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Course organization

» Course material and interaction: use bCourse

» Relevant texts / references:

Convex optimization — Boyd & Vandenberghe (BV)
Introductory lectures on convex optimisation — Nesterov
Nonlinear programming — Bertsekas

Convex Analysis — Rockafellar

Numerical optimization — Nocedal & Wright

Lectures on modern convex optimization — Nemirovski
Optimization for Machine Learning — Sra, Nowozin, Wright
Optimization Models — Calafiore, El Ghaoui (to appear in
November)
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Linear algebra recap



Eigenvalues and Eigenvectors

Def. If A€ C™" and x € C". Consider the equation
Ax = Ax, x#0, XxeC.

If scalar A and vector x satisfy this equation, then X is called an
eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as
(M —A)x=0, x#0.

Thus, A is an eigenvalue, if and only if
det(Al — A) = 0.

’Def. pa(t) := det(t/ — A) is called characteristic polynomial.

’Eigenvalues are roots of characteristic polynomial.




Eigenvalues and Eigenvectors

Theorem Let \q,..., A\, be eigenvalues of A € C™". Then,

Tr(A) =) ai=) X det(A)=]] x

Def. Matrix U € C™" unitary if U*U = I ([U*]; = [g;])

Theorem (Schur factorization). If A € C"" with eigenvalues
A1, ..., Ap, then there is a unitary matrix U € C"*" (i.e., U*U = 1),
such that

U'AU = T = [tj]

is upper triangular with diagonal entries t; = A;.

Corollary. If A*A = AA*, then there exists a unitary U such that
A = UAU*. We will call this the Eigenvector Decomposition.

Proof. A= VTV*, A* = VT*V* so AA*=TT*=T*T = A*A. But
T is upper triangular, so only way for TT* = T* T, some easy but
tedious induction shows that T must be diagonal. Hence, T = A.



Singular value decomposition

Theorem (SVD) Let A € C™*". There are unitaries s.t. U and V
U*AV = Diag(o1,...,0p), p = min(m,n),

where 01 > 05 > ---0p > 0. Usually written as
A= UXV*

left singular vectors U are eigenvectors of AA*
right singular vectors V are eigenvectors of A*A

nonzero singular values o; = \/\;(AA*) = \/\/(A*A)



Positive definite matrices

Def. Let A € R™*" be symmetric, i.e., aj = aj;. Then, A is called
positive definite if

xTAx = Zijx;a,-jxj- >0, Vx#O.

If > replaced by >, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as B’ B

Exercise: Prove this claim. Also prove converse.

‘ Notation: A > 0 (posdef) or A = 0 (semidef) ‘

‘ Amongst most important objects in convex optimization! ‘




Matrix and vector calculus

f(x) Vif(x)
xTa= >oiXiaj a
xTAx = Zijx,-a,-jxj (A+AT)x
log det(X) X1
Tr(XA) = 32, xjaji AT
TI’(XTA) = ZU Xijajj A
Tr(XTAX) (A+AT)X

‘ Easily derived using “brute-force” rules

& Wikipedia
& Suvrit's ancient notes
& Matrix cookbook



http://en.wikipedia.org/wiki/Matrix_calculus
http://people.kyb.tuebingen.mpg.de/suvrit/work/mcal.pdf.gz
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Convex Sets



Convex sets




Convex sets

Def. A set C C R" is called convex, if for any x,y € C, the
line-segment 6x + (1 — @)y (here § > 0) also lies in C.

Combinations

» Convex: 61x + by € C, where 61,0, > 0 and 01 + 6, = 1.
» Linear: if restrictions on 61,6, are dropped

» Conic: if restriction 61 + 0> = 1 is dropped



Convex sets

Theorem (Intersection).
Let C;, G be convex sets. Then, C; N G, is also convex.

Proof. If C; N C; = 0, then true vacuously.

Let x,y € GG N C,. Then, x,y € C; and x,y € C.

But G, G are convex, hence Ox + (1 — )y € G, and also in G.
Thus, O0x + (1 —0)y € Gt N G.

Inductively follows that N”; C; is also convex.



Convex sets — more examples

(psdcone image from convexoptimization.com, Dattorro)

Q Let x1,x0,...,xn € R™". Their convex hull is

Co(Xqy ...y Xm) 1= {ZIH;X; | 6; > O,Zi 0; = 1}.

Let A€ R™*" and b € R™. The set {x | Ax = b} is convex (it
is an affine space over subspace of solutions of Ax = 0).
halfspace {x | a’ x < b}.

polyhedron {x | Ax < b, Cx = d}.

ellipsoid {x | (x — x0) TA(x — x0) < 1}, (A: semidefinite)
probability simplex {x | x >0, . x; = 1}

(¢]
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Ouiz: Prove that these sets are convex.



Convex functions



Convex functions

Def. Function f : | — R on interval | called midpoint convex if

F(22Y) < M, whenever x, y € I.

Read: f of AM is less than or equal to AM of f.

Def. A function f : R” — R is called convex if its domain dom(f)
is a convex set and for any x,y € dom(f) and 6§ >0

f(Ox + (1 —0)y) < 0f(x) + (1 — 0)f(y).

Theorem (J.L.W.V. Jensen). Let f : | — R be continuous. Then, f
is convex if and only if it is midpoint convex.

» Theorem extends to functions f : X C R"” — R. Very useful to
checking convexity of a given function.



Convex functions

FOx+ (1= A)y) < M(X) + (1= Nf(y)



Convex functions




Convex functions

T o=+ (- Ny y

slope PQ < slope PR < slope QR



Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex if and only if dom f is
convex and f(x) > f(y) + (Vf(y), x — y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V2f(x) = 0 at every x € dom f.



Convex functions

» Linear: f(61x + O2y) = 01f(x) + 02f (y) ; 01,02 unrestricted
» Concave: f(Ox + (1 —0)y) > 0f(x)+ (1 —0)f(y)
» Strictly convex: If inequality is strict for x #£ y



Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x;y) is a convex function of x for every y in
some “index set” ), then

f(x) = r;1€a3>}< f(x;y)

is a convex function of x (set ) is arbitrary).

Example Let f : R” — R be convex. Let A € R™" and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify truth of above examples.




Convex functions

Theorem Let ) be a nonempty convex set. Suppose L(x, y) is convex
in (x,y), then,

)= inf Lixy)

is a convex function of x, provided f(x) > —o0.

Proof. Let u,v € domf. Since f(u) = inf, L(u, y), for each € > 0, there
isay €), st f(u)+ 5 isnot the infimum. Thus, L(u,y1) < f(u) + 5.
Similarly, there is y» € Y, such that L(v,ys) < f(v) + 5.
Now we prove that f(Au+ (1 — A)v) < Af(u) + (1 — N)f(v) directly.
FOu+(1=Xv) = inf LQAu+(1—-N)v,y)
yey
LAu+ (1= A)v,Ay1 + (1= N)y2)

AL(u,y1) + (1 = A L(v, y2)
M (u)+ (1= Nf(v) +e

IA A CIA

Since € > 0 is arbitrary, claim follows.



Example: Schur complement

Let A, B, C be matrices such that C = 0, and let

A B

then the Schur complement A— BC~1BT - 0.
Proof. L(x,y) = [x,y]” Z|[x,y] is convex in (x,y) since Z = 0
Observe that f(x) = inf, L(x,y) = x" (A— BC™1BT)x is convex.

(We skipped ahead and solved V, L(x,y) = 0 to minimize).



Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex if and only if dom f is
convex and f(x) > f(y) + (Vf(y), x — y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V2f(x) = 0 at every x € dom f.

& By showing f to be a pointwise max of convex functions

& By showing f : dom(f) — R is convex if and only if its
restriction to any line that intersects dom(f) is convex. That is,
for any x € dom(f) and any v, the function g(t) = f(x + tv) is
convex (on its domain {t | x + tv € dom(f)}).

& See exercises (Ch. 3) in Boyd & Vandenberghe for more ways



Operations preserving
convexity



Operations preserving convexity

Pointwise maximum: f(x) = sup,cy f(y; x)

Conic combination: Let a;,...,a, > 0; let f1,...,f, be convex
functions. Then, f(x) := )" aifi(x) is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f(x) := g(Ax + b), where g is convex.




Operations preserving convexity

Theorem Let f : ; — R and g: I, — R, where range(f) C h. If f
and g are convex, and g is increasing, then g o f is convex on h

Proof. Let x,y € I, and let A € (0,1).
FAx+(1=A)y) < M(x)+(1=Nf(y)
g(f(x+(1=Ay)) < g(Mf(x)+(1-Nf(y))
< Ag(f(x) + (1= Ng(f(y)).

Read Section 3.2.4 of BV for more |




Examples



Quadratic

Let f(x) = xTAx+ b"x+ ¢, where A= 0, b R", and ¢ € R.
What is: V2f(x)?
Vf(x) =2Ax + b, V2f(x) = 2A = 0, hence f is convex.



Indicator

Let Iy be the indicator function for X defined as:

L () 0 ifxedX,
X) =
v oo otherwise.

Note: Iy (x) is convex if and only if X is convex.



Distance to a set

Example Let Y be a convex set. Let x € R"” be some point. The
distance of x to the set ) is defined as

dist(x,¥) = inf lx—y]|.

Because ||x — y|| is jointly convex in (x,y), the function dist(x,))
is a convex function of x.




Norms

Let f : R" — R be a function that satisfies
1. f(x) >0, and f(x) =0 if and only if x = 0 (definiteness)
2. f(Ax) = |A|f(x) for any A € R (positive homogeneity)
3. f(x+y) < f(x)+ f(y) (subadditivity)

Such a function is called a norm. We usually denote norms by ||x||.

’Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.



Vector norms

Example (/2-norm): Let x € R". The Euclidean or ¢»-norm is

Ixlla = (2 x3)"?

Example (¢,-norm): Let p > 1. |[x|, = (>, \x,-|”)1/p

Exercise: Verify that ||x||, is indeed a norm.

’Example (Lso-norm): ||x|[oc = maxi<i<p |Xi

Example (Frobenius-norm): Let A € R™*". The Frobenius norm

of Ais [Allr :== (/25 2% that is, [|Allr = /Tr(A*A).




Mixed norms

Def. Let x € RM T+ T6 he 3 vector partitioned into subvectors
x; € R%, 1<j<G. Let p:= (po,p1,p2,..-,pc), Where p; > 1.
Consider the vector £ := (||x1]|p;, - - , [[XG|lpe)- Then, we define the
mixed-norm of x as

[1X1lp = 11€]lpo-

Example /1 s-norm: Let x be as above.

G
¥l =3 il

This norm is popular in machine learning, statistics.




Matrix Norms

Induced norm

Let A € R™" and let ||-|| be any vector norm. We define an
induced matrix norm as
|| Ax|]
Al == :
||x||;so [ x]]

’Verify that above definition yields a norm.

» Clearly, ||A|| = 0 iff A= 0 (definiteness)

» |[aA| = |a| ||A|l (homogeneity)
A+B A B
> A+ Bl = sup LR < sup LA < jja) 418

Il




Operator norm

Example Let A be any matrix. Then, the operator norm of A is

A
”A”2 = sup || X||2'
Ixllz0 [IX[I2

IAll2 = 0max(A), where omax is the largest singular value of A.

Warning! Generally, largest eigenvalue of a matrix is not a norm!
|A|l1 and ||A||cc—max-abs-column and max-abs-row sums.

|Al|p generally NP-Hard to compute for p ¢ {1,2, 00}

Schatten p-norm: {,-norm of vector of singular value.

Exercise: Let 01 > 09 > --- > 0, > 0 be singular values of a
matrix A € R™*" Prove that

k
1Al =" i(A).

isanorm; 1< k<n.




Dual norms

Def. Let ||-|| be a norm on R". Its dual norm is

Jul. == sup {uTx | x| < 1}.

Exercise: Verify that ||ul|« is a norm.

Exercise: Let 1/p+1/q =1, where p,q > 1. Show that ||-| 4 is
dual to [|-||p. In particular, the ¢>-norm is self-dual.



Misc Convexity



Other forms of convexity

& Log-convex: logf is convex; log-cvx —> cvx;

& Log-concavity: log f concave; not closed under addition!

& Exponentially convex: [f(x; + x;)] = 0, for xi,...,xp

& Operator convex: f(AX + (1 —A)Y) < A(X)+ (1 = N)F(Y)
& Quasiconvex: f(Ax + (1 —Ay)) < max{f(x),f(y)}

& Pseudoconvex: (Vf(y), x—y) >0 = f(x)> f(y)

& Discrete convexity: f : Z" — 7; "convexity + matroid theory.”
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