
01/24/2020

1

Control Structures that Allow Repetition

Types of Repeated Execution

• Loop: Group of instructions that are executed
repeatedly while some condition remains true.

 How loops are controlled?

Sentinel
Controlled

Counter
Controlled

Condition
Controlled

32 Programming and Data Structure

01/24/2020

2

Programming and Data Structure 33

• Counter-controlled repetition
– Definite repetition – know how many times loop will execute.

– Control variable used to count repetitions.

• Condition-controlled repetition
– Loop executes as long as some specified condition is true.

• Sentinel-controlled repetition
– Indefinite repetition.

– Used when number of repetitions not known.

– Sentinel value indicates “end of data”.

Programming and Data Structure 34

Counter-controlled Repetition

• Counter-controlled repetition requires:

– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the control
variable (i.e., whether looping should continue).

– increment (or decrement) by which the control
variable is modified each time through the loop.

01/24/2020

3

Counter Controlled Loop

Read 5 integers

and display the

value of their

sum.
counter = 1, sum = 0

counter < 6

sum = sum + n

false

true

counter++

output sum

input n

int counter=1, sum=0, n;

while (counter <6) {

 scanf (“%d”, &n);

 sum = sum + n;

 counter++;

}

printf (\nSum is: %d, sum);

35

Programming and Data Structure 36

int counter, sum=0, n;

for (counter=1; counter<6; counter++)

{

 scanf (%d, &n);

 sum = sum + n;

}

 printf (\nSum is: %d, sum);

01/24/2020

4

Programming and Data Structure 37

while Statement

• The “while” statement is used to carry out looping
operations, in which a group of statements is executed
repeatedly, as long as some condition remains satisfied.

while (condition)

 statement_to_repeat;

while (condition)

{

 statement_1;

 ...

 statement_N;

}

Programming and Data Structure 38

C

statement(s)

true

false
Single-entry /

single-exit
structure

01/24/2020

5

Programming and Data Structure 39

while :: Examples

int digit = 0;

while (digit <= 9)

 printf (%d \n, digit++);

int weight=100;

while (weight > 65)

{

 printf (Go, exercise,);

 printf (then come back. \n);

 printf (Enter your weight:);

 scanf (%d, &weight);

}

Example: Sum of N Natural Numbers

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YES NO

int main () {

 int N, count, sum;

 scanf (%d, &N);

 sum = 0;

 count = 1;

 while (count <= N) {

 sum = sum + count;

 count = count + 1;

 }

 printf (Sum=%d\n, sum);

 return 0;

}

40 Programming and Data Structure

01/24/2020

6

Example: Maximum of inputs

printf (Enter positive numbers, end with -1.0\n);

max = 0.0;

scanf(%f, &next);

while (next != -1.0) {

 if (next > max)

 max = next;

 scanf(%f, &next);

}

printf (The maximum number is %f\n, max) ;

Example of Sentinel-controlled loop

Inputs: 10 5 100 25 68 -1

41 Programming and Data Structure

Programming and Data Structure 42

do-while Statement

• Similar to “while”, with the difference that the
check for continuation is made at the end of
each pass.
– In “while”, the check is made at the beginning.

• Loop body is executed at least once.

do {

 statement-1;

 statement-2;

 statement-n;

 } while (condition);

do

 statement_to_repeat;

while (condition);

01/24/2020

7

Programming and Data Structure 43

C

statement(s)

true

false

Single-entry /
single-exit
structure

Programming and Data Structure 44

do-while :: Examples

int digit = 0;

do

 printf (%d \n, digit++);

while (digit <= 9);

int weight;

do {

 printf (Go, exercise, );

 printf (then come back. \n);

 printf (Enter your weight:);

 scanf (%d, &weight);

} while (weight > 65);

01/24/2020

8

Programming and Data Structure 45

for Statement

• The “for” statement is the most commonly used
looping structure in C.

• General syntax:

for (expression1; expression2; expression3)

 statement-to-repeat;

for (expression1; expression2; expression3)

{

 statement_1;

 :

 statement_N;

}

Programming and Data Structure 46

• How it works?

– “expression1” is used to initialize some variable (called
index) that controls the looping action.

– “expression2” represents a condition that must be true
for the loop to continue.

– “expression3” is used to alter the value of the index
initially assigned by “expression1”.

int digit;

for (digit=0; digit<=9;digit++)

 printf (%d \n, digit);

int digit;

for (digit=9;digit>=0;digit--)

 printf (%d \n, digit);

01/24/2020

9

Programming and Data Structure 47

Single-entry /
single-exit
structure

expression2

statement(s)

true

false

expression1

expression3

Programming and Data Structure 48

for :: Examples

int fact = 1, i, N;

scanf (%d, &N);

for (i=1; i<=N; i++)

 fact = fact * i;

printf (%d \n, fact);

int sum = 0, N, i;

scanf (%d, &N);

for (i=1; i<=N, i++)

 sum = sum + i * i;

printf (%d \n, sum);

Compute factorial

Sum of squares of N

natural numbers

01/24/2020

10

2-D Figure

Print

* * * * *

* * * * *

* * * * *

#define ROWS 3

#define COLS 5

....

for (row=1; row<=ROWS; row++) {

 for (col=1; col<=COLS; col++) {

 printf(*);

 }

 printf(\n);

}

49 Programming and Data Structure

Another 2-D Figure

Print

*

* *

* * *

* * * *

* * * * *

#define ROWS 5

....

int row, col;

for (row=1; row<=ROWS; row++) {

 for (col=1; col<=row; col++) {

 printf(* );

 }

 printf(\n);

}

50 Programming and Data Structure

01/24/2020

11

Programming and Data Structure 51

• The comma operator

– We can give several statements separated by commas in
place of “expression1”, “expression2”, and “expression3”.

for (fact=1, i=1; i<=10; i++)

 fact = fact * i;

for (sum=0, i=1; i<=N, i++)

 sum = sum + i*i;

expression2

statement(s)

true

false

expression1

expression3

Programming and Data Structure 52

for :: Some Observations

• Arithmetic expressions

– Initialization, loop-continuation, and increment can
contain arithmetic expressions.

 for (k=x; k <= 4*x*y; k += y/x)

• "Increment" may be negative (decrement)
 for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:

– Body of for structure not performed.

– Control proceeds with statement after for structure.

01/24/2020

12

A common mistake (; at the end)

Programming and Data Structure 53

int fact = 1, i;

for (i=1; i<=10; i++)

 fact = fact * i;

printf (%d \n, fact);

int fact = 1, i;

for (i=1; i<=10; i++);

 fact = fact * i;

printf (%d \n, fact);

Loop body will execute only
once!

Programming and Data Structure 54

Specifying “Infinite Loop”

while (1) {

 statements

}

for (; ;)

{

 statements

}

do {

 statements

} while (1);

01/24/2020

13

Programming and Data Structure 55

The “break” Statement Revisited

• Break out of the loop { }
– can use with

• while

• do while

• for

• switch

– does not work with

• if

• else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after
the structure.

Programming and Data Structure 56

An example with “break”

#include <stdio.h>

main()

{

 int fact, i;

 fact = 1; i = 1;

 while (i<10) { /* break when fact >100 */

 fact = fact * i;

 if (fact > 100) {

 printf (Factorial of %d above 100, i);

 break; /* break out of the loop */

 }

 i++;

 }

}

01/24/2020

14

Programming and Data Structure 57

The “continue” Statement

• Skips the remaining statements in the body of a while, for
or do/while structure.

– Proceeds with the next iteration of the loop.

• while and do/while

– Loop-continuation test is evaluated immediately after
the continue statement is executed.

• for structure

– expression3 is evaluated, then expression2 is evaluated.

Programming and Data Structure 58

An example with “break” and “continue”

fact = 1; i = 1; /* a program to calculate 10! */

while (1) {

 fact = fact * i;

 i ++;

 if (i<10)

 continue; /* not done yet ! Go to loop and

 perform next iteration*/

 break;

}

01/24/2020

15

Some Examples

Example: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT  COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YES NO

int main () {

 int N, count, sum;

 scanf (%d, &N) ;

 sum = 0;

 count = 1;

 while (count <= N) {

 sum = sum + countcount;

 count = count + 1;

 }

 printf (Sum = %d\n, sum) ;

 return 0;

}

60 Programming and Data Structure

01/24/2020

16

Example: Computing Factorial

START

READ N

PROD = 1
COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT PROD

STOP

YES NO

int main () {

 int N, count, prod;

 scanf (“%d”, &N) ;

 prod = 1;

 for (count=1;count <= N; count++) {

 prod = prod*count;

 printf (Factorial = %d\n, prod) ;

 return 0;

}

61 Programming and Data Structure

Example: Computing ex series up to N terms

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YES NO

ex = 1 + x/1! + x2/2! + x3/3! + …

62 Programming and Data Structure

01/24/2020

17

Example: Computing ex series up to 4 decimal places

START

READ X

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YES NO

63 Programming and Data Structure

Programming and Data Structure 64

Example: Test if a number is prime or not

#include <stdio.h>

main()

{

 int n, i=2;

 scanf (”%d”, &n);

 while (i < n) {

 if (n % i == 0) {

 printf (”%d is not a prime \n”, n);

 exit;

 }

 i++;

 }

 printf (”%d is a prime \n”, n);

}

01/24/2020

18

Programming and Data Structure 65

More efficient??

#include <stdio.h>

#include <math.h>

main()

{

 int n, i=3;

 scanf (”%d”, &n);

 while (i < sqrt(n)) {

 if (n % i == 0) {

 printf (”%d is not a prime \n”, n);

 exit(0);

 }

 i = i + 2;

 }

 printf (”%d is a prime \n”, n);

}

Programming and Data Structure 66

Example: Find the sum of digits of a number

#include <stdio.h>

main()

{

 int n, sum=0;

 scanf (”%d”, &n);

 while (n != 0) {

 sum = sum + (n % 10);

 n = n / 10;

 }

 printf (”The sum of digits of the number is %d \n”, sum);

}

01/24/2020

19

Programming and Data Structure 67

Example: Decimal to binary conversion

#include <stdio.h>

main()

{

 int dec;

 scanf (”%d”, &dec);

 do

 {

 printf (”%2d”, (dec % 2));

 dec = dec / 2;

 } while (dec != 0);

 printf (”\n”);

}

Programming and Data Structure 68

Example: Compute GCD of two numbers

#include <stdio.h>

main()

{

 int A, B, temp;

 scanf (”%d %d”, &A, &B);

 if (A > B)

 {temp = A; A = B; B = temp;}

 while ((B % A) != 0) {

 temp = B % A;

 B = A;

 A = temp;

 }

 printf (”The GCD is %d”, A);

}

12) 45 (3

 36

 9) 12 (1

 9

 3) 9 (3

 9

 0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

 B % A = 0  GCD is 3

01/24/2020

20

Programming and Data Structure 69

Shortcuts in Assignments

• Additional assignment operators:
+ =, – =, * =, / =, % =

a += b is equivalent to a = a + b

a *= (b+10) is equivalent to a = a * (b + 10)

 and so on.

More about scanf and printf

01/24/2020

21

Programming and Data Structure 71

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically containing data types of
the arguments to be read in;

– the arguments arg1, arg2, … represent pointers to data items in
memory.

Example: scanf (%d %f %c, &a, &average, &type);

• The control string consists of individual groups of
characters, with one character group for each input data
item.
– ‘%’ sign, followed by a conversion character.

Programming and Data Structure 72

– Commonly used conversion characters:

c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a
data item, by specifying a number indicating the field
width before the conversion character.

Example: scanf (%3d %5d, &a, &b);

01/24/2020

22

Programming and Data Structure 73

Writing output data :: printf function

• General syntax:

printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing formatting
information and data types of the arguments to be output;

– the arguments arg1, arg2, … represent the individual output
data items.

• The conversion characters are same as in scanf.

• Can specify the width of the data fields.
– %5d, %7.2f, etc.

Programming and Data Structure 74

• Examples:

printf (The average of %d and %d is %f, a, b, avg);

printf (Hello \nGood \nMorning \n);

printf (%3d %3d %5d, a, b, a*b+2);

printf (%7.2f %5.1f, x, y);

• Many more options are available:

– Read from the book.

– Practice them in the lab.

• String I/O:

– Will be covered later in the class.

01/24/2020

23

An example

Programming and Data Structure 75

#include <stdio.h>

main()

{

 int fahr;

 for (fahr=0; fahr<=100; fahr+=20)

 printf (%3d %6.3f\n”,

 fahr, (5.0/9.0)*(fahr-32));

}

 0 -17.778

 20 -6.667

 40 4.444

 60 15.556

 80 26.667

100 37.778

Print with leading zeros

Programming and Data Structure 76

#include <stdio.h>

main()

{

 int fahr;

 for (fahr=0; fahr<=100; fahr+=20)

 printf (“%03d %6.3f\n”,

 fahr, (5.0/9.0)*(fahr-32));

}

000 -17.778

020 -6.667

040 4.444

060 15.556

080 26.667

100 37.778

