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Abstract  

The mechatronic rotary inverted pendulum is a multidisciplinary multivariable control framework. 

To this fourth order dynamic system, this paper will involve the modeling, analysis, and analog 

controller design. The control approach and its effect are verified via numerical simulation results. 

These results can be generalized in the applications of various nonlinear systems’ control design. 
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Introduction  

The mechatronic rotary inverted pendulum, which is a typical fourth order dynamic system, is 

often used as a multidisciplinary multivariable test bed for many engineering controls. Evolution 

of control theory would lead to the research advances in technical development, the theory and 

methods for the designing of controller, and finally, real-time implementation of the controller 

designed. The rotary inverted pendulum is a highly unstable system with multi-input and multi-

output feature.1-2 The application of the rotary inverted pendulum are various, such as two-wheel 

robot3, ball-on-plate system design4, and it can be modified into models like two-pendulum 

system5, and Furuta pendulum model6. It’s dynamic properties can be applicable in applications 

like earthquake visualization.7 It is noticeable that numerous methods had been applied to the 

rotary inverted pendulum system, the typical ones are PID controllers8-9, PI controllers10-11, Fuzzy 

control12-14, LQR stabilization method15, fractional order method16, other control method which 

involves the computer engineering include methods like evolutionary algorithm17, genetic 

algorithm, PSO-based controller design method18, real-time optimal controller design19. Tuning 

process seemed to be a big problem for PID controllers when they are designed for rotary inverted 

pendulum11, especially when models with different numerical descriptions applied, and they 

seemed to have a comparatively small margin comparing to other methods.20 In this paper, with 

the stability and observability analysis of the linearized fourth order dynamic system, different 

responses of the system with various controllers implemented are investigated.   

Modeling of Rotary Inverted Pendulum 

The rotary inverted pendulum problem is deemed as a kind of challenge within the area of control 

system, 21-22 i.e., the mathematical modeling involves in nonlinearities, yet once it’s linearized, it’s 
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both uncontrollable and unobservable. 23 In the figure shown, the swing up phase is not included 

in the work scope. It is assumed that the rotary inverted pendulum system starts at its upright 

position with the initial conditions to be zero. 24 Euler-Lagrange Equation is employed to derive 

the system’s dynamics, and the Lagrange function L is first constructed. 25  

 

Figure 1. Rotary inverted pendulum and its coordinate systems 

The Lagrange function L is defined as the difference of the kinetic energy and potential energy, 

and the equations describing these two energies respectively are expressed in terms of the variables 

in the specified coordinate systems as shown in Figure 1:  

𝐿 = (
1

2
𝐽𝑟 +

1

2
𝑚𝑝𝑙𝑟

2) �̇�2 −
1

2
𝑚𝑝𝑙𝑟𝑙𝑝�̇�𝜙𝑐𝑜𝑠𝜙 + (

1

8
𝑚𝑝𝑙𝑝

2 +
1

2
𝐽𝑝) �̇�2 −

1

2
𝑚𝑝𝑙𝑝𝑔𝑐𝑜𝑠𝜙  (1) 

After obtaining the Lagrange function for the system, from the Euler-Lagrange equation, the 

equations of motions for the rotary inverted pendulum can be derived:  
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where q = [θ, ϕ], 2 degrees of freedom. Fq in equation (2) is generalized force. Ed is dissipated 

energy by frictions, such as viscosity and Coulomb friction. In this model, Ed = 0 is assumed. 

Euler-Lagrange Equation with respect to ( )t leads to:  
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Euler-Lagrange Equation with respect to ϕ leads to 
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The system dynamic model is composed of equations (3) and (4). The linearized equations of 

motions are shown as below: 
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where 𝜏 is the output torque of the DC motor, and 

,      

For electrical DC motor, there exist the following relationship:  

 
( )

= T m m

m

k V K
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 (7) 

where KT is the torque constant of the motor, and Km is the EMF constant of the motor, Vm is the 

input voltage of the motor, and Rm is the armature resistance of the motor. 

State Space Presentation of Rotary Inverted Pendulum System 

Denoting  
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The state-space representation of the model can be written as: 
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Given a group of parameters, matrix A  can be SVD decomposed: 

 𝐴 = 𝑈 ∗ 𝛴 ∗ 𝑉 

𝑈 and 𝑉 are unitary matrices as shown as below:  

0.001 0.1578 0 0.9875

0.6865 0.7180 0 0.1148
=

0 0 1 0

0.7271 0.6779 0 0.1082

U

 
 
 
 
 
 
   , 

0 0 0 1

0.0108 0.9999 0 0
=

0.9999 0.0108 0 0

0 0 1.0000 0

V

 
 

 
  
 

   

Matrix Σ is a diagonal matrix with eigenvalues of 1.0000, 6.3372, and 101.1267. By multiplying 

the first eigenvalue of Σ and U and V matrices, the following equation is obtained:  

�̇� = 𝑈1,: ∗ 𝜎1 ∗ 𝑉:,1 ∗ 𝜃 + 𝐵1𝑢 

where σ1 is the first eigenvalue of matrix Σ, and 𝑈1,: represents the first row of the matrix U, 𝑉:,1, 

represents the first column of the matrix V. Similarly, other relations for the decoupled system can 

be presented as: 

�̈� = 𝑈2,: ∗ 𝜎2 ∗ 𝑉:,2 ∗ �̇� + 𝐵2𝑢 

�̇� = 𝑈3,: ∗ 𝜎3 ∗ 𝑉:,3 ∗ 𝜙 + 𝐵3𝑢 

�̈� = 𝑈4,: ∗ 𝜎14 ∗ 𝑉:,4 ∗ �̇� + 𝐵4𝑢 

 

Stability, Sensitivity and Robustness, Controllability and Observability Analysis 

In this section, the stability of the origianl system using methods like zero-poles methods, Nyquist 

diagram, root locus and other methods will be investigated. To check the over-all stability of the 

rotary inverted system, the zero-poles graph of the system is produced. The plot revealed that two 

poles in the right plane and none-zeros in the right plane, which indicates that the original system 

is not stable. (see Figure 2a) The system’s instability can also be observed by other methods like 

Nyquist Diagram (Figure 2b) and Bode diagram (Figure 3).  

   

(a)                                                           (b) 

Figure 2. Pole-zero map and Nyquist diagram of rotary inverted pendulum system 
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Figure 3. Bode diagram of rotary inverted pendulum system 

Control System Development 

From the given mathematical modeling, the overall system could be converted into the block 

diagram representing the state-space model. In this model, the overall signal flowing could be 

shown clearly, and the input signal is consisted of two parts, the original step signal, which tests 

about how the system reacts to a constant input, and the band-limited white noise signal, which 

shows how the system reacts to constant and random disturbances. This open-loop control system, 

as discussed in the previous section, does not obtain a good stability and observability given a 

certain input signal, and it oscillates even when trivial disturbances is introduced. It can be shown 

from above that only a small disturbance is added to the 0-voltage input in the system, and 

oscillation occurs at the output. Applying the pole placement method, the desired poles in the 

complex plane are determined as follows:  p1 = -18+5i; p2 = -18 - 5i; p3 = -24; p4 = -20, where 

, = 1,2,3,4ip i  refers to the poles desired in the complex plane. In this case, by using the pole 

placement method for the controller, the state-feedback gain matrix K  is obtained as follows: 

 

93.4536

24.1534
=

166.8072

34.5923

K

 
 
 
 
 
 

 

Similarly, we can have the observer designed for the new system, obtaining the observer matrix 

L . Having the desired poles for the observer listed below as: op1=-10+5i, op2=-10-5i; op3=-15, 

op4=-16. We use the same pole-polacement method and get the estimator gain which is : 

 

30.3264 5.4489

305.6514 40.6134
=

1.2864 25.9756

29.2065 256.6796

L

 
 


 
 
 
 

 

Thus by having the gain matrix K  for controller and estimator gain matrix L , the new system, 

which is both observable and controllable, has a block-diagram shown as below: 
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Figure 4. Simulink block-diagram for an observable and controllable system 

In this case, after the controller and observer is introduced, we have the newly developed control 

system, and it can be seen that no phase-shift occured after the controller is introduced. Thus we 

may assume that the new system is under stable condition. Another analysis is done considering 

the step-response and impulse response of the system. The output plot for the step response is 

shown below as: 

 
Figure 5. Step response of the closed loop system 

Conclusion 

In this paper, we had discussions on the rotary inverted pendulum, and simulation is done for the 

continuous system, which is the ideal case. Modeling of the original system is done with Euler-

Lagrange Equations and linearization, and initial analysis of the open-loop system is done with 

the state-space method, indicating that without the controller, the system could not remain in a 

stable condition.  
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Abstract  

The mechatronic rotary inverted pendulum is a fourth order dynamic system. The digital control 

of PID, LQR, and pole placement are investigated, and a controller is designed by doing zero-pole 

analysis, root-locus analysis, and Nyquist diagram. Various methods on the design of the controller 

are also applied, including PID, LQR, pole placement and so on.  

Keywords 

Pole placement, rotary inverted pendulum, digital control stability 

Introduction  

This paper is a continuation of Part 1 analog controller design for the mechatronic rotary inverted 

pendulum, which is a typical fourth order nonlinear dynamic system. The mathematical model of 

rotary inverted pendulum system has been derived, and its analog controller design can function 

as a reference and a comparison to the digital controller design for this system. LQR and pole 

placement are special cases of eigenstructure assignment, because the eigenstructure assignment 

problem of rotary inverted pendulum actually is to assign both the eigenvalues and their 

corresponding eigenvectors for this system control1. The digital control of PID, LQR, and pole 

placement are investigated. Simulink simulations are given to justify the theoretical analysis for 

the control approach and its effect verification.   
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Modeling of Rotary Inverted Pendulum 2 

 

Figure 1. Rotary inverted pendulum and its coordinate systems2 

As shown in Figure 1, The Lagrange function L expresses the conversion between kinematic 

energy and potential energy. Using the Euler-Lagrange equation, the dynamics of the rotary 

inverted pendulum can be derived as:  
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And its state space expression is as follows:  
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Given a group of parameters, this mathematical model can be used for numerical simulation.  
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Digital Control 

Given the condition of the system that the digital control should take place rather than 

continuous-time controlling, after the configuration of the system modelling as the continuous-

time model, the converting process from continuous-time to discrete-time would take place.  

When considering the discrete-time control system, it should be noted that a trade-off between 

the sampling accracy and the sampling cost should be considered. Generally speaking, the higher 

the sampling frequency is, the lower the possibility that aliasing occures, while also the cost of 

the sampling increases and the upper-bound of it exists due to the condition of the actual 

hardward. In this case given the condition that we need to have the pendulum maintain a constant 

stable status, thus we assume that the input signal has a period of = 1T . And to make evaluation 

easier, the sampling frequency of digital system is set to be = 20f Hz .  

Having a sampling time as 𝑇 = 0.05𝑠, we convert the model representation from continuous 

model to discrete model using the ZOH method, and it reveals the following representation: 

The transfer matrix for the model itself is shown below as: 

 

1 0 0 0 0

0 1 0 0 0
=

0 0 1 0 0

0 0 0 1 0

G

 
 
 
 
 
 

 

With the transfer matrix shown above, we have the discrete model for the rotary inverted pendulum 

with state-space representation below: 

 1 1 1= * *dA U V  

where U1 and V1 are 8x8 unitary matrices. Accordingly, Σ1 is a diagonal matrix with eigenvalue 

156.7777, 21.5955, 5.6460, 1.2824, 0.8070, 0.0533. Similarly, as discussed in the section. the 

decoupling process can be excuted after the SVD decomposition of matrix Ad, and given the 

variables involved in the system has 8 variables listed as 𝜃, 𝜃, �̇�, �̇�, 𝜙, �̂�, �̇�, �̇̂�. So accordingly, the 

relationships between the variables are listed below as: 

�̇� = 𝑈1,: ∗ 𝜎1 ∗ 𝑉:,1 ∗ 𝜃 + 𝐵1𝑢  

�̇� = 𝑈2,: ∗ 𝜎2 ∗ 𝑉:,2 ∗ 𝜃 + 𝐵2𝑢  

�̈� = 𝑈3,: ∗ 𝜎3 ∗ 𝑉:,3 ∗ �̇� + 𝐵3𝑢  

�̈� = 𝑈4,: ∗ 𝜎4 ∗ 𝑉:,4 ∗ �̇� + 𝐵4𝑢  

�̇� = 𝑈5,: ∗ 𝜎5 ∗ 𝑉:,5 ∗ 𝜙 + 𝐵5𝑢  
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�̇̂� = 𝑈6,: ∗ 𝜎6 ∗ 𝑉:,6 ∗ �̂� + 𝐵6𝑢  

�̈� = 𝑈7,: ∗ 𝜎7 ∗ 𝑉:,7 ∗ �̇� + 𝐵7𝑢  

�̈̂� = 𝑈8,: ∗ 𝜎8 ∗ 𝑉:,8 ∗ �̇̂� + 𝐵8𝑢  

By substituing the numerical values into the equations shown above, the relations for the 

decoupled system reveals as: 

�̇� = 103.1457 ∗ 𝜃 + 𝐵1𝑢  

�̇� = −7.6926 ∗ 𝜃 + 𝐵2𝑢  

�̈� = −1.8416 ∗ �̇� + 𝐵3𝑢  

�̈� = 0.2517 ∗ �̇� + 𝐵4𝑢  

�̇� = −0.0721 ∗ 𝜙 + 𝐵5𝑢  

�̇̂� = 0.0011 ∗ �̂� + 𝐵6𝑢  

�̈� = 5.5892 ∗ 10−4 ∗ �̇� + 𝐵7𝑢  

�̈̂� = 5.3242 ∗ 10−5 ∗ �̇̂� + 𝐵8𝑢  

To verify the controlability of the desretized system, we plot the zero-pole of the digital controlled 

system, which is shown below as: 

 

Figure 2. Zero-pole of the digital controlled system 
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Figure 3. Step response of the digital controlled system 

 

Figure 4. Step response of closed loop system with 100 Hz sampling rate 

Noticing the fact that both zeros and poles of the controled system lies within the unit circle of the 

complex plane, it is verified that the digital system which controller is applied is stable, yet with 

more errors due to a lower sampling rate. Such error could be fixed by increasing the samplign 

rate or decreasing the sampling time. For example, increasing the sampling time from 20Hz to 

100Hz, the error between descrete system and continuous system decreased as shown below. 

Noticing the fact that although the sampling rate of 20Hz seemed able to work, when it comes to 
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actual application such sampling rate for the comtroller is too low to get the pendulum in a stable 

condition, since the error could not be niglected, thus by comparing the two step response of the 

digital contollers and their related errors, the sampling rate of 100Hz seemed more acceptable. 

 

Conclusion 

In this paper, we had discussions on the rotary inverted pendulum, and simulation is done for the 

discrete-control system, which can be applied with digital system. Modeling of the original system 

is done with Euler-Lagrange Equations and linearization, and initial analysis of the open-loop 

system is done with the state-space method, indicating that without the controller, the system could 

not remain in a stable condition. The controller design method for the descrete control system is 

that the controller for the continuous system is first designed, and then the continuous-descrete 

conversion is done using ZOH method. Such method enables both the controlability and the 

obserbility for the descrete system. To decrease the sampling error, the sampling rate should be 

increased, yet the hardware condition of the digital controller also restricts the upper bound of the 

sampling rate. 

 

References  

1 Jiafan Zhang, Huajiang Ouyang, and Jun Yang, “Partial Eigenstructure assignment for undamped vibration 

systems using acceleration and displacement feedback,” Journal of Sound and Vibration, Vol. 333, No. 1, 

2014, pp. 1-12.   

2 Wangling Yu, and Hanlin Chen, “Analog Controller Design for Mechatronic Rotary Inverted Pendulum (Part 

1)”, ASEE Mid-Atlantic Conference Section Spring Conference, Washington, April 6-7, 2018.  

 

 

Hanlin Chen  

Received MS in Mechanical Engineering Technology at Purdue University in 2016. Currently, she 

is a PhD student in Computer Information Technology at Purdue University.   

Wangling Yu 

Is an assistant professor in the Electrical & Computer Engineering Technology Department of the 

Purdue University Northwest. He was a test engineer over 15 years, providing technical leadership 

in the certification, testing and evaluation of custom integrated security systems. He received his 

PhD degree in Electrical Engineering from the City University of New York in 1992, specializing 

in control theory and electronic technology.  

 

 


