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ABSTRACT 
Spatiotemporal data are often expressed in terms of granularities 

in a granularity system to indicate the measurement units of the 

data. A granularity system usually consists of a set of granularities 

that share a “common refined granularity” (CRG) to ensure granu-

lar comparison and data conversion within the system. However, 

if data from multiple granularity systems need to be used in a uni-

fied application, it is necessary to extend the data conversion and 

comparison within a granularity system to those for multiple 

granularity systems. This paper proposes a formal framework to 

enable such an extension. The framework involves essentially 

some preconditions and properties for verifying existence of a 

CRG and unifying conversions of incongruous semantics, and 

supports the approach to integrate multiple systems into one pro-

cessing granular interoperation across systems just like in a single 

system. Quantification of uncertainty in granularity conversion is 

also considered to improve the precision of granular comparison. 

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical Design—Data models; 

H.2.8 [Database Management]: Database Applications—Spatial 

databases and GIS; 

General Terms 
Theory; Design 

Keywords 
Spatiotemporal data, multiple granularity systems, granularity 

conversion, granular comparison, system combination 

1. INTRODUCTION 

In this decade where over 80% datasets have spatial features and 
are usually with temporal components [3], the notion of granularity 
has become significant for expressing and exchanging 
spatiotemporal data under specific units of measurement. 

It is a common practice in literature to organize a group of 
granularities in a partial-order set or a lattice [2-5,7,9,11,15], where 
granularities are linked with a partial-order topological relation 
(hereafter linking relation) into a hierarchy set. Two major func-
tions are normally associated with such a set, namely granularity 
conversion and granular comparison [4]. The former enables 
scaling for spatiotemporal data to express the same data in different 
measurement units, while the latter supports the topological or 
statistic analysis on spatially or temporally qualified information. 
These functionalities can be used in applications like multi-scaled 
retrieval, dynamic knowledge extraction [4,6], and in multi-
dimensional databases to enhance various types of queries from big 
spatiotemporal datasets [14,18]. We may term a specific set of 
granularities as a granularity system. 

The relevant literature has implicitly assumed that a single 

granularity system is sufficient for data in an application. Howev-

er, when multiple applications need to be integrated or mashed in-

to one, we may have a scenario where several granularity systems 

are simultaneously used for the data in the same spatial or tem-

poral domain. Such coexistence usually results from different rep-

resentation standards as well as separate data maintenance realms, 

causing heterogeneity in granularities. For example, time can be 

recorded in the solar calendar (a granularity system) and the lunar 

calendar (another granularity system). The government may col-

lect civilian data bound with locations and time, managed sepa-

rately by systems formed respectively with {climatic regions, 

provinces, direct municipalities, streets} and {economic regions, 

cities, districts, business areas}. Datasets can also be indexed by 

different multi-granular structures in different clusters of a dis-

tributed system. In addition, heterogeneity in the linking relations 

is reflected by the existing instances in the literature, such as Fin-

erThan, GroupsInto, Partition, and CoarserThan [2,7,9,11,14,15]. 

A running example given as Example 3.1 in Section 3.2 will fur-

ther illustrate such heterogeneity and subsequent problems. 

Technically, realizing the interoperation of data across multiple 

granularity systems unifies current models from independent rep-

resentation schemas to form a single global schema, essentially 

enabling reasoning and exchange of spatiotemporal data of multi-

ple granularity systems. This will make it possible to reconstitute 

existing applications for new purposes, e.g., to support spatiotem-

poral queries and extraction of knowledge from various data 

sources or spatiotemporal-dependent resources regardless of how 

they are expressed in their respective original granularity systems. 

However, this is a non-trivial problem with several new chal-

lenges to multi-granularity modeling. Besides accepting the sys-

tem heterogeneity in a model, interoperation of data across sys-

tems inevitably requires extending the original in-system granular-

ity conversion and granular comparison [4,9] to their inter-system 

equivalents. Heterogeneity of granularity systems often implies 

incongruous semantics of conversion, and indeterminacy of the 

existence of a common refined granularity (CRG) to support 

granular comparison. There also lacks a way to transform and or-

ganize all the granularities in an explicit unified structure. These 

challenges are currently without sufficient theoretical foundation 

to tackle. 

Moreover, incongruity of linking relations further causes geo-

metric uncertainty to conversion of data across granularity sys-

tems. Such uncertainty, which is not reflected by models in the 

current literature, causes imprecision to both representation and 

statistical analysis for spatiotemporal data. Thus, quantitative cal-

culation of such uncertainty between two granularities aids in pre-

serving the precision of granular data, which also makes it possi-

ble for us to find a certain composition of conversions with the 

least expected distortions when choosing an optimal CRG for 

granular comparison. 

In this paper, we propose a formal framework to extend the 

granularity conversion and granular comparison of spatiotemporal 

data across multiple granularity systems. This framework first 

generalizes coexisting granularity systems to support their hetero-

geneity, and defines a graph model to represent their structure, 

and the semantics and uncertainty of conversions. It also defines 

two constraints for inter-system granularity conversions, namely 

semantic preservation and semantic consistency. We show that 



two granularity systems can be combined, or they have combina-

biliy, only if they are semantically preserved or semantically con-

sistent in addition to globally holding a CRG. An approach is giv-

en to combine multi-systems to a single lattice, where inter-

system conversion and comparison can be processed transparently 

just like in a single system. Quantification of geometric and statis-

tic distortion are also introduced for granularity conversions, so as 

to understand the (im)precision of granular comparison. 
The rest of the paper is organized as follows. In the next section, 

we state the background with related work. In section 3, we model 
the granularity systems and related concepts. The combination of 
granularity systems and granularity conversion are discussed in 
section 4. Section 5 focuses on the uncertainty and common 
refined granularity search problem in granular comparison. In sec-
tion 6, we provide a conceptual evaluation of our approach. And 
we conclude with section 7. 

2. RELATED WORK 

In computer science community, there are different definitions 

of granularities based on their modeling purposes. One common 

definition is the partition of a domain, e.g., the mapping from a 

domain to finite portions [7,9], and similar mapping with given 

semantic notion of “grain-size” in [15]. Some others add graph 

features to a spatial granularity to facilitate reasoning of granular 

data inside the granularity, e.g., the boundary pseudograph [10] 

and the labeled multi-digraph [2,3]. 

However the granularities are defined, most literature orders 

multiple granularities in a hierarchical structure either for multi-

resolution representation, or for multi-scaling datasets. For exam-

ple, the lattice of temporal granularities was proposed by Bettini et 

al in [5], which has later been transplanted to organize spatial 

granularities [4,7,9,11,15], as any of them benefits with a commu-

nal finest unit (i.e. the zero element) of representation and clarifies 

ordering of granularities w.r.t. their fine or coarse degree. Such 

hierarchical organization is also a support for scalable retrieval in 

stratified spatial or spatiotemporal datasets, like the pyramid struc-

ture in LARS [14]. Any instance of such a hierarchical set is a 

granularity system we discuss. 

Usually a partial-order granularity relation associates granulari-

ties in a granularity system uniformly, such as FinerThan regulat-

ed in [7,9], GroupsInto and Partition additively considered in 

[2,4,5]. Based on that, the semantic and property of granularity 

conversion is defined. E.g. geometric congruity and topological 

consistency is guaranteed by Partition lattices, but not by Finer-

Than lattices [9]. Heterogeneity of such linking relations has been 

mentioned in [4]. Although these articles have respectively mod-

eled granularity systems in the same or homeomorphous domains, 

none has considered the coexistence of multiple systems, nor the 

heterogeneity of systems which decides the property and seman-

tics of significant in-system conversions, let along challenges 

when they are extended to inter-system. We accept the heteroge-

neity of multi-systems with a more general model to enable their 

coexistence. 

 Camossi et al has conducted granularity conversion and granu-

lar comparison as the fundamental challenges in current spatio-

temporal multi-granularity research in [4]. In order to perform 

meaningful comparison, inter-granularity data must be converted 

to a CRG [4]. E.g. comparing the sales of two products bounded 

relatively with months and weeks, we are supposed to compare the 

aggregation values with them both refined to days. Thus, to enable 

inter-system granular comparisons, we must verify the existence 

of CRG for any pair of granularities from mult-systems. Due to 

the heterogeneity in granularities and linking relations, corre-

sponding discussion, which is included in the proof of multi-

system combinability, is essential to logically support inter-system 

granular comparison and enable O(1) implementation of such ver-

ification. 

On the other hand, granularity conversion has been studied and 

designed in a few frameworks. Camossi et al [9], Moira et al [17] 

have respectively defined in-system granularity conversion opera-

tions w.r.t. the relation FinerThan, which preserves geometric cor-

rectness and topological consistency, and are compositional. 

Properties vary differently along with the conversion semantics in 

systems defined with other linking relations, e.g. the pyramid 

structure linked with CoveredBy [14]. To extend granularity con-

version, the unpresented problem of semantic preservation and 

consistency are urged to be discussed so as to support the mean-

ingful composition of granularity conversions across systems, 

which we focus on during the discussing of multiple systems 

combinability. 
Moreover, due to finite precision of spatial granularities and 

possible incongruity of geometric properties satisfied by different 
linking relations, granularity conversions can lead to uncertainty 
(more precisely, vagueness [12]), which has been discussed by 
Wang and Liu in [11] with a classification based on granular 
coverage. But no quantization of such uncertainty for the 
granularity conversion is considered in literatures, even though it’s 
essential for granular comparison and related data analysis. Thus 
not only the geometric distortion [4] of granules is uncontrollable, 
but also the imprecision of granular comparison and quantitive 
analysis of granular data that exists among systems and even 
among granularities, cannot be evaluated and controlled. We 
quantify such geometric or statistic distortion, and take the 
expectation of such distortion  as edge-weight in weighted 
granularity graphs. In that way we can evaluate the 
geometric/statistic distortion in conversions and search for the 
optimal common refined granularity (OCRG) which has greatest 
expectation of geometric and statistical precision during granular 
comparison by finding the LCA [16]. 

3. MODELING GRANULARITY SYSTEMS 

To raise against the problem, we begin with the modeling of 
spatial and temporal granularity systems. 

3.1 Granularities and Granularity Relations 

Granularities and granularity relations are the two major con-

stituents of a granularity system. The former provides the units to 

measure or scale dimensional data, and the latter verifies topolog-

ical associations between any pair of granularities. 

A granularity forms with a partition on a Euclidean domain. 

The spatial and temporal granularities are defined as follows.  

Definition 3.1 (Spatial Granularity): A spatial granularity is de-

fined with a mapping GS:N→P(S). 

 SR2 is a spatial extent of the granularity in the spatial do-

main R2, while R is the real number field, and N is the natural 

number field.  P(S) is the power set of S. 

 iϵN, GS(i) is a granule iff GS(i) is not empty. i,jϵN that i≠j, if 

GS(i) and GS(j) are none-empty, then GS(i)∩GS(j)=∅.  

Definition 3.2 (Temporal Granularity): A temporal granularity is 

defined with a mapping GT:N→P(T). 

 TR is the temporal extent of the granularity, while R is the 

real number field, and N is the natural number field. P(T) is 

the power set of  T. 

 iϵN, GT(i) is a granule iff GT(i) is not empty. i,j ϵ N s.t. i<j, 

if GT(i) and GT(j) are none-empty, then each element of GT(i) is 



less than all elements of GT(j). i,j,kϵN s.t. i<j<k, if GT(i) and 

GT(k) are non-empty, then GT(j) is non-empty. 

A spatial granularity divides a spatial extent to finite or denumer-

able disjoint regions called spatial granules, which set the irreso-

luble base units for spatially qualified information. E.g., conti-

nents, nations, and climatic regions form several granularities on 

the world map. Similarly a temporal granularity divides a time ex-

tent to ordered and continuous intervals, known as temporal gran-

ules. E.g., years, months and weeks form temporal granularities 

on the timeline.  

Given a granularity G, we refer G(i) to its ith granule, G(i)o, 

𝝏G(i), G
___

(i) respectively to the interior, boundary and exterior of 

G(i), and |G| to the number of non-empty granules at G. 

     In [3,8] have respectively listed several topological granularity 

relations for spatial granularities. We could classify them into par-

tial-order relations and symmetrical relations. 

Partial-order relations 

GroupsInto(G,H): each granule of H is equal to the union of a 

set of granules of G. The converse is GroupedBy (H,G). 

FinerThan(G,H): each granule of G is contained in one granule 

of H. The converse is CoarserThan(H,G). 

SubGranularity(G,H): for each granule of G, there exists a 

granule in H with the same spatial extent. 

Partition(G,H): G groups into and is finer than H. The converse 

is PartitionedBy(H,G). 

CoveredBy(G,H): each granule of G is covered by some granules 

of H. The converse is Covers(H,G). 

Symmetric relations  

Disjoint(G,H): any granule of G is disjoint with any granule of H.  

Overlap(G,H): some granules of G and H overlap. 

These relations can be adopted for the temporal granularities fol-

lowed by two more partial-order relations defined for time [4,5]. 

GroupsPeriodicallyInto(G,H): G groups into H. ∃n, m ϵ N 

where. n<m and n<|H|, s.t. iϵN, if 
0

( ) ( )
k

r
H i G j r


   and H(i + 

n) ≠∅ then 
0

( ) ( )
k

r
H i n G j r m


    .  

GroupsUniformlyInto: G groups periodically into H, as well as 

that m=1 in the above definition of GroupsPeriodicallyInto. 

These granularity relations are essential to manage the 
granularities in a granularity system. Algorithms to verify the 
satisfaction of each relation can be implemented with topological 
relation reasoning in many spatial database extensions [8]. 

FInerThan

GroupsPeriodicallyInto

GroupsUniformlyInto Partition

GroupsInto

CoveredBy

Overlap ┐Disjoint

Subgranularity

 

Fig. 1. The Hasse diagram of the logical inference of above 

granularity relations (do not include the converse relations) 

    Property 3.1 gives the logical inference of these relations, 

whose transitive closure can be proved complete. Fig.1 shows the 

Hasse diagram for the inference. This is a premise to discuss se-

mantic constraints of granularity conversion later. 

Property 3.1 (Logical Inference of Granularity Relations): Let 

G, H be two granularities, the topological relations from G to H 

follow such logical inferences: 

 GroupsInto(G,H)⊦Overlap (G,H) 

 FinerThan(G,H)⊦CoveredBy(G,H) 

 Partition(G,H)⊦FinerThan(G,H)∧GroupsInto(G,H) 

 FinerThan(G,H)∧GroupsInto(G,H)⊦Partition(G,H) 

 SubGranularity(G,H) ⊦CoveredBy(G,H) 

 CoveredBy(G,H)⊦Overlap(G,H) 

 GroupedBy(G,H)⊦Overlap(G,H) 

 Covers(G,H)⊦Overlap(G,H) 

 CoarserThan(G,H)⊦Covers(G,H) 

 PartitionedBy(G,H)⊦CoarserThan(G,H)∧GroupedBy(G,H) 

 Disjoint(G,H)⊦￢Overlap(G,H) 

 Overlap(G,H)⊦￢Disjoint(G,H) 

 GroupsPeriodicallyInto(G,H)⊦GroupsInto(G,H) 

 GroupsUniformlyInto(G,H)⊦GroupsPeriodicallyInto(G,H) 

3.2 Granularity Systems 

Various granularities are adopted in a granularity system. Many 

literatures organize them as a lattice with a specific granularity re-

lation (linking relation) [4,5,7,9,11,13] as such an algebraic struc-

ture to guarantee the significant granular conversion and compari-

son in a granularity system [4]. We have addressed that, among 

multiple cases of these lattices, the heterogeneity generally lies in 

linking relations as well as granularities incl. identity and zero el-

ements. We hereby generalize above features in our definition. 

Definition 3.3 (Granularity System): A (multi-)granularity sys-

tem is a set of granularities over a domain hierarchically linked 

with a granularity relation. It is defined by the quintuple GS(D, 

{G}, , G0, G1). 

 D: The definition domain of the granularities in GS. 

 {G}: The set of granularities in GS. 

 : The partial-order linking relation that manages the granu-

larities in {G}. It is the granularity relation which forms ({G}, 

) as a partial-order lattice.  

 G0: N→P(D) is the granularity G0 ϵ{G} known as the zero el-

ement, i.e. Gϵ{G}, G0G always holds. 

 G1: N→P(D) is the granularity G1 ϵ{G} known as the identity 

element, i.e.Gϵ{G}, GG1 always holds. 

Over a domain, a group of granularity systems can be constructed 

simultaneously. The notion D-system group is to denote the uni-

versal set of granularity systems on domain D. 

Definition 3.4 (D-system Group): A D-system group ℰD is a 

group of granularity systems over the domain D. 

Several heterogeneous granularity systems are allowed to coexist 

in ℰD. When we discuss multi-system combination and inter-

system conversions, each system involved is from one ℰD. Exam-

ple 3.1 forms a D-system Group with three heterogeneous granu-

larity systems from real-world systems. 

Example 3.1. ℰD={GS1, GS2, GS3} includes three GSs formed 

with granularities fetched respectively from Wikipedia, GeoNames 

and TGN[20] (We modified to better illustrate our problem).  

 GS1 is fetched from Wikipedia’s Places category: Granulari-

ties {g11=Continents, g12=Nations}; the linking relation 

GroupsInto applies as {(g12, g11)}; 

 GS2 is fetched from TGN: Granularities {g21=Subcontinent, 

g22=Climatic regions, g23=Provinces, g24=Districts and coun-

ties}; the linking relation Partition applies as {(g22, g21), (g23, 

g21), (g24, g22), (g24, g23)}; 

 GS3 is fetched from Geonames,: Granularities {g31=Administ-

rative divisions of countries, g32=Populated places, g33=Roads 

and Rail}; the linking relation FinerThan applies as {(g32, g31), 

(g33, g32)}; 



 GroupsInto also applies to granularities across these GSs as 

{(g21, g11), (g22, g12), (g12, g21)}, and FinerThan applies as {(g32, 

g23), (g33, g24)}. 

3.3 Granularity Conversion 

A granularity systems defined above regulates the uniform order 

of granularities. If we scan from G1 to G0 monotonously, the reso-

lution that the granularities express transforms uniformly. The left 

indeterminacy, whether refining or merging such transformation 

causes, is clarified as below. 

Definition 3.5 (Granularity Order): Given two granularities G: 

N→P(S), H: N→P(S) and a linking relation , s.t. GH 

 Refine order: we say G, H has refine order (G refines H) under 

relation , denoted as (G≺H), if , for any subgranularity of G, 

say G’, let H’ be any subgranularity of H s.t. G’H’, |G’|≥
|H’| always holds. 

 Merge order: inversely, we say G, H has merge order (G 

merges into H) under the relation , denoted as (G≻H)., if,  

for above G’ and H’, |H’|≥|G’| always holds. 

This concept classifies granularity relations into two groups, say 

refining relations: {FinerThan, GroupsInto, Partition, CoveredBy, 

GroupsPeriodicallyInto, GroupsUniformlyInto}, and merging re-

lations: {CoarseThan, GroupedBy, PartitionedBy, Covers}. Rela-

tively, we address granularity systems with a linking relation from 

the former group as refining systems, those with one from the lat-

ter group as merging systems. As a merging system can be trans-

formed to a conjugative refining system by inverting its linking 

relation, we discuss refining systems hereafter without loss of 

generality. 

A granularity conversion, which shifts the granular data across 

resolutions, is defined as follow. 

Definition 3.6 (Granularity Conversion): A granularity conver-

sion is a function ConvH→G(H’) to convert a subgranularity H’  

(i.e. subset) of granularity H to granularity G, where G,H satisfy 

GH, and  is a linking relation. For  s.t. either (G≺H) or 

(G≻H) holds, either of the following conversion is allowed. 

 Refine-conversion: If (G≺H), let G’ be the subgranularity of 

G s.t. no other G* G’ satisfies G*H’, then H’ is refined to G 

as G’, denoted as ConvH→G(H’)=G’, which is a total function. 

 Merge-conversion: If (G≻H), and there exists the subgranu-

larity G’ of G s.t. no other G*G’ satisfies G*H’ and no other 

H*H’ satisfies G’H*, then H’ is merged to G as G’, denoted 

as ConvH→G(H’)=G’, which is a partial function. 

In any granularity system, a conversion across GH preserve the 

specific semantics related to . E.g., let  be Partition, then 

ConvH→G({H(1),H(2)}), would return the granules at G whose ex-

tent exactly equals to H(1),H(2). But we only get granules roughly 

covered by H(1), H(2), let  be FinerThan. 

    In-system granularity conversions are compositional, because 

they are defined with the same linking relation. 

Property 3.2 (Compositionality): Given a linking relation , if 

GHI, then ConvH→G(ConvI→H(I’))= ConvI→G(I’) 

Specifically, if GH and no other granularity I exists s.t. GIH, 

we say a conversion across G and H ConvH→G(H’) , is an atom 
conversion, since it cannot be decomposed to a union of 
conversions. Otherwise we say it’s a composed conversion. 

3.4 Weighted Granularity Graph 

A granularity system can be transformed to a weighted granu-

larity graph (WG), defined in Definition 3.7, with which we can 

reduce many problems incl. multi-system combination, reasoning 

of semantic constraints of granularity conversions, quantization of 

geometric or statistic imprecision in granularity conversion and 

granular comparison on graphs. 

Definition 3.7 (Weighted Granularity Graph): A weighted granu-

larity graph WG(V, E, W, L, Mv, V0, V1, R, MS) for a granularity 

system GS(D, {G}, , G0, G1) is an acyclic digraph defined as fol-

lows: 

 V is the set of vertexes representing granularities, Mv:V→{G} 

is a bijection from vertexes to granularities, V0=Mv(G0), 

V1=MV (G1). 

 E is the set of edges, which is the subset of V×V. For each 

eϵE, Mv(t(e)) Mv(s(e)) and no other Gϵ{G} exists s.t. 

Mv(t(e))G and GMv(s(e)) 

 W(e) is edge-weight to denote the gain of a conversion from 

Mv(s(e)) to Mv(t(e)). Its range is set as the real number in [0,1]. 

 L is the label function of edges, L(e)=(W(e), ). 

 R is the label function of linking relation, R(WG)=. 

 MS is the bijection from WG to GS (MS(WG)=GS). 

Subcontinent

ProvincesClimatic

Districts and Counties

Populated places

Roads and rails

Administrative Div.

(1,Partition) (1,Partition)

(1,Partition) (1,Parition)

(0.6,FinerThan)

(0.7,FinerThan)

 

Fig. 2. WGs for GS2 and GS3 of Example 3.1 

The WG has similar property on the creation of edges with a Has-

se diagram of a partial-order set. It is acyclic, and no edge is cre-

ated for relations obtained with transitivity. Specially, it considers 

the semantics of conversion between any pair of adjacent vectors. 

Besides, its edge-weight will be used to represent the uncertainty 

of conversion, which we define in Section 5. Two exemplary 

WGs for GS2 and GS3 of Example 3.1 are shown in Fig. 2, where 

the weight is annotated with numbers in [0,1] to denote the ex-

pected precision of atom granularity conversions. 

At this point, we have provided a general model of granularity 

systems, which allows heterogeneous granularity systems to coex-

ist. Based on this, we can combine multi-systems so as to extend 

inter-system conversion in the next section. 

4. COMBINATION OF GRANULARITY 

SYSTEMS 
The purpose of multi-system combination is to merge multiple 

lattice-based systems from ℰD into a single lattice, so as to extend 

original in-system functionalities of granular conversion and 

granular comparison across multiple systems. However, due to the 

heterogeneity of granularity systems, combination is necessarily 

restricted by the semantics of granularity conversion and feasibil-

ity of granular comparison across original systems.  

We hereby discuss the property combinability, which guaran-

tees significant pre-conditions of inter-system granularity conver-

sion, i.e. semantic preservation and semantic consistency, as well 

as the support of granular comparison. After that, we address the 

approach of multi-system combination. 



4.1 Semantic Preservation and Consistency 

The semantic preservation and semantic consistency of com-

posed atom conversions are defined as follows. 

Definition 4.1 (Semantic Preservation): Let G1..Gn be n (n>2) 

granularities, and k be the linking relations s.t. ∀kϵ[1,n-1], 

GkkGk+1. Let G’ be a subgranularity of G1, the composed conver-

sion from G1 to Gn is semantic preserved if Convn-1
G1→…→Gn 

(G’)1=ConvG1→Gn(G’)1. I.e., the semantics of the first atom con-

version is preserved in the rest atom conversions. 

Definition 4.2 (Semantic Consistency): Let G1..Gn be n (n>2) 

granularities, and k be the linking relations s.t. ∀kϵ[1,n-1], 

GkkGk+1. Let G’ be a subgranularity of G1, the composed conver-

sion from G1 to Gn is semantic consistent if ∃jϵ[1,n-1] s.t. Convn-

1
G1→…→Gn(G’)j=ConvG1→Gn(G’)j. I.e., the uniform semantics can 

be given according with one atom conversion within the composed 

conversions. 

Remark Across multiple systems, semantic preservation directly 

extends the conversion from a granularity in the original system 

to another granularity in another system within its reach with the 

same semantics. While semantic consistency decides a uniform 

semantic for a composed conversion, although it may lose the se-

mantics in the original system. E.g., if we regard a refine-

conversion of granule {g} in a GroupsInto system as to fetching 

all granules in a certain refined granularity that groups into {g}, 

then this illustration still applies to a semantic preserved inter-

system conversion of {g}, but may not apply to a semantic con-

sistent inter-system conversion.  

Thereof, across systems, the former is the requisite for direct 

inheriting of the conversion operation in the original systems, as 

well as their compositionality, even each atom conversion follows 

the original linking relations. The latter is a weaker constraint, 

which is the minimum requirement for the compositionality of 

conversions w.r.t. a universal relation if no other relation that 

hasn’t originally existed in the composition is introduced.  

It is noteworthy that, compositionality of conversions guaran-

teed by semantic consistency is signification, as it is a precondi-

tion to: (1) conformation of any inter-system conversion 

ConvG1→Gn (G’)j with Definition 3.6, and topological consistency 

in conversions [9]; (2) usability of other conversion-based aggre-

gation functions, e.g. Sum, Avg, Max [9], preserving their lineari-

ty w.r.t. conversions; (3) transitivity and path-independence of 

geometric/statistic precision which enables analysis of these 

quantities and their usability as weight of WG for solving OCRG 

problem  (Sect. 5.1); (4) value correctness of composed refine 

conversions as well as efficiency gained by the avoid of multiple 

atom conversions as well as inter-granularity indices.  

The uniformity of linking relation has ensured these constraints 

for in-system conversions. However, when we extend such con-

version to inter-system, semantic preservation and consistency do 

not always hold. Let’s consider Example 4.1: 

Example 4.1 Given granularities G,H in one system, and I in an-

other, as well as I’ as a group of granules in I. 

1. Let GroupsInto(H,I) and GroupsUniformlyInto(G,H) be true. 

2. Let GroupsUniformlyInto(H,I) and GroupsInto(G,H) be true, 

but GroupsUniformlyInto(G,H) be false. 

3. Let FinerThan(H,I) and GroupsInto(G,H) be true, but Parti-
tion(H,I) and Partition(G,H) be false. 

In the first case, the composed conversion from I to G is semantic 

preserved and consistent, because GroupsUniformly-Into(G,H)→ 

GroupsInto(G,H) holds. In the second case, the composed conver-

sion doesn’t preserve the periodicity semantic in conversion from 

I to H, so that ConvH→G(ConvI→H(I’)Grou-psUniformlyInto,G)GroupsInto 

=ConvI→G(I’)GroupsUniformlyInto doesn’t hold. But we can still deduce 

the semantic consistency w.r.t. GroupsInto from ConvH→G(Conv 

I→H(I’)GroupsUniformlyInto,G)GroupsInto=ConvI→G(I’)GroupsInto acc. to the 

inference GroupsUniformlyInto(H,I)→GroupsInto (H,I). As for 

the third, neither of the two semantic constraints holds, since Fin-

erThan and GroupsInto cannot form any mutual deduction acc. to 

Property 3.1. 

    In scenes where granularity systems are used for precise multi-

resolution representation, we have to preserve the semantics of 

conversion in the original system so as not to lose certain proper-

ties of granular data (such as geometric congruity, periodicity, 

etc.), by following Property 4.1. 

Property 4.1 (Semantic Preserved Compositionality): Given two 

linking relations, ', we denote G,G’:GG’├G*G as →*. 

Given granularities G,H,I s.t. GH*I, then ConvH→G(ConvI→H 

(I’)*,G)=Conv I→G(I’)* iff →*. 

Proof (Sufficiency) If →*, then G*H is deduced from GH. 

Thus the second conversion in ConvH→G (ConvI→H(I’)*,G) equals 

to that in ConvH→G(ConvI→H(I’)*,G)* acc. to Definition 3.6. As 

ConvH→G (ConvI→H(I’)*,G)*=ConvI→G(I’)* (property 3.2), we 

have ConvH→G (ConvI→H(I’)*,G)=ConvI→G(I’)*. 

(Necessity) If ConvH→G(ConvI→H(I’)*,G)=ConvI→G(I’)* but 

→* doesn’t hold. Then * doesn’t apply between ConvI→G(I’)* 

and ConvI→H(I’)*. Thus the second conversion in 

ConvH→G(ConvI→H (I’)*, G) conflicts with semantic preservation. 

In that way,  →* must hold. 

While other scenes may require to fulfill only semantic consisten-

cy among conversions so as to guarantee their compositionality, 

by following the condition in the next property. 

Property 4.2 (Semantic Consistent Compositionality): Given two 

linking relations, *. Given granularities G,H,I s.t. GH*I, 

composed conversion from I to G is semantic consistent iff any of 

=*, →* or*→ holds. 

Proof (Sufficiency) Similar to the above proof, no matter which of 

=*, →* or*→ is given, there is always a weakest linking 

relation s.t. the conversions from I to G is semantic consistent 

w.r.t. to that relation.  

(Necessity) We can directly infer the necessity from Definition 

4.2 that, if the composed conversion from I to G is semantic con-

sistent, then one of  and * must deduce the other. 

Above properties can be easily extended for conditions of three or 

more atom conversions via inductive method. They clarify the 

requisite to extend granularity conversion to inter-system regard-

less of the heterogeneity in ℰD. 

4.2 Combinability 

The precondition of multi-system combination is defined as: 

Definition 4.3 (Combinability): Two granularity systems from ℰD 

can be combined to a single system iff  

1. Any refine-conversion in the granularity system is semantic 

preserved and/or semantic consistent. 

2. For any pair of granularities from different systems, a CRG 

exists in the combined system. 

Above requirement 1 enables granularity conversions in a com-



bined system. Thereof, if we guarantee semantic preservation to 

any conversion, we say these systems satisfy semantic preserved 

combinability. Otherwise, inter-system conversions shall be guar-

anteed semantic consistency, thus these systems satisfy semantic 

consistent combinability. If requirement 1 is fulfilled, then re-

quirement 2 enables granular comparison for any granules in a 

combined system. 

For a pair of granularity systems GS, GS’ from ℰD, sufficient-

necessary (SN) condition for them to satisfy semantic preserved 

combinability are given as below. 

Property 4.3 (Semantic Preserved Combinability): Given a pair 

of refining granularity systems GS(D, {G}, , G0, G1) and GS’(D, 

{G}’, ’, G’0, G’1) from ℰD, semantic preserved combinability 

holds between iff one of the follows holds. 

1. G0=G’0  (=’, C1; or ≠’, C2). 

2. =’, while G0 G’0 or G’0 G0 (C3); or =’ and exists a 

third (intermediate) granularity system GS*from ℰD with zero 

element G*
0 s.t. G*

0 G0 and G*
0G’0 (C4).  

3. →’ and G0’G’0; or ’→ and G’0G0; (C5) or exists a 

third (intermediate) system GS*from ℰD having linking relation 

*, s.t. *→ and *→’, and zero element G*
0 s.t. G*

0G0 and  

G*
0’G’0 (C6). 

Proof Since every granularity in a refining system is possible to 

be converted to the zero element, it’s easy to know that existence 

of CRG and semantic preservation between any pair of granulari-

ties holds iff the existence of CRG of G0 and G’0 as well as seman-

tic preservation of inter-system conversion across G0 and G’0 hold. 

Between a pair of granularity systems (GS, GS’) on the same 

domain, following are all possible branches of binary relation-

ships w.r.t. their zero elements and linking relations:  

1. =’: (a) G0=G’0; (b) G0≠ G’0; 

2. ≠’: (a) G0=G’0; (b) G0≠ G’0; 

For above 1, semantic preservation always holds. 

In the condition (a) of above 1, GS and GS’ share the same zero 

element, thus, G0 provides a CRG for any granularities in the two 

systems. Since =’, acc. to property 3.2, conversion towards G0 

is semantic consistent. (C1) 

As for (b) of above 1, if G0 G’0 or G’0 G0, then the granulari-

ty on the left of  is their CRG (C3). Or, G0 and G’0 do not satisfy 

the linking relation, but in an intermediate granularity system 

with zero element G*
0, s.t. G*

0 G0 and G*
0G’0, then a CRG still 

exists in ℰD (C4). Otherwise, the existence of CRG of the two zero 

elements is impossible under such a relationship. 

The next condition (a) of above 2 is similar to condition (a) of 

above 1, where G0 serves as a CRG, and composed conversions to 

G0 are respectively in-system (C2). 

For last branch where ≠’ and G0≠G’0 happen, we can then 

refer to property 3.1. If →’ and G0’G’0 hold, then G0 serves 

as a CRG, and conversions passing G’0 to G0 is semantic pre-

served acc. to Property 4.3. Reversely, if ’→ holds and G’0G0, 

G’0 serves as the CRG with semantic preservation similarly guar-

anteed. (C5) Moreover, if these factors do not holds, but in an in-

termediate system GS* having * as its linking relation and G*
0 as 

its zero element, s.t. *→, *→’, and G*
0G0 and G*

0’G’0. We 

have G*
0 as the CRG, to which any composed conversion is se-

mantic preserved (C6). Otherwise the semantic preservation and 

existence of common refined granularity mustn’t both hold in any 

other condition. 

Above has proved the necessity because C1~C6 have enclosed 

all the four possible binary relationships between GS and GS’. On 

the other hand, if any of C1~C6 holds, we can always provide a 

CRG of the zero elements of GS and GS’, towards which any con-

version is granted semantic preservation. Thus, they must satisfy 

semantic preserved combinability. Thereby sufficiency also holds. 

The SN condition for the semantic consistent combinability is 

given as below. 

Property 4.4 (Semantic Consistent Combinability): Given a pair 

of refining granularity systems GS(D, {G}, , G0, G1) and GS’(D, 

{G}’, ’, G’0, G’1) from ℰD, semantic consistent combinability 

holds between them iff one of the follows holds. 

1. G0=G’0  (=’, C1; or  ≠’, C2). 

2.  Any of =’, →* or*→ holds and either of these relation 

applies between G0 or G’0 (C3); or exists a third (intermediate) 

system GS*from ℰD having linking relation *, s.t. any of (=*, 

*→ or →*) and any of (=*, *→’ or ’→*) hold, and 

zero element G*
0 s.t. either of , *applies from G*

0 to G0 and ei-

ther of ’, *applies from G*
0  to G’0(C4). 

Proof Hint The necessity can be proved by reasoning the cover-

age of C1~C4 on all conditions under all possible branches of bi-

nary relations between (GS, GS’) w.r.t. their zero elements where 

the existence of the CRG of G0 and G’0 as well as conversions to 

that granularity to fulfill semantic consistency w.r.t. Property 4.2,. 

This is similar to the proof of we have given under Property 4.3. 

On the other hand, the sufficiency is easy to be deduced from any 

of C1~C4. 

Algorithms to verify either of the combinability conditions can 
be created as sequential procedures to verify the satisfaction of 
C1~C6 in Property 4.3 or C1~C4 in Property 4.4. Corresponding 
operations, say SPCombinability() and SCCombinability(), are 
within O(1) time complexity with the aid of Property 3.1 and the 
global granularity relation matrix introduced in Section 6. 

4.3 Multi-system Combination 

We can now combine multi-systems from ℰD to a uniform sys-

tem that guarantee correct granular comparison and inter-system 

granularity conversions.  

Note that in ℰD, it’s possible for several closures of combinabil-

ity to coexist, each of which forms a combination. To simplify, we 

specify the combination algorithm in the way of finding and com-

bining other combinable systems to a target. We process the com-

bination in the form of granularity graphs. 

Operations of lattice-based combination can be referred as 

SPCombine(WG, {WG}D) (semantic preserved combination) and 

SCCombine(WG, {WG}D) (semantic consistent combination). In 

fact, the two combination algorithms are logically similar (only 

different in constraints when creating edges between two systems 

acc. with semantic constraints). Exemplarily, we give the algo-

rithm of semantic preserved combination. 

Given a group of WGs of systems in ℰD, denote as {WG}D, and 

a target graph WGϵ{WG}D, the semantic preserved combination 

algorithm is given as Algorithm 4.1, which integrates all combin-

able systems for WG to a single lattice. 

Algorithm 4.1 SPCombine(WG(V, E, W, L, Mv, V0, V1, R, MS), 

{WG}D) 

1: let Vc be the extent of Ms(WG).D ‘a communal V1 for {WG}D 
2: CreateDirectedEdge(Vc, WG.V1) ‘from Vc to V1 
3: WG.V1←Vc 
4: for each WG’ϵ{WG}D do 
5:    if WG’≠WG and SPCombinability(WG, WG’,{WG}D) then 
6:          {WG}D←{WG}D\WG’ 
7:           ClearTags(checked) 
8:          if R(WG)=R(WG’) then 



9:                 DFSCreateEdges(WG.V1, WG’.V1,R(WG),checked,false) 
10:               DFSCreateEdges(WG’.V1, WG.V1,R(WG),checked,false) 
11:         else if R(WG’)→R(WG) then 
12:               DFSCreateEdges(WG.V1, WG’.V1,R(WG),checked,false) 
13:               R(WG)←R(WG’) 
14:         else if R(WG)→R(WG’) then 
15:               DFSCreateEdges(WG’.V1, WG.V1,R(WG’),checked,false) 
16:         else for each WG*ϵ{WG}D do 
17:                if R(WG*)→R(WG) and R(WG*)→R(WG’) then 
18:                      {WG}D←{WG}D\WG* 
19:                       DFSCreateEdges(WG.V1,WG*.V1,R(WG),checked,false) 
20:                       DFSCreateEdges(WG’.V1,WG*.V1,R(WG’),checked,false) 
21:                       R(WG)←R(WG*) 
22:                       continue 
23: for each WG’ϵ{WG}D do 
24:      if Mv(WG.V0)=Mv(WG’.V0) do 
25:             {WG}D←{WG}D\WG’ 
26:            MergeVertex(WG.V0, WG’.V0) 
27:             CreateDirectedEdge(WG.V1,WG’.V1) 
28: return WG.V1 

Algorithm 4.2 is the semantic consistent combination algorithm. 

Algorithm 4.2 SCCombineWG(WG(V, E, W, L, Mv, Me, s, t, Gain, 

V0, V1, R, MS), {WG}D) 

1: let Vc be the extent of Ms(WG).D ‘a communal V1 for {WG}D 
2: CreateDirectedEdge(Vc, WG.V1) ‘from Vc to V1 
3: WG.V1←Vc 
4: for each WG’ϵ{WG}D do 
5:    if WG’≠WG and SCCombinability(WG, WG’,{WG}D) then 
6:         {WG}D←{WG}D\WG’ 
7:          ClearTags(C) 
8:         r←FindLow(R(WG), R(WG’)) ‘Find the weaker Relation 
9:          if RelationApplies(WG.V1, WG’.V1,r) then 
10:                   DFSCreateEdges(WG.V1, WG’.V1,r,C,false) 
11:                   DFSCreateEdges(WG’.V1, WG.V1,r,C,false) 
12:                   R(WG)←r 
13:       else for each WG*ϵ{WG}D do 
14:                   r←FindLow(R(WG), R(WG*)) 
15:                   r’←FindLow(R(WG’), R(WG*)) 
16:                   if RelationApplies(WG.V1, WG*.V1,r) and          Relation-

Applies(WG’.V1, WG*.V1,r’) then 
17:                      {WG}D←{WG}D\WG* 
18:                      DFSCreateEdges(WG.V1,WG*.V1,r,C,false) 
19:                       DFSCreateEdges(WG’.V1,WG*.V1,r’,C,false) 
20:                       R(WG)←FindLow(r,r’) 
21:                       continue 
22: for each WG’ϵ{WG}D do 
23:      if Mv(WG.V0)=Mv(WG’.V0) do 
24:             {WG}D←{WG}D\WG’ 
25:            MergeVertex (WG.V0, WG’.V0) 
26:             CreateDirectedEdge(WG.V1,WG’.V1) 
27: return WG.V1 

Thereof, DFSCreateEdges given as Algorithm 4.3 links the ver-

texes of one system to those of the other to mark any atom relation, 

but acc. with the definition of the granularity graph, no edge is 

created for the relations gained from transitivity. 

Algorithm 4.3 DFSCreateEdges(v, u, , checked[,], foundabove) 

1: found⟵foundbelow⟵created⟵false 
2: checked[v,u]⟵true 
3: if foundabove=false and Mv(u) Mv(v) then 
4:          found⟵true 
5: if (found⋁foundabove=true) and Succ(v)≠∅ then 
6:      for each v’ϵSucc(v) do 
7:              if checked[v,u]=false and Mv(u) Mv(v’) then 
8:                    foundbelow⟵true 
9:                     DFSCreateEdges(v’, u, , true) 
10:            else for each u’ ϵSucc(u) 
11:                          if checked[v’,u’]=false then 

12:                              DFSCreateEdges(v’, u’, , checked,false) 
13:    if foundbelow=false then ‘an atom relation is found 
14:           CreateDirectedEdge(v,u) ‘from v to u 
15:           created⟵true 
16: if created=true and Succ(v)≠∅ and Succ(u)≠∅ then 
17:      for each v’ϵSucc(v) do 
18:           for each u’ ϵSucc(u) 
19:              if checked[v’,u’]=false then 
20:                  DFSCreateEdges(v’, u’, , checked,false) 
21: else if found⋁foundabove=false and Succ(u)≠∅ then 
22:        for each u’ϵSucc(v) do 
23:              if checked[v,u’]=false then 
24:                   DFSCreateEdges(v’, u, , checked,false) 
25: else return 

Remark Algorithm 4.1 scans every WG’ϵ{WG}D, and checks for 

its semantic preserved combinability with WG. Once a combina-

ble WG’ is found, it is combined to WG through one of the possi-

ble branches of the edge creation procedure acc. to any of C1~C6 

it satisfies with WG. E.g., if WG and WG’ share the same seman-

tics of conversion (i.e. R(WG)=R(WG’)), edges are allowed to 

create both from WG to WG’ and from WG’ to WG. Each of such 

branches also decides the semantics of conversion the current WG 

preserves via the inference between R(WG) and R(WG’). This pol-

icy ensures any inter-system route represents a semantic pre-

served conversion.  

Algorithm 4.3 links the vertexes (v and its successors) from one 

system to those (u and its successors) from the other. It uses 

depth-first search. A tag array checked[,] marks if a pair of ver-

texes u,v have been checked. For a v, if a u s.t. uv is found, the 

algorithm will check the successors v’ of v to see if there is any v’ 

s.t. uv’. If no such a v’ is found, an edge is created between u,v. 

Otherwise such check will be recurred to u and successor of v’ 

until that condition is fulfilled. For any check where u and v don’t 

satisfy uv, recursion check will be processed on their successors. 

However, if any pair of u,v have been checked once acc. to 

checked[,], no repeated check will be processed on them and their 

successors. This procedure ensures that only edges for relations 

that are not gained from transitivity are created. Combinability 

guarantees a V0 after each phase of combination, and a VC de-

notes the domain is created as V1. In that way the result is still a 

lattice.  

The last loop (23~27 of SPCombine) deals with a special case 

between two systems, where the linking relation of WG cannot 

form any logical deduction with that of any WG’, but shares the 

equivalent V0 with a WG’. Thus they are combined by merging V0, 

but no other vertexes are linked acc. with the constraint of seman-

tic preservation.  

Overall, let |{WG}D| and each |G| be both O(n) magnitude, 

DFSCreateEdge take O(n2) and SPCombine take O(n3) temporal 

complexity. Above properties also hold for SCCombine. 
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Fig. 3. Graphic depiction for Example 4.2 (a) semantic 

preserved combination (b) semantic consistent combination of 



3 granularity systems 

Example 4.2 Here we combine the systems in Example 3.1. We 

give {WG}D={WG1, WG2, WG3} for ℰD, where WG1, WG2 and 

WG3 shown in Fig.3 are respectively the WGs of GS1, GS2 and 

GS3. The vertexes denotes the granularities with the same sub-

scripts. Recall that across systems, GroupsInto applies as {(g21, 

g11), (g22, g12), (g12, g21)}, and FinerThan applies as {(g32, 

g23), (g33, g24)}, thus we could combine GS2 to GS1 or GS3. 

The allowed SPCombine is depicted as Fig.3(a), where any inter-

system conversion from a granularity in Ms(WG1) to another in 

Ms(WG2) preserves the semantics of GroupsInto originally in 

Ms(WG1). However, Ms(WG3) doesn’t satisfy semantic preserved 

combinability with Ms(WG1) and Ms(WG3). The allowed SCCom-

bine is depicted as Fig.3(b), where the combination process be-

tween GS2 and GS is valid since conversions from GS2 to GS3 

share the semantic consistency w.r.t. FinerThan. 

5. MULTI-GRANULAR COMPARISON 

Due to the incongruity of geometric properties ensured by 
different linking relations, granularity conversion unavoidably 
contains value distortion, causing the imprecision of representation 
and statistic analysis of granular data. 

Object O1 O1 in G1 Refinement in G2
Geometric 
Distortion  

Fig. 4. An object projection in different granularities 

On the other hand, for a pair of granularities in the combined 

system, more than one CRG can exist (e.g. in Fig.3(b), granulari-

ties that V31, V12, V32 and V34
 represent are all CRGs of granulari-

ties respectively represented by V11 and V31 can compare). Select-

ing and converting towards the one common with least expecta-

tion of distortion in conversion can decrease related imprecision 

of comparison. 
In this section we quantify such distortion in conversion, and 

pick the optimal common refined granularity (ORCG) with least 
expectation of distortion to improve granular comparison in 
multiple granularity systems. 

5.1 Geometric and Statistic Distortion 

Distortion of granularity conversion is reflect as in two aspects: 

geometric distortion results from the incongruity of extents by 

some linking relations (such as FinerThan and CoveredBy), caus-

ing a granular object become a vague object (Fig. 4); statistic dis-

tortion results from the loss of data aggregation in a multi-

granularity system.  
To quantify such distortion, we begin with the definition of 

geometric precision (which is the complementary of distortion) of a 
granule in a granularity conversion. 

Definition 5.1 (Granular Geometric Precision): Given granu-

larities G, H and a refining relation  s.t. HG. Let g be a gran-

ule of G, then the degree of granular geometric preservation be-

tween g and its conversion result at H, denote u(g,H’), is defined 

as below (an ‘o’ over an extent denotes its interior area): 
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The degree of inter-granularity precision can be quantified as the 

expectation of granular geometric precision. 

Definition 5.2 (Inter-granularity Precision): Given granularities 

G,H s.t. ConvG→H(G)=H, then the degree of inter-granularity 

precision between G,H, denote U(G,H), is the expectation of 

granular precision defined as below: 

 
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Above definition quantifies the expectation of geometric precision 

when a granular-represented object converts towards a different 

granularity. 

    In databases where a granularity system is used for multi-scale 

data management and aggregation functions [9] is available, the 

precision related to data density, defined as below. 

Definition 5.3 (Data density): Give a dataset E, and a spa-

tial/temporal extent C, the data density ρ(C) is defined as: 

  
 |{ | , } |

o

e e E coveredBy e
C

C

C



  

The ρ-granular precision defined below denotes the ratio of statis-

tic preservation of data bond with a granule (e.g. number of resi-

dents in a block) in granularity conversions. 

Definition 5.4 (ρ-granular precision): Given granularities G, H 

and a refining relation  s.t. HG, let g be a granule of G, and ρ 

be the data density, then the ρ-granular precision between g and 

its conversion result at H, denote uρ(g,H), is defined as below: 
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By computing the expectation of uρ(g,H) on the extent of H, we 

get the ρ-precision between two granularities as below. 

Definition 5.5 (ρ-precision): Given granularities G,H s.t. 

ConvG→H(G)=H, and ρ is the data density function. Then the ρ-

precision between G,H, denote Uρ(G,H), is defined as 

 
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The ρ-precision quantifies the ratio of statistic accuracy when data 

bound with a granule or a scaled portion of dataset (such as a frac-

tion in the pyramid structure of LARS [14]) transform across 

granularities, from what the statistic bias in aggregation functions 

like sum and count [9] is also achieved. 

    Above quantities are unitized. E.g., u(g,H)ϵ(0,1]. u(g,H)=1 iff 

no distortion of the extent of g occurs after conversion. 

For granularity systems of different utilization purposes, we can 

use either inter-granularity precision or ρ-precision as the weight 

on the edges of WG inside the scale of a system, if with their tran-

sitivity and path independence proved. 

Property 5.1 (Transitivity): Given a linking relations, and 

granularities G,H,I s.t. GHI, U(I,H)·U(H,G)=U(I,G) and 

Uρ(I,H)·Uρ(H,G)=Uρ(I,G) are always satisfied. 

Proof The transitivity in conditions where the extents of G,H,I are 

congruity is self-evident (as the U and Uρ identically equal to 1). 

Otherwise, since  is partial-order, the extents of G,H,I must be 

either monotonically increasing or decreasing. For the former, we 

have ∪G(i)o=(∪G(i)o)∩(∪H(i)o) and ∪H(i)o=(∪G(i)o)∪(∪ 
H(i)o), which applies similarly to H and I. As for the latter, we 

have ∪H(i)o=(∪G(i)o)∩(∪H(i)o) and ∪G(i)o=(∪G(i)o)∪ 
(∪H(i)o), which applies similarly to H and I. By substituting them 



into the expanded formula of U(I,H)·U(H,G), we can then deduce 

U(I,H)·U(H,G)=U(I,G) through reduction. The proof for Uρ(I, 

H)·Uρ(H,G)=Uρ(I,G) is exactly the same. 

Property 5.2 (Path-independence): Given a linking relation  

and granularities G,H,H’,I,  s.t. GHI, GH’I and H≠H’. 

U(I,H)·U(H,G)=U(I,H’)·U(H’,G) and Uρ(I,H)·Uρ(H,G)=Uρ(I, 

H’)·Uρ (H’,G) always hold. 

Proof Acc. to Property 5.1, U(I,H’)·U(H’,G)=U(I,G)=U(I, 

H)·U(H,G), and Uρ(I,H’)·Uρ(H’,G)=Uρ(I,G)=Uρ(I,H)·Uρ(H,G). 

Theorem 5.1 given as below extends above properties for granu-

larities across systems and enables U and Uρ, to be used as weight 

on edges across systems created by Algorithm 4.2. 

Theorem 5.1 The transitivity and path-independence applies to 

any conversion denoted by the directed paths across systems in a 

combined granularity graph. 

Proof For any path across two systems, it denotes granularities 

G11G22…nGn. The semantic preservation (consistency) guar-

antee a uniform linking relation 1 (k) between any adjacent pair 

of them, and the conversion on the path is also defined w.r.t 1(k). 

Thus the two properties always hold. 

5.2 Granular comparison 

Conversion towards the optimal common refined granularity, de-

fined as Definition 5.7., enables the comparison of granular data 

from two granularities with the least expectation of geometric dis-

tortion (U) or statistic distortion (Uρ). 

Definition 5.7 (Optimal Common Refined Granularity) Given 

two granularities G,H, then I is the optimal common refined 

granularity if the geometrical mean of the gain of conversion from 

G to I and the gain of conversion from H to I, i.e. (Gain(G, 

I)·Gain(H,I))1/2 is maximum. 

Since we have combined multiple-systems as a weighted granular-

ity graph, and quantified geometric/statistic distortion as weight, 

the search of the optimal common refined granularity can be re-

duced to the LCA problem on a weighted directed acyclic graph. 

An O(n) algorithm [16] for such problem, say FindOCRG(G,G’), 

will be easily implemented by finding the LCA with least prod-

ucts of edge weights via DFS. 

Example 5.1 We compare the sales of product pA in the scope of 

Province g and that of pB in Municipal h. Let G=provinces and 

H=municipals have two common refined granularities I=districts 

and J=blocks in a FinerThan system or combination (blocks can 

cross districts so they are not FinerThan districts). Suppose 

(Uρ(G,I)·Uρ(H,I))1/2<(Uρ(G,J)·Uρ(H,J))1/2, then the database sys-

tem first process FindOCRG(Provinces, Municipals)=J, then it 

computes and compares Sum(ConvG→J (g)FinerThan(sales_pA)) and 

Sum(ConvG→J(g)FinerThan(sales_pB)). 

6. CONCEPTUAL EVALUATION 

In this section we present an overall conceptual evaluation of 

our approach. This work shows the clear goal of leveraging cur-

rent multi-granularity models to a general multi-system scope, 

handling the heterogeneity of granularity systems in existing re-

search work while extending the original in-system granularity 

conversions and granular comparison among them. This problem 

is with uniqueness as well as challenges. 

Our framework uses a classic definition of granularity, i.e. a 

partition mapping of an extent. Though it is known that several 

literatures add graph features to their definition [2,3,10], we do 

not involve such features, as they benefit reasoning of granules 

only inside a granularity but logically cause no difference to the 

exchange among different granularities.  

Granularity conversion and granular comparison, which we 

have extended from in-system to inter-system, are the major func-

tions required to be supported by granularity systems [4]. The 

conversion function here is the general form of other complex 

functions in literatures, such as the granular aggregation functions 

provided in [9]. The granular comparison is the general form 

based on what spatially and temporally qualified granular infor-

mation is compared in applications.  

We have considered the two uncertain factors of granularity 

conversions among systems, i.e. incongruity of semantics and ge-

ometric uncertainty. The two semantic constraints we define, 

namely semantic preservation and consistency, are significant to 

inter-system granularity conversions w.r.t. the incongruity of con-

version function semantics caused by heterogeneity of linking re-

lations. The former preserves the inheritability of in-system con-

versions of original systems. The latter ensures the compositional-

ity of conversions, which is essential for the correctness and usa-

bility of conversions and related aggregation functions as well as 

the weight of WG we define later. 

Another key is the approach of multi-system combination. The 

idea of such combination stands in necessity and effectiveness. It 

is obvious that the requirements of combinability are exactly the 

requirements for the feasibility of all conversions and granular 

comparison between two systems. The semantic preserved and 

semantic consistent combinations support granularity conversions 

and granular comparison for multi-systems in different degrees. 

The former condition benefits in directly inheriting the conversion 

function and its semantics from the original systems as well as the 

auxiliary physical structures (e.g. periodic sets for GroupsPeriodi-

callyInto [19]), while the latter is more generalized to guarantee 

the feasibility of the two interoperations. Though verifying this 

precondition for heterogeneous systems seems complex, the SN 

conditions we proved for combinability require O(1) for verifica-

tion. Utilizing the WG, we give one of the two similar combina-

tion algorithms to conceive the composed lattice we desire. 

Meanwhile, we introduce the quantification of geometric and 

statistic distortion in granularity conversions. The role of this con-

cept lies in three aspects. (1) It measures the uncertainty of con-

versions that semantic-related constraints don’t preserve, esp. 

when semantic preservation are not fulfilled. (2) It gives the basis 

to choose the optimal of multiple CRGs for two granularities so as 

to improve the preciseness of granular comparison. (3) As granu-

larity systems may be used differently either for multi-resolution 

representation or multi-scaled data management, U and Uρ evalu-

ate related expectation of precision in for different application re-

quirements. 

So far as we have made exploration into this fresh problem 

through this paper, there are still challenges remaining in the im-

plementation of relation reasoning and granularity storage. We 

give some instructive strategies against them. 

Granularity Relation Reasoning. Reasoning the satisfaction 

of a granularity relation is the most frequent operation when veri-

fying combinability and combining multi-systems, which occupies 

at least O(n2) time complexity if processed with RCC-based func-

tions [1] in a SDBMS like PostGIS. We can use a Global Granu-

larity Relation Matrix (shown in Fig. 5) to transfer such online 

reasoning offline. Let the lines and columns represent granulari-

ties in ℰD, each block tags the identification number of the strong-

est linking relation applies from its line element to its column el-

ement (null if none applies). To guarantee the soundness of infer-

ence, we import two more relations to the Hasse diagram in Fig.1, 

i.e. GroupsPeriodicallyInto⋀Partition and GroupsUniform-



lyInto⋀Partition. Then the reasoning can be deduced from the tags 

in O(1) acc. to Property 3.1. 

FInerThanGroupsPeriodicallyInto

GroupsUniformlyInto Partition

GroupsInto

GroupsPeriodicallyInto PartitionGroupsUniformlyInto Partition

 
 G1 G2 G3 … 

G1 = FinerThan Partition  

G2 CoaserThan = ∅  

G3 PartitionedBy ∅ =  

…     

Fig. 5. The Extended Hasse Diagram for Refine Relations and 

A Global Granularity Relation Matrix 

Granularity Storage. Strategies can be used to improve con-

version and granular retrieval to avoid online reasoning of the clo-

sureness constraint in a conversion. Let a WG be obtained for a 

combination of granularity systems, by physically mapping the 

stratified WG, a hierarchical index is gained where each granule 

points to the closure of its descendants applying the linking rela-

tion, and each granules in such a closure forms a linked list. Let 

the WG be a C-degree graph, this policy enables O(1) complexity 

for an atom conversion instead of O(n) for online reasoning. On 

the other side, for temporal granularity systems semantic pre-

served combination ensures the inheriting of relation-restricted 

auxiliary structures [19]. 

Application aspects. The issues studied here provide a baseline 

for a branch of emerging applications. To list some: 

1) Spatial Knowledge Integration. The wide demands for in-

teroperating, mapping and fusion spatial data on the Web has led 

to newcomer projects like YAGO2 and GeoKnow [21,24]. How-

ever such state-of-arts process integration of knowledge bases 

based on manually annotated semantics. In that way, to zoom-in 

the knowledge from one level of details (e.g. cities) to another (e.g. 

districts), we will have to manual-ly enumerate all the names from 

the latter to set the belongings to the former. This takes inconceiv-

able labor efforts and is too hard to avoid incorrectness and miss-

ing concepts (we can miss out the Venice district of Los Angeles 

right?). However, the computer builds the association between the 

two levels with FinerThan with correct-ness and ease, and shall 

never miss a detail given the spatial quantities. This mean-ingful 

challenge, i.e. to provide implicit geographical references among 

spatial quanti-ties across sources of divergent representation 

standard, hasn’t been touched yet. Once we enable the conversion 

and comparison among heterogeneous multi-granularity data 

sources and process such integration by way of combining granu-

lari-ty systems, integrating spatial knowledge bases can be pro-

cessed in an automated and computable way, where even other 

quantitive data values associated with these spatial quantities can 

be automatically exchanged through divergent levels of details. 

Our work now studies this non-trivial problem on its principle and 

provides a neces-sary logical-level solution.  

2) High-divergent Time Conversion. Consider the diversity of 

time expression here. A scientist, intelligence analyst, historian, or 

archaeologist may encounter vast temporally qualified infor-

mation of high-divergent time systems, e.g., geological peri-od 

systems (involving eons, eras, periods, and epochs), chronicles of 

different history origins, different calendars [19], and different 

time zones. It’s not difficult to see that a unified time conversion 

system is equivalent to the combination of temporal granu-larity 

systems with heterogeneous linking relations, i.e. GroupsInto sys-

tems as geolog-ical period systems and history chronicle systems, 

GroupsUniformlyInto systems as each calendar, GroupsPeriodi-

callyInto systems as time zones, and among calendars.  

3) Integrated Data Analysis. Scenes are not uncommon these 

days where sources of temporal or spatial data are joined and ana-

lyze together. For some instances, say stock prediction on multiple 

data sources [23], and crime data analysis [22]. Alt-hough multi-

granular operations are proved to be helpful for improving the ef-

ficiency and refining the discovered knowledge in details of inter-

est [3], heterogeneity of gran-ularities have appeared in these ap-

plications, as time representation meets already mentioned diver-

gence, and the condition on the space goes even more complex in 

vast resources getting from crowdsourcing [22]. What makes 

things worse is that these data sources are streams that require 

non-blocking analysis, so that, prepro-cessing is not even availa-

ble to reduce the heterogeniety. Under such circumstances it’s vi-

tal to enable the automatic conversion of granular quantities 

across multiple granularity systems so as to meet the original 

needs.  

4) Querying Multiple Knowledge Bases. When query differ-ent 

knowledge bases, the spatial predicate, which delimits the targets 

to some spatial objects, is likely to be represented in different 

granularity systems either due to the application’s different repre-

sentation criterion, knowledge base’s ontologies, or user’s 

knowledge preference (e.g. to state and county, some users may 

prefer regione and previncia). It is always left to front applications 

or users to deal with the divergent. Applying the inter-system 

conversion in the query plan empowers with the rule-based map-

ping for the spatial predicates among granularity systems, and 

brings along the transparency of query interpretation regardless of 

how the application or user wants to represent the spatial predicate. 

7. CONCLUSION 

In this paper we proposed a formal framework to support spati-

otemporal data conversion and comparison across multiple granu-

larity systems. Based on a general model, we have successfully 

dealt the heterogeneity of granularity systems reflected in litera-

tures, and inducted the rules of semantic preservation and con-

sistency to enable the correctness and inheritability of granularity 

conversions across heterogeneous systems. By studying the binary 

relationships of granularity systems w.r.t. linking relations and ze-

ro elements, we have deduced the SN conditions for two types of 

combinability, and given corresponding combination algorithms 

based on WG. After enabling inter-system conversion and com-

parison, we have quantified the uncertainty among such interoper-

ations. 

Our framework has led us to some possible future work as well 

as some open challenges. We plan to continue on the conceptual 

design and realization of our framework in SDBMS, particularly 

studying implementation of multiple granularity systems in dis-

tributed systems. Implementation of quantization of geometric or 

statistic uncertainty in databases and extending this issue for spa-

tiotemporal granularities [2,3] are also on our list. 
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