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ABSTRACT
Generics offer significant software engineering benefits since
they provide code reuse without compromising type safety.
Thus generics will be added to the Java language in the next
release. While this extension to Java will help programmers
when they are writing new code, it will not help legacy code
unless it is rewritten to use generics. In our experience, man-
ually modifying existing programs to use generics is complex
and can be error prone and labor intensive.

We describe a system, Ilwith, that (i) converts non-generic
classes to generic classes and (ii) rewrites their clients to use
the newly generified classes. Our experiments with a number
of Java container classes show that our system is effective in
modifying legacy code to use generics.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Languages

Keywords
Generics, Parametric Polymorphism, Type Inference

1. INTRODUCTION
Generics, a special case of bounded parametric polymor-

phism [3], are useful for writing data-structures that are
reusable without compromising static type checking. For ex-
ample, a generic list package, parameterized by its element
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type, is not only reusable, but also preserves type informa-
tion via the type parameter. In contrast, a non-generic list
package, as distributed with Java [8], is reusable but oper-
ations on a list return or take parameters of type Object.
Thus clients of the list must explicitly apply narrowing con-
versions, compromising static checking and readability of
code. In addition to the software engineering benefits, gener-
ics can also provide performance benefits. For example, the
increased type information provided by generics can give
compilers more freedom in reordering computations [4, 13].
It is therefore no surprise that many modern languages such
as Eiffel [10], Modula-3 [12], and SML [11] support generics.
Java does not yet support generics but will do so with the
next major release.

In order to get the most benefit from the addition of
generics to Java, programmers will need to modify existing
classes. We show that even for simple classes this process is
complex and thus can be error prone. To help programmers
in rewriting existing classes to use generics we describe and
evaluate a system, Ilwith, that performs two functions: (i) it
analyzes existing Java classes and discovers opportunities for
converting them into generic classes; (ii) it analyzes clients of
non-generic classes and discovers how to modify the clients
to use generic versions of the classes. Programmers may use
the output of Ilwith as a guideline for manually rewriting
classes to use generics or may feed the output into a tool
that performs the rewriting automatically.

Ilwith analyzes the classes it should generify, deriving con-
straints on the types of all variables (instance variables, local
variables, parameters, etc.). These constraints are subset
based [7] and capture all uses and definitions of variables in
the analyzed classes. They determine the range of types one
can use for each variable without violating the type safety of
the analyzed classes. Ilwith uses these constraints to iden-
tify and bound type parameters for the generic classes and
to instantiate any generic classes used by the classes being
analyzed.

While the constraint-based analysis described above pro-
duces Java programs that use generics and are correct with
respect to the Java type system, it is too aggressive: it re-
sults in generic classes with a large number of type parame-
ters even for simple classes. In the worst case, the approach
above can result in generic classes with type parameters for
each variable, method parameter, return type, etc. While
these parameters are all correct, they are not what a pro-
grammer would have chosen: programmers tend to pick one
or a few type parameters for each generic class, not tens or
hundreds of parameters. Thus, to reduce the number of type
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Listing 1: Dependency between the two tasks

class ListWrapper {
void s e t ( Object arg ) {

data . add ( arg ) ;
}

Object get ( ) {
return data . get (0 ) ;

}

L i s t data ;
}

parameters, Ilwith employs a number of coarsening heuris-
tics. We designed our initial set of heuristics based on our
study of how Eiffel programs use generics. However, the set
of heuristics is extensible and we expect to revise them as
we gain experience with our system.

Ilwith is modular: it does not need whole program analy-
sis. For best results, Ilwith needs to analyze a class after all
classes that it depends on have already been converted to
use generics. In the case of cyclic dependencies, Ilwith can
analyze multiple classes at once.

Our experience with Ilwith indicates that it often pro-
duces the same output as an expert programmer. When
Ilwith was unable to produce the same output as our man-
ual effort, we found the cause to be type problems in the
Java class that were masked by weak type checking due to
a lack of generics.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our approach intuitively. Section 3 gives
the language that Ilwith operates upon and its type sys-
tem. Section 4 presents the basic algorithm used in Ilwith.
Section 5 refines our basic algorithm to handle Java-specific
features. Section 6 presents and motivates heuristics for im-
proving the quality of results produced by Ilwith. Section
7 presents our results. Section 8 presents related work and
Section 9 concludes.

2. INTUITION BEHIND OUR APPROACH
In order to convert classes to take advantage of gener-

ics, Ilwith must perform two tasks: (i) convert non-generic
classes to generic classes, which involves determining what
types to make into formal generic parameters and the con-
straints to use for the parameters; (ii) convert clients of a
non-generic class to use the generic version of the class.

While, for ease of explanation, we will treat these tasks
as independent, we must actually perform them simulta-
neously to achieve the best results. For example, consider
the class ListWrapper (Listing 1) which is a simple wrap-
per around the class List. Assume that List is a generic
class that takes a single type parameter determining the
type of its elements. If we determine the type formals for a
generic ListWrapper without considering the type parame-
ters to List, we will have to assume that data.add requires
an Object and data.get returns an Object. On the other
hand, if we determine the type actuals to List without si-
multaneously converting ListWrapper to a generic class, we
will end up instantiating List with type Object. In both
cases we will fail to convert ListWrapper into a generic class.

We now use the class in Listing 2 to intuitively describe

Listing 2: A simple example

class Example {
void s e t ( Object o ) {

data = o ;
}

Object get ( ) {
return data ;

}

Object data ;
}

Listing 3: With replaced type variables

class Example {
void s e t ( τ1 o ) {

data = o ;
}

τ2 get ( ) {
return data ;

}

τ3 data ;
}

our algorithm. Section 4 describes the algorithm more for-
mally.

Ilwith starts by replacing all explicit type references with
fresh type variables (Listing 3). Next, Ilwith generates con-
straints on the type variables based on the body of the class.
For our example, Ilwith produces two constraints: (i) τ1, is
a subtype or equal to τ3 from the statement data = o and
(ii) τ3 is a subtype or equal to τ2 from the statement return
data.

Since generic Java allows type formals to be bound only
from above (i.e., only by supertype constraints), τ1 is the
only variable that Ilwith can turn into a type parameter
for the generic Example class (both τ2 and τ3 are bound
from below). Ilwith next looks at the constraints on τ1 to
determine what bound to use for it. Since there are no non-
trivial constraints on τ1 (it is constrained from above only
by type variables, which Ilwith can fix after it has a type
for τ1) Ilwith makes τ1 into a type formal bound by Object.
Finally, Ilwith picks the types to use for τ2 and τ3. τ2 and τ3

are constrained from below by τ1 (which has been picked to
be a type parameter) and from above by Object (from their
declarations). Thus any type that is a supertype of τ1 and
a subtype of Object will be a legal instantiation for τ2 and
τ3. Since we have already decided not to make τ2 and τ3

into type parameters, we pick Object instead of τ1. Listing
4 shows the output of Ilwith when using this approach.

While the code in Listing 4 is a generic version of the class
in Listing 2, it is not what an expert programmer would
produce. The problem here is the opposite of what program
analyses typically face: the output of the analysis is “too
precise” rather than “not precise enough”. By introduc-
ing subtype constraints for each assignment, Ilwith assumes
that it is desirable to exploit subtype polymorphism when-
ever possible. Ilwith addresses this using heuristics that
selectively introduce imprecision into the analysis. Ilwith is
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Listing 4: The output with the basic algorithm

class Example〈 τ < : Object 〉 {
void s e t ( τ o ) {

data = o ;
}

Object get ( ) {
return data ;

}

Object data ;
}

Listing 5: The desired output

class Example〈 τ < : Object 〉 {
void s e t ( τ o ) {

data = o ;
}

τ get ( ) {
return data ;

}

τ data ;
}

extensible with respect to heuristics; the initial set of heuris-
tics capture our intuition for styles that result in a good
generic class.

By applying a heuristic (Section 6.2) designed to limit the
overzealous use of subtype polymorphism, Ilwith is able to
merge τ1, τ2 and τ3 into a single type variable. After choos-
ing this new type variable as a formal generic parameter and
calculating the bound, Ilwith produces the desired output,
as shown in Listing 5.

3. ANALYZED LANGUAGE AND NOTATION
This section describes the language that we operate on,

the type system that we use, and notation in the rest of the
paper.

3.1 Analyzed Language
Ilwith operates on a simple representation of Java pro-

grams that is at the same level as Java bytecodes except
that it is expression based (as opposed to stack based). Our
representation simplifies the task of our analysis in the fol-
lowing ways: (i) It makes all pointer dereferences (includ-
ing accesses of instance variables of “this”) explicit; (ii) It
breaks down multi-level pointer dereferences into a sequence
of single-level dereferences; (iii) It rewrites statements so
that each statement has at most one dereference; (iv) It
renames variables to be globally unique; (v) It introduces
variables to represent the return value of each method; (vi)
It resolves overloading.

3.2 Type Variables
Our algorithm starts by substituting a type variable for

every Java type in the program. Ilwith uses two forms of
type variables. Since the form of the type variables affects
the precision of our analysis we describe them in some detail
here.

We use τ(x,V ) to represent the type parameter that will
be passed to V in the declaration of x. For example, let’s
suppose x is declared to be of type List〈. . . 〉 and the generic
type List takes a single type parameter called E. Then τ(x,E)

is the type parameter passed to List in the declaration of
x.

The above notation is useful if we already know that a
type is generic (e.g., List is generic in the example above).
When Ilwith is analyzing mutually dependent classes, it may
not know that a class is generic until late in the analysis.
Thus, we need the second representation. τ(x,JvK) represents
the type of v, when accessed though x, for example x.v.
JvK maps v to the equivalence class that represents v. An
equivalence class represents all variables that are merged
together (Section 6.2). Since the JvK is rarely needed, we
will often use τ(x,v) as an abbreviation for τ(x,JvK). Also, for
local and instance variables of the class being analyzed, we
will often use the abbreviation τ(a) instead of τ(this,a). We
treat local variables as instance variables.

Our implementation actually uses a slight variation of
the above. To see why, consider the expressions x.v.a and
y.v.a. Our type names can represent only one level of deref-
erence (e.g., τ(v,a)) and thus would not be able to distinguish
between the types of x.v.a and y.v.a. Our implementation
essentially chains type variables to precisely represent the
type of variables reached with a long access path.

3.3 Types Used by our Analysis
Our analysis needs to be able to find the unique lowest-

common supertype and unique greatest-common subtype of
two types. In Java, due to interfaces, it is not always pos-
sible to determine the non-trivial (i.e., not Object) lowest-
common supertype of two types. Thus, we use a variant of
the Java type system in which any two types have a unique
lowest-common supertype and greatest common subtype. Il-
with’s types include a powerset of all Java classes in the
classes being analyzed.

The mapping from a Java type, T1 to an Ilwith type is the
smallest set of types that includes T1 and all its supertypes
in the Java type system. As the elements in Ilwith’s type
lattice are sets, the least-common supertype operation is the
intersection of the two sets; the greatest-common subtype
the union of the two sets. It should be clear that there
is always a unique lowest-common supertype and greatest-
common subtype in this type system. Donovan et al. [5]
use a similar type system in their tool, using the term union
type for a set of types.

To see the benefit of Ilwith’s type system, let’s suppose
Ilwith needs to compute the least-common supertype of two
Java classes C1 and C2, both of which implement the inter-
faces I1 and I2. Since there are two common immediate
supertypes of C1 and C2, there is no unique least-common
supertype. In Ilwith’s type system, the C1 and C1 would be
represented by {C1, I1, I2, Object} and {C2, I1, I2, Object}
respectively. In this type system, we can easily compute
the least-common supertype of these types: it is simply the
intersection of the two sets (i.e., {I1, I2, Object}).

Ultimately Ilwith must map its types to the Java types.
However, there is no guarantee that the Ilwith type will
actually exist in the original Java classes being analyzed. If
such a type does not exist, then Ilwith can either choose
an alternative “real” class, e.g., Object (thereby incurring a
loss of precision) or ask the user for help (e.g., the user can
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create a new type).
If a Ilwith type contains a type that has been made generic,

the conversion to a Java type is more complicated. Let’s sup-
pose Ilwith needs to convert the type of the type variable τ(a)

– {Object, Set, SortedSet} – to a Java type. Assume that
SortedType and Set are generic: Set has a formal generic
parameter F1, SortedSet has a formal generic parameter F2
and extends Set〈F2〉. Since SortedSet is the common sub-
type of all types in the type set {Object, Set, SortedSet},
Ilwith picks SortedSet. To instantiate SortedSet Ilwith
takes the least common subtype of the parameters passed
to Set and SortedSet in the declarations of the variables
represented by τ(a) (i.e., τ(a,F1) and τ(a,F2)). In this case
it is valid to intersect the types computed for τ(a,F1) and
τ(a,F2), since during inheritance F2 is the actual for F1. For
example assume that τ(a,F1) is {Object, C1} and τ(a,F2) is
{Object, C2}. The common subtype of these two types, and
thus the type parameter to SortedSet, is {Object, C1, C2}.

3.4 Notational Conventions
We use the following notation in the rest of the paper.
τ(this,JaK), τ(this,X),
τ1, τ2, ρ, µ Type variables
τ(a) Abbreviation for τ(this,JaK)

σ Some Java type
Γ Some type in Generic Java
T Some Java class
X, K, V, E Formal generic parameters
a, b, u, w, x, v, t Variables

4. BASIC ALGORITHM
To illustrate our algorithm, we will use the class in Listing

6 as a running example. At a high level Ilwith works as
follows:

1. Replace all types in the classes to be generified with
type variables (Section 4.1).

2. Generate constraints by applying the constraint gen-
eration rules to the analyzed classes (Section 4.2)

3. Merge all type variables that can be merged without
loss in precision (Section 4.3)

4. Select which type variables will become formal type
parameters (Section 4.4)

5. Calculate bounds for the type parameters (Section 4.5)

6. Instantiate the other type variables (Section 4.6)

The above algorithm works on individual or groups of Java
classes. For best results, a class should be analyzed with or
after all classes that it depends on.

4.1 Replacing Java Types with Type Variables
This step replaces all Java types with type variables. Il-

with uses the naming scheme in Section 3.2 to come up with
the type variables. Listing 7 shows our running example
after replacing Java types with type variables.

4.2 Generating Constraints
Ilwith generates constraints by processing the code of the

analyzed classes. Since Ilwith does not require a whole-
program analysis, some of the references it encounters dur-
ing constraint generation may refer to classes other than the

Listing 6: Running Example

class S {
S next ;
Comparable va l ;
L i s t va l2 ;

void se tVal ( Comparable to ) {
va l = to ;
next . va l = to ;
va l2 . add ( to ) ;

}
Comparable getVal ( ) {

return va l ;
}

} ;

Listing 7: Running example after introducing type variables

class S {
τ(next) next ;
τ(val) va l ;
τ(val2) va l2 ;

void se tVal (τ(to) to ) {
va l = to ;
next . va l = to ;
va l2 . add ( to ) ;

}
τ(getV alRet) getVal ( ) {

return va l ;
}

} ;

ones being analyzed (foreign classes). For this reason, Ilwith
uses two constraint generation strategies: one that involves
only classes in the set of classes currently being analyzed
and the other that involves a foreign class.

Recall that our representation guarantees that each state-
ment has at most one dereference (i.e., access to a field).
We do not consider accesses to local variables and instance
variables of “this” as a dereference. We use the following
decision procedure for determining which set of constraint
generation rules to use for a given statement:

• If the statement explicitly refers to a Java type (e.g.,
assigns a string literal or is an invocation of “new”)
use the rules in Section 4.2.1.

• If the type of the variable dereferenced is in the set of
currently analyzed classes, use the rules described in
Section 4.2.2. If there is no dereference expression in
the statement (i.e., only local variables and instance
variables of “this” are accessed), also apply these rules
after inserting dereferences of this as necessary to
match the rules. As τ(this,x) is the same as τ(x) we
are free to use whichever version is more convenient
for a constraint generation rule if more than one is
applicable.

• If the type of the variable dereferenced is a foreign
class, use the rules in Section 4.2.3
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a = new T()

T <: τ(a)

a = ”〈String〉”
String <: τ(a)

Definition 1: Constraints due to explicit type references

Listing 8: A class benefiting from distinguishing the variable
used to access it

class Storage {
Object data ;
Storage a , b ;

void do something ( ) {
a . data = new A() ;
b . data = new B( ) ;

}
}

4.2.1 Constraints for Explicit Type References
Definition 1 gives a sampling of the rules for generating

constraints that arise from explicit type references, such as
allocation and assignment of literals. For example, after a

= new T(), we place the constraint that T <: τ(a) (i.e., T is
a subtype of τ(a)). Similarly, after a = "hello", we place
the constraint that String <: τ(a).

4.2.2 Constraints for Accesses to Analyzed Classes
Definition 2 gives the constraint generation rules for ac-

cesses involving only analyzed classes. Note that our type-
name notation qualifies accesses to fields with the variable
used to get to the field (e.g., τ(x,v)). To see the value of this,
consider the example in Listing 8: if we did not distinguish
between the data fields of a and b using type names τ(a,data)

and τ(b,data) we would end up using the same type for the
data fields of all Storage objects, which is clearly imprecise.

4.2.3 Constraints for Accesses to Foreign Classes
If the type of the variable dereferenced is not in the set of

classes being analyzed, and thus of a foreign class, there are
three possibilities:

1. The type of the dereference is a normal Java type (e.g.,
String)

2. The type of the dereference is a formal generic param-
eter of the foreign class.

3. The type of the dereference is an instantiation of a
generic class.

Definition 3 gives the rules for generating the constraints
for the above cases. This definition uses a helper function Ψ
which has three cases, one for each of the possibilities above.
We now describe the three cases in detail.

Constraints for “Normal” Java Types
The first case of Definition 4 gives the constraint generation
rules when the foreign access evaluates to a normal Java
type.

a = x.v x.v : τ(v)

τ(x,v) <: τ(a)

x.v = a x.v : τ(v)

τ(a) <: τ(x,v)

a = x.f(. . . ) x.f : τ(p1), . . . , τ(pm) → τ(fret)

τ(x,fret) <: τ(a)

x.f(a1, . . . , am) x.f : τ(p1), . . . , τ(pm) → τ(fret)

∀n.1≤n≤m : τ(an) <: τ(x,pn)

Definition 2: Constraints for accesses of analyzed classes

a = u.t u.t : Γ
Ψ(a, u, Γ, :>)

u.t = a u.t : Γ
Ψ(a, u, Γ, <:)

a = u.f(. . . ) u.f : Γ1, . . . , Γm → Γ

Ψ(a, u, Γ, :>)

u.f(a1, . . . , an) u.f : Γ1, . . . , Γm → Γ

∀n.1≤n≤m : Ψ(an, u, Γn, <:)

Definition 3: Constraints for dereferenced accesses of foreign
classes

For an example consider a = u.t, where a is a variable in
the analyzed class and t is a String-typed field of a foreign
class. In this case we generate the constraint String <: τ(a).

Constraints for Formal Generic Parameters
The second case of Definition 4 gives the constraint gen-
eration rules when the type of the dereference is a formal
generic parameter of the foreign class.

To see the motivation for this case, imagine that the an-
alyzed class uses a variable u declared to be of type Stack

which has a formal type parameter called E and a method E

top(). Assume now the assignment a = u.top() where a is
a variable in an analyzed class and u declared to be of type
Stack. In this case, we would like to pose the constraint E

<: τ(a). However, this is too imprecise: Consider two un-
related stack variables, u and w. After the assignments a

= u.top() and b = w.top(), we will end up generating the
constraints E <: τ(a) and E <: τ(b). In other words, we are
constraining the types of a and b by the same type of E even
though there is no relationship between a and b.

What we really want to do is to constrain a and b by the
actual type that is passed to E in the declarations of u and w

(e.g., Stack〈Integer〉 w; Stack〈Boolean〉 u;). To do that,
we use a type variable of the form τ(x,E) (Section 3.3). For
example, τ(u,E), and τ(w,E) represent the actual types passed
to the formal E on instantiations for u and w respectively.
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Ψ(a, u, Γ, R) :=



(1) τ(a) R σ Γ is normal type σ
(2) τ(a) R τ(u,X) Γ is formal generic parameter X
(3) τ(a) R σ, Γ is parameterized type σ〈. . . 〉

∀(Y, Γ′) ∈ FormalBindings(Γ) : with Γ′ actual of formal generic parameter Y
τ(a,Y ) R σ′ Γ′ is normal type σ′

τ(a,Y ) R τ(u,X′) Γ′ is formal generic parameter X’

Definition 4: Definition of Ψ

In the example above (a = u.top()) we would generate the
constraint τ(u,E) <: τ(a).

Constraints for Parameterized Classes
The third case of Definition 4 gives the constraint generation
rules when the type of the dereference is an instantiation of
a class.

To see why we need this rule, consider the assignment a =

u.iterator(), with iterator() declared to have the return
type Iterator〈E〉, where E is a formal generic parameter of
the class of u. Moreover, let’s suppose that u.iterator()

returns Iterator〈Integer〉. If we did not have the third
case, we would generate only the constraint Iterator〈. . . 〉
<: τ(a). While this constraint is correct, it does not cap-
ture the relationship between the type parameter passed to
Iterator on a’s declaration and Integer when determining
the type of a (Section 4.6). The third case in Definition
4 explicitly generates the constraint Integer <: τ(a,E) to
capture that relationship.

For ease of explanation the definition of Ψ in Definition 4
is slightly simplified. Specifically, it does not work when a
generic class is instantiated with an instantiation of another
generic class, such as Set〈Iterator〈Integer〉〉. Our system
uses a slight variation of Ψ which uses recursion to handle
such cases.

4.2.4 Constraints for the Running Example
Ilwith generates the following constraints using the rules

in Definition 2: (i) τ(to) <: τ(val) for the statement val =

to; (ii) τ(to) <: τ(next,val) for the statement next.val = to;
and (iii) τ(val) <: τ(getValRet), for the statement return val.

To pick the correct constraint generation rule from Defini-
tion 4 for val2.add(to), we need to examine the declaration
of val2. Assuming that the List used is declared as List〈E〉
with the method void add(E), we will chose rule 2 from Ψ,
as the Γ in our case will be X. Therefore, we will generate
constraint (iv) τ(to) <: τ(val2,E).

4.3 Merging Type Variables
After generating the constraints, Ilwith analyzes the con-

straints and merges type variables that are in a strongly-
connected component of constraints. For example, if we
have the constraints τ1 <: τ2, τ2 <: τ1, we merge τ1 and τ2.

If Ilwith merges two variables τ(this,JaK) and τ(this,JbK) Il-
with considers a and b to be equivalent, that is JaK ≡ JbK.
Once Ilwith merges a and b, it makes sense to also merge the
type variables that refer to JaK with the type variables that
refer to JbK. More specifically, merging JaK and JbK causes
τ(x,JaK) and τ(x,JbK) to be merged.

While the above merging strategy does not result in any
loss in precision, sometimes it may make sense to merge
even when there is a loss in precision. Section 6.2 presents
optional merging strategies that lose precision but may ac-

tually enable Ilwith to produce better overall results.
Our running example does not have any opportunities for

merging.

4.4 Selecting Type Parameters
Parameters to Java generic classes may be bound from

above but not from below. For example, the following could
be a legal declaration for a generic Java class:

class SortedList〈Elt <: Comparable〉

where Elt is the name of the type parameter to SortedList

and Comparable bounds it from above (i.e., any type passed
to Elt must be a subtype of Comparable). Bounding a
type from below (e.g., requiring Elt to be a supertype of
Comparable) does not make much sense and thus Java will
not support it.

Thus, all type variables that are bound only from above
and do not involve primitive types (which cannot be type pa-
rameters in Java) are candidate for type parameters. Using
the basic algorithm, Ilwith converts all such type variables
into type parameters. For our running example, there is
only one type variable that is bound only from above: τ(to).
Thus we select τ(to) to be a type parameter.

Section 6.1 extends this strategy by including optional
heuristics based on “good” programming style.

4.5 Calculating the Bounds
To determine the bound on a type parameter, Ilwith takes

the greatest common subtype of (i) all concrete (i.e., not
type variable) types that constrain the type parameter; and
(ii) the declared types of all variables represented by the
type parameter. This greatest-common subtype becomes
the constraint on the type parameter. For example, if the
constraints on τ1 are τ1 <: String and τ1 <: τ2, and the
declared type of the variable represented by τ1 is Object,
Ilwith determines the bound for the type parameter τ1 by
picking the common subtype of String and Object. Once
Ilwith computes the bound, it can fix the remaining type
variables (e.g., τ2) based on the calculated bounds.

A formal generic parameter generated by this method can
be used as a formal generic parameter with its calculated
bound: As there were no subtype constraints on the original
type variable, it is legal to substitute the formal with any
subtype of the bound or the bound itself during instantiation
of the new generic class. If there had been a statement that
could be invalidated by this – i.e. assigning a concrete value
to a location new represented by the formal – a subtype
constraint would have been imposed on the original type
variable.

To understand the validity of the bound, let’s consider
when it would be invalid. To be invalid, the new formal
generic parameter would need to represent a location that
was originally declared with a subtype of the newly calcu-
lated bound. However, as the bound includes the common
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subtype of all declarations represented by the new formal,
this clearly cannot be the case.

For our running example, we need to calculate the bound
for the one type parameter τ(to). As there are no explicit
constraints on τ(to), we simply take the type of the single
location it represents – Comparable – as a bound.

4.6 Determining Instantiations for Type Vari-
ables

As discussed earlier, we generate type variables (such as
τ(z,a)) to represent the type of various locations in the pro-
gram, including the actual type parameters to pass to generic
classes at their instantiation. Some of these type variables
are chosen by Ilwith to be formal generic parameters. How-
ever, for the remaining type variables, we need to calculate
new types in order to generate a class that will typecheck.
We also need to calculate parameters to pass to allocations of
generic classes. For example, given List x = new List(),
where List is a generic class with a type formal E, we need
to determine the type parameters to pass to the declaration
of x and to the allocation of the List. In this case, both type
parameters are represented by the type variable τ(x,E). The
type variables considered in this section may be constrained
from both above and below.

There are three steps to solving the constraints for a type
variable: (i) find the greatest common subtype of all the
supertype constraints (call it T); (ii) find the least common
supertype of all the subtype constraints (call it U); (iii) any
type on the path from U to T is a legal type to use. To lose
as little information as possible, we pick U provided that it
is a subtype of T. Choosing the most specific type here is
a heuristic based on our intuition. One could, for example,
choose T instead of U or alternately, Ilwith could try out
the various possibilities for instantiations in an attempt to
get at the “best” overall result. It is worth noting that due
to type-unsafe code (Section 7) it may happen that Ilwith
is unable to find any type with which to instantiate a type
variable. In this case, Ilwith asks the user of the system for
feedback. An alternate would be to use raw types [2] as used
by Donovan et al. [5].

We now argue that our method for instantiating type vari-
ables is valid. First, the instantiation for a type variable will
always be a subtype of the declared types of all locations rep-
resented by the type variable. Thus, all uses of the repre-
sented locations will remain valid. Second, the instantiation
for a type variable will always be a supertype of all subtype
constraints (which are caused by assignments to locations
represented by the type variable). Thus, an assignment to
the locations represented by the type variable will remain
valid. Thus, Ilwith’s instantiation of type variables will be
valid in all cases.

For our running example, we need to calculate the types
for the remaining type variables: Most of them (τ(val),
τ(getValRet), τ(next,val), τ(val2,E)) are constrained to be a su-
pertype of τ(to), and thus of Comparable, and subtype of
Comparable due to the declarations. Therefore we can choose
Comparable or τ(to) for each of them. However since earlier
Ilwith had already decided to not make these variables into
type formals, we instantiate them with Comparable instead
of τ(to).

We now need to instantiate τ(val2) whose only constraints
come from its declared type (List〈. . . 〉). Since the declared
type is generic, we need to instantiate it. Thus, we look up

Listing 9: Running example after instantiating type vari-
ables

class S〈X extends Comparable 〉 {
S〈Comparable〉 next ;
Comparable va l ;
L i s t 〈Comparable〉 va l2 ;

void se tVal (X to ) {
va l = to ;
next . va l = to ;
va l2 . add ( to ) ;

}
Comparable getVal ( ) {

return va l ;
}

} ;

Listing 10: The internal per-method polymorphism

class Poly {
stat ic void poly ( Object a , Object b ) {
a = b ;
b = a ;

}

void use ( ) {
Object x , y ;

poly (new A() , x ) ;
poly (new B( ) , y ) ;

}
}

the constraints on τ(val2,E) which represents the type param-
eter passed to E on the declaration of val2. Since τ(val2,E) is
constrained only by its bound (Comparable), we instantiate
the List in the declaration of val2 with Comparable.

Finally, since S is now a generic type, we need to instan-
tiate it in the declaration of next. Since τ(next,to) is the
formal type parameter to S in the declaration of next we
look for constraints on τ(next,to). The only constraint on
τ(next,to) comes from the bound on the formal generic pa-
rameter (i.e., Comparable) and thus we instantiate S with
Comparable in the declaration of next.

The above instantiations give us the representation in
Listing 9. While Listing 9 makes some use of generics, it is
not what a programmer would have produced. The heuris-
tics in Section 6 address the problems with this output.

4.7 Per-Method Polymorphism
Without per-method polymorphism, Ilwith will merge in-

formation from different call sites, resulting in a loss in pre-
cision. Ilwith supports optional per-method polymorphism
for methods of analyzed and non-analyzed classes:

While imposing the constraints on methods belonging to
analyzed classes, Ilwith generates new type variables repre-
senting the arguments and the return value of the method
for each call-site of the method. If the original type variables
are merged, Ilwith will merge the corresponding copies.

To see the benefit of this approach, consider the example
shown in Listing 10. If one choses not to use per-method
polymorphism, Ilwith imposes the constraints τ(x) <: τ(b),
τ(y) <: τ(b), A <: τ(a), and B <: τ(a). Since τ(a) <: τ(b)
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and τ(b) <: τ(a) (from body of poly) τ(a) and τ(b) will be
merged, producing the constraint system τ(x) <: τ(Ja,bK),
τ(y) <: τ(Ja,bK), A <: τ(Ja,bK), B <: τ(Ja,bK). If one now applies
a heuristic that causes these variables to be merged (see Sec-
tion 6.2), x and y would end up being of a common subtype
of A and B, a clearly unacceptable result.

However, if one uses per-method polymorphism the sys-
tem will generate the constraints τ(x) <: τ(b1) and τ(y) <:
τ(b2) as well as A <: τ(a1) and B <: τ(a2). As a merge of
the original variables implies a merge of the correspond-
ing copies, merging τ(a) and τ(b) will produce the constraint
system τ(x) <: τ(Ja1,b2K), τ(y) <: τ(Ja2,b2K), A <: τ(Ja1,b1K),
B <: τ(Ja2,b2K). As there now is no constraint that links τ(x)

and τ(y) together, subsequent application of heuristics will
not degrade the results.

If the polymorphic method resides outside the set of ana-
lyzed classes we can use a simpler approach. As we already
know which parameters of the method have the same type
parameter, we do not need to create copies of the actuals
when calling a polymorphic method. Instead, we can use a
special set of constraint generation rules (Definition 5) that
directly use the generic signature rather than waiting for the
representatives to be merged.

Note that the previous description has treated the fea-
ture as optional. Ilwith normally does not use per-method
polymorphism, as long as it is not explicitly enabled on a
per-method basis. Section 6.4 gives a heuristic that choses
for which methods to use per-method polymorphism.

5. HANDLING FEATURES OF JAVA
We now describe how our algorithm handles some of the

trickier aspects of analyzing Java programs.

5.1 Arrays
Ilwith models arrays as instances of the java.lang.

reflect.Array class, which it treats as a generic class with
one type parameter (X extends Object) representing its el-
ement type. Loads and stores into the array translate into
invocations of the set and get methods with signature void
set(X, int) and X get(int) respectively.

5.2 Public fields
Ilwith does not have access to all uses and modifications

of public instance variables since any class may use or mod-
ify these variables. There are three possibilities for handling
public instance variables: (i) Assume that a public field can
only be of its declared type. This assumption may constrain
the types of other variables in the class. Though sound, this
alternative is too restrictive, since Java programmers, in our
experience, frequently use public fields even in situations
where such broad access is unnecessary; (ii) Assume that a
public field will not be modified from outside the class. This
is potentially unsound. (iii) Perform a whole program analy-
sis (e.g., escape analysis) to figure out how public fields may
be modified outside of their classes. Since whole program
analysis of Java is in general impossible (due to dynamic
class loading) this possibility has limited applicability. For
our experiments we use the second strategy above.

5.3 Interfaces
Since interfaces do not contain any code, Ilwith cannot

directly convert a non-generic interface into a generic inter-
face. Ilwith handles interfaces by analyzing implementations

of the interface. Each type variable of a implementation is
declared to be equal to the type variable representing the
same declaration in the interface. By doing this, the types
in the interface will end up being types and formals that
fulfill all requirements of all implementations. Ilwith uses a
similar approach to convert abstract classes to be generic.

While the approach above works well in practice it is un-
sound (unless we can analyze all possible implementations
of the interface).

5.4 Inheritance
If class S is a subclass of class T, Ilwith treats class S as if it

had a (specially named) field of type T. Method invocations
and variable accesses to ancestor classes are delegated to
this field. Thus, Ilwith can instantiate superclasses in the
same way that it instantiates types for instance and local
variables.

5.5 Native Methods and Reflection
Since native methods are not written in Java, Ilwith can-

not analyze them and therefore assumes the worst case about
them. Since classes rarely call native methods we have not
found the worst case assumption to be a problem in practice.

Ilwith handles some but not all uses of reflection. Consider
for example the use of Object[] newInstance(Class,int)

in java.lang.relect.Array to create a new instance. The
problem here is that Ilwith needs to know the value of the
first argument to newInstance to determine the return type
of newInstance. To handle this situation, we assume that
Class is a generic type and that the signature of newInstance
method is X[] newInstance(Class[X],int). In other words,
newInstance’s return type is the same type with which Class

is parameterized. The, however, does not explain how Class

objects are constructed. Ilwith does this by providing spe-
cial treatment for functions that generate these objects, such
as getClass: When analyzing a invocation such as a =

x.getClass(), Ilwith imposes the constraints Class <: τ(a)

and τ(x) <: τ(a,X). This ensures that the formal type of the
Class object (the X) always has the same type as the value
it is constructed from.

6. COARSENING HEURISTICS
As we saw in Section 4, our algorithm produces results

that are too precise to be useful. In this section we present
heuristics that Ilwith uses to coarsen its results. These
heuristics are based on our study of programming style used
in Eiffel’s generic classes [9]. As such, these heuristics are
not meant to be complete. Users of Ilwith can selectively en-
able or disable the heuristics or extend Ilwith with heuristics
of their own.

Our current set of heuristics are based on the following
observations about the style of the generic code that we
examined:

Style observation 1: Generic classes have a small
number of type parameters and these type parame-
ters are usually unconstrained or constrained with an
abstract class or interface.

Style observation 2: Generic classes use type pa-
rameters only if they give some benefit that cannot be
easily obtained using subtype polymorphism.
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b = f(. . . , a, argn, . . . ) f : . . ., X, σn, · · · → X
τ(a) = τ(b)

f(. . . , a, argn, . . . , b, argm . . . ) f : . . . , X, σn, . . . , X, σm, · · · → σret

τ(a) = τ(b)

Definition 5: The constraints used for per-method polymorphism.

Style observation 3: Generic classes use their type
parameters frequently throughout the class. Moreover,
generic classes commonly have methods with the type
parameter as argument or return type or have instance
variables with the type parameter as its type.

Style observation 4: Type parameters are seldom
used polymorphically inside a class. For example, if
we have a variable whose type is determined by a type
parameter, it is rarely assigned to a variable of a dif-
ferent type.

Style observation 5: Methods such as equals are
usually used to compare objects of the exact same
type.

6.1 Selection Heuristics
These heuristics determine when we use a type variable as

a formal of the generic class. We have two such heuristics.

6.1.1 Selection Heuristic 1
Turn a type variable into a formal of the enclosing generic

class if it fulfills at least one of the following requirements:

• It is used as a parameter type or the return type of at
least two methods of the class.

• It is used as a parameter type and the return type for
at least one method of the class.

• It is used as the type of at least one instance variable
of the class.

The second criterion above is subsumed by the first cri-
terion. However, we include both in our system to provide
users more choices since the second criterion is more picky
than the first.

This heuristic is motivated by style observation 3 (and to
a lesser extent style observation 1).

6.1.2 Selection Heuristic 2
Select a type variable τ(a,X) as a formal if it is a formal of

another type variable γ that has already been selected as a
formal generic parameter and neither τ(a,X), nor any other
variable τ(a,Xn) representing a formal of γ is constrained.
Furthermore, prevent γ from being used as a formal.

To motivate this heuristic, consider the class in Listing
11 and its desired generic version in Listing 12. Without
the above heuristic Ilwith will not produce the output in
Listing 12 because the class does not actually do anything
with data or arg. Instead Ilwith will produce the output
in Listing 13. Using the above heuristic allows Ilwith to
produce the desired output.

Listing 11: Motivation for selection heuristic 2

class Cl i en t {
void s e t ( L i s t arg ) {

data = arg ;
}

L i s t get ( ) {
return data ;

}

L i s t data ;
}

Listing 12: Desired output for Listing 11

class Cl i en t 〈Y < : Object〉 {
void s e t ( L i s t 〈Y〉 arg ) {

data = arg ;
}

L i s t 〈Y〉 get ( ) {
return data ;

}

L i s t 〈Y〉 data ;
}

Listing 13: What Ilwith produces for Listing 11

class Cl i en t 〈X < : L i s t 〈Object〉〉 {
void s e t ( X arg ) {

data = arg ;
}

X get ( ) {
return data ;

}

X data ;
}
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a = x.clone()
τ(a) = τ(x)

x.equals(a)
τ(a) = τ(x)

Definition 6: The constraint generation rules for equals and
clone

Listing 14: An example of the “equals” heuristic

class equalsProblem {
boolean i s S e t ( Object arg ) {

return data . equa l s ( arg ) ;
}

void s e t ( Object arg ) {
data = arg ;

}

Object get ( ) {
return data ;

}

Object data ;
}

6.2 Merging Heuristic
A merging heuristic merges type variables together so that

the combined type variable can be a candidate for being
made into a type parameter.

The heuristic is as follows: Merge two type variables τ1

and τ2, if τ1 <: τ2, and τ1 as well as τ2 are constrained to
be subtypes of the same set of concrete types.

This heuristic is motivated by style observation 4. To see
this, consider again the class of the simple example in List-
ing 2. Without the merging heuristic, Ilwith produces the
class in Listing 3 which is probably not what a programmer
would have written. The set method takes an argument
of type τ and immediately widens it to Object, thus losing
type information. The merging heuristic merges the type
variables corresponding to the types of data, get, and set

and results in the output in Listing 4.

6.3 Constraints for equals and clone

Methods such as equals in Java can take arguments of
any type (as long as it is a class). Thus, one could use
equals to compare objects of completely unrelated types.
However, as stated in style observation 5, it is common for
equals to be used only for the same type as the receiver.
This heuristic forces the type of the argument and receiver
to be the same. Definition 6 gives the constraint generation
rules for equals and clone.

To see the effect of this heuristic consider the class in
Listing 14. Without this heuristic, Ilwith will not discover
any connection between the argument type of isSet and the
argument type of set.

If a class uses equals to compare arguments of different
types, Ilwith will still produce correct but possibly inferior
results with this heuristic. One possibility is for the user to
try both with and without the heuristic and pick the better
result.

6.4 Polymorphic Functions
Java programs frequently use static functions. As these

functions are shared throughout a system, it would be hard
to generate a useful generic representation of a static method
that could be used from all clients, using the many different
actual parameterizations possible. Thus, we use per-method
polymorphism for the static methods.

6.5 Running Example
We had the following constraints for our running example:
(i) τ(to) <: τ(val), (ii) τ(to) <: τ(next,val), (iii) τ(val) <:

τ(getValRet) and (iv) τ(to) <: τ(val2,E).
The merging heuristic merges τ(val) and τ(getValRet). As

both the type variables being merged are of the form τ(this,a),
we need to declare JvalK ≡ JgetValRetK (Section 4.2). As
a result of the merge we get τ(Jval,getValRetK). It is important
to note that, as a result of declaring JvalK ≡ JgetValRetK,
constraint (ii) now becomes τ(to) <: τ(next,Jval,getValRetK).

After performing this merge, we now have the constraint
system: (i) τ(this,to) <: τ(this,Jval,getValRetK), (ii) τ(this,to) <:
τ(next,Jval,getValRetK), (iii) τ(to) <: τ(val2,E).

The merging heuristic is applicable again this time to
τ(this,to) and τ(this,Jval,getValRetK), yielding τ(this,Jval,getValRet,toK).
Having done this, we then can collapse the constraint
τ(this,Jval,getValRet,toK) <: τ(next,Jval,getValRet,toK), ending up with
the type variable τ(Jthis,nextK,Jval,getValRet,toK). The sole re-
maining constraint now is τ(Jthis,nextK,Jval,getValRet,toK) <:
τ(val2,E), which we can merge too. The remaining type vari-
able τ(Jthis,next,val2K,Jval,getValRet,to,EK) clearly fulfills the re-
quirements of the selection heuristic, so we chose to make it
a formal generic parameter.

We now need to calculate the bound for the type formal
to the generic class. As we have no concrete constraints -
other than the declarations of the locations it represents -
we use the bound Comparable.

Finally we need to instantiate the remaining type vari-
ables. As previously, the type variable τ(val2) is uncon-
strained, so the type chosen will be List〈. . . 〉 again. Simi-
larly, we look for τ(val2,E) to determine the type used to in-
stantiate the list. Although we do not find the type variable
itself, we find something that has been declared equivalent
to it: τ(Jthis,next,val2K,Jval,getValRet,to,EK). As this type variable
had been made into a formal generic parameter, we instan-
tiate the List with the newly generated formal parameter,
X.

Finally we need to instantiate S in the declaration of next.
As our formal generic parameter represents the locations
val, getValRet and to, we need to locate the type variable
τ(Jthis,next,val2K,Jval,getValRet,to,EK) to calculate the instantia-
tion. Incidentally, this is exactly the type variable we chose
to make a formal generic parameter - allowing us to simply
chose the formal itself, generating the final program shown
in Listing 15.

7. RESULTS
Ilwith operates on the jimple representation of the Soot

framework [18]. Jimple is a high-level intermediate represen-
tation for Java programs that already provides most of the
simplifications discussed in Section 3.1. The inputs to Ilwith
are one or more compiled Java classes and a description of
classes that are already generic. The output of Ilwith is a
new description, which is a superset of the input file that also
includes information for making the input classes generic.
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Listing 15: Running Example

class S〈X extends Comparable 〉 {
S〈X〉 next ;
X va l ;
L i s t 〈X〉 va l2 ;

void se tVal (X to ) {
va l = to ;
next . va l = to ;
va l2 . add ( to ) ;

}
X getVal ( ) {

return va l ;
}

} ;

Class Signature

ArrayList (Java 1.4) 〈E extends Object〉
Vector (Java 1.4) 〈E extends Object〉
Stack (Java 1.4) 〈E extends Object〉
HashSet (Java 1.4) 〈E extends Object〉
TreeMap (Java 1.4) 〈K, V extends Object〉
HashMap (Java 1.4) 〈K, V extends Object〉
LinkedList (Java 1.4) 〈E extends Object〉
Vector (Antlr) 〈E extends Object〉
LList (Antlr) 〈E extends Object〉

Table 1: Discovered type parameters

7.1 Converting Non-Generic Classes to Generic
Classes

To evaluate Ilwith’s ability in converting non-generic classes
to generic classes, we applied it to several data structures
taken from the Sun Java 1.4 and Antlr class hierarchies.
For all our test classes, Ilwith was fast, taking less than two
minutes on a 2.66 Ghz Pentium 4 workstation with 2 GB of
memory. Table 1 gives the signatures that Ilwith discovers
for classes in the “Class” column. All the discovered sig-
natures are correct and are consistent with what we would
have done manually. For all classes except for TreeMap and
HashMap, Ilwith converted the classes fully automatically.
We discuss the issues with TreeMap and HashMap in the re-
mainder of this section.

For the HashMap, Ilwith initially reported the signature
HashMap〈τ(val) extends HashMap$Entry〈 Object, τ(val) 〉〉,
rather than the expected HashMap〈τ(key), τ(val) extends

Object〉. To find the cause for this output, we instructed
Ilwith to calculate the formals and instantiations for each
type variable before and after each merge. Using this out-
put, it is easy to locate the causes of τ(val)’s strange signa-
ture: One simply locates the first merge after which the cal-
culated bound of τ(key) differs from the desired one. As each
merge is caused by a constraint, which, in turn was gener-
ated by some statement, one then can inspect the statement
that caused the undesired merge. Applying this method, we
found the statement in the HashMap that had imposed the
constraint to be the return e; in the following fragment:

i f ( e == null )
return e ;

i f ( e . hash == hash && eq (k , e . key ) )
return e . va lue ;

The intended behavior of this code is as follows: if the
entry e is null, it should return null; if the entry is non
null and matches the key, k, it should return the value
stored at the entry. Looking at the code we see that rather
than having a return null when the e is null, it returns e
itself. Thus, the code returns values of two different types:
the type of the entry and the type of the value stored in
the entry. This issue is reflected by the output generated by
Ilwith , as choosing the “undesired” bound will not generate
any typing errors. However, if we modify this code to return
the constant null Ilwith produces the expected bound.

After resolving this issue, we found that our system still
did not create a generic parameter for the key of the HashMap.
On investigation we found that the HashMap uses an instance
of the Object class (allocated in the HashMap code) as the
“empty” key. This assignment forced the key’s type to be
a supertype of Object which disqualified it from being a
parameter. After removing the second issue from the class,
Ilwith did discover the desired generic representation of the
HashMap and the dependent classes.

Besides issues similar to the ones for HashMap, we found
additional problems with TreeMap. Ilwith initially reported
a generic signature of TreeMap$Entry〈τ(data)extends

TreeMap$Entry〈. . . 〉〉 for the TreeMap$Entry class. This is
clearly problematic since it would allow us to store only ob-
jects of type TreeMap$Entry in the TreeMap

We found the reason for this signature to be as follows.
Internally, the TreeMap stores key/value pairs inside the
helper class TreeMap$Entry. TreeMap also defines a class
TreeMap$EntryIterator, for iterating over all entries stored
in the tree map. This iterator returns TreeMap$Entry from
its next method. The TreeMap also defines two subtypes of
the EntryIterator, one for iterating over the values stored
in the map and one for iterating over the keys in the map.
Similarly, these iterators return values and keys from their
respective next method. Even though the next methods of
the three iterators return completely unrelated types, the in-
heritance and overriding forces them all to return the same
type. It is worth noting that, although the HashMap uses in-
heritance similarly, it it does not exhibit the above problem,
since the code for HashMap does not mix unrelated types.

Even after we had addressed the above issue in the code
of TreeMap, Ilwith was still unable to infer the desired type
parameters for TreeMap; it inferred the keys of the map to
be of type TreeMap$Entry. The reason for this turned out to
be a method, buildFromSorted, in TreeMap. TreeMap uses
this method as an efficient way to construct a new tree if
sorted data is already available, e.g. in the case of a clone.
buildFromSorted takes an iterator that returns the key/-
value pairs in the correct order for constructing the tree.
However, buildFromSorted also contains special support for
the deserialization of the TreeSet: it enables the iterator to
return both keys and key/value pairs. Thus, Ilwith con-
cludes that the iterator may return either TreeMap$Entry

or Object (from the key) and thus infers the incorrect type
for the key. When we commented out the special support
for TreeSet Ilwith found the desired generic signature for
TreeMap and its dependent classes.

To summarize, Ilwith is effective in converting classes to
use generics. When it failed it was due to weak typing in
the original Java classes. No matter how these classes are
converted to be generic, whether using a tool or manually,
the issues above will have to be fixed.
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Disabled None Merging Selection equals All

ArrayList 1 6 8 1 24
LinkedList 1 5 10 1 48
HashMap 2 6 19 4 99
Table 3: Effectiveness of the heuristics wrt. the number of
discovered type parameters

Disabled None Merging Selection equals All

ArrayList 15 6 16 12 20
LinkedList 32 16 37 28 42
HashMap 2 6 19 4 99
Table 4: Effectiveness of the heuristics wrt. the number of
times a type parameter is used in the class

7.2 Instantiating Generic Classes
Table 2 shows sample instantiations that Ilwith computed

in our benchmark classes. In addition to fields and meth-
ods, entries with extends denote instantiations that were
computed for superclasses. 〈init〉 denotes a signature of a
constructor. All instantiations were correct.

7.3 Effectiveness of Heuristics
Table 3 presents the number of type parameters of the

discovered generic class with different heuristics. Each col-
umn presents the data when one or more of the heuristics is
disabled.1 At two extremes, “None” gives the results of the
default configuration, where no heuristic is disabled, and
“All” gives the results where all of the heuristics are dis-
abled.

Table 4 gives the number of functions and fields that get
their type from a type parameter. From the “None” column
we see that even though the classes have one or two type
parameters, they are used in many places.

From these tables we see that all heuristics offer some
benefit. “equals” offers the least benefit while the merging
and selection heuristics are most beneficial. However, to
achieve the desired result our benchmarks, we had to enable
all the heuristics.

7.4 Complexity of the Problem
Figures 1 and 2 show a more detailed view of the LinkedList

and HashMap test cases. Each node represents an analyzed
class while an edge goes from a class to classes used by that
class.

From these figures we see that even seemingly simple classes,
such as LinkedList, are complicated and use many inner
classes. In the process of analyzing the classes in Table 1 we
analyzed a total of 47 classes (which includes inner classes
and abstract classes). We also see that there are complex
dependencies between classes and there are several strongly-
connected components (indicating circular dependency) in
the two graphs. These circular dependencies validate our
decision to combine the tasks of instantiating classes and
converting non-generic classes to generic classes.

8. RELATED WORK
We are aware of only of three pieces of prior work on con-

verting non-generic Java classes to generic classes. However,

1Due to implementation artifacts we could not disable the
polymorphic functions heuristic completely.

Figure 1: The java.util.LinkedList-test.

Figure 2: The java.util.HashMap-test.

much of the work on type inference, constraint-based anal-
yses, and refactoring is also relevant to our paper.

Duggan [6] describes an analysis for converting Java classes
to use generics. Like our work, Duggan’s approach is based
on type inference. However, unlike us, their analysis does
not help in the instantiation of already generic classes. Also,
unlike us they do not present any experimental results or rec-
ognize the need for incorporating heuristics into their anal-
ysis in order to yield useful results.

Donovan et al. [5], in concurrent work, describe a system
for instantiating already generic classes. Unlike our anal-
ysis, their system does not convert non-generic classes to
generic classes. The analyses used by Donovan et al. are
more aggressive than ours, requiring whole-program points-
to analysis. Donovan et al.’s analysis essentially does the
Cartesian Product whole program analysis [1] to determine
the space of possible solutions and then a type inference that
picks between the possible solutions. Since whole program
analysis is not, in general, feasible for Java programs (with
dynamic class loading) our analysis is more generally ap-
plicable. On the other hand, Donovan et al. also generate
uses of raw types [2] which our analysis does not consider.
It would be worthwhile to try to combine the strengths of
Donovan et al.’s analysis with ours.

Tip et al. [16], also in concurrent work, describes a system
for instantiating generic container classes. Unlike us, Tip
et al. do not try to convert non-generic classes to generic
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Signatures calculated in LinkedList〈E extends Object〉
extends AbstractSequentialList〈E〉

E set(int,E)
boolean addAll(Collection〈E〉)

Array〈E〉 toArray(Array〈E〉)
LinkedList$ListItr〈E〉 listIterator()
LinkedList$Entry〈E〉 addBefore(E,LinkedList$Entry〈E〉
LinkedList$Entry〈E〉 header

Signatures calculated in LinkedList$Entry〈E extends Object〉
〈init〉(E,LinkedList$Entry〈E〉,LinkedList$Entry〈E〉)

element E
LinkedList$Entry〈E〉 next

Signatures calculated in LinkedList$Iterator〈E extends Object〉
extends AbstractList$ListIterator〈E〉
〈init〉(LinkedList〈E〉)

E next()
void set(E)

Signatures calculated in HashMap$EntrySet〈K,V extends Object〉
〈init〉(HashMap〈K,V〉)

void remove(HashMap$Entry〈K,V〉)
HashMap$EntryIterator〈K,V〉 iterator()

Signatures calculated in HashMap$HashIterator〈K,V extends Object〉
〈init〉(HashMap〈K,V〉)

HashMap$Entry〈K,V〉 current

Signatures calculated in HashMap$KeyIterator〈K,V extends Object〉
extends HashIterator〈K,V〉
〈init〉(HashMap〈K,V〉)

K next()

Signatures calculated in HashMap$KeySet〈K,V extends Object〉
〈init〉(HashMap〈K,V〉)

boolean contains(K)
boolean remove(K)

HashMap$KeyIterator〈K,V〉 iterator()

Signatures calculated in HashMap$Entry〈K,V extends Object〉
V getValue()
K getKey()

void recordRemoval( HashMap〈K,V〉)
boolean equals( HashMap$Entry〈K,V〉 )

Signatures calculated in HashMap〈K,V extends Object〉
extends AbstractMap〈K,V〉

void putAll(Map〈K,V〉)
V get(K)
V put(K,V)

void createEntry(int,K,V,int)
HashMap$Entry〈K,V〉 removeEntryForKey(K)

void transfer(Array〈Entry〈K,V〉〉)
Array〈Entry〈K,V〉〉 table

HashMap$KeySet〈K,V〉 keySet()
HashMap$EntrySet〈K,V〉 entrySet()

HashMap$KeyIterator〈K,V〉 newKeyIterator()
HashMap$EntryIterator〈K,V〉 entryIterator()
HashMap$ValueIterator〈K,V〉 newValueIterator()

Signatures calculated in TreeMap〈K,V extends Object〉
void buildFromSorted( int, Iterator〈Map$Entry〈K,V〉〉, IOStream, V)

V put(K,V)
TreeMap$Entry〈K,V〉 parentOf(TreeMap$Entry〈K,V〉)

Signatures calculated in LList〈E extends Object〉
E deleteHead()

LLEnumeration〈E〉 elements
Table 2: Some discovered signatures
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classes. Tip et al.’s approach is similar to Donovan et al.’s
approach in that it starts with the Cartesian Product algo-
rithm. Tip et al.’s approach uses the results of the Cartesian
Product algorithm to identify the calling contexts and does
a type inference that uses the calling context information.

The work on type inference and constraint based analyses
[7, 15, 14] all influenced our work. To some degree our ap-
proach can be considered an application of constraint based
techniques from prior work. Lackwit [14] uses a constraint-
based analysis to detect possible errors in C programs. Lack-
wit identifies variables, based on assignments in the pro-
gram, that must have an identical type and representation.
By examining these types the programmer can detect erro-
neous flows of values. The output generated by Ilwith can
also be used in a manner similar to Lackwit, as seen in the
experimental results. Type inference in Standard ML [11]
also aims at discovering parametric polymorphism in SML
programs. We found that constrained-based type inference
alone was not enough for converting classes to use generics:
we also needed to use heuristics to yield desirable results.

Tip, Kiezun and Bäumer describe an approach to refac-
toring Java programs [17]. The refactorings they describe
including extracting interfaces and moving class members.
The approach used for the refactoring uses type constraints
that are used in a similar fashion to our approach. The
constraint generation and resolution used in our system can
be viewed as a special case of their approach. However,
we demonstrate that constraint generation and resolution
alone is inadequate: one also needs to incorporate heuristics
in order to obtain generic classes that are similar to what
programmers would manually produce.

9. CONCLUSIONS
The next major release of Java will include support for

generic classes. Since generics have software engineering
and performance benefits, programmers may wish to con-
vert their legacy Java code to use generics. To aid in this
task, we describe a system that automatically converts Java
classes to use generics. This conversion has two parts: (i) de-
termining the type parameters and their bounds to use for
a generic version of a non-generic class; and (ii) rewriting
clients of the newly-generic class to pass appropriate type
parameters to the generic class. Our approach handles both
of these tasks using the same basic mechanism, which is
based on type inference. Our system analyzes one strongly
connected component of the class-dependency graph at a
time. Thus, it can be used to convert a non-generic class
to a generic class without knowing anything about clients of
the class. We show that our system is effective in that it usu-
ally produces the same output that an expert programmer
would produce.
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