

 1

Abstract

 In this project, we will use Convolution Neural Network to

recognize different traditional Chinese calligraphy styles. We

will train Convolutional Neural Network on a 5-class dataset

which contains 15000 instances. We prepressed the images to

have sizes of 96x96, and constructed 8 different models to test on

different depth and filter numbers. We evaluated the

performance of each model and analyzed the recognition ratio of

each style. We also visualized both the reconstructed images

maximizing activation and feature activation maps.

1. Introduction

 Traditional Chinese calligraphy (TCC) is an essential

part of Chinese traditional art and culture. The earliest

TCC work can be dated back to 11 century BC. Along the

history of TCC, many different styles of calligraphy have

been developed. While some of the styles evolved to be

modern style used by people in their daily life, others

become pure formats for art performing.

 In recent years, many databases of TCC have been

setup, and a large amount of TCC have been digitized for

both research purpose and common practice of art.

Therefore, the need for TCC browsing and recognizing is

increasing. Many approaches have been introduced for this

need. Most of suggested solutions we searched are based

on certain feature extraction and K-nearest neighbor

technique. On the other hand, CNN has been widely used

on hand-written character recognition. Based on such

situation, we therefore want to explore the performance of

CNN on TCC style recognition. However, even though

TCC is one special type of hand-written characters, it

doesn’t make recognizing TCC styles and recognizing

hand-written characters more similar tasks. Most TCC are

written by traditional Chinese brushes, which make the

strokes much thicker than normal hand-written characters

and as a result store more shape information. Also in terms

of the purpose of the classification, recognizing TCC will

explore more on the similarities and differences of

character styles.

 There are five major TCC styles: seal script, clerical

script, standard script, semi-cursive script, and cursive

script. Fig. 1 shows examples of the same TCC characters

in all five major styles.

Figure 1. Standard script, clerical script, seal script, cursive

script, and semi-cursive script (From left to right)

The standard script is used in daily life. The clerical script

is similar to standard script, but has thicker strokes and

shorter and wider in shape. It was once used in the official

documents in ancient China. The seal script is the oldest of

the five style, and is usually carved on stones instead of

paper. Semi-cursive and cursive are defined relatively. The

semi-cursive style is more casually written than standard

script but more carefully written than cursive style. If the

character is written fast and casual enough, it becomes the

cursive style. In this sense, we also expect to see

correlations between some styles of TCC.

 Therefore, in this project the input of our algorithm is an

image of TCC character. We then use CNN to output a

predicted style category of that character. We train CNN

on individual TCC characters and test the influence of

different depth and filter numbers on prediction

performance. We also visualize the exacted features to

evaluate whether the features make sense or not and how

CNN recognizes TCC.

Convolution Neural Network for Traditional Chinese Calligraphy Recognition

Boqi Li

Mechanical Engineering

Stanford University
boqili@stanford.edu

 1

2. Related Work

In our literature search, we found that there are recent

works which implement CNN technique on Chinese

character recognition. Yang et al. [1] applied deep

convolutional network on handwritten Chinese characters

with a serial-parallel architecture to train several neural

networks in parallel and make prediction based on a

probability threshold on each CNN output. In a recent

CS231N project, Zhang [2] trained CNN on handwritten

Chinese characters dataset and evaluated the performance

of different CNN filter numbers and depth. Although

handwritten Chinese characters share similarity with TCC,

there are major difference among the them. In terms of

recognitions goal, handwritten Chinese character

recognition aims to predict the label of every character,

whereas in our project, our goal is to recognize TCC

styles, which makes the task easier in terms of number of

classes. Another difference is that, handwritten Chinese

characters are usually written with pen, which have very

thin line width, whereas TCC characters are written with

brush and have significant features in the width of every

line.

Many TCC recognition approaches focus on how to

extract both the contour features and the width features.

And different variations of HOG feature have been used.

For example, Lu et al. [3] used a method of feature

extraction called SC-HoG descriptor to represent the shape

of TCC characters. However, most of the approaches use

K nearest neighbor as classifier to solve the problem. And

we didn’t find examples of using CNN on TCC

recognition.

3. Methods

 We use architecture of CNN based on VGGnet model

[4]. Since one of our goal in this project is to investigate

the influence of number of layers and number of filters on

the performance of the classification. We built eight

different CNN models. The difference of the configuration

of the models are the number of layers and number of

filters. In every model, we use filters of 3x3 with stride of

1 and zero-padding of 1 to preserve input height and

width, and use max-pooling with 2x2 filters and stride of 2

for down-sampling. Table 2 shows the detail layout of

each model. Our models are built using Keras library [5]

with theano backend [6].

Our baseline model is L6, which has 3 convolutional

layers followed by 3 fully-connected layers. We then

increase one more convolutional layer in L7 and L7+

models. The difference between L7 and L7+ is that we

increase the number of filters in L7+ model. In L9 and

L9+ model, we add two more convolutional layers

between non-linearity and max-pooling. As is described by

[4], we stack two convolutional layers with 3x3 filters. The

Table 1. CNN configuration of 8 different models

stacking of two 3x3 convolutional layers is equivalent to

one 5x5 convolutional layers in terms of the effective

receptive field, but with fewer number of parameters and

more non-linearity activation layers. Between L9 and L9+,

we want to test the influence of putting additional layers in

the front versus in the back of the convolutional layers.

We added 2 more convolutional layers in L11 and L11+

models. And in L11+ we add batch-normalization layers

after every convolutional layer. The batch normalization

layer perform normalization for each training mini-batch.

In training process, it computes the mean and variance

over the mini-batch input and then normalize the input.

And the scale and shift parameters can be learned during

the training process. The equations are shown below.

 According to Ioffe and Szegedy[7], batch normalization

is able to stabilize the learning process, and allow using of

higher learning rate. These advantages of batch-

normalization help us a lot during the training of L11+, but

(1)

(2)

(3)

(4)

2

 1

also introduce some problems, which will be discussed in

the next section. In L13 model, we add one additional

conv-conv-max-pooling structure to make the network

deeper.

 Although not shown in Table 1, we use non-linearity

ReLU activation after convolutional layers in every model

except L11+. In L11+, the ReLU layers are used after

batch normalization layers. We use softmax function to

compute the loss. The equation of softmax function is

shown below.

For weights initialization, we use normal

initialization based on fan-in with a variance equal to 2/nl,

as is described by He et al. [8], the equation is shown

below.

 Such method of initialization is used to prevent

complete saturation of neurons as we build deeper and

deeper network models.

 For optimizer, we use stochastic gradient descent with

Nesterov Momentum update. The idea is that with

Nesterov momentum update, we are able to build up

velocity along flat directions and move one step first along

the momentum update and use the gradient at the new

point to make the gradient step, instead of making the

momentum step and gradient step at the same point. The

update equations are shown below.

4. Dataset and Pre-processing

 During initial literature review, we studied several TCC

database. We choose to use a Calligraphic Character

Dictionary called CADAL, as is introduced by Zhang and

Nagy [9] Although CADAL contains thousands of

calligraphy images, we didn’t choose to use whole images

as data. Instead, we used CADAL’s pre-segmented

calligraphic characters to form our dataset. These

characters are segmented from whole calligraphic works

by CADAL. In this way, we also increase the size of our

dataset. We collected 15000 TCC characters, with 3000

characters for each style. We use 12000 characters for

training, and 1200 characters for validation, and 1800 for

test.

We did preprocessing on our dataset. The dataset

contains JPEG format RGB images with various

dimensions. First, we imported the images into MATLAB

and computed the mean height and width of the images.

The result is shown in Table 2.
Table 2. Mean Height and Width of Images of Dataset

 Standard Clerical Seal Semi-

Cursive

Cursive Total

Num. 3000 3000 3000 3000 3000 15000

H. 104 103 170 123 119 124

W. 112 131 123 112 95 136

Initially, we planned to use size of 128*128 as normalized

dimensions in order to achieve more max-pooling layers

with stride of 2. However, when we loaded our models on

rye machine, the memory wasn’t enough. Therefore, we

rescaled the image to 96*96, which could still achieve

enough max-pooling layers, as well as saving memory. We

used the same input image sizes for every model for

consistency even though we moved our model to AWS

later.

Then we converted the RGB images to grayscale

images. We want the images to be resized according to

their largest dimension. Therefore, the largest dimension

of the images will be 128, and the aspect ratio remains the

same. Xia et al. [10] suggested that when doing

preprocessing on TCC images, man-made seals and

background (which sometimes contains ink stains) should

be removed. However, since we will use CNN, we want to

test the capability of CNN on handling these conditions.

Therefore, we didn’t remove any seals or ink stains. Next,

we adjusted the contrast level of the images, which is

suggested by Zhang [2]. We padded the images by

repeating the border elements to center the character in the

images. Finally, we computed the mean value of all the

images and subtracted the mean from every image. We

exported the dataset as a single array of dimension

15000*1*96*96, which will be used for training and

testing. The image example after each step is shown in Fig.

(5)

(2)

(3)

(4) (6)

(2)

(3)

(4)

3

 1

2.

5. Experiments

 As is mentioned in the previous section, we trained our

models on 12000 samples and used 1200 samples for

validation. Initially, we could only train with a batch size

lower than 80 on rye machine. Larger batch size would

cause memory allocation error since the rye machine

doesn’t have more memory. We tested several batch size

and found that lower batch size would increase the training

time without enhancing performance significantly. So we

used a batch size of 64. We used the same batch size for

every model for consistency even though we moved our

model to AWS later.

For every model, we trained the model by one epoch

with no learning rate decay, no weights regularization or

dropout, and tuned only learning rate, starting from a

learning rate value that was too high. And then we

decreased the learning rate by a factor of two until we find

a good range of learning rate. Then we added learning rate

decay if the loss stopped to decrease in two or more

epochs. We also added weight regularization and dropout

if we saw overfitting. Also, we found that adding dropout

of 0.25 after non-linearity to every model is good enough

if overfitting is observed. Excessive overfitting could be

dealt with higher weight regularization rate. With a

narrower range of learning rate and weight regularization,

we finally do random search to find the best pair of these

two hyper parameters. In practice, this procedure reduced

our time for tuning than doing random search on a wide

range in the beginning, since we have 8 models to train.

For most models, 15 epochs are enough to observe the

validation accuracy stabilize during the last 1-2 epochs.

Table 3 shows the hyper parameters we used for every

model. To evaluate the performance of every model, we

tested them on 1800 test samples to exam the overall

accuracy of correct style recognition rate.
Table 3 Hyper parameters choices for each model

 L6 L7 L7+ L9 L9+ L11 L11+ L13

lr 1.62e-6 8.1e-

6

3.4e-5 4.6e-

5

5.1e-5 3.3e-5 8.2e-4 1.96e-

5

decay 5.5e-3 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3

wr 2.1e-6 0 1.3e-6 1.9e-

8

0 0 3.1e-4 1.1e-6

6. Results and Discussion

Table 4 shows the results of the performance of the 8

models. Comparing L6, L7, L9, L11, and L13, it suggests

that increasing the number of layers will improve the

performance. It appears that increasing the number of

filters doesn’t improve the performance, as both the

validation and test accuracy of L7 model is a bit higher

than those of L7+ model. Putting additional layers in the

back of the convolutional layers have a better performance

than putting them in the front, as L9+ has higher validation

and test accuracy than L9. Adding batch normalization

also improve the performance as L11+ model has a higher

validation and test accuracy than L11. Also, the

performance of L11+ is also better than L13 which has

more convolutional layers but doesn’t have batch

normalization layers.
Table 4. Validation and Test Performance of All Models

Then we analyzed the recognition ratio of all classes

performed by the L11+ model, which has the best

validation and test accuracy among all models. The

recognition ratios are shown in Table 4. Each column

represents the ground truth style of a sample, and each row

represents the predicted style of a sample. The numbers in

the table stand for the ratio of all samples of a certain style

in that corresponding column that are labeled as a certain

style in that corresponding row. Therefore, the numbers on

the diagonal represents the correct recognition ratio of the

five styles. According to the table, the top 3 accuracy

belongs to the clerical, cursive and seal styles.
Table 5. Recognition Ratio of all classes in L11+ Model

Figure 3. Recognition Ratio of all classes in L11+ Model

4

 1

 Fig. 3 shows the same results as table 4 for better

presentation of the recognition ratio, it can be seen from

the figure that a significant number of semi-cursive

samples are mislabeled as the standard and cursive style.

This is largely because that semi-cursive samples are

sometimes similar to standard and cursive style samples.

According to the definition of the semi-cursive style, it is

more casual than the standard style, and less casual than

the cursive style. The relativeness in the definition

suggests that semi-cursive samples are more difficult to be

recognized. Some examples of the mislabeled samples are

shown in Fig. 4.

Figure 4. Examples of Mislabeled Images

One important characteristic of these mislabeled samples

is that they are all simple Chinese characters with very few

strokes. This makes their styles less explicit. In fact, some

of these characters are really ambiguous in terms of styles.

And they are defined into a certain style largely because of

the style of the whole TCC image from which they are

cropped. This also suggests that using images that contains

several TCC character as sample input instead of

individual character may output better performance.

For visualization of the L11+ model, we applied two

methods to evaluate the feature activation map. Since we

use filter size of 3x3, visualizing the filter weights directly

is not very helpful because of the low resolution. Instead,

we reconstructed images of feature activation maps at

several layers. First, we loaded the model with the weights

of the best L11+ model, and use images generated with

random noise as input. We then extracted the output of the

target convolutional layer after the ReLU activation, and

defined a customized loss that corresponded to the

activation. Next, we back propagated the model to find the

gradient of the input image that maximize the loss, and use

gradient ascent to generate images. The result images are

shown in the Fig. 5. Since the reconstructed images are

grayscale images, it is harder to see the feature textures in

the images. Still, it can be observed that some images are

filled with lines of certain directions, and some images

have small circles which look like bubbles. And some

images appear to be the same but with different rotation

angles. These features suggest that the CNN model is

looking for certain patterns within the images to increase

activation.

The other method for visualization is to use real images

as input and output the feature activation map after ReLU

directly to see the activation. First, we chose 5 images

from different styles and extracted the activation maps of

different convolutional layers. The feature activation maps

of several filters are shown in Figure 6. From the output of

the first convolutional layer that uses training images as

input, it shows that some of the filters activates certain

edge lines of the character, and other filters activates the

body of character strokes.

During the observation of each filter, we found that the

feature map of some filters are completely black. And for

5

 1

deeper layers, we observed increasing potion of filters that

are completely black. Therefore, we focused on a fixed

filter and found that some filters activate some images

while are completely back on other images. This suggests

that some higher layer filters are looking for certain

features of the input images.

7. Conclusion and future work

 In this project, we explored the performance of CNN

models on TCC recognition. We constructed 8 different

models with different number of convolutional layers and

different number of filters. And we found that increasing

number of convolutional layers, in other word, building

deeper network models increases the overall recognition

accuracy of the model. And increasing number of filters

didn’t increase the accuracy in our case. We also found

that the best model in our configurations is the 11-layer

network with batch normalization.

 During visualization of, we used two methods to

reconstruct the images which maximize activation of

certain layers, as well as to view the feature activation map

directly. And we observed that there are images containing

series of lines in a certain directions and images containing

small bubble like features. We also noticed that some

images are similar in terms of the texture displayed but

have different rotation angles.

When viewing the feature activation maps, we found

that in the first convolutional layers, some filters activate a

certain part of the edge of the characters, while other filters

activate the body of each stroke of the characters. We also

found that while some higher layers’ filters are completely

black in one images, they show activation when seeing

other images.

For future work, if we were given more time or had

more teammates, we would look into the work of

recognizing images that have several characters instead of

only one. We would also do a better data-preprocessing

and do data augmentation to the training images.

8. References

[1] Yang, Weixin, et al. "Improved deep convolutional neural

network for online handwritten Chinese character

recognition using domain-specific knowledge." Document

Analysis and Recognition (ICDAR), 2015 13th

International Conference on. IEEE, 2015.H.

[2] Y. Zhang, “Deep Convolutional Network for Handwritten

Chinese Character Recognition”, CS231N course project

[3] Lu, Wei-ming, et al. "Efficient shape matching for Chinese

calligraphic character retrieval." Journal of Zhejiang

University SCIENCE C 12.11 (2011): 873-884.

[4] Simonyan, Karen, and Andrew Zisserman. "Very deep

convolutional networks for large-scale image recognition."

arXiv preprint arXiv:1409.1556 (2014).

[5] François Chollet, Keras, GitHub, 2015,

https://github.com/fchollet/keras

[6] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.

Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley

and Y. Bengio. “Theano: new features and speed

improvements”. NIPS 2012 deep learning workshop.

[7] Ioffe, Sergey, and Christian Szegedy. "Batch normalization:

Accelerating deep network training by reducing internal

covariate shift." arXiv preprint arXiv:1502.03167 (2015).

[8] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification."

Proceedings of the IEEE International Conference on

Computer Vision. 2015.

6

https://github.com/fchollet/keras

 1

[9] Zhang, Xiafen, and George Nagy. "The CADAL

calligraphic database." Proceedings of the 2011 Workshop

on Historical Document Imaging and Processing. ACM,

2011.Y.

[10] Xia, Z. Yang, K. Wang, “Chinese calligraphy word spotting

using elastic HOG feature and derivative dynamic time

warping”, Journal of Harbin Institute of Technology (New

Series) 21(2):21-27 · March 2014

7

