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The entrepreneur, as a creator of the new and a destroyer of the old, is

constantly in conflict with convention. He inhabits a world where belief

precedes results, and where the best possibilities are usually invisible to

others. His world is dominated by denial, rejection, difficulty, and doubt.

And although as an innovator, he is unceasingly imitated when successful,

he always remains an outsider to the ‘‘establishment.’’

Theodore Forstmann, 2003.

In science, the ‘‘entrepreneur’’ is the one who gets the unusual idea, climbs

out on a limb, jumps, and runs with it on the landscape. His fate at the feet

of the establishment is the same.
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PREFACE

An author is fortunate if his book is popular enough to merit a second edition
somewhere down the line, yet the flow of ideas that grew around this book since
the first edition (1988) has been beyond expectations. I will let others comment
on this flow. In this brief Preface, I comment on just one feature of the flow of
ideas and one bit of history.

The flow of ideas is illustrated by the changes made in this new edition. Good
ideas (in this or any other field) attract interestingminds—researchers, educators,
and authors with ideas. These minds grow the field the way that the yeast grows
the cake. While revising this edition, it was not possible to keep up with this
growth, but I tried, even though this meant abandoning some of the material
from earlier editions. The new growth is represented by the impact of the science
of discovering effective flow configurations (constructal theory and design), the
streamlining of the discipline along methods that are direct, muscular, and at
the same time lean (scale analysis, intersection of asymptotes, heatlines), the
oneness with thermodynamics through the irreversibility (entropy generation)
phenomenon, and new references and problems at the end of chapters.

Because we know where convection and thermodynamics come from, this
growth illustrates that science (education, knowledge, information) is an evolu-
tionary design [1–4], a flow system that constantly morphs and improves so that
our own movement and life are facilitated and extended on the landscape. This
is nature, the animate and the inanimate alike.

Because research is autobiographical, good research is a book of wonderful
memories. I close this preface with the story of how the first edition of this book
was born. It was an accident, literally. At age 33, I was behaving as if I was meant
to play basketball forever, and I was wrong. During a game in January 1982, one
of myAchilles’ tendons was severed, and I ended up in a wheelchair for the entire
semester. I had to teach my convection course, for which I had written notes, but
this time I was forced to write each lecture on transparencies, for the screen. My
first graduate student, Shigeo Kimura, now professor at Kanazawa University,
Japan, was my teaching assistant. He would wheel me into the classroom every
morning, and my convection book would come to life, one original drawing at
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xvi PREFACE

a time, one original (solved) problem after another. One such problem was the
method of intersecting the asymptotes and the back-of-the-envelope prediction
of optimal spacings (Problem 11, Chapter 4, p. 157, in the first edition).

There was so much richness during the spring of 1982 that the accident was a
blessing.

ADRIAN BEJAN
Duke University
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PREFACE TO THE
THIRD EDITION

Research is autobiographical. I often say this when I lecture, and I find it true as
I look at this new edition of Convection Heat Transfer. It is even more true as I
look at all three editions together. This book is a chronicle of the heat transfer
side of my career, the methods I developed and taught along the way, and the
great fortune I had to work with extremely gifted colleagues. The three editions
are also a story of how the field has grown and prospered. It has done so based
on new challenges and especially, new ideas.

One trend that is made visible (and useful, I hope) in this edition is the
new emphasis on design as science—the generation of flow configuration
based on principle. For many years, the field of convection was preoccu-
pied with documenting the transport characteristics of various but simple flow
configurations—relationships between temperature differences and heat transfer
rates. This information is essential in the modeling and simulations that are
necessary in design. The reality, however, is harsh: Constraints exist, and one
overriding constraint is space (size, volume, weight). Putting more and more
heat transfer into a given volume has been the objective, from the compact heat
exchangers of my MIT years to the heat transfer augmentation techniques and
the cooling of electronics packages of today. Doing more with limited resources
has been the driving force.

Miniaturization marches forward, but this is not even half of the story. The
reason is that the devices we touch must be made at our scale—they must be
macroscopic, no matter how small the smallest components. The more successful
we are in making smaller components, the greater the challenge to install larger
numbers of such components and to connect them with currents (heat, fluid,
electricity), to keep them alive. The challenge is to ‘‘construct,’’ to assemble
and design while assembling (i.e., to design complexity and to deduce the flow
configuration of the macroscopic device).
Construction must be shouted from the rooftops, especially today as the

crowd marches toward smaller scales. To construct is to proceed in the opposite

xvii
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direction, from small to large, because only in this direction can the small
scales be made useful. Only after the achievement of constructal assembly can
small-scale components deliver high densities of heat transfer.

In this new edition, the first steps toward constructs with high heat transfer
density are used as an introduction to constructal theory and design∗: the
generation of flow architecture in the pursuit of maximal global performance
subject to global constraints, when the flow architecture is free to morph. The
focus is on method, on design as science, on the generation of optimal and
complex architectures based on the constructal law. To emphasize this facet of
the third edition is appropriate not only because of its importance today, but also
because it had its start in the 1984 edition [see the optimization of spacings with
natural convection (p. 157, Problem 11, Chapter 4).

The focus on methodology is why in this new edition I chart the progress made
by three other methods that were pioneered in the 1984 edition. These methods
have become recognized and now occupy growing sections of the literature:
The intersection of asymptotes method, which delivered in amazingly direct

fashion the optimal spacing for natural convection (see above), has since
been extended to spacings for forced convection and the constructal theory
prediction of all the basic features of Bénard convection. The intersection of
asymptotes is also useful pedagogically, in the teaching of the concept of
transition (e.g., laminar–turbulent flow, natural–forced convection).
Heatlines are now being used to visualize the true paths followed by convec-

tion: the paths of energy flow, not fluid flow. They were introduced in the 1984
edition, with an example of natural convection in an enclosure. The concept has
since been extended to mass transfer and a variety of basic and applied config-
urations with natural and forced convection in fluids and fluid-saturated porous
media. This method of visualization is particularly well suited for computational
heat transfer and should be included in commercial computational packages.
Scale analysis continues to be the main method for teaching the basics of

convection in this new edition. The rules and promise of scale analysis as a
problem-solving method were first formulated in the 1984 edition. Today the
method is used widely, and this makes it even more essential in a basic course
of convection. The increased importance of scale analysis is also due to the
proliferation of computational heat transfer. If done correctly, scale analysis can
shed light on what the deluge of numerical results is trying to tell us. Even more,
to teach scale analysis is to remind the student not to give up on pencil and paper.
Not everything must be done on the computer.
Porous media were brought into a heat transfer course for the first time by the

1984 edition of this book. Since then, convection in porous media has developed
into a field of its own. In this edition we continue to emphasize the basic method
and the most basic results. A connection is also made between porous media and

∗A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press,
Cambridge, 2000.
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designed complex flow structures,∗ and this serves as one more bridge to the
constructal design method.
Interdisciplinary teaching and research is one of the missions of this course,

but with this warning: Learn your disciplines first; only then you will be strong
on the interdisciplinary frontiers. The teaching of convection in porous media
is a good example. This is presented not as a self-standing subject but as
an interaction between principles of convection in pure fluids, which we all
learn, and newly emerging technological applications that employ porous flow
structures.

In my work on this new edition I benefited from the help and ideas offered by
Professors C. Biserni, J. Bonjour, I. Dincer, M. Feidt, D. Gobin, Y. Fautrelle, S. J.
Kim, A. D. Kraus, S. Lorente, E. Lorenzini, G. Lorenzini, N. Mazet, F. Meunier,
A. F. Miguel, W. J. Minkowycz, P. Neveu, D. A. Nield, A. H. Reis, E. Sciubba,
B. Spinner, F. B. Tehrani, J. V. C. Vargas, M. E. Weber, and C. Zamfirescu. In
particular, I wish to thank my doctoral students Y. Azoumah, T. Bello-Ochende,
A. K. da Silva, L. Gosselin, J. C. Ordonez, Luiz A. O. Rocha, and W. Wechsatol.

ADRIAN BEJAN
Durham, North Carolina
April 2004

∗A. Bejan, I. Dincer, S. Lorente, A. F. Miguel, and A. H. Reis, Porous and Complex Flow Structures
in Modern Technologies, Springer-Verlag, New York, 2004.





PREFACE TO THE
SECOND EDITION

I want to thank John Wiley & Sons, Inc. and the users of my Convection
Heat Transfer for giving me this opportunity to prepare a second edition. The
changes and additions that I made are due to the suggestions received from many
colleagues and students, and to the evolution of my own research activity.

I made changes in both format and content. The format is now based on
numbered sections and equations, to make it easier for the first-time user to
use this book as a reference. I assembled all the symbols in a list that precedes
the text. The Author Index acknowledges one more time the individuals whose
work is quoted in the text. The Solutions Manual is now produced on the word
processor, and has the appearance of a companion book.

The changes in content are more significant and at more than one level.
New topics covered in the second edition are convection with change of phase
(condensation, boiling, melting), the cooling of electronic packages by forced
and natural convection, lubrication by contact melting, and several examples of
conjugate heat transfer, i.e., convection coupled with conduction or radiation.
I augmented most chapters with results, namely, formulas, tables, charts, and
appendixes that are recommended for use in engineering design work. And,
speaking of design, many of the new problems at the end of chapters refer to
basic principles of thermal design.

Relative to the first edition, the chapters dealing with laminar and, especially,
turbulent forced convection have been expanded. To make room for the new
material and still respect the prescribed space limits, I had to eliminate the
chapter on numerical methods, and to condense the treatment of convection in
porous media. Numerical methods are now covered in courses devoted entirely
to computational fluid dynamics and heat transfer. For porous media, I recently
completed with Professor D. A. Nield a separate textbook, Convection in Porous
Media (Springer, 1992; now in 4th edition, 2013).
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As in the first edition, themost important feature of this book is thatmany of the
topics and problems came frommy own research. These problems recommended
themselves as interesting and beautiful, i.e., worthy of study. They represent my
argument in favor of practicing laissez faire in engineering research, and against
the dirigiste policy advocated by others.

ADRIAN BEJAN
Durham, North Carolina
June 1994



PREFACE TO THE
FIRST EDITION

My main reason for writing a convection textbook is to place the field’s past
100 years of growth in perspective. This book is intended for the educator who
wants to present his students with more than a review of the generally accepted
‘‘classical’’ methods and conclusions. Through this book I hope to encourage the
convection student to question what is known and to think freely and creatively
about what is unknown.

There is no such thing as ‘‘unanimous agreement’’ on any topic. The
history of scientific progress shows clearly that our present knowledge and
understanding—contents of today’s textbooks—are the direct result of conflict
and controversy. By encouraging our students to question authority,we encourage
them to make discoveries on their own.We can all only benefit from the scientific
progress that results.

In writing this book, I sought to make available a textbook alternative that
offers something new on two other fronts: (1) content, or the selection of topics,
and (2) method, or the approach to solving problems in convection heat transfer.

Regarding content, this textbook reflects the relative change in the priorities
set by our technological society over the past two decades. Historically, the
field of convective heat transfer grew out of great engineering pursuits such as
energy conversion (power plant technology), the aircraft, and the exploration
of extraterrestrial space. Today, we are forced to face additional challenges,
primarily in the areas of ‘‘energy’’ and ‘‘ecology.’’ Briefly stated, engineering
education today places a strong emphasis on man’s need to coexist with the
environment. This new emphasis is reflected in the topics assembled in this book.
Important areas covered for the first time in a convection textbook are: (1) natural
convection on an equal footing with forced convection, with application to
energy conservation in buildings and to geophysical dynamics, (2) convection
through porous media saturated with fluid, with application to geothermal and
thermal insulation engineering, and (3) turbulent mixing in free-stream flow, with
application to the dispersion of pollutants in the atmosphere and the hydrosphere.

xxiii
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Regarding method, in this book I made a consistent effort to teach problem
solving (a Solutions Manual is available from the publisher or from me). This
book is a textbook to be used for teaching a course, not a handbook. Of course,
important engineering results are listed; however, the emphasis is placed on
the thinking that leads to these results. A unique feature of this book is that it
stresses the importance of correct scale analysis as an eligible and cost-effective
method of solution, and as a precondition for more refined methods of solution.
It also stresses the need for correct scaling in the graphic reporting of more
refined analytical results and of experimental and numerical data. The cost and
the ‘‘return on investment’’ associated with a possible method of solution are
issues that each student-researcher should examine critically: these issues are
stressed throughout the text.

I wrote this book during the academic year 1982–1983, in our mountain-side
house on the greenbelt of North Boulder. This project turned out to be a highly
rewarding intellectual experience for me, because it forced upon me the rare
opportunity to think about an entire field, while continuing my own research on
special topics in convection and other areas (specialization usually inhibits the
ability to enjoy a bird’s-eye-view of anything). It is a cliché in education and
research for the author of a new book to end the preface by thanking his family
for the ‘‘sacrifice’’ that allowed completion of the work. My experience with
writing Convection Heat Transfer has been totally different (i.e., much more
enjoyable!), to the point that I must thank this book for making me work at home
and for triggering so many inspiring conversations with Mary. Convection can
be entertaining.

ADRIAN BEJAN
Boulder, Colorado
July 1984



LIST OF SYMBOLS

a, b dimensions of rectangular duct cross section (Fig. 3.5)
A area
Ac cross-sectional area
A, B constants in the logarithmic law of the wall [eqs. (7.41) and

(7.42)]
Ar Archimedes number [eq. (10.80)]
b empirical constant, Forchheimer flow [eq. (12.15)]
b natural convection parameter [eq. (5.117)]
b radial length scale of round velocity jet [eq. (9.40)]
b stratification parameter [eq. (12.116)]
b taper parameter [eq. (2.140)]
b thermal stratification number [eq. (4.81)]
bT radial length scale of round thermal jet [eq. (9.43)]

b̃1,2 empirical factors (Table 11.6)
B condensation driving parameter [eq. (10.26)]
B cross-sectional shape number (Fig. 3.7)
B dimensionless group [eq. (2.147)]
B dimensionless group [eq. (12.107)]
BeL Bejan number, pressure drop number [eq. (3.120′)]
Bep Bejan number for a porous medium [eq. (12.113)]
BoH Boussinesq number [eq. (4.35)]
c specific heat of incompressible substance
cv specific heat at constant volume
cP specific heat at constant pressure
c1, 2 constants
C compressive impulse or reaction [eq. (6.7)]
C concentration [eq. (11.1)]
C constant
Cf, x local skin friction coefficient [eqs. (2.57) and (7.52)]

Cn factor (Fig. 7.11)
C1, C2, Cμ constants [eq. (8.61)]
CD drag coefficient [eq. (7.103)]
Csf constant (Table 10.1)
d, D diameter
D mass diffusivity [eq. (11.24), Tables 11.1 and 11.2]
D plate-to-plate spacing (Fig. 3.1)
D stream transversal length scale
Dh hydraulic diameter [eq. (3.26)]
Dk–k knee-to-knee thickness of time-averaged turbulent shear layer

(Fig. 9.3)

xxv
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DT distance of maximum thermal penetration in the y direction, in
the vicinity of a direct contact spot [eq. (7.94)]

e specific energy (labeled u in Table 1.1)
f Blasius streamfunction similarity profile [eq. (2.80)]
f factor [eq. (7.113)]
f friction factor [eq. (3.24)]
f porous medium friction factor [eq. (12.12)]
f roll thickness [eq. (5.92)]
fu curve fit for the velocity profile [eq. (7.53)]
fv frequency of vortex shedding [eq. (7.102)]
F force
F streamfunction similarity profile [eqs. (4.60) and (12.139)]
Fo Fourier number [eq. (10.104)]
FD drag force
Fn normal force
Ft tangential force
g gravitational acceleration
GrH Grashof number [eq. (4.38)]
Gr* Grashof number based on heat flux (Table 6.1)
Gz Graetz number [eq. (3.107)]
G£ constant (Table 4.3)
h heat transfer coefficient [eq. (2.4)]; local heat transfer

coefficient [eq. (2.100)]
h specific enthalpy
hfg latent heat of condensation or evaporation (Table 10.2)

h′
fg augmented latent heat [eq. (10.10)]

h′′
fg augmented latent heat [eq. (10.41)]

hm mass transfer coefficient [eq. (11.46)]
hsf latent heat of melting
H enthalpy flow rate [eq. (10.5)]
H heatfunction [defined via eqs. (1.68) and (1.69)]
H height
H Henry’s constant [eq. (11.35) and Table 11.3]
I area moment of inertia
I integral [eq. (3.135)]
j diffusion flux [eq. (11.20)]
japp apparent mass flux [eq. (11.102)]

J dimensionless thickness parameter [eq. (2.139)]
Ja Jakob number [eq. (10.19)]
k thermal conductivity
k wave number
k′′
n , k′′′

n reaction rates [eqs. (11.135) and (11.136)]
ks sand grain size [eq. (8.16)]
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K jet strength [eq. (9.33)]
K permeability [eq. (12.9)]
K1, 2 constants
l effective length [eq. (4.127)]
l mixing length [eq. (7.27)]
L length
L length of direct viscous contact [eq. (7.92)]
Lc characteristic length
� equivalent length [eq. (10.86)]
Lm length of direct thermal contact [eq. (7.95)]
£ effective length [eq. (4.128)]
Le Lewis number [eq. (11.93)]
m exponent in flow over a wedge [eq. (2.124)]
m function [eq. (6.27)]
m profile shape function for integral analysis [eq. (2.54)]
ṁ mass flow rate
ṁ′ mass transfer rate per unit length [eq. (11.52)]
ṁ′′′ volumetric mass generation rate [eq. (11.15)]
M bending moment [eq. (6.8)]
M function [eq. (8.22)]
M impulse or reaction force due to fluid flow into or out of a

control volume (Fig. 2.3)
M mass
M massfunction [eqs. (11.133)–(11.134)]
M material constraint [eq. (3.132)]
M molar mass [eq. (11.4)]
n dimensionless coordinate across the velocity boundary layer

(y/δ) [eq. (2.54)]
n number of cylinders
n number of heat-generating boards
n number of moles [eq. (11.4)]
nl number of rows
NB buckling number [eq. (6.14)]
Ntu number of heat transfer units [eq. (8.56)]
Nu local Nusselt number [eq. (2.101)]
Nu Nusselt number in the fully developed region [eq. (3.52)]

Nu overall Nusselt number

Nu
0
L constant (Table 4.3)

Nu0–x overall Nusselt number [eq. (3.91)]
Nux local Nusselt number in the developing (entrance) region

[eq. (3.90)]
p dimensionless coordinate across the thermal boundary layer

(y/δT) [eq. (2.58)]
p even function (eq. (5.37)]



xxviii LIST OF SYMBOLS

p wetted perimeter
P pressure
P∞ pressure in the free stream
PeD Péclet number (UD/α)
PeL Péclet number (U∞L/α)
Po Poiseuille number (f ReDh)
Pr Prandtl number (ν/α)
Prp porous medium Prandtl number [eq. (12.215)]
Prt turbulent Prandtl number [eq. (7.66)]
q heat transfer rate (W)
q odd function [eq. (5.37)]
q′ heat transfer rate per unit length (W/m)
q′′ heat flux (W/m2)
q′′
app apparent heat flux [eq. (7.24)]

q′′
0,max maximum heat flux, under a direct thermal contact spot

[eq. (7.86)]
q′′′ rate of internal heat generation (W/m3)

Q̇ heat transfer rate (W)
Q flow rate (m2/s) [eq. (10.69)]
r radial coordinate
r0 tube radius
rh hydraulic radius [eq. (3.26)]
r, θ , z cylindrical coordinates (Fig. 1.1)
r, φ, θ spherical coordinates (Fig. 1.1)
R ideal gas constant

R universal gas constant
R radius
R thermal resistance
RaH Rayleigh number [eq. (4.25)]
Ray Darcy modified Rayleigh number [eq. (12.89)]
Ram, y mass transfer Rayleigh number [eq. (11.86)]
Raq Rayleigh number based on source strength [eq. (6.6)]
Ra*H Rayleigh number based on heat flux [eq. (4.70)]
Ra*y Darcy modified Rayleigh number based on heat flux

[eq. (12.99)]
ReD Reynolds number (UD/ν)
ReDh Reynolds number based on hydraulic diameter (UDh/ν)
Rel local Reynolds number [eq. (6.15)]
ReL Reynolds number (U∞L/ν)
Ret terminal Reynolds number [eq. (10.37)]
s constant (Table 10.1)
s specific entropy
s thickness of liquid zone (Fig. 10.24)
S entropy (J/K)


