Convex Optimization

(EE227BT: UC Berkeley)

Lecture 1 (Convex sets and functions)

August 28, 2014

_____ 0 ____

Laurent El Ghaoui (slides by Suvrit Sra)

Course organization

- Course material and interaction: use bCourse
- Relevant texts / references:
 - ♥ Convex optimization Boyd & Vandenberghe (BV)
 - ♥ Introductory lectures on convex optimisation Nesterov
 - Nonlinear programming Bertsekas
 - Convex Analysis Rockafellar
 - ∇ Numerical optimization Nocedal & Wright
 - □ Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
 - Optimization Models Calafiore, El Ghaoui (to appear in November)
- ▶ Instructor: Laurent El Ghaoui (elghaoui@berkeley.edu)
- ► HW + Quizzes (40%); Midterm (30%); Project (30%)
- ► TA: Vu Pham (ptvu@berkeley.edu)
- Office hours: Thu 9-10am (El Ghaoui), TBA (Vu Pham)
- ▶ If you email me, please put **EE227BT** in **Subject:**

Linear algebra recap

Eigenvalues and Eigenvectors

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Consider the equation

$$Ax = \lambda x, \qquad x \neq 0, \quad \lambda \in \mathbb{C}.$$

If scalar λ and vector x satisfy this equation, then λ is called an **eigenvalue** and x and **eigenvector** of A.

Above equation may be rewritten equivalently as

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Thus, λ is an eigenvalue, if and only if

$$\det(\lambda I - A) = 0.$$

Def. $p_A(t) := \det(tI - A)$ is called **characteristic polynomial**.

Eigenvalues are roots of characteristic polynomial.

Eigenvalues and Eigenvectors

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{\mathsf{Tr}}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \qquad \det(A) = \prod_{i} \lambda_{i}.$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^*U = I$ ($[U^*]_{ij} = [\bar{u}_{ij}]$)

Theorem (Schur factorization). If $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ (i.e., $U^*U = I$), such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with diagonal entries $t_{ii} = \lambda_i$.

Corollary. If $A^*A = AA^*$, then there exists a unitary U such that $A = U \wedge U^*$. We will call this the **Eigenvector Decomposition**.

Proof. $A = VTV^*$, $A^* = VT^*V^*$, so $AA^* = TT^* = T^*T = A^*A$. But T is upper triangular, so only way for $TT^* = T^*T$, some easy but tedious induction shows that T must be diagonal. Hence, $T = \Lambda$.

Singular value decomposition

Theorem (SVD) Let $A \in \mathbb{C}^{m \times n}$. There are unitaries s.t. U and V

$$U^*AV = \mathsf{Diag}(\sigma_1, \ldots, \sigma_p), \quad p = \mathsf{min}(m, n),$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$. Usually written as

$$A = U\Sigma V^*$$
.

left singular vectors U are eigenvectors of AA^* **right singular vectors** V are eigenvectors of A^*A nonzero **singular values** $\sigma_i = \sqrt{\lambda_i(AA^*)} = \sqrt{\lambda_i(A^*A)}$

Positive definite matrices

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{ij} = a_{ji}$. Then, A is called **positive definite** if

$$x^T A x = \sum_{ij} x_i a_{ij} x_j > 0, \quad \forall \ x \neq 0.$$

If > replaced by \ge , we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as B^TB

Exercise: Prove this claim. Also prove converse.

Notation: $A \succ 0$ (posdef) or $A \succeq 0$ (semidef)

Amongst most important objects in convex optimization!

Matrix and vector calculus

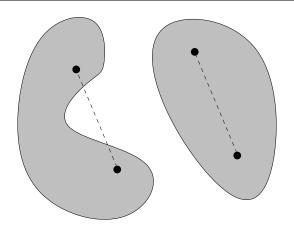
$$\begin{array}{c|c} f(x) & \nabla f(x) \\ \hline x^T a = \sum_i x_i a_i & a \\ x^T A x = \sum_{ij} x_i a_{ij} x_j & (A + A^T) x \\ \log \det(X) & X^{-1} \\ Tr(XA) = \sum_{ij} x_{ij} a_{ji} & A^T \\ Tr(X^T A) = \sum_{ij} x_{ij} a_{ij} & A \\ Tr(X^T A X) & (A + A^T) X \end{array}$$

Easily derived using "brute-force" rules

- Wikipedia
- Suvrit's ancient notes
- Matrix cookbook

Convex Sets

Convex sets



Convex sets

Def. A set $C \subset \mathbb{R}^n$ is called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$ (here $\theta \ge 0$) also lies in C.

Combinations

- ▶ Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 \ge 0$ and $\theta_1 + \theta_2 = 1$.
- ▶ Linear: if restrictions on θ_1, θ_2 are dropped
- ▶ Conic: if restriction $\theta_1 + \theta_2 = 1$ is dropped

Convex sets

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof. If $C_1 \cap C_2 = \emptyset$, then true vacuously.

Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.

But C_1 , C_2 are convex, hence $\theta x + (1 - \theta)y \in C_1$, and also in C_2 .

Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.

Inductively follows that $\bigcap_{i=1}^{m} C_i$ is also convex.

Convex sets – more examples

(psdcone image from convexoptimization.com, Dattorro)

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their **convex hull** is

$$co(x_1,\ldots,x_m):=\left\{\sum_i\theta_ix_i\mid\theta_i\geq 0,\sum_i\theta_i=1\right\}.$$

- \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}$.
- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$
- \heartsuit ellipsoid $\{x \mid (x-x_0)^T A(x-x_0) \leq 1\}$, (A: semidefinite)
- \heartsuit probability simplex $\{x \mid x \geq 0, \sum_i x_i = 1\}$

Quiz: Prove that these sets are convex.

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$
, whenever $x, y \in I$.

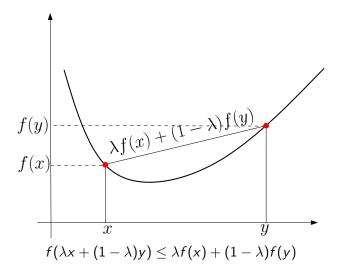
Read: f of AM is less than or equal to AM of f.

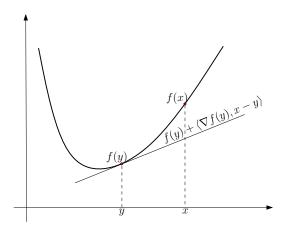
Def. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

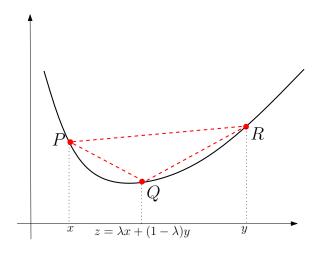
Theorem (J.L.W.V. Jensen). Let $f: I \to \mathbb{R}$ be continuous. Then, f is convex *if and only if* it is midpoint convex.

▶ Theorem extends to functions $f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$. Very useful to checking convexity of a given function.





$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$



 $\mathsf{slope}\ \mathsf{PQ} \le \mathsf{slope}\ \mathsf{PR} \le \mathsf{slope}\ \mathsf{QR}$

Recognizing convex functions

- \spadesuit If f is continuous and midpoint convex, then it is convex.
- \spadesuit If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

- ▶ Linear: $f(\theta_1x + \theta_2y) = \theta_1f(x) + \theta_2f(y)$; θ_1, θ_2 unrestricted
- ► Concave: $f(\theta x + (1 \theta)y) \ge \theta f(x) + (1 \theta)f(y)$
- ▶ Strictly convex: If inequality is strict for $x \neq y$

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify truth of above examples.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let
$$u,v\in \text{dom }f$$
. Since $f(u)=\inf_y L(u,y)$, for each $\epsilon>0$, there is a $y_1\in \mathcal{Y}$, s.t. $f(u)+\frac{\epsilon}{2}$ is not the infimum. Thus, $L(u,y_1)\leq f(u)+\frac{\epsilon}{2}$. Similarly, there is $y_2\in \mathcal{Y}$, such that $L(v,y_2)\leq f(v)+\frac{\epsilon}{2}$. Now we prove that $f(\lambda u+(1-\lambda)v)\leq \lambda f(u)+(1-\lambda)f(v)$ directly.
$$f(\lambda u+(1-\lambda)v)=\inf_{y\in \mathcal{Y}}L(\lambda u+(1-\lambda)v,y)$$

$$\leq L(\lambda u+(1-\lambda)v,\lambda y_1+(1-\lambda)y_2)$$

$$\leq \lambda L(u,y_1)+(1-\lambda)L(v,y_2)$$

$$\leq \lambda f(u)+(1-\lambda)f(v)+\epsilon.$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Example: Schur complement

Let A, B, C be matrices such that $C \succ 0$, and let

$$Z := \begin{vmatrix} A & B \\ B^T & C \end{vmatrix} \succeq 0,$$

then the **Schur complement** $A - BC^{-1}B^T \succeq 0$. **Proof.** $L(x, y) = [x, y]^T Z[x, y]$ is convex in (x, y) since $Z \succeq 0$

Observe that $f(x) = \inf_{y} L(x, y) = x^{T} (A - BC^{-1}B^{T})x$ is convex.

(We skipped ahead and solved $\nabla_y L(x, y) = 0$ to minimize).

Recognizing convex functions

- \spadesuit If f is continuous and midpoint convex, then it is convex.
- \spadesuit If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- \spadesuit By showing f to be a pointwise max of convex functions
- ♠ By showing $f : dom(f) \to \mathbb{R}$ is convex *if and only if* its restriction to **any** line that intersects dom(f) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}$).
- ♠ See exercises (Ch. 3) in Boyd & Vandenberghe for more ways

Operations preserving

convexity

Operations preserving convexity

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Conic combination: Let $a_1, \ldots, a_n \ge 0$; let f_1, \ldots, f_n be convex functions. Then, $f(x) := \sum_i a_i f_i(x)$ is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f(x) := g(Ax + b), where g is convex.

Operations preserving convexity

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let
$$x, y \in I_1$$
, and let $\lambda \in (0, 1)$.
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

$$g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$$

$$\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$$

Read Section 3.2.4 of BV for more

Examples

Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

What is: $\nabla^2 f(x)$?

$$\nabla f(x) = 2Ax + b$$
, $\nabla^2 f(x) = 2A \succeq 0$, hence f is convex.

Indicator

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := egin{cases} 0 & ext{if } x \in \mathcal{X}, \\ \infty & ext{otherwise}. \end{cases}$$

Note: $\mathbb{I}_{\mathcal{X}}(x)$ is convex **if and only if** \mathcal{X} is convex.

Distance to a set

Example Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^n$ be some point. The distance of x to the set \mathcal{Y} is defined as

$$dist(x, \mathcal{Y}) := \inf_{y \in \mathcal{Y}} \quad ||x - y||.$$

Because ||x - y|| is jointly convex in (x, y), the function dist(x, y) is a convex function of x.

Norms

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that satisfies

- 1. $f(x) \ge 0$, and f(x) = 0 if and only if x = 0 (definiteness)
- 2. $f(\lambda x) = |\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- 3. $f(x + y) \le f(x) + f(y)$ (subadditivity)

Such a function is called a *norm*. We usually denote norms by $\|x\|$.

Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.

Vector norms

Example (ℓ_2 -norm): Let $x \in \mathbb{R}^n$. The **Euclidean** or ℓ_2 -norm is $\|x\|_2 = \left(\sum_i x_i^2\right)^{1/2}$

Example
$$(\ell_p\text{-norm})$$
: Let $p \ge 1$. $||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Exercise: Verify that $||x||_p$ is indeed a norm.

Example
$$(\ell_{\infty}\text{-norm})$$
: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n}$. The **Frobenius** norm of A is $||A||_{\mathsf{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$; that is, $||A||_{\mathsf{F}} = \sqrt{\mathsf{Tr}(A^*A)}$.

Mixed norms

Def. Let $x \in \mathbb{R}^{n_1+n_2+\cdots+n_G}$ be a vector partitioned into subvectors $x_j \in \mathbb{R}^{n_j}, \ 1 \leq j \leq G$. Let $\mathbf{p} := (p_0, p_1, p_2, \dots, p_G)$, where $p_j \geq 1$. Consider the vector $\xi := (\|x_1\|_{p_1}, \cdots, \|x_G\|_{p_G})$. Then, we define the mixed-norm of x as $\|x\|_{\mathbf{p}} := \|\xi\|_{p_0}$.

$$||A||\mathbf{p} \cdot - ||S||p_0$$

Example $\ell_{1,a}$ -norm: Let x be as above.

$$||x||_{1,q} := \sum_{i=1}^{G} ||x_i||_q.$$

This norm is popular in machine learning, statistics.

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$||A|| := \sup_{\|x\| \neq 0} \frac{||Ax||}{\|x\|}.$$

Verify that above definition yields a norm.

- ► Clearly, ||A|| = 0 iff A = 0 (definiteness)
- ▶ $\|\alpha A\| = |\alpha| \|A\|$ (homogeneity)
- ▶ $||A + B|| = \sup \frac{||(A+B)x||}{||x||} \le \sup \frac{||Ax|| + ||Bx||}{||x||} \le ||A|| + ||B||.$

Operator norm

Example Let A be any matrix. Then, the **operator norm** of A is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

 $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is **not** a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- Schatten p-norm: ℓ_p -norm of vector of singular value.
- Exercise: Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$||A||_{(k)} := \sum_{i=1}^k \sigma_i(A),$$

is a norm; 1 < k < n.

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is

$$||u||_* := \sup \{ u^T x \mid ||x|| \le 1 \}.$$

Exercise: Verify that $||u||_*$ is a norm.

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Misc Convexity

Other forms of convexity

- **\$\ Log-convex:** $\log f$ is convex; \log -cvx \implies cvx;
- **Log-concavity:** log *f* concave; **not** closed under addition!
- **♣ Exponentially convex:** $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- **♣** Operator convex: $f(\lambda X + (1 \lambda)Y) \leq \lambda f(X) + (1 \lambda)f(Y)$
- **A** Quasiconvex: $f(\lambda x + (1 \lambda y)) \le \max\{f(x), f(y)\}$
- **A** Pseudoconvex: $\langle \nabla f(y), x y \rangle \ge 0 \implies f(x) \ge f(y)$
- **♣ Discrete convexity:** $f: \mathbb{Z}^n \to \mathbb{Z}$; "convexity + matroid theory."