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Course organization

I Course material and interaction: use bCourse
I Relevant texts / references:

♥ Convex optimization – Boyd & Vandenberghe (BV)
♥ Introductory lectures on convex optimisation – Nesterov
♥ Nonlinear programming – Bertsekas
♥ Convex Analysis – Rockafellar
♥ Numerical optimization – Nocedal & Wright
♥ Lectures on modern convex optimization – Nemirovski
♥ Optimization for Machine Learning – Sra, Nowozin, Wright
♥ Optimization Models – Calafiore, El Ghaoui (to appear in

November)

I Instructor: Laurent El Ghaoui (elghaoui@berkeley.edu)

I HW + Quizzes (40%); Midterm (30%); Project (30%)

I TA: Vu Pham (ptvu@berkeley.edu)

I Office hours: Thu 9-10am (El Ghaoui), TBA (Vu Pham)

I If you email me, please put EE227BT in Subject:

mailto:elghaoui@berkeley.edu
mailto:ptvu@berkeley.edu


Linear algebra recap



Eigenvalues and Eigenvectors

Def. If A ∈ Cn×n and x ∈ Cn. Consider the equation

Ax = λx , x 6= 0, λ ∈ C.
If scalar λ and vector x satisfy this equation, then λ is called an
eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

(λI − A)x = 0, x 6= 0.

Thus, λ is an eigenvalue, if and only if

det(λI − A) = 0.

Def. pA(t) := det(tI − A) is called characteristic polynomial.

Eigenvalues are roots of characteristic polynomial.



Eigenvalues and Eigenvectors

Theorem Let λ1, . . . , λn be eigenvalues of A ∈ Cn×n. Then,

Tr(A) =
∑

i
aii =

∑
i
λi , det(A) =

∏
i
λi .

Def. Matrix U ∈ Cn×n unitary if U∗U = I ([U∗]ij = [ūji ])

Theorem (Schur factorization). If A ∈ Cn×n with eigenvalues
λ1, . . . , λn, then there is a unitary matrix U ∈ Cn×n (i.e., U∗U = I ),
such that

U∗AU = T = [tij ]

is upper triangular with diagonal entries tii = λi .

Corollary. If A∗A = AA∗, then there exists a unitary U such that
A = UΛU∗. We will call this the Eigenvector Decomposition.

Proof. A = VTV ∗, A∗ = VT ∗V ∗, so AA∗ = TT ∗ = T ∗T = A∗A. But
T is upper triangular, so only way for TT ∗ = T ∗T , some easy but
tedious induction shows that T must be diagonal. Hence, T = Λ.



Singular value decomposition

Theorem (SVD) Let A ∈ Cm×n. There are unitaries s.t. U and V

U∗AV = Diag(σ1, . . . , σp), p = min(m, n),

where σ1 ≥ σ2 ≥ · · ·σp ≥ 0. Usually written as

A = UΣV ∗.

left singular vectors U are eigenvectors of AA∗

right singular vectors V are eigenvectors of A∗A

nonzero singular values σi =
√
λi (AA∗) =

√
λi (A∗A)



Positive definite matrices

Def. Let A ∈ Rn×n be symmetric, i.e., aij = aji . Then, A is called
positive definite if

xTAx =
∑

ij
xiaijxj > 0, ∀ x 6= 0.

If > replaced by ≥, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as BTB

Exercise: Prove this claim. Also prove converse.

Notation: A � 0 (posdef) or A � 0 (semidef)

Amongst most important objects in convex optimization!



Matrix and vector calculus

f (x) ∇f (x)

xTa =
∑

i xiai a
xTAx =

∑
ij xiaijxj (A + AT )x

log det(X ) X−1

Tr(XA) =
∑

ij xijaji AT

Tr(XTA) =
∑

ij xijaij A

Tr(XTAX ) (A + AT )X

Easily derived using “brute-force” rules

♣ Wikipedia

♣ Suvrit’s ancient notes

♣ Matrix cookbook

http://en.wikipedia.org/wiki/Matrix_calculus
http://people.kyb.tuebingen.mpg.de/suvrit/work/mcal.pdf.gz
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


Convex Sets



Convex sets



Convex sets

Def. A set C ⊂ Rn is called convex, if for any x , y ∈ C , the
line-segment θx + (1− θ)y (here θ ≥ 0) also lies in C .

Combinations

I Convex: θ1x + θ2y ∈ C , where θ1, θ2 ≥ 0 and θ1 + θ2 = 1.

I Linear: if restrictions on θ1, θ2 are dropped

I Conic: if restriction θ1 + θ2 = 1 is dropped



Convex sets

Theorem (Intersection).
Let C1, C2 be convex sets. Then, C1 ∩ C2 is also convex.

Proof. If C1 ∩ C2 = ∅, then true vacuously.
Let x , y ∈ C1 ∩ C2. Then, x , y ∈ C1 and x , y ∈ C2.
But C1, C2 are convex, hence θx + (1− θ)y ∈ C1, and also in C2.
Thus, θx + (1− θ)y ∈ C1 ∩ C2.
Inductively follows that ∩mi=1Ci is also convex.



Convex sets – more examples

(psdcone image from convexoptimization.com, Dattorro)

♥ Let x1, x2, . . . , xm ∈ Rn. Their convex hull is

co(x1, . . . , xm) :=
{∑

i
θixi | θi ≥ 0,

∑
i
θi = 1

}
.

♥ Let A ∈ Rm×n, and b ∈ Rm. The set {x | Ax = b} is convex (it
is an affine space over subspace of solutions of Ax = 0).

♥ halfspace
{

x | aT x ≤ b
}

.
♥ polyhedron {x | Ax ≤ b,Cx = d}.
♥ ellipsoid

{
x | (x − x0)TA(x − x0) ≤ 1

}
, (A: semidefinite)

♥ probability simplex {x | x ≥ 0,
∑

i xi = 1}
◦

Quiz: Prove that these sets are convex.



Convex functions



Convex functions

Def. Function f : I → R on interval I called midpoint convex if

f
( x+y

2

)
≤ f (x)+f (y)

2 , whenever x , y ∈ I .

Read: f of AM is less than or equal to AM of f .

Def. A function f : Rn → R is called convex if its domain dom(f )

is a convex set and for any x , y ∈ dom(f ) and θ ≥ 0

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

Theorem (J.L.W.V. Jensen). Let f : I → R be continuous. Then, f
is convex if and only if it is midpoint convex.

I Theorem extends to functions f : X ⊆ Rn → R. Very useful to
checking convexity of a given function.



Convex functions

x y

f (x)

f (y)

λf (x)
+ (1− λ)f (y

)

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)



Convex functions

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x − y〉



Convex functions

x y

P

Q

R

z = λx+ (1− λ)y

slope PQ ≤ slope PR ≤ slope QR



Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.

♠ If f is differentiable, then f is convex if and only if dom f is
convex and f (x) ≥ f (y) + 〈∇f (y), x − y〉 for all x , y ∈ dom f .

♠ If f is twice differentiable, then f is convex if and only if dom f
is convex and ∇2f (x) � 0 at every x ∈ dom f .



Convex functions

I Linear: f (θ1x + θ2y) = θ1f (x) + θ2f (y) ; θ1, θ2 unrestricted

I Concave: f (θx + (1− θ)y) ≥ θf (x) + (1− θ)f (y)

I Strictly convex: If inequality is strict for x 6= y



Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f (x ; y) is a convex function of x for every y in
some “index set” Y, then

f (x) := max
y∈Y

f (x ; y)

is a convex function of x (set Y is arbitrary).

Example Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f (Ax + b) is convex.

Exercise: Verify truth of above examples.



Convex functions

Theorem Let Y be a nonempty convex set. Suppose L(x , y) is convex
in (x , y), then,

f (x) := inf
y∈Y

L(x , y)

is a convex function of x , provided f (x) > −∞.

Proof. Let u, v ∈ dom f . Since f (u) = infy L(u, y), for each ε > 0, there
is a y1 ∈ Y, s.t. f (u) + ε

2 is not the infimum. Thus, L(u, y1) ≤ f (u) + ε
2 .

Similarly, there is y2 ∈ Y, such that L(v , y2) ≤ f (v) + ε
2 .

Now we prove that f (λu + (1− λ)v) ≤ λf (u) + (1− λ)f (v) directly.

f (λu + (1− λ)v) = inf
y∈Y

L(λu + (1− λ)v , y)

≤ L(λu + (1− λ)v , λy1 + (1− λ)y2)

≤ λL(u, y1) + (1− λ)L(v , y2)

≤ λf (u) + (1− λ)f (v) + ε.

Since ε > 0 is arbitrary, claim follows.



Example: Schur complement

Let A,B,C be matrices such that C � 0, and let

Z :=

[
A B

BT C

]
� 0,

then the Schur complement A− BC−1BT � 0.
Proof. L(x , y) = [x , y ]TZ [x , y ] is convex in (x , y) since Z � 0

Observe that f (x) = infy L(x , y) = xT (A− BC−1BT )x is convex.

(We skipped ahead and solved ∇yL(x , y) = 0 to minimize).



Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.

♠ If f is differentiable, then f is convex if and only if dom f is
convex and f (x) ≥ f (y) + 〈∇f (y), x − y〉 for all x , y ∈ dom f .

♠ If f is twice differentiable, then f is convex if and only if dom f
is convex and ∇2f (x) � 0 at every x ∈ dom f .

♠ By showing f to be a pointwise max of convex functions

♠ By showing f : dom(f )→ R is convex if and only if its
restriction to any line that intersects dom(f ) is convex. That is,
for any x ∈ dom(f ) and any v , the function g(t) = f (x + tv) is
convex (on its domain {t | x + tv ∈ dom(f )}).

♠ See exercises (Ch. 3) in Boyd & Vandenberghe for more ways



Operations preserving
convexity



Operations preserving convexity

Pointwise maximum: f (x) = supy∈Y f (y ; x)

Conic combination: Let a1, . . . , an ≥ 0; let f1, . . . , fn be convex
functions. Then, f (x) :=

∑
i ai fi (x) is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f (x) := g(Ax + b), where g is convex.



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f ) ⊆ I2. If f
and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x , y ∈ I1, and let λ ∈ (0, 1).

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

g(f (λx + (1− λ)y)) ≤ g
(
λf (x) + (1− λ)f (y)

)
≤ λg

(
f (x)

)
+ (1− λ)g

(
f (y)

)
.

Read Section 3.2.4 of BV for more



Examples



Quadratic

Let f (x) = xTAx + bT x + c , where A � 0, b ∈ Rn, and c ∈ R.

What is: ∇2f (x)?

∇f (x) = 2Ax + b, ∇2f (x) = 2A � 0, hence f is convex.



Indicator

Let IX be the indicator function for X defined as:

IX (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Note: IX (x) is convex if and only if X is convex.



Distance to a set

Example Let Y be a convex set. Let x ∈ Rn be some point. The
distance of x to the set Y is defined as

dist(x ,Y) := inf
y∈Y

‖x − y‖.

Because ‖x − y‖ is jointly convex in (x , y), the function dist(x ,Y)
is a convex function of x .



Norms

Let f : Rn → R be a function that satisfies

1. f (x) ≥ 0, and f (x) = 0 if and only if x = 0 (definiteness)

2. f (λx) = |λ|f (x) for any λ ∈ R (positive homogeneity)

3. f (x + y) ≤ f (x) + f (y) (subadditivity)

Such a function is called a norm. We usually denote norms by ‖x‖.
Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.



Vector norms

Example (`2-norm): Let x ∈ Rn. The Euclidean or `2-norm is

‖x‖2 =
(∑

i x2
i

)1/2
Example (`p-norm): Let p ≥ 1. ‖x‖p =

(∑
i |xi |p

)1/p
Exercise: Verify that ‖x‖p is indeed a norm.

Example (`∞-norm): ‖x‖∞ = max1≤i≤n |xi |

Example (Frobenius-norm): Let A ∈ Rm×n. The Frobenius norm

of A is ‖A‖F :=
√∑

ij |aij |2; that is, ‖A‖F =
√

Tr(A∗A).



Mixed norms

Def. Let x ∈ Rn1+n2+···+nG be a vector partitioned into subvectors
xj ∈ Rnj , 1 ≤ j ≤ G . Let p := (p0, p1, p2, . . . , pG ), where pj ≥ 1.
Consider the vector ξ := (‖x1‖p1 , · · · , ‖xG‖pG ). Then, we define the
mixed-norm of x as

‖x‖p := ‖ξ‖p0 .

Example `1,q-norm: Let x be as above.

‖x‖1,q :=
∑G

i=1
‖xi‖q.

This norm is popular in machine learning, statistics.



Matrix Norms

Induced norm

Let A ∈ Rm×n, and let ‖·‖ be any vector norm. We define an
induced matrix norm as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ .

Verify that above definition yields a norm.

I Clearly, ‖A‖ = 0 iff A = 0 (definiteness)

I ‖αA‖ = |α| ‖A‖ (homogeneity)

I ‖A + B‖ = sup ‖(A+B)x‖
‖x‖ ≤ sup ‖Ax‖+‖Bx‖‖x‖ ≤ ‖A‖ + ‖B‖.



Operator norm

Example Let A be any matrix. Then, the operator norm of A is

‖A‖2 := sup
‖x‖2 6=0

‖Ax‖2
‖x‖2

.

‖A‖2 = σmax(A), where σmax is the largest singular value of A.

• Warning! Generally, largest eigenvalue of a matrix is not a norm!

• ‖A‖1 and ‖A‖∞—max-abs-column and max-abs-row sums.

• ‖A‖p generally NP-Hard to compute for p 6∈ {1, 2,∞}
• Schatten p-norm: `p-norm of vector of singular value.

• Exercise: Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of a
matrix A ∈ Rm×n. Prove that

‖A‖(k) :=
∑k

i=1
σi (A),

is a norm; 1 ≤ k ≤ n.



Dual norms

Def. Let ‖·‖ be a norm on Rn. Its dual norm is

‖u‖∗ := sup
{

uT x | ‖x‖ ≤ 1
}
.

Exercise: Verify that ‖u‖∗ is a norm.

Exercise: Let 1/p + 1/q = 1, where p, q ≥ 1. Show that ‖·‖q is
dual to ‖·‖p. In particular, the `2-norm is self-dual.



Misc Convexity



Other forms of convexity

♣ Log-convex: log f is convex; log-cvx =⇒ cvx;

♣ Log-concavity: log f concave; not closed under addition!

♣ Exponentially convex: [f (xi + xj)] � 0, for x1, . . . , xn

♣ Operator convex: f (λX + (1− λ)Y ) � λf (X ) + (1− λ)f (Y )

♣ Quasiconvex: f (λx + (1− λy)) ≤ max {f (x), f (y)}
♣ Pseudoconvex: 〈∇f (y), x − y〉 ≥ 0 =⇒ f (x) ≥ f (y)

♣ Discrete convexity: f : Zn → Z; “convexity + matroid theory.”
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