Convex Optimization

(EE227BT: UC Berkeley)

Lecture 1
 (Convex sets and functions)

August 28, 2014

Laurent El Ghaoui (slides by Suvrit Sra)

Course organization

- Course material and interaction: use bCourse
- Relevant texts / references:
\bigcirc Convex optimization - Boyd \& Vandenberghe (BV)
\bigcirc Introductory lectures on convex optimisation - Nesterov
\bigcirc Nonlinear programming - Bertsekas
\checkmark Convex Analysis - Rockafellar
\bigcirc Numerical optimization - Nocedal \& Wright
\bigcirc Lectures on modern convex optimization - Nemirovski
\bigcirc Optimization for Machine Learning - Sra, Nowozin, Wright
\bigcirc Optimization Models - Calafiore, El Ghaoui (to appear in November)
- Instructor: Laurent El Ghaoui (elghaoui@berkeley.edu)
- HW + Quizzes (40\%); Midterm (30\%); Project (30\%)
- TA: Vu Pham (ptvu@berkeley.edu)
- Office hours: Thu 9-10am (El Ghaoui), TBA (Vu Pham)
- If you email me, please put EE227BT in Subject:

Linear algebra recap

Eigenvalues and Eigenvectors

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^{n}$. Consider the equation

$$
A x=\lambda x, \quad x \neq 0, \quad \lambda \in \mathbb{C} .
$$

If scalar λ and vector x satisfy this equation, then λ is called an eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

$$
(\lambda I-A) x=0, \quad x \neq 0
$$

Thus, λ is an eigenvalue, if and only if

$$
\operatorname{det}(\lambda I-A)=0
$$

Def. $p_{A}(t):=\operatorname{det}(t l-A)$ is called characteristic polynomial.

Eigenvalues are roots of characteristic polynomial.

Eigenvalues and Eigenvectors

Theorem Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$
\operatorname{Tr}(A)=\sum_{i} a_{i i}=\sum_{i} \lambda_{i}, \quad \operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^{*} U=I\left(\left[U^{*}\right]_{i j}=\left[\bar{u}_{j i}\right]\right)$
Theorem (Schur factorization). If $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ (i.e., $U^{*} U=I$), such that

$$
U^{*} A U=T=\left[t_{i j}\right]
$$

is upper triangular with diagonal entries $t_{i i}=\lambda_{i}$.
Corollary. If $A^{*} A=A A^{*}$, then there exists a unitary U such that $A=U \wedge U^{*}$. We will call this the Eigenvector Decomposition.

Proof. $A=V T V^{*}, A^{*}=V T^{*} V^{*}$, so $A A^{*}=T T^{*}=T^{*} T=A^{*} A$. But T is upper triangular, so only way for $T T^{*}=T^{*} T$, some easy but tedious induction shows that T must be diagonal. Hence, $T=\Lambda$.

Theorem (SVD) Let $A \in \mathbb{C}^{m \times n}$. There are unitaries s.t. U and V

$$
U^{*} A V=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right), \quad p=\min (m, n)
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{p} \geq 0$. Usually written as

$$
A=U \Sigma V^{*}
$$

left singular vectors U are eigenvectors of $A A^{*}$ right singular vectors V are eigenvectors of $A^{*} A$ nonzero singular values $\sigma_{i}=\sqrt{\lambda_{i}\left(A A^{*}\right)}=\sqrt{\lambda_{i}\left(A^{*} A\right)}$

Positive definite matrices

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{i j}=a_{j i}$. Then, A is called positive definite if

$$
x^{T} A x=\sum_{i j} x_{i} a_{i j} x_{j}>0, \quad \forall x \neq 0
$$

If $>$ replaced by \geq, we call A positive semidefinite.
Theorem A symmetric real matrix is positive semidefinite (positive definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as $B^{T} B$
Exercise: Prove this claim. Also prove converse.
Notation: $A \succ 0$ (posdef) or $A \succeq 0$ (semidef)

Amongst most important objects in convex optimization!

Matrix and vector calculus

$f(x)$	$\nabla f(x)$
$x^{T} a=\sum_{i} x_{i} a_{i}$	a
$x^{T} A x=\sum_{i j} x_{i} a_{i j} x_{j}$	$\left(A+A^{T}\right) x$
$\log \operatorname{det}(X)$	X^{-1}
$\operatorname{Tr}(X A)=\sum_{i j} x_{i j} a_{j i}$	A^{T}
$\operatorname{Tr}\left(X^{T} A\right)=\sum_{i j} x_{i j} a_{i j}$	A
$\operatorname{Tr}\left(X^{T} A X\right)$	$\left(A+A^{T}\right) X$

Easily derived using "brute-force" rules
\% Wikipedia
\& Suvrit's ancient notes
\& Matrix cookbook

Convex Sets

Convex sets

Convex sets

Def. A set $C \subset \mathbb{R}^{n}$ is called convex, if for any $x, y \in C$, the line-segment $\theta x+(1-\theta) y$ (here $\theta \geq 0$) also lies in C.

Combinations

- Convex: $\theta_{1} x+\theta_{2} y \in C$, where $\theta_{1}, \theta_{2} \geq 0$ and $\theta_{1}+\theta_{2}=1$.
- Linear: if restrictions on θ_{1}, θ_{2} are dropped
- Conic: if restriction $\theta_{1}+\theta_{2}=1$ is dropped

Convex sets

Theorem (Intersection).
Let C_{1}, C_{2} be convex sets. Then, $C_{1} \cap C_{2}$ is also convex.
Proof. If $C_{1} \cap C_{2}=\emptyset$, then true vacuously.
Let $x, y \in C_{1} \cap C_{2}$. Then, $x, y \in C_{1}$ and $x, y \in C_{2}$.
But C_{1}, C_{2} are convex, hence $\theta x+(1-\theta) y \in C_{1}$, and also in C_{2}. Thus, $\theta x+(1-\theta) y \in C_{1} \cap C_{2}$.
Inductively follows that $\cap{ }_{i=1}^{m} C_{i}$ is also convex.

Convex sets - more examples

(psdcone image from convexoptimization.com, Dattorro)
\bigcirc Let $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n}$. Their convex hull is

$$
\operatorname{co}\left(x_{1}, \ldots, x_{m}\right):=\left\{\sum_{i} \theta_{i} x_{i} \mid \theta_{i} \geq 0, \sum_{i} \theta_{i}=1\right\}
$$

\bigcirc Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. The set $\{x \mid A x=b\}$ is convex (it is an affine space over subspace of solutions of $A x=0$).
\bigcirc halfspace $\left\{x \mid a^{T} x \leq b\right\}$.
\bigcirc polyhedron $\{x \mid A x \leq b, C x=d\}$.
\bigcirc ellipsoid $\left\{x \mid\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right) \leq 1\right\},(A$: semidefinite)
\bigcirc probability simplex $\left\{x \mid x \geq 0, \sum_{i} x_{i}=1\right\}$

Quiz: Prove that these sets are convex.

Convex functions

Convex functions

Def. Function $f: I \rightarrow \mathbb{R}$ on interval / called midpoint convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad \text { whenever } x, y \in I .
$$

Read: f of AM is less than or equal to AM of f.
Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\theta \geq 0$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Theorem (J.L.W.V. Jensen). Let $f: I \rightarrow \mathbb{R}$ be continuous. Then, f is convex if and only if it is midpoint convex.

- Theorem extends to functions $f: \mathcal{X} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$. Very useful to checking convexity of a given function.

Convex functions

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
$$

slope $\mathrm{PQ} \leq$ slope $\mathrm{PR} \leq$ slope QR

4 If f is continuous and midpoint convex, then it is convex.
© If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
A If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.

Convex functions

- Linear: $f\left(\theta_{1} x+\theta_{2} y\right)=\theta_{1} f(x)+\theta_{2} f(y) ; \theta_{1}, \theta_{2}$ unrestricted
- Concave: $f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)$
- Strictly convex: If inequality is strict for $x \neq y$

Convex functions

Example The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in some "index set" \mathcal{Y}, then

$$
f(x):=\max _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x (set \mathcal{Y} is arbitrary).
Example Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify truth of above examples.

Convex functions

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.
Proof. Let $u, v \in \operatorname{dom} f$. Since $f(u)=\inf _{y} L(u, y)$, for each $\epsilon>0$, there is a $y_{1} \in \mathcal{Y}$, s.t. $f(u)+\frac{\epsilon}{2}$ is not the infimum. Thus, $L\left(u, y_{1}\right) \leq f(u)+\frac{\epsilon}{2}$. Similarly, there is $y_{2} \in \mathcal{Y}$, such that $L\left(v, y_{2}\right) \leq f(v)+\frac{\epsilon}{2}$.
Now we prove that $f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v)$ directly.

$$
\begin{aligned}
f(\lambda u+(1-\lambda) v) & =\inf _{y \in \mathcal{Y}} L(\lambda u+(1-\lambda) v, y) \\
& \leq L\left(\lambda u+(1-\lambda) v, \lambda y_{1}+(1-\lambda) y_{2}\right) \\
& \leq \lambda L\left(u, y_{1}\right)+(1-\lambda) L\left(v, y_{2}\right) \\
& \leq \lambda f(u)+(1-\lambda) f(v)+\epsilon .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, claim follows.

Example: Schur complement

Let A, B, C be matrices such that $C \succ 0$, and let

$$
Z:=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0
$$

then the Schur complement $A-B C^{-1} B^{T} \succeq 0$.
Proof. $L(x, y)=[x, y]^{T} Z[x, y]$ is convex in (x, y) since $Z \succeq 0$
Observe that $f(x)=\inf _{y} L(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$ is convex.
(We skipped ahead and solved $\nabla_{y} L(x, y)=0$ to minimize).
© If f is continuous and midpoint convex, then it is convex.
Q If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.

- If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.
A By showing f to be a pointwise max of convex functions
© By showing $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is convex if and only if its restriction to any line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function $g(t)=f(x+t v)$ is convex (on its domain $\{t \mid x+t v \in \operatorname{dom}(f)\}$).
© See exercises (Ch. 3) in Boyd \& Vandenberghe for more ways

Operations preserving convexity

Operations preserving convexity

Pointwise maximum: $f(x)=\sup _{y \in \mathcal{Y}} f(y ; x)$

Conic combination: Let $a_{1}, \ldots, a_{n} \geq 0$; let f_{1}, \ldots, f_{n} be convex functions. Then, $f(x):=\sum_{i} a_{i} f_{i}(x)$ is convex.

Remark: The set of all convex functions is a convex cone.
Affine composition: $f(x):=g(A x+b)$, where g is convex.

Operations preserving convexity

Theorem Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on l_{1}

Proof. Let $x, y \in I_{1}$, and let $\lambda \in(0,1)$.

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) \\
g(f(\lambda x+(1-\lambda) y)) & \leq g(\lambda f(x)+(1-\lambda) f(y)) \\
& \leq \lambda g(f(x))+(1-\lambda) g(f(y))
\end{aligned}
$$

Examples

Quadratic

Let $f(x)=x^{T} A x+b^{T} x+c$, where $A \succeq 0, b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. What is: $\nabla^{2} f(x)$?
$\nabla f(x)=2 A x+b, \nabla^{2} f(x)=2 A \succeq 0$, hence f is convex.

Indicator

Let $\mathbb{I}_{\mathcal{X}}$ be the indicator function for \mathcal{X} defined as:

$$
\mathbb{I}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise }\end{cases}
$$

Note: $\mathbb{I}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

Example Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^{n}$ be some point. The distance of x to the set \mathcal{Y} is defined as

$$
\operatorname{dist}(x, \mathcal{Y}):=\inf _{y \in \mathcal{Y}} \quad\|x-y\|
$$

Because $\|x-y\|$ is jointly convex in (x, y), the function $\operatorname{dist}(x, \mathcal{Y})$ is a convex function of x.

Norms

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function that satisfies

1. $f(x) \geq 0$, and $f(x)=0$ if and only if $x=0$ (definiteness)
2. $f(\lambda x)=|\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
3. $f(x+y) \leq f(x)+f(y)$ (subadditivity)

Such a function is called a norm. We usually denote norms by $\|x\|$.
Theorem Norms are convex.
Proof. Immediate from subadditivity and positive homogeneity.

Vector norms

Example (ℓ_{2}-norm): Let $x \in \mathbb{R}^{n}$. The Euclidean or ℓ_{2}-norm is

$$
\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}
$$

Example $\left(\ell_{p}\right.$-norm): Let $p \geq 1 .\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
Exercise: Verify that $\|x\|_{p}$ is indeed a norm.
Example $\left(\ell_{\infty}\right.$-norm): $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$

Example (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n}$. The Frobenius norm of A is $\|A\|_{\mathrm{F}}:=\sqrt{\sum_{i j}\left|a_{i j}\right|^{2}}$; that is, $\|A\|_{\mathrm{F}}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)}$.

Mixed norms

Def. Let $x \in \mathbb{R}^{n_{1}+n_{2}+\cdots+n_{G}}$ be a vector partitioned into subvectors $x_{j} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq G$. Let $\mathbf{p}:=\left(p_{0}, p_{1}, p_{2}, \ldots, p_{G}\right)$, where $p_{j} \geq 1$. Consider the vector $\xi:=\left(\left\|x_{1}\right\|_{p_{1}}, \cdots,\left\|x_{G}\right\|_{p_{G}}\right)$. Then, we define the mixed-norm of x as

$$
\|x\|_{\mathbf{p}}:=\|\xi\|_{p_{0}}
$$

Example $\ell_{1, q}$-norm: Let x be as above.

$$
\|x\|_{1, q}:=\sum_{i=1}^{G}\left\|x_{i}\right\|_{q}
$$

This norm is popular in machine learning, statistics.

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

Verify that above definition yields a norm.

- Clearly, $\|A\|=0$ iff $A=0$ (definiteness)
- $\|\alpha A\|=|\alpha|\|A\|$ (homogeneity)
- $\|A+B\|=\sup \frac{\|(A+B) \times\|}{\|x\|} \leq \sup \frac{\|A x\|+\|B x\|}{\|x\|} \leq\|A\|+\|B\|$.

Operator norm

Example Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} .
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$
- Schatten p-norm: ℓ_{p}-norm of vector of singular value.
- Exercise: Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$
\|A\|_{(k)}:=\sum_{i=1}^{k} \sigma_{i}(A)
$$

is a norm; $1 \leq k \leq n$.

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that $\|u\|_{*}$ is a norm.
Exercise: Let $1 / p+1 / q=1$, where $p, q \geq 1$. Show that $\|\cdot\|_{q}$ is dual to $\|\cdot\|_{p}$. In particular, the ℓ_{2}-norm is self-dual.

Misc Convexity

Other forms of convexity

\& Log-convex: $\log f$ is convex; log-cvx $\Longrightarrow c v x ;$
\& Log-concavity: $\log f$ concave; not closed under addition!
\& Exponentially convex: $\left[f\left(x_{i}+x_{j}\right)\right] \succeq 0$, for x_{1}, \ldots, x_{n}
\& Operator convex: $f(\lambda X+(1-\lambda) Y) \preceq \lambda f(X)+(1-\lambda) f(Y)$
\& Quasiconvex: $f(\lambda x+(1-\lambda y)) \leq \max \{f(x), f(y)\}$
\% Pseudoconvex: $\langle\nabla f(y), x-y\rangle \geq 0 \Longrightarrow f(x) \geq f(y)$
\& Discrete convexity: $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$; "convexity + matroid theory."

