.

e for structure
— expression3 is evaluated, then expression2 is evaluated.

Programming and Data Structure 57

An example with “break” and “continue”

fact = 1; i = 1; /* a program to calculate 10! */
while (1) {

fact = fact * i;

i ++;
if (i<10)
continue; /* not done yet ! Go to loop and
perform next iteration*/
break;

Programming and Data Structure 58

14

Some Examples

Example: sum=12+22+32+N?

SUM =0
COUNT =1

o —

int main () {
int N, count, sum;
scanf ("%d"”, &N) ;
sum = 0;
count = 1;
while (count <= N)

}

| SUM = SUM + COUNT # COUNT

return 0;

]

| COUNT = COUNT + 1 |

{

| printf ("Sum = %d\n”, sum)

sum = sum + count*count;
count = count + 1;

’

Programming and Data Structure

60

01/24/2020

15

Example: computing Factorial

PROD =1
COUNT =1

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=1l;count <= N; count++)
prod = prod*count;

printf ("Factorial = %d\n"”, prod)

return 0;

’

{

| PROD = PROD * COUNT |

| COUNT = COUNT + 1 |

NO YES
/OUTPUT PROD/

Programming and Data Structure 61

Example: Computing e* series up to N terms

TERM =1
SUM =0
COUNT =1

—

ex

SUM = SUM + TERM
TERM = TERM * X / COUNT

!

| COUNT = COUNT + 1 |

1+ x/1!

Programming and Data Structure 62

+ x2/2' + x3/3' + ..

01/24/2020

16

Example: Computing e* series up to 4 decimal places

TERM =1
SUM =0
COUNT =1

|
y

SUM = SUM + TERM
TERM = TERM * X / COUNT

¥

| COUNT = COUNT + 1 |

NO

IS
TERM < 0.0001?

Programming and Data Structure

Example: Test if a number is prime or not

#include <stdio.h>
main ()
{
int n, i=2;
scanf (”%d”, &n);
while (i < n) {
if (n $ 1 == 0) {
printf (”%d is not a prime \n”, n);
exit;
}
i++;
}

printf (”%d is a prime \n”, n);

Programming and Data Structure

63

64

01/24/2020

17

More efficient??

#include <stdio.h>
#include <math.h>
main ()
{
int n, i=3;
scanf (”%d”, &n);
while (i < sqrt(n)) {
if (n $ i == 0) {
printf (”%d is not a prime \n”, n);
exit(0);

printf (”%d is a prime \n”, n);

Programming and Data Structure 65

Example: Find the sum of digits of a number

#include <stdio.h>
main ()
{
int n, sum=0;
scanf (”%d”, &n);
while (n '= 0) {
sum = sum + (n % 10);
n=n/ 10;
}

printf (”The sum of digits of the number is %d \n”, sum);

Programming and Data Structure 66

01/24/2020

18

Example: Decimal to binary conversion

#include <stdio.h>

main ()
{
int dec;
scanf (”%d”, &dec);
do
{

dec = dec / 2;
} while (dec !'= 0);
printf (”\n”);

printf (”%2d”, (dec % 2));

Programming and Data Structure 67

Example: Compute GCD of two numbers

#include <stdio.h>
main ()
{
int A, B, temp;
scanf (”%d %d”, &A, &B);

if (A > B)
{temp = A; A = B; B = temp;}
while ((B % A) '= 0) {
temp = B $ A;
B = A;
A = temp;
}

printf (”The GCD is %d”, A);

12) 45 (3
36
T9)12 (1
9

3)9 (3

9
0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B%A=0 = GCDis3

Programming and Data Structure 68

01/24/2020

19

01/24/2020

Shortcuts in Assignments

e Additional assignment operators:

te, =8, Y5, /:’ % =
a+=b is equivalentto a=a+b
a *=(b+10) is equivalentto a=a* (b + 10)

and so on.

Programming and Data Structure 69

More about scanf and printf

20

Entering input data :: scanf function

e General syntax:

scanf (control string, argl, arg2, ..., argn);

— “control string refers to a string typically containing data types of
the arguments to be read in;

— the arguments argl, arg2, ... represent pointers to data items in

memory.

Example: scanf ("%d %f %c”, &a, &average, &type);

e The control string consists of individual groups of

characters, with one character group for each input data

item.

— ‘%’ sign, followed by a conversion character.

— Commonly used conversion characters:

c
d
f
s
X

— We can also specify the maximum field-width of a

Programming and Data Structure

single character

decimal integer

floating-point number

string terminated by null character
hexadecimal integer

71

data item, by specifying a number indicating the field

width before the conversion character.

Example: scanf ("%3d %5d”, &a, &b);

Programming and Data Structure

72

01/24/2020

21

01/24/2020

Writing output data :: printf function

e General syntax:
printf (control string, argl, arg2, ..., argn);

— “control string refers to a string containing formatting
information and data types of the arguments to be output;

— the arguments argl, arg2, ... represent the individual output
data items.

¢ The conversion characters are same as in scanf.

e Can specify the width of the data fields.
— %5d, %7.2f, etc.

Programming and Data Structure 73

e Examples:
printf ("The average of %d and %d is %f”, a, b, avg);
printf ("Hello \nGood \nMorning \n");
printf ("%3d %3d %5d”, a, b, a*b+2);
printf ("%7.2f %5.1f", x, y);

e Many more options are available:
— Read from the book.
— Practice them in the lab.
e String 1/0:
— Will be covered later in the class.

Programming and Data Structure 74

22

An example

#include <stdio.h>
main ()
{

int fahr;

for (fahr=0; fahr<=100; fahr+=20)
printf (”%$3d %6.3f\n”,
fahr, (5.0/9.0)* (fahr-32)) ;

20
40
60
80
100

-17.778
-6.667
4.444
15.556
26.667
37.778

Programming and Data Structure

Print with leading zeros

#include <stdio.h>
main ()
{

int fahr;

for (fahr=0; fahr<=100; fahr+=20)
printf (“%03d %6.3f\n”,
fahr, (5.0/9.0)* (fahr-32));

75

000
020
040
060
080
100

-17.778
-6.667
4.444
15.556
26.667
37.778

Programming and Data Structure

76

01/24/2020

23

