
Linköping​ ​University​ ​|​ ​Department​ ​of​ ​​Computer​ ​and​ ​Information​ ​Science
Bachelor​ ​Thesis,​ ​16​ ​hp​​ ​|​ ​​Högskoleingenjör​ ​i​ ​datateknik

Spring​ ​term​ ​20​17​​ ​|​ ​LIU-IDA/LITH-EX-G--17/076--SE

Conversion​ ​and​ ​Analysis​ ​of
Telemetric​ ​Data​ ​from​ ​the​ ​CCSDS
Standard

Simon​ ​Ahlgren
Daniel​ ​Aini

Supervisor:​ ​​Sebastian​ ​Sundqvist
Examinator:​​ ​Petru​ ​Eles

Linköpings​ ​universitet

SE-581​ ​83​ ​Linköping

013-28​ ​10​ ​00,​ ​www.liu.se

Copyright

The publishers will keep this document online on the Internet – or its possible replacement –
for a period of 25 years starting from the date of publication barring exceptional
circumstances.

The online availability of the document implies permanent permission for anyone to read,
to download, or to print out single copies for his/hers own use and to use it unchanged for
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional upon the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity,​ ​security​ ​and​ ​accessibility.

According to intellectual property law the author has the right to be mentioned when his/her
work​ ​is​ ​accessed​ ​as​ ​described​ ​above​ ​and​ ​to​ ​be​ ​protected​ ​against​ ​infringement.

For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its www
home​ ​page:​ ​​http://www.ep.liu.se/​.

©​ ​​Simon​ ​Ahlgren,​ ​Daniel​ ​Aini

2

http://www.ep.liu.se/

Abstract

When communicating with spacecrafts, the international standard is to use the protocols
defined by CCSDS. In this study, the Space Packet Protocol from CCSDS is converted to the
Digital Recording Standard used in aviation. The goal of the study is to find out in what way
such a conversion can be made, as well as analyzing the efficiency of different packing
methods for the Digital Recording Standard. An application is developed in order to perform
the conversion, and the performance of said application is profiled using different packet sizes.
In the end the results are evaluated and an optimal packet size is found in terms of runtime and
memory usage. In the end we conclude that a packet size of 2​16 bytes is best when prioritizing
speed,​ ​and​ ​a​ ​packet​ ​size​ ​of​ ​2​19​​ ​bytes​ ​is​ ​best​ ​when​ ​prioritizing​ ​memory.

3

Acknowledgement

We would like to thank Instrument Control Sweden for providing us with this thesis. We also
want to specifically thank Sebastian Sundqvist from ICS for helping us throughout this study
and​ ​finally​ ​Professor​ ​Petru​ ​Eles​ ​for​ ​approving​ ​the​ ​study.

Daniel​ ​Aini
Simon​ ​Ahlgren

4

Table​ ​of​ ​Contents

1.​ ​Introduction 7

1.1​ ​Motivation 7

1.2​ ​Purpose 8

1.3​ ​Research​ ​Questions 8

1.4​ ​Scope 8

2.​ ​Theory 9

2.1​ ​Space​ ​Packet​ ​Protocol 9

2.2​ ​Time​ ​Code​ ​Format 11

2.2.2​ ​CCSDS​ ​Day​ ​Segmented​ ​Time​ ​Code 12

2.2.3​ ​CCSDS​ ​Calendar​ ​Segmented​ ​Time​ ​Code 12

2.3​ ​IRIG-106​ ​Chapter​ ​10 13

2.3.1​ ​Packet​ ​Header 14

2.3.2​ ​Packet​ ​Body 15

2.3.3​ ​Packet​ ​Trailer 15

2.3.4​ ​Pulse​ ​Code​ ​Modulation​ ​Standards 16

2.3.5​ ​PCM​ ​Packet​ ​Format 16

2.3.5.1​ ​Major​ ​and​ ​Minor​ ​Frames 16

2.3.5.2​ ​PCM​ ​Channel​ ​Specific​ ​Data 17

2.3.6​ ​Time​ ​Packet​ ​Format 18

2.3.7​ ​Setup​ ​Record​ ​Format 20

3.​ ​Method 21

3.1​ ​Creating​ ​CCSDS​ ​packets 21

3.2​ ​Extracting​ ​the​ ​CCSDS​ ​Packets 22

3.3​ ​Creating​ ​a​ ​Chapter​ ​10​ ​file 22

3.3.1​ ​Time​ ​data​ ​packets 23

3.3.2​ ​Pulse​ ​code​ ​modulation​ ​data​ ​packets 23

3.4​ ​Evaluating​ ​performance 23

3.5​ ​ANTS​ ​Performance​ ​profiler 24

4.​ ​Results 25

4.1​ ​The​ ​Applications 25

4.2​ ​Performance​ ​results 28

5.​ ​Discussion 31

6.​ ​Conclusion 32

7.​ ​References 33

5

List​ ​of​ ​Abbreviations
RCC Range​ ​Commanders​ ​Council
IRIG Inter​ ​Range​ ​Instrumentation​ ​Group
CCSDS Consultive​ ​Committee​ ​for​ ​Space​ ​Data​ ​Systems
ICS Instrument​ ​Control​ ​Sweden
LDP Logical​ ​Data​ ​Path
APID Application​ ​Process​ ​Identifier
IPTS Intra​ ​Packet​ ​Time​ ​Source
RTC Relative​ ​Time​ ​Counter
PCM Pulse​ ​Code​ ​Modulation
RMM Removable​ ​Memory​ ​Module
TMATS Telemetry​ ​Attributes​ ​Transfer​ ​Standard
SRCC Setup​ ​Record​ ​Configuration​ ​Change
CSV Comma​ ​Separated​ ​Value
OTOC One-To-One​ ​Conversion
FSC Full​ ​Size​ ​Conversion

6

1.​ ​Introduction

The different conditions on earth and space has given birth to separate protocols and methods
used to communicate in these environments. The Range Commanders Council (RCC) created
a standard called IRIG-106 Chapter 10 which catered to digital recording applications [1].
This standard could not and still can not be used for space communication since it lacks the
necessary security and reliability that space telemetry requires. It is however widely used on
earth. A space protocol needs to be able to handle the large latencies and eventual disruptions
that​ ​comes​ ​with​ ​deep​ ​space​ ​communication.

The Consultative Committee for Space Data Systems (CCSDS) was created as a collaboration
between major space agencies across the globe. This cooperation came as a solution to the lack
of an international standard. The protocols used in space mission varied immensely since they
targeted different environments. They had to be configured specifically for each project which
made it costly to design and maintain. This was recognised in 1982 and nations all over the
world came together to create CCSDS. The organisation has published over 300 books and has
a​ ​total​ ​of​ ​eleven​ ​member​ ​agencies​ ​to​ ​this​ ​day.

Instrument Control Sweden (ICS) is a company that specializes in displaying telemetric data.
Their own developed software, Netview, can read and display telemetric data according to the
IRIG-106 Chapter 10 standard. They want to improve the functionality of Netview and expand
into space territorium. The software is however limited by the restraints put on the Chapter 10
standard. In order to handle data coming in from space, ICS needs an application that
translates CCSDS packets to Chapter 10 files. Said conversion will handle Pulse Code
Modulation​ ​(PCM)​ ​data.​ ​This​ ​thesis​ ​will​ ​focus​ ​on​ ​writing​ ​such​ ​an​ ​application.

Lastly, the application is evaluated using the ANTS performance profiler. The profiler
measures the runtime of the application and provides detailed performance statistics about
individual functions. These results will be used to figure out which packet size allows the
conversion​ ​algorithm​ ​to​ ​perform​ ​better.

1.1​ ​Motivation

Instrument Control Sweden (ICS) can currently handle Chapter 10 files. ICS want to be able to
handle CCSDS packets as well to be able to also view the data coming in from spacecrafts in
addition to aircrafts. The company wants the ability to view real time data coming in from
spacecrafts. In order to do so, the software needs to be able to convert the data in a quick
manner​ ​which​ ​is​ ​why​ ​the​ ​speed​ ​of​ ​the​ ​application​ ​will​ ​be​ ​examined.

7

1.2​ ​Purpose

The focus of this thesis is to develop a software that translates CCSDS packets to Chapter 10
files. The optimal way of creating Chapter 10 files will be explored, with the metric being
performance​ ​and​ ​memory​ ​usage.

1.3​ ​Research​ ​Question

● What packet size proves to be optimal in terms of runtime and memory usage when
converting CCSDS telemetry data to IRIG-106 Chapter 10 Digital Recording
Standard?

1.4​ ​Scope

The CCSDS conversion will not handle every data packet available since the Digital
Recording Standard (Chapter 10) is overwhelmingly big to be included in its entirety for this
project. This thesis will instead focus on converting CCSDS packets to Chapter 10 PCM
packet format. This thesis will not focus on establishing a space data link (connection)
between the spacecraft and the ground. The CCSDS packets will be created beforehand and
injected​ ​into​ ​the​ ​application.

8

2.​ ​Theory
This chapter gives insight into the Irig-106 Chapter 10 standard and the CCSDS Space Packet
protocol.

2.1​ ​Space​ ​Packet​ ​Protocol

The Space Packet Protocol defines a way to transfer data between earth and space. This also
includes communications between onboard relay systems in space. It accomplishes this by the
help of a ​Logical Data Path ​[2]. The LDP is the path between the source and the
destination(s). The source and destinations are end systems, i.e devices connected to the edge
of the network. In order for the data to travel through space, it gets sent through onboard relay
points and subnetworks. The LDP can of course be reconfigured as well. Since a spacecraft or
a ground end system can have multiple LDPs, a way to easily identify each of them is needed.
This​ ​is​ ​done​ ​with​ ​a​ ​​Path​ ​Id​.

This ​Path Id ​consists of an application process id (APID) and an APID Qualifier, which is
optional. The APID acts as the main identifier. It singles out the LDP that the packet can take.
This​ ​identifier​ ​is​ ​present​ ​in​ ​the​ ​packet​ ​primary​ ​header,​ ​which​ ​figure​ ​1​ ​describes.

The Space Packet protocol is defined in ​CCSDS 133.0-B-1 ​[2]. The data that this protocol
handles is the Space Packet, which is part of the network layer. It will be referred to as CCSDS
packet. The CCSDS packet is divided into two parts: a packet primary header and a packet
data field [3]. The packet primary header contains information about the packet in general. It
includes four major fields, some of which can be broken down even further. The data
contained​ ​in​ ​the​ ​primary​ ​header​ ​is​ ​described​ ​in​ ​figure​ ​1.

Figure​ ​1:​ ​Format​ ​of​ ​the​ ​CCSDS​ ​packet​ ​header.

9

1. Packet​ ​Version​ ​Number.​​ ​The​ ​packet​ ​version​ ​number​ ​identifies​ ​the​ ​data​ ​unit​ ​of​ ​the
protocol.​ ​It​ ​is​ ​three​ ​bits​ ​and​ ​is​ ​usually​ ​set​ ​to​ ​all​ ​zeros

2. Packet​ ​Identification​ ​Field.​​ ​Packet​ ​identification​ ​concerns​ ​bits​ ​3-15​ ​and​ ​is​ ​done​ ​in​ ​three

steps.
a. Packet​ ​Type.​​ ​A​ ​bit​ ​deciding​ ​if​ ​the​ ​packet​ ​relates​ ​to​ ​telemetry​ ​or​ ​telecommand.
b. Secondary​ ​Header​ ​Flag.​​ ​A​ ​single​ ​bit​ ​that​ ​acts​ ​as​ ​a​ ​flag.​ ​If​ ​set,​ ​a​ ​secondary

header​ ​exists.
c. Application​ ​Process​ ​Identifier.​​ ​As​ ​described​ ​above,​ ​the​ ​APID​ ​provides​ ​a​ ​way​ ​to

identify​ ​the​ ​LDP.​ ​There​ ​are​ ​eleven​ ​bits​ ​in​ ​the​ ​APID.​ ​In​ ​case​ ​of​ ​an​ ​idle​ ​packet,
the​ ​APID​ ​should​ ​be​ ​set​ ​to​ ​“all​ ​ones”.

3. Packet​ ​Sequence​ ​Control.​​ ​The​ ​Packet​ ​Sequence​ ​Control​ ​handles​ ​the​ ​sequence​ ​flag​ ​and
the​ ​sequence​ ​packet​ ​count.​ ​Involves​ ​bits​ ​16-31.

a. Sequence​ ​Flag.​​ ​Two​ ​bits​ ​that​ ​determine​ ​whether​ ​the​ ​data​ ​is​ ​part​ ​of​ ​a​ ​larger​ ​set
or​ ​if​ ​it​ ​is​ ​independent.

b. Sequence​ ​Packet​ ​Count:​​ ​14​ ​bits​ ​that​ ​provide​ ​order​ ​to​ ​the​ ​packets​ ​being​ ​sent​ ​by
an​ ​application.​ ​This​ ​is​ ​useful​ ​since​ ​they​ ​may​ ​arrive​ ​out​ ​of​ ​order.

4. Packet​ ​Data​ ​Length.​​ ​Bits​ ​32-47​ ​reveals​ ​the​ ​packed​ ​data​ ​length.​ ​It​ ​should​ ​be​ ​the​ ​length
expressed​ ​in​ ​octets​ ​subtracted​ ​by​ ​one.

What follows the primary header is the packet data field, see figure 2. Within the packet data
field lies a possible secondary header and the user data field, which is the actual data that the
application wants to transfer. This data could be anything ranging from basic arithmetic
calculations to images or even files. This is up to the application. The secondary header is
mandatory if there exists no user data. The two components that create the packet data field,
vary in length. When the packet is ready for transmission, it is put inside a transfer frame and
transported​ ​through​ ​the​ ​LDP​ ​[4].

Figure​ ​2:​ ​Format​ ​of​ ​the​ ​CCSDS​ ​Packet​ ​Data​ ​Field.

10

1. Secondary​ ​Header.​​ ​The​ ​secondary​ ​header​ ​may​ ​provide​ ​even​ ​more​ ​details​ ​about​ ​the
packet.​ ​It​ ​can​ ​contain​ ​two​ ​fields.​ ​The​ ​time​ ​code​ ​field​ ​and​ ​ancillary​ ​data.

a. Time​ ​Code​ ​Field.​​ ​This​ ​field​ ​contains​ ​the​ ​timestamp​ ​of​ ​the​ ​packet​ ​as​ ​well​ ​as
metadata​ ​describing​ ​the​ ​format​ ​of​ ​the​ ​timestamp.

b. Ancillary​ ​Data.​​ ​This​ ​optional​ ​field​ ​contains​ ​custom​ ​data​ ​decided​ ​by​ ​the​ ​user​ ​in
advance.

2. User​ ​Data​ ​Field.​​ ​The​ ​data​ ​being​ ​sent​ ​is​ ​placed​ ​in​ ​this​ ​field.​ ​If​ ​the​ ​application​ ​sends​ ​no
data,​ ​this​ ​field​ ​will​ ​be​ ​absent​ ​but​ ​the​ ​secondary​ ​header​ ​must​ ​be​ ​present.

2.2​ ​Time​ ​Code​ ​Format

The time code, that may be present in the secondary header, supplies the user with a
timestamp. There are a few different ways to format the timestamp and this needs to be
predetermined by the corporation using the protocol [5]. There are two fields in the time code
that​ ​are​ ​of​ ​significance.​ ​They​ ​are​ ​the​ ​preamble​ ​field​ ​and​ ​the​ ​time​ ​specification​ ​field.

The preamble is eight bits and can be seen as a tiny header. It is optional to have the preamble
but since it gives necessary information regarding which format the time specification uses, it
is​ ​included​ ​more​ ​often​ ​than​ ​not.​ ​There​ ​are​ ​four​ ​defined​ ​time​ ​code​ ​formats​ ​available.

● CCSDS​ ​Unsegmented​ ​Time​ ​Code
● CCSDS​ ​Day​ ​Segmented​ ​Time​ ​Code
● CCSDS​ ​Calendar​ ​Segmented​ ​Time​ ​Code
● CCSDS​ ​Ascii​ ​Calendar​ ​Segmented​ ​Time​ ​Code

There are three bits in the preamble that decide which of these formats the time specification
follows. The extra combinations that are usable from these three bits are there to provide the
selection of custom modified time codes. If the most significant bit in the preamble is set, there
should follow an extension of eight more bits that contain additional metadata for the time
specification. The final four bits are based on the time code used and give extra details that are
vital​ ​for​ ​the​ ​specific​ ​time​ ​code​ ​in​ ​question.

Figure​ ​3:​ ​General​ ​format​ ​of​ ​the​ ​Time​ ​Code​ ​Preamble​ ​Field​ ​in​ ​a​ ​CCSDS​ ​packet.

11

As​ ​mentioned,​ ​the​ ​time​ ​specification​ ​can​ ​follow​ ​different​ ​structures​ ​based​ ​on​ ​the​ ​information
from​ ​the​ ​preamble.

2.2.2​ ​CCSDS​ ​Day​ ​Segmented​ ​Time​ ​Code

The Day Segmented Time Code has two mandatory segments: day and time of day in ms, see
figure 4. These segments are binary counters which complement each other. The day format
can be either a 16 bit or a 24 bit segment. It is dependent on bit five in the preamble. The time
of day in ms consists of 32 bits and is self explanatory. The user also has the choice to include
an additional segment that can specify the time even further with the use of fractional time
units.​ ​It​ ​has​ ​a​ ​size​ ​specified​ ​by​ ​bit​ ​6-7​ ​in​ ​the​ ​preamble.

Figure​ ​4:​ ​Format​ ​of​ ​the​ ​Timecode​ ​Field​ ​using​ ​a​ ​CCSDS​ ​Day​ ​Segmented​ ​Time​ ​Code.

2.2.3​ ​CCSDS​ ​Calendar​ ​Segmented​ ​Time​ ​Code

The calendar segmented format divides the time code into either six or five different segments
depending on the variation, see figure 5. These segments are normally eight bits (with the
exception of year and day of year) and they act as binary counters. There exist two different
variations explained in the protocol. Which one to use is up to the user. It is once again the
preamble​ ​that​ ​provides​ ​this​ ​information.​ ​They​ ​have​ ​at​ ​least​ ​four​ ​segments​ ​in​ ​common.

The day of month/month of year variation gives a more modern representation of time
according to the gregorian calendar. It has the month of year and the day of month segment,
both​ ​of​ ​which​ ​are​ ​eight​ ​bits​ ​in​ ​size.

Figure​ ​5:​ ​Format​ ​of​ ​the​ ​Timecode​ ​Field​ ​using​ ​a​ ​CCSDS​ ​Calendar​ ​Day​ ​of​ ​Month​ ​Segmented​ ​Time

Code.

12

The day of year variation discards the segments introduced in the day of month/month of year
variation and instead adapts to a simpler time representation, see figure 6. It has a day of year
segment that represents a decimal between 0-365. In order to achieve this the segment is set to
16​ ​bits.

Figure​ ​6:​ ​Format​ ​of​ ​the​ ​Timecode​ ​field​ ​using​ ​a​ ​CCSDS​ ​Day​ ​of​ ​Year​ ​Segmented​ ​Time​ ​Code.

2.3​ ​IRIG-106​ ​Chapter​ ​10

All Chapter 10 packets are divided into three different mandatory parts: The packet header,
packet body and packet trailer [1]. The packet header contains metadata describing the data in
the rest of the packet. This header has a constant length of 192 bits (24 bytes) and is always
formatted the same way for every type of data. The packet body however has a varied length
and​ ​includes​ ​metadata​ ​specific​ ​to​ ​the​ ​type​ ​of​ ​data​ ​stored​ ​in​ ​the​ ​body.

The packet trailer contains filler bits and occasionally a data checksum. The filler bits are
added in order to ensure that the entire packet is always 16 or 32 bit aligned. The data
checksum is the sum of all bits in the datafield. This is used to ensure that the bits have not
been modified during transmission due to bit errors. Before the packet body there may also be
an optional secondary header. This header contains timestamps as well as a checksum for the
secondary​ ​header.​ ​In​ ​figure​ ​7​ ​the​ ​packet​ ​header​ ​format​ ​is​ ​described​ ​bit​ ​by​ ​bit.

Figure​ ​7:​ ​Format​ ​of​ ​the​ ​IRIG-106​ ​Chapter​ ​10​ ​Packet​ ​Header.

13

2.3.1​ ​Packet​ ​Header

1. Packet​ ​Sync​ ​Pattern.​​ ​This​ ​is​ ​a​ ​constant​ ​value​ ​placed​ ​in​ ​the​ ​first​ ​bytes​ ​of​ ​the​ ​packet
header.​ ​It​ ​is​ ​used​ ​to​ ​identify​ ​new​ ​packets​ ​and​ ​shall​ ​always​ ​be​ ​set​ ​to​ ​0xEB25.

2. Channel​ ​ID.​​ ​This​ ​value​ ​is​ ​used​ ​to​ ​identify​ ​which​ ​channel​ ​the​ ​packet​ ​originally​ ​came
from.​ ​This​ ​information​ ​can​ ​be​ ​used​ ​to​ ​derive​ ​which​ ​data​ ​type​ ​is​ ​stored​ ​in​ ​the​ ​packet
body.

3. Packet​ ​Length.​​ ​This​ ​value​ ​represents​ ​the​ ​length​ ​of​ ​the​ ​packet​ ​in​ ​bytes,​ ​including​ ​the
packet​ ​header​ ​and​ ​trailer.​ ​Since​ ​the​ ​packet​ ​is​ ​always​ ​16​ ​bit​ ​aligned,​ ​this​ ​value​ ​shall
always​ ​be​ ​a​ ​multiple​ ​of​ ​four.

4. Data​ ​Length.​​ ​This​ ​value​ ​represents​ ​the​ ​length​ ​of​ ​the​ ​packet​ ​body.​ ​This​ ​includes​ ​the
channel​ ​specific​ ​word,​ ​eventual​ ​intra-packets,​ ​as​ ​well​ ​as​ ​the​ ​data​ ​itself.

5. Data​ ​Type​ ​Version.​ ​​This​ ​value​ ​contains​ ​a​ ​bit​ ​pattern​ ​representing​ ​the​ ​release​ ​version​ ​of
IRIG-106​ ​which​ ​introduced​ ​the​ ​data​ ​type.​ ​These​ ​are​ ​the​ ​bit​ ​patterns​ ​currently
supported:

a. 0x00​ ​=​ ​Reserved
b. 0x01​ ​=​ ​RCC​ ​106-04​ ​(Initial​ ​Release)
c. 0x02​ ​=​ ​RCC​ ​106-05
d. 0x03​ ​=​ ​RCC​ ​106-07
e. 0x04​ ​=​ ​RCC​ ​106-09
f. 0x05​ ​=​ ​RCC​ ​106-11

6. Sequence​ ​Number.​​ ​This​ ​number​ ​identifies​ ​the​ ​order​ ​in​ ​which​ ​packets​ ​have​ ​been​ ​sent

through​ ​​ ​a​ ​specific​ ​channel.​ ​The​ ​sequence​ ​number​ ​does​ ​not​ ​necessarily​ ​start​ ​at​ ​zero​ ​and
is​ ​incremented​ ​with​ ​each​ ​packet​ ​sent​ ​through​ ​the​ ​respective​ ​channel.

7. Packet​ ​Flags.​​ ​This​ ​byte​ ​contains​ ​different​ ​flags​ ​describing​ ​the​ ​format​ ​and​ ​content​ ​of​ ​the
packet,​ ​as​ ​well​ ​as​ ​error​ ​identification.

a. Bit​ ​7.​​ ​Indicates​ ​whether​ ​or​ ​not​ ​a​ ​secondary​ ​header​ ​is​ ​present​ ​in​ ​the​ ​packet
b. Bit​ ​6.​​ ​Indicates​ ​the​ ​Intra-Packet​ ​Time​ ​source​ ​(IPTS)
c. Bit​ ​5.​​ ​This​ ​bit​ ​is​ ​set​ ​if​ ​a​ ​RTC​ ​sync​ ​error​ ​is​ ​found.
d. Bit​ ​4.​​ ​This​ ​bit​ ​is​ ​set​ ​if​ ​a​ ​data​ ​overflow​ ​error​ ​is​ ​found.
e. Bit​ ​3-2.​​ ​Indicates​ ​the​ ​format​ ​of​ ​the​ ​secondary​ ​header,​ ​if​ ​present.
f. Bit​ ​1-0.​​ ​Indicates​ ​the​ ​existence​ ​and​ ​eventual​ ​format​ ​of​ ​the​ ​data​ ​checksum.

8. Data​ ​Type.​​ ​This​ ​value​ ​contains​ ​a​ ​bit​ ​pattern​ ​representing​ ​the​ ​type​ ​of​ ​the​ ​data​ ​stored​ ​in

the​ ​packet​ ​body.​ ​A​ ​detailed​ ​list​ ​of​ ​data​ ​types​ ​can​ ​be​ ​found​ ​in​​ ​​table​ ​10-10​ ​page​ ​24​ ​of​ ​the
Digital​ ​Recording​ ​Standard​​ ​[1].

14

9. Relative​ ​Time​ ​Counter​ ​(RTC).​​ ​This​ ​counter​ ​represents​ ​the​ ​time​ ​that​ ​has​ ​passed​ ​since

the​ ​start​ ​of​ ​the​ ​transmission​ ​in​ ​ticks.

10. Header​ ​Checksum.​​ ​This​ ​value​ ​contains​ ​the​ ​sum​ ​of​ ​all​ ​bytes​ ​in​ ​the​ ​packet​ ​header,​ ​except
the​ ​checksum​ ​itself.

Figure​ ​8:​ ​Format​ ​of​ ​the​ ​IRIG-106​ ​Chapter​ ​10​ ​Packet​ ​Body​ ​and​ ​Trailer.

2.3.2​ ​Packet​ ​Body

1. Channel​ ​Specific​ ​Data.​​ ​This​ ​field​ ​contains​ ​information​ ​specific​ ​to​ ​the​ ​data​ ​type
specified​ ​in​ ​the​ ​packet​ ​header.​ ​Its​ ​content​ ​and​ ​length​ ​varies​ ​depending​ ​on​ ​the​ ​given
type​ ​but​ ​all​ ​types​ ​must​ ​have​ ​a​ ​respective​ ​channel​ ​specific​ ​data.

2. Intra-Packet​ ​Time​ ​Stamp.​​ ​This​ ​is​ ​an​ ​optional​ ​field​ ​containing​ ​a​ ​timestamp​ ​for​ ​the
packet.​ ​The​ ​format​ ​of​ ​the​ ​time​ ​stamp​ ​is​ ​given​ ​by​ ​the​ ​​Packet​ ​Flags​ ​​in​ ​the​ ​packet​ ​header.

3. Intra-Packet​ ​Data​ ​Format.​​ ​This​ ​is​ ​an​ ​optional​ ​field​ ​containing​ ​metadata​ ​concerning​ ​the
format​ ​of​ ​the​ ​following​ ​databits.​ ​Size​ ​varies​ ​depending​ ​on​ ​the​ ​type​ ​of​ ​data.

4. Data.​​ ​The​ ​actual​ ​data​ ​of​ ​the​ ​packet.​ ​Format​ ​and​ ​size​ ​of​ ​the​ ​data​ ​varies​ ​depending​ ​on​ ​the
type​ ​defined​ ​in​ ​the​ ​header.

2.3.3​ ​Packet​ ​Trailer

1. Filler.​​ ​This​ ​value​ ​is​ ​simply​ ​filler​ ​bits​ ​set​ ​to​ ​either​ ​all​ ​0x00​ ​or​ ​all​ ​0xFF.​ ​These​ ​bits​ ​are
used​ ​to​ ​make​ ​sure​ ​that​ ​the​ ​packet​ ​length​ ​is​ ​16​ ​bit​ ​aligned​ ​i.e​ ​divisible​ ​with​ ​4.

2. Data​ ​Checksum.​​ ​An​ ​optional​ ​checksum​ ​used​ ​for​ ​detecting​ ​bit​ ​errors​ ​in​ ​the​ ​data​ ​field.
The​ ​existence​ ​and​ ​size​ ​of​ ​this​ ​checksum​ ​is​ ​defined​ ​by​ ​the​ ​​Packet​ ​Flags​​ ​in​ ​the​ ​packet
header.

15

2.3.4​ ​Pulse​ ​Code​ ​Modulation​ ​Standards

Pulse code Modulation (PCM) is an encoding method used to digitally represent analog
signals. The amplitude of the signal is sampled at a high rate and stored as a binary number.
The size of the numbers is determined by the word length used in the encoding. If, for
example, a 16 bit word length is used, the binary number can vary between 0-15. The amount
of samples read per second is determined by the bitrate of the encoding. These are the most
important variables to consider when PCM is used. Bit rates higher than 10 megabits per
second​ ​and​ ​word​ ​lengths​ ​exceeding​ ​32​ ​bits​ ​are​ ​considered​ ​advanced​ ​types​ ​of​ ​PCM​ ​[6].

PCM can also be used to represent serial binary signals, in which case several different
methods​ ​may​ ​be​ ​used​ ​for​ ​the​ ​representation.

● Non​ ​Return​ ​to​ ​Zero​ ​Level​ ​(NRZ-L).​​ ​This​ ​is​ ​the​ ​standard​ ​method​ ​for​ ​representing

binary​ ​serial​ ​signals.​ ​If​ ​the​ ​sampled​ ​amplitude​ ​is​ ​1​ ​then​ ​the​ ​respective​ ​stored​ ​value​ ​is​ ​1.
Otherwise​ ​it​ ​is​ ​0.

● Non​ ​Return​ ​to​ ​Zero​ ​Mark​ ​(NRZ-M).​​ ​This​ ​method​ ​measures​ ​change​ ​in​ ​the​ ​signal.​ ​If​ ​the
sampled​ ​amplitude​ ​has​ ​changed​ ​from​ ​0​ ​to​ ​1,​ ​then​ ​the​ ​respective​ ​stored​ ​value​ ​will​ ​be​ ​1.
If​ ​no​ ​change​ ​has​ ​occurred​ ​the​ ​value​ ​will​ ​be​ ​set​ ​to​ ​0.

● Non​ ​Return​ ​to​ ​Zero​ ​Space​ ​(NRZ-S).​​ ​This​ ​method​ ​is​ ​the​ ​opposite​ ​of​ ​NRZ-M.​ ​If​ ​there​ ​is
no​ ​change​ ​in​ ​level​ ​the​ ​respective​ ​stored​ ​value​ ​will​ ​be​ ​1.​ ​otherwise​ ​the​ ​value​ ​will​ ​be​ ​set
to​ ​0.

2.3.5​ ​PCM​ ​Packet​ ​Format

The header and trailer of a PCM packet follow the same format as any other packet. The
difference lies in the body of the packet. The first 32 bits of a PCM packet body consists of a
PCM Channel Specific Word [6]. This field contains information regarding the content and
format of the data stored in the packet body. It is a mandatory field for all PCM packets. What
follows​ ​the​ ​channel​ ​specific​ ​word​ ​is​ ​the​ ​data​ ​itself.

2.3.5.1​ ​Major​ ​and​ ​Minor​ ​Frames
All data in a PCM packet is divided into major and minor frames, as illustrated in figure 9.
These frames used to structure the data and make it more organized. The first data word of
each minor frame contains the synchronization information for the minor frame. Whenever
this synchronization word is found during data extraction, it signals the start of a new minor
frame. In other words, a minor frame consists of all data between two different
synchronization words. The total size of each minor frame shall not exceed 16384 bits or 2048
words.

16

A major frame consists of multiple minor frames. The length of a major frame is derived from
the sum of the lengths of all minor frames contained within. The data stored within the frames
can​ ​also​ ​be​ ​transmitted​ ​and​ ​stored​ ​in​ ​several​ ​different​ ​modes.

Figure​ ​9:​ ​Minor​ ​and​ ​Major​ ​Frame​ ​format​ ​in​ ​a​ ​IRIG-106​ ​Chapter​ ​10​ ​PCM​ ​Packet.

● 16​ ​/​ ​32​ ​Bit​ ​Alignment.​​ ​In​ ​addition​ ​to​ ​one​ ​of​ ​the​ ​modes​ ​described​ ​below,​ ​the​ ​data​ ​can​ ​be

either​ ​16​ ​bit​ ​aligned​ ​or​ ​32​ ​bit​ ​aligned.​ ​When​ ​the​ ​data​ ​is​ ​in​ ​16​ ​or​ ​32​ ​bit​ ​alignment​ ​it​ ​is
divided​ ​in​ ​16​ ​or​ ​32​ ​bit​ ​words​ ​respectively.​ ​This​ ​means​ ​that​ ​in​ ​the​ ​end​ ​the​ ​entire​ ​data
field​ ​must​ ​be​ ​evenly​ ​divisible​ ​by​ ​either​ ​16​ ​or​ ​32.​ ​This​ ​makes​ ​it​ ​easier​ ​to​ ​differ​ ​the
frames​ ​from​ ​one​ ​another.

● Unpacked​ ​Mode.​​ ​When​ ​the​ ​data​ ​is​ ​in​ ​unpacked​ ​mode,​ ​each​ ​word​ ​in​ ​the​ ​datafield​ ​must
be​ ​exactly​ ​16​ ​or​ ​32​ ​bits​ ​long.​ ​If​ ​the​ ​data​ ​stored​ ​in​ ​each​ ​word​ ​is​ ​too​ ​short,​ ​filler​ ​bits​ ​must
be​ ​added​ ​in​ ​order​ ​to​ ​pad​ ​the​ ​word.

● Packed​ ​Mode.​​ ​When​ ​the​ ​data​ ​is​ ​in​ ​packed​ ​mode​ ​it​ ​is​ ​not​ ​necessary​ ​to​ ​pad​ ​each​ ​word​ ​in
the​ ​data​ ​field,​ ​but​ ​some​ ​filler​ ​bits​ ​may​ ​have​ ​to​ ​be​ ​added​ ​at​ ​the​ ​end​ ​of​ ​the​ ​field​ ​to​ ​ensure
that​ ​the​ ​field​ ​is​ ​either​ ​16​ ​or​ ​32​ ​bit​ ​aligned.

● Throughput​ ​Mode.​​ ​When​ ​the​ ​data​ ​is​ ​in​ ​throughput​ ​mode​ ​it​ ​is​ ​not​ ​synchronized​ ​with​ ​the
frames​ ​at​ ​all.​ ​The​ ​data​ ​is​ ​simply​ ​stored​ ​in​ ​the​ ​same​ ​format​ ​in​ ​which​ ​it​ ​was​ ​read.

2.3.5.2​ ​PCM​ ​Channel​ ​Specific​ ​Data
The PCM Channel Specific Data is a field containing various metadata relating to the format
of​ ​the​ ​PCM​ ​data.​ ​It​ ​has​ ​a​ ​total​ ​size​ ​of​ ​32​ ​bits,​ ​as​ ​illustrated​ ​in​ ​figure​ ​10.

17

Figure​ ​10:​ ​Format​ ​of​ ​the​ ​Channel​ ​Specific​ ​Data​ ​for​ ​a​ ​IRIG-106​ ​Chapter​ ​10​ ​PCM​ ​Packet.

1. Reserved.​​ ​The​ ​first​ ​bit​ ​of​ ​the​ ​Channel​ ​Specific​ ​Data​ ​is​ ​reserved​ ​for​ ​future​ ​use.

2. Intra-Packet​ ​Header.​​ ​This​ ​value​ ​indicates​ ​whether​ ​the​ ​packet​ ​uses​ ​Intra-Packet

Timestamps.​ ​If​ ​this​ ​value​ ​is​ ​set,​ ​timestamps​ ​must​ ​be​ ​inserted​ ​between​ ​minor​ ​frames​ ​in
the​ ​data​ ​field.​ ​This​ ​option​ ​is​ ​mandatory​ ​when​ ​using​ ​packed​ ​or​ ​unpacked​ ​mode.

3. Major​ ​Frame​ ​Indicator.​​ ​This​ ​value​ ​indicates​ ​whether​ ​the​ ​first​ ​word​ ​in​ ​the​ ​following
data​ ​field​ ​is​ ​a​ ​major​ ​frame.

4. Minor​ ​Frame​ ​Indicator.​​ ​This​ ​value​ ​indicates​ ​whether​ ​the​ ​first​ ​word​ ​in​ ​the​ ​following
data​ ​field​ ​is​ ​a​ ​minor​ ​frame.

5. Lock​ ​Status.​​ ​This​ ​field​ ​indicates​ ​if​ ​the​ ​frame​ ​is​ ​currently​ ​“locked”.​ ​If​ ​the​ ​frame​ ​is
locked​ ​it​ ​means​ ​that​ ​all​ ​data​ ​stored​ ​in​ ​the​ ​frames​ ​is​ ​completely​ ​intact​ ​and​ ​without
disruptions.​ ​Lock​ ​status​ ​is​ ​not​ ​applicable​ ​when​ ​using​ ​throughput​ ​mode.

6. Data​ ​Packing​ ​Mode.​​ ​This​ ​value​ ​indicates​ ​which​ ​data​ ​packing​ ​mode​ ​is​ ​used.​ ​The
different​ ​options​ ​for​ ​data​ ​packing​ ​are​ ​described​ ​in​ ​section​ ​2.3.5.1

7. Sync​ ​Offset.​​ ​This​ ​value​ ​represents​ ​the​ ​offset​ ​of​ ​the​ ​first​ ​data​ ​word​ ​in​ ​the​ ​major​ ​frame.
This​ ​value​ ​is​ ​only​ ​applicable​ ​for​ ​unpacked​ ​mode.

2.3.6​ ​Time​ ​Packet​ ​Format

In the IRIG-106 Digital Recording standard, time packets must be transmitted in conjunction
with the data packets. Time packets must be sent at least once every second and the first packet
after the initial setup record must be a time packet [1]. Time packets follow the same general
format as other data type packets. The only difference is that the data stored in the body, which
in this case is timestamps. The main purpose of these time packets is to provide additional
structure to the transmission, since the data packets themselves do not necessarily contain
timestamps.

18

Just like the various data packets, the first part of the time packet body contains time channel
specific data. The time channel specific data is a 32 bit field with information pertaining the
format​ ​and​ ​source​ ​of​ ​the​ ​time​ ​data​ ​stored​ ​in​ ​the​ ​packet​ ​body,​ ​see​ ​figure​ ​11.

Figure​ ​11:​ ​Format​ ​of​ ​the​ ​Channel​ ​Specific​ ​Data​ ​for​ ​a​ ​IRIG-106​ ​Chapter​ ​10​ ​Time​ ​Packet.

1. Reserved.​​ ​The​ ​first​ ​20​ ​bits​ ​of​ ​this​ ​field​ ​are​ ​reserved​ ​for​ ​future​ ​use.

2. Date​ ​Format​ ​(DATE).​​ ​This​ ​4​ ​bit​ ​value​ ​represents​ ​the​ ​format​ ​of​ ​the​ ​timestamp

a. Bit​ ​3-2.​​ ​These​ ​bits​ ​are​ ​reserved​ ​for​ ​future​ ​use.
b. Bit​ ​1.​​ ​This​ ​bit​ ​defines​ ​the​ ​date​ ​format​ ​of​ ​the​ ​timestamp.​ ​If​ ​set​ ​to​ ​0​ ​it​ ​will​ ​use

IRIG​ ​Day​ ​format.​ ​If​ ​set​ ​to​ ​1​ ​it​ ​will​ ​use​ ​Month​ ​and​ ​Year​ ​format.
c. Bit​ ​0.​​ ​This​ ​bit​ ​indicates​ ​whether​ ​or​ ​not​ ​it​ ​is​ ​a​ ​leap​ ​year.

3. Time​ ​Format.​​ ​This​ ​value​ ​indicates​ ​the​ ​format​ ​of​ ​the​ ​time​ ​data​ ​packets.​ ​It​ ​can​ ​be​ ​set​ ​to

one​ ​of​ ​the​ ​following​ ​values:
a. 0x0​ ​=​ ​IRIG-B
b. 0x1​ ​=​ ​IRIG-A
c. 0x2​ ​=​ ​IRIG-G
d. 0x3​ ​=​ ​Real-Time​ ​Clock
e. 0x4​ ​=​ ​UTC​ ​Time​ ​from​ ​GPS
f. 0x5​ ​=​ ​Native​ ​GPS​ ​Time
g. 0x6​ ​-​ ​0xE​ ​=​ ​Reserved
h. 0xF​ ​=​ ​None​ ​/​ ​Invalid

4. Time​ ​Source.​​ ​This​ ​value​ ​indicates​ ​the​ ​Source​ ​of​ ​the​ ​timestamp.​ ​It​ ​can​ ​be​ ​set​ ​to​ ​one​ ​of

the​ ​following​ ​values:
a. 0x0​ ​=​ ​Internal​ ​clock​ ​from​ ​the​ ​recorder.
b. 0x1​ ​=​ ​External​ ​clock​ ​not​ ​from​ ​the​ ​recorder.
c. 0x2​ ​=​ ​Internal​ ​clock​ ​from​ ​a​ ​Removable​ ​Memory​ ​Module​ ​(RMM).
d. 0x3​ ​-​ ​0xE​ ​=​ ​Reserved.
e. 0xF​ ​=​ ​None

19

2.3.7​ ​Setup​ ​Record​ ​Format

The setup record is always the very first packet in each transmission [1]. It is a computer
generated packet containing all information regarding the transmission. It can for example
define all the different channels used in the transmission. This information is useful at the
receiving end when developing software to interpret and display the data. The setup record is
very different compared to the usual packets. The information is written in ASCII or XML
instead of binary encoded data. This text follows a standard called the Telemetry Attributes
Transfer Standard (TMATS) [7]. The TMATS record can contain a wide variety of options
that define the transmission. Just like all other packets the setup record body contains channel
specific​ ​data,​ ​see​ ​figure​ ​12.

Figure​ ​12:​ ​Format​ ​of​ ​the​ ​Channel​ ​Specific​ ​Data​ ​for​ ​a​ ​IRIG-106​ ​Chapter​ ​10​ ​Setup​ ​Record.

1. Reserved.​​ ​The​ ​first​ ​22​ ​bits​ ​of​ ​the​ ​channel​ ​specific​ ​data​ ​are​ ​reserved​ ​for​ ​future​ ​use.

2. Setup​ ​Record​ ​Format.​​ ​Specifies​ ​the​ ​format​ ​of​ ​the​ ​setup​ ​record.​ ​If​ ​format​ ​is​ ​set​ ​to​ ​1​ ​the

record​ ​will​ ​be​ ​XML​ ​encoded​ ​and​ ​if​ ​set​ ​to​ ​0​ ​the​ ​record​ ​will​ ​be​ ​ASCII​ ​encoded.

3. Setup​ ​Record​ ​Configuration​ ​Change​ ​(SRCC).​​ ​This​ ​value​ ​will​ ​be​ ​set​ ​if​ ​the​ ​configuration
has​ ​changed​ ​since​ ​the​ ​previous​ ​setup​ ​record.

4. RCC​ ​106​ ​​ ​Chapter​ ​10​ ​Version​ ​(CH10VER).​​ ​This​ ​value​ ​contains​ ​a​ ​bit​ ​pattern
representing​ ​the​ ​Chapter​ ​10​ ​version​ ​that​ ​this​ ​setup​ ​record​ ​is​ ​applicable​ ​for.​ ​These​ ​are
the​ ​values​ ​currently​ ​supported:

a. 0x00-0x06​ ​=​ ​Reserved
b. 0x07​ ​=​ ​RCC-106-07
c. 0x08​ ​=​ ​RCC-106-09
d. 0x09​ ​=​ ​RCC-106-11
e. 0x0A​ ​=​ ​RCC-106-13
f. 0x0B​ ​=​ ​RCC-106-15
g. 0x0C-0xFF​ ​=​ ​Reserved

20

3.​ ​Method
This chapter explains the method used to answer the research questions. It explains the process of
converting a CCSDS packet to a Chapter 10 file. Lastly it describes how the application was evaluated
with​ ​the​ ​help​ ​of​ ​the​ ​ANTS​ ​Performance​ ​Profiler.

The main purpose of this thesis is to develop an application which converts telemetric data
from the CCSDS standard to the IRIG-106 Chapter 10 Digital Recording Standard. Since
CCSDS packets are extremely rare to get a hold of we have to follow the CCSDS packet
protocol to create our own CCSDS packets. The conversion application will only handle
telemetry packets and will assume that there exists no ancillary data. It will however be able to
process a secondary header, which will contain either the day segmented time code or the
calendar segmented time code. These were chosen since they are similar to the timestamp in
the IRIG-106 time packets. This leaves the application with a few variables that may differ
depending on the packet. The application will be able to handle two different time code
formats: day segmented and calendar segmented. Both of these have two variants of each other
creating a total of four different structures the time codes can take. These will be extracted and
put into IRIG-106 time packets. This application is going to extract the data from the CCSDS
packet and wrap it into a Chapter 10 file. In order to do this an understanding of how both
standards​ ​packet​ ​data​ ​is​ ​necessary.​ ​The​ ​applications​ ​were​ ​developed​ ​in​ ​C#.

3.1​ ​Creating​ ​CCSDS​ ​packets

The application needs CCSDS packets to do the conversion. However it seems hard to come
by such packets. Sample data was not provided by ICS so the project began by constructing
these packets according to the documentation available to the public [2]. These were telemetry
packets. The IRIG-106 standard requires time packets in between the data packets. The time
packets will contain the time code provided by the CCSDS packet. A secondary header with
the time code becomes mandatory for the CCSDS packets. The different time codes tested
were​ ​day​ ​segmented​ ​and​ ​calendar​ ​segmented​ ​time​ ​codes.

The actual data itself is not of value to the study, it is however necessary that the data is
consistent throughout the conversion. It is simply the extraction of the data that is of
importance. The PCM data that were put into CCSDS packets was approximately 400
megabytes. The data was stored as a Comma Separated Value (CSV) file which amounted to
over 3 million lines of data. An application was created that read each line from the CSV and
wrapped it into a CCSDS packet. This means that each CCSDS packet contained one line of
data. When all the data had been read, these packets were written sequentially to a binary file.
The binary file became smaller in comparison to the CSV file, with a size of 265 megabytes.
This due to the fact that it discards the ascii encoding and the commas of the CSV file. There is
not anything that separates the packets in the binary file which makes it vital to read the
correct amount of bytes from it in order for the conversion to work. There is however no real
way​ ​of​ ​knowing​ ​if​ ​these​ ​packets​ ​are​ ​valid​ ​since​ ​only​ ​assumptions​ ​can​ ​be​ ​drawn.

21

3.2​ ​Extracting​ ​the​ ​CCSDS​ ​Packets

The first step is to extract the CCSDS packets from the binary file. The first part of the CCSDS
packet is the packet primary header. As mentioned it contains necessary metadata for the rest
of the packet. The entire binary file is read into a byte array. This byte array now contains
every CCSDS packet created before. The packet primary header is of fixed length which
simplifies​ ​the​ ​extraction.​ ​The​ ​four​ ​major​ ​fields​ ​described​ ​in​ ​2.1​ ​are​ ​extracted​ ​bit​ ​by​ ​bit.

The next step is to handle the time code and the data. This is where the information recently
extracted comes into play. It is necessary to check if a secondary header exists, and if so, check
what time code format it uses. If no secondary header is present, the application simply
assumes that the data is next. Otherwise it will extract a certain number of bytes and define this
as a time code. The size of the time code depends on the time code format. The day segmented
ones are ten bytes and the calendar one are twelve bytes long. The application also assumes
that no extension follows the preamble. ​The final step is to obtain the data inside the CCSDS
packet.

3.3​ ​Creating​ ​a​ ​Chapter​ ​10​ ​file

Every Chapter 10 file begins with a setup record. This record is used by the receiving end to
help parse the data sent during the transmission. The setup record will not contain any
information extracted from the CCSDS packet and is most often generated automatically.
Generating this record manually is outside the scope of this study. In order to get the setup
record for the application, ICS:s own software Netview is used. With Netview we can create
and configure virtual PCM and Time channels within the software. These channels were then
exported as a TMATS file, describing those channels. The TMATS file is then read into our
conversion​ ​application​ ​and​ ​used​ ​as​ ​data​ ​for​ ​the​ ​setup​ ​record.

22

3.3.1​ ​Time​ ​data​ ​packets

A time packet must follow the setup record. The time packet much like everything else, has a
standard packet header, a channel specific word, time data and filler. The packet header is
created as described in figure 7. The packet specific variables are of course set to match a time
packet. Following the packet header is the channel specific word. It is a total of four bytes.
This can be seen as a packet type specific header. It contains information about the packet
type, in this case the time packet. The date format is set to a false leap year and IRIG day
format. The time format is set to IRIG-B which is the standard IRIG time format. The time
source​ ​is​ ​external.

The data inside the time packet is a timestamp and it is acquired from the time code in the
CCSDS packet. After the time data, the filler is inserted into the packet making it complete.
The time packet should arrive with a maximum of 1 Hz, i.e. every second. It is after the first
time​ ​packet​ ​that​ ​the​ ​data​ ​packets​ ​can​ ​be​ ​sent.​ ​They​ ​are​ ​PCM​ ​packets.

3.3.2​ ​Pulse​ ​code​ ​modulation​ ​data​ ​packets

The majority of the PCM channel specific data concerns frames. It has the frame lock status
and the frame indicators. The packets created will be in throughput mode which removes the
need to configure and work with frames. The packets contain pure data in no specific order
and do not need to be synced with the help of frames. This makes it faster to transfer but gives
the receiving end the job of “deciphering” it. The sync offset is set to 0 and the intra-packet
header indicator is set to ​false​. Lastly the right amount of filler bytes need to be inserted to
match the alignment mode. We are creating packets with 16 bit alignment. The amount of
filler depends on the size of the data. Put all of these pieces together and it will make up a
Chapter​ ​10​ ​file.

3.4​ ​Evaluating​ ​performance

It is stated in the Digital Recording Standard that the maximum packet size is 2​19 bytes [1].
Two options become available in order to answer the extreme cases. The option to take the one
CCSDS packet and simply convert it into a single PCM packet and the option to take as many
CCSDS packets as possible and cram the data into a single PCM packet. These cases will be
referred to as OTOC (One To One Conversion) and FSC (Full Sized Conversion). They have
the packet sizes 2​6 bytes and 2​19 bytes respectively. The former should create more overhead
since​ ​it​ ​should​ ​contain​ ​more​ ​headers.

23

There exist 64 (2​6​) bytes of data inside each of the CCSDS packets. Fourteen different cases
are going to be studied, starting with the OTOC. The PCM packet size is then going to be
doubled and the application runtime evaluated again. When the packet size reaches full sized
PCM packets there should exists fourteen measurements of the application’s runtime. The
runtime​ ​will​ ​be​ ​measured​ ​using​ ​the​ ​​ANTS​ ​Performance​ ​Profiler​ ​9​.

3.5​ ​ANTS​ ​Performance​ ​profiler

The ANTS Performance profiler accurately measures the performance of .NET applications. It
can display detailed statistics down to every single line of code. However, choosing a higher
detail level increases the overhead generated by the profiler. In other words, the runtime of the
application will increase because the profiler itself takes a large part of the CPU capacity. This
causes the overhead to be very inconsistent between each run. Statistics of single lines of code
is not of importance in this study and thus limiting the profiler to analyze methods is sufficient.
Internal .NET methods are also excluded in the profiling since the point of the profiling is to
analyze our own methods; whereas the internal methods muddy the results with a lot of
inconsistent​ ​overhead.

There are two functions of interest in the application. The function that reads the CCSDS data
and the function that creates the Chapter 10 file. These functions are evaluated with the
performance profiler. The I/O usage was also recorded since it is expected to have a vastly
different​ ​utilization​ ​between​ ​the​ ​different​ ​packet​ ​sizes.

24

4.​ ​Results
This​ ​chapter​ ​presents​ ​the​ ​results​ ​of​ ​the​ ​study.​ ​The​ ​applications​ ​that​ ​were​ ​developed​ ​are​ ​concretely
described​ ​and​ ​the​ ​performance​ ​statistics​ ​generated​ ​by​ ​the​ ​ANTS​ ​Profiler​ ​are​ ​presented.

4.1​ ​The​ ​Applications

Two​ ​different​ ​applications​ ​were​ ​created.​ ​The​ ​first​ ​created​ ​a​ ​file​ ​containing​ ​CCSDS​ ​packets​ ​and
the​ ​second​ ​converted​ ​those​ ​CCSDS​ ​packets​ ​to​ ​a​ ​Chapter​ ​10​ ​file.​ ​They​ ​were​ ​developed​ ​using
Visual​ ​Studio​ ​2017​ ​and​ ​written​ ​in​ ​C#.

The​ ​first​ ​application​ ​has​ ​three​ ​important​ ​tasks.​ ​It​ ​needs​ ​to​ ​read​ ​the​ ​data​ ​from​ ​the​ ​CSV,​ ​create​ ​a
CCSDS​ ​packet​ ​and​ ​lastly​ ​write​ ​the​ ​packets​ ​to​ ​a​ ​binary​ ​file.​ ​The​ ​data​ ​is​ ​read​ ​one​ ​line​ ​at​ ​a​ ​time.
It​ ​discards​ ​the​ ​commas​ ​and​ ​proceeds​ ​to​ ​create​ ​a​ ​CCSDS​ ​packet​ ​which​ ​it​ ​appends​ ​to​ ​a​ ​list.​ ​The
application​ ​has​ ​the​ ​ability​ ​to​ ​create​ ​CCSDS​ ​packets​ ​with​ ​two​ ​different​ ​time​ ​codes:​ ​day
segmented​ ​and​ ​calendar​ ​segmented,​ ​which​ ​depends​ ​on​ ​a​ ​variable.​ ​The​ ​next​ ​step​ ​is​ ​to​ ​check​ ​if​ ​it
should​ ​dump​ ​all​ ​the​ ​CCSDS​ ​packets​ ​to​ ​a​ ​binary​ ​file.​ ​This​ ​depends​ ​on​ ​an​ ​arbitrary​ ​variable​ ​and
was​ ​used​ ​to​ ​ensure​ ​that​ ​the​ ​list​ ​of​ ​CCSDS​ ​packets​ ​did​ ​not​ ​grow​ ​too​ ​big.​ ​It​ ​was​ ​set​ ​to​ ​200​ ​000.
This​ ​meant​ ​the​ ​application​ ​dumps​ ​all​ ​CCSDS​ ​packets​ ​to​ ​the​ ​binary​ ​file​ ​after​ ​200​ ​000​ ​lines​ ​of
data​ ​has​ ​been​ ​read.​ ​The​ ​list​ ​is​ ​then​ ​cleared​ ​and​ ​the​ ​application​ ​continues​ ​to​ ​read​ ​data.​ ​This
process​ ​is​ ​explained​ ​in​ ​figure​ ​13.

Figure​ ​13:​ ​Flowchart​ ​of​ ​the​ ​application​ ​that​ ​creates​ ​CCSDS​ ​files

25

The​ ​second​ ​application​ ​does​ ​the​ ​actual​ ​conversion​ ​and​ ​is​ ​therefore​ ​more​ ​complex​ ​than​ ​the​ ​first
one.​ ​It​ ​begins​ ​by​ ​reading​ ​the​ ​binary​ ​file​ ​created​ ​by​ ​the​ ​first​ ​application​ ​and​ ​inserts​ ​this​ ​into​ ​a
buffer.​ ​The​ ​buffer​ ​acts​ ​as​ ​the​ ​byte​ ​array​ ​in​ ​which​ ​all​ ​the​ ​CCSDS​ ​packets​ ​are​ ​placed.​ ​These​ ​are
not​ ​separated​ ​by​ ​anything​ ​which​ ​makes​ ​it​ ​vital​ ​to​ ​read​ ​the​ ​right​ ​amount​ ​of​ ​bits​ ​from​ ​the​ ​buffer.
The​ ​extraction​ ​is​ ​put​ ​into​ ​a​ ​loop.​ ​Every​ ​iteration​ ​begins​ ​by​ ​extracting​ ​the​ ​primary​ ​header​ ​(48
bits)​ ​and​ ​the​ ​time​ ​code​ ​(10​ ​or​ ​12​ ​bits).​ ​The​ ​next​ ​step​ ​concerns​ ​the​ ​actual​ ​data​ ​inside​ ​the
CCSDS​ ​packet.​ ​With​ ​the​ ​help​ ​of​ ​the​ ​metadata​ ​found​ ​in​ ​the​ ​primary​ ​header,​ ​the​ ​application
now​ ​knows​ ​how​ ​much​ ​data​ ​is​ ​inside​ ​the​ ​CCSDS​ ​packet.

for​ ​(int​ ​i​ ​=​ ​0;​ ​i​ ​<​ ​data.Length;​ ​i++)
​ ​data[i]​ ​=​ ​(byte)bitBuffer.GetBits(8);

Since the data length gives the length in bytes, eight bits(one byte) need to be extracted in each
iteration. The function GetBits(value) obtains the number of bits specified by value from the
buffer and moves forward in the buffer the same amount of steps. After the application has
both the primary header and the data, it creates a class out of both of these and appends the
class instance into a list. The instance then acts as one CCSDS packet. This extraction process
is put into a loop which reads until the end of the byte array (end of file). The list of packets is
then​ ​returned​ ​to​ ​the​ ​main​ ​program​ ​after​ ​all​ ​the​ ​packets​ ​have​ ​been​ ​obtained.

After the CCSDS data has been read the first step is to create the setup record and initial time
packet. This is how every Chapter 10 file has to start according to the standard. Then the
application iterates through the list of CCSDS packets in order to transfer each packet one by
one into a PCM packet. Since PCM packets usually have a larger size than CCSDS packets,
the application has to check whether it can fit another CCSDS packet after each iteration. In an
attempt​ ​to​ ​save​ ​I/O​ ​usage,​ ​no​ ​data​ ​is​ ​written​ ​to​ ​the​ ​file​ ​until​ ​the​ ​entire​ ​PCM​ ​packet​ ​is​ ​complete.

26

According to the Digital Recording Standard, time packets must be written at least once each
second of the transmission. This issue was solved by checking how much time has passed
since the last time packet. If the elapsed time has passed one second, a time packet is created.
The timestamp of said time packet is set to the most recent PCM packets time, rounded to
whole seconds. When all CCSDS packets have been converted to PCM packets, and all PCM
packets have been written to file, the application will terminate. The conversion process is
explained​ ​in​ ​figure​ ​14.

Figure​ ​14:​ ​Flowchart​ ​of​ ​the​ ​application​ ​that​ ​creates​ ​Chapter​ ​10​ ​files

27

4.2​ ​Performance​ ​results

Simply converting the data from a CCSDS packet to a IRIG-106 Chapter 10 file proved to be
possible. A total of fourteen different cases were studied with the differing factor being packet
size.​ ​This​ ​created​ ​not​ ​only​ ​a​ ​difference​ ​in​ ​file​ ​size​ ​but​ ​also​ ​impacted​ ​the​ ​application's​ ​runtime.

Figure​ ​15:​ ​Total​ ​time​ ​it​ ​took​ ​for​ ​the​ ​application​ ​to​ ​complete​ ​for​ ​the​ ​different​ ​packet​ ​sizes.

The OTOC took the largest amount of time, taking more than 30 seconds to complete. It then
began to gradually decrease in runtime until the packet size reached 2​16​. At this point the
application only took around 11.5 seconds to complete which is less than half the time of
OTOC. The increase in packet size beyond this threshold did not seem to have a significant
impact on the speed of the application, although it did seem to rise again by a few hundred
milliseconds​ ​when​ ​nearing​ ​FSC.

28

Figure​ ​16:​ ​Total​ ​time​ ​it​ ​took​ ​for​ ​the​ ​function​ ​creating​ ​the​ ​Chapter​ ​10​ ​files​ ​to​ ​complete​ ​for​ ​the

different​ ​packet​ ​sizes.

When the packet size increased the runtime of the function decreased. The major difference
here​ ​is​ ​that​ ​the​ ​runtime​ ​did​ ​not​ ​rise​ ​noticeably​ ​when​ ​nearing​ ​full​ ​packet​ ​capacity.

It took approximately 8.7 seconds for the application to read the data and create the CCSDS
packets. This value did not deviate throughout the different cases since the data was always the
same. It was excluded in the table 1 because of this. The I/O write operation and the number of
packets​ ​were​ ​also​ ​observed​ ​and​ ​presented​ ​in​ ​table​ ​1.

29

Data​ ​Length
(bytes)

Main
(ms)

CreateChapter10File
(ms)

I/O​ ​Write
(ms)

Amount​ ​of
Packets File​ ​Size​ ​(kb)

2⁶ 30​ ​704 22​ ​894 706 3​ ​401​ ​016 318​ ​851

2⁷ 21​ ​778 13​ ​161 602 1​ ​700​ ​508 265​ ​710

2⁸ 16​ ​932 8​ ​419 518 850​ ​254 239​ ​140

2⁹ 14​ ​608 5​ ​939 458 425​ ​127 225​ ​855

2¹⁰ 13​ ​300 4​ ​629 511 212​ ​564 219​ ​212

2¹¹ 12​ ​646 4​ ​014 461 106​ ​282 215​ ​891

2¹² 12​ ​425 3​ ​642 566 53​ ​141 214​ ​230

2¹³ 11​ ​949 3​ ​356 326 26​ ​571 213​ ​400

2¹⁴ 11​ ​709 3​ ​213 229 13​ ​286 212​ ​985

2¹⁵ 11​ ​650 3​ ​137 150 6​ ​643 212​ ​777

2¹⁶ 11​ ​519 3​ ​172 114 3​ ​322 212​ ​673

2¹⁷ 12​ ​623 3​ ​300 82 1​ ​661 212​ ​621

2¹⁸ 12​ ​479 3​ ​291 73 831 212​ ​596

2¹⁹ 12​ ​497 3​ ​279 66 416 212​ ​583

Table​ ​1:​ ​Results​ ​from​ ​the​ ​ANTS​ ​Performance​ ​Profiler.

Four different metrics varied for each case. The runtime of Main and CreateChapter10File
functions, the runtime of the I/O write operation and the amount of packets. All of these are
presented in table 1. The ​Main function sums up the entire application and the
CreateChapter10File is the function that does the actual conversion. The runtimes were all
measured​ ​in​ ​milliseconds.

30

5.​ ​Discussion

Every metric in table 1 decreases as the packet size increases, at least until it reaches a packet
size of 2​16​. After that point the curve stabilizes and the data length does not seem to have a
lasting impact on the runtime. Interestingly enough when the data length approaches FSC
(around 2​17​), the runtime seems to slightly rise again. This concludes that neither of the
extreme cases (OTOC and FSC) is the optimal choice when opting for the fastest solution. The
optimal data length when it comes to runtime is 2​16 bytes, but runtime is not the only factor.
One could for example use a data length of 2​13 bytes which is 16 times smaller at the cost of
merely​ ​3.7%​ ​increase​ ​in​ ​runtime.

Having a considerably smaller data length can lead to a few advantages. Most notably is an
increase in consistency during the transmission. Occasionally packets will be lost during
transmission in which case it is far less disruptive to use small packets. Since the Digital
Recording Standard is used within aviation, consistent and reliable communication is of
utmost importance. Further work could involve analyzing how frequent packet loss is within
aviation​ ​and​ ​compare​ ​how​ ​much​ ​data​ ​is​ ​lost​ ​when​ ​using​ ​the​ ​different​ ​packet​ ​sizes.

Paolini et al. [8] explains in their research that it is extremely time consuming to retransmit
lost packets when it comes to long distance communications. Having bigger CCSDS packets
puts you at risk of losing more data if a packet loss occurs. It then becomes a question of how
much time you can afford to lose, waiting for the lost data to be retransmitted. Large packets
can be used if the data is not critical. The CCSDS max packet capacity is 2​16 which
coincidentally is where our application performs the best. The optimal case would be if the
CCSDS packet were at max capacity. This would make the OTOC packet size 2​16​. The concept
and​ ​implementation​ ​of​ ​OTOC​ ​is​ ​simple​ ​which​ ​makes​ ​it​ ​desirable.

The file size of the chapter 10 file generated from the application decreases in size when the
data length increases. This is easily explained by the fact that a bigger data length also means a
decrease in amounts of packets. If there exists less packets, there exists less overhead. By
doubling the data length, the amount of packets generated gets cut in half, as shown in table 1.
There is a total difference of 106 286 kilobytes between OTOC and FSC when comparing file
sizes. That points to FSC being 33 % smaller than OTOC while also surpassing in in terms of
performance.

The results clearly show that packet size matters. A packet size of 2​6 is by far the least
attractive solution since the overhead generated by each packet is overwhelming compared to
the actual data. The runtime of the application is the lowest in the case of 2​16 and the total
runtime decreases by approximately 62,5 % compared to the runtime of case 2​6​. This is a huge
difference and further proves the point that the amount of data inside the packets matter.
However the difference in runtime between cases 2​14 and 2​19 is not nearly as severe. This does
not​ ​mean​ ​that​ ​the​ ​FSC​ ​is​ ​useless​ ​as​ ​it​ ​could​ ​still​ ​be​ ​used​ ​if​ ​memory​ ​is​ ​a​ ​limited​ ​resource.

31

6.​ ​Conclusion
What packet size proves to be optimal in terms of runtime and memory usage when converting
CCSDS​ ​telemetry​ ​data​ ​to​ ​IRIG-106​ ​Chapter​ ​10​ ​Digital​ ​Recording​ ​Standard?

By developing a conversion application in C# we were able to efficiently take telemetric data
from the CCSDS standard and convert it to PCM data packet according to the IRIG-106
Digital Recording Standard. The packets could then be displayed in ICS own software,
Netview. The case 2​16 bytes comes off as the optimal solution when looking at the runtime of
the application. However the packet size may be increased up to 2​19 ​bytes if memory is a
limited​ ​resource.

32

7.​ ​References
[1]​ ​Telemetry​ ​Group,​ ​Range​ ​Commanders​ ​Council​ ​(2015):​ ​​Digital​ ​Recording​ ​Standard

[2] National Aeronautics and Space Administration, NASA (2003): ​Space Packet Protocol,
CCSDS​ ​133.0-B-1

[3] Li Guojun, Zhang Running, Shi Jian. “​Lossless data compression algorithm for satellite
packet telemetry data,​” .Mechatronic Sciences, Electric Engineering and Computer (MEC),
Proceedings​ ​2013​ ​International​ ​Conference​ ​on.​ ​20-22​ ​Dec.​ ​2013.

[4] National Aeronautics and Space Administration, NASA (2014): Overview of Space
Communications​ ​Protocols,​ ​CCSDS​ ​130.0-G-3

[5] Space Communications and Navigation Office, 7L70 (2010): ​Time Code Formats, CCSDS
301.0-B-4

[6]​ ​Telemetry​ ​Group,​ ​Range​ ​Commanders​ ​Council​ ​(2015):​ ​​Pulse​ ​Code​ ​Modulation​ ​Standards

[7] Telemetry Group, Range Commanders Council (2015): ​Telemetry Attributes Transfer
Standard

[8] E. Paolini, M. Varrella, M. Chiani, and G. P. Calzolari, “​Recovering from packet losses in
CCSDS links​,” in Proc. 4th Adv. Satellite Mobile Syst. Conf., Bologna, Italy, Aug. 2008, pp.
283–288.

33

