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Abstract 

 
       In this project, we will use Convolution Neural Network to 

recognize different traditional Chinese calligraphy styles. We 

will train Convolutional Neural Network on a 5-class dataset 

which contains 15000 instances. We prepressed the images to 

have sizes of 96x96, and constructed 8 different models to test on 

different depth and filter numbers. We evaluated the 

performance of each model and analyzed the recognition ratio of 

each style. We also visualized both the reconstructed images 

maximizing activation and feature activation maps. 

1. Introduction 

    Traditional Chinese calligraphy (TCC) is an essential 

part of Chinese traditional art and culture. The earliest 

TCC work can be dated back to 11 century BC. Along the 

history of TCC, many different styles of calligraphy have 

been developed. While some of the styles evolved to be 

modern style used by people in their daily life, others 

become pure formats for art performing. 

    In recent years, many databases of TCC have been 

setup, and a large amount of TCC have been digitized for 

both research purpose and common practice of art. 

Therefore, the need for TCC browsing and recognizing is 

increasing. Many approaches have been introduced for this 

need. Most of suggested solutions we searched are based 

on certain feature extraction and K-nearest neighbor 

technique. On the other hand, CNN has been widely used 

on hand-written character recognition. Based on such 

situation, we therefore want to explore the performance of 

CNN on TCC style recognition. However, even though 

TCC is one special type of hand-written characters, it 

doesn’t make recognizing TCC styles and recognizing 

hand-written characters more similar tasks. Most TCC are 

written by traditional Chinese brushes, which make the 

strokes much thicker than normal hand-written characters 

and as a result store more shape information. Also in terms 

of the purpose of the classification, recognizing TCC will 

explore more on the similarities and differences of 

character styles. 

    There are five major TCC styles: seal script, clerical 

script, standard script, semi-cursive script, and cursive 

script. Fig. 1 shows examples of the same TCC characters 

in all five major styles.  

 
Figure 1. Standard script, clerical script, seal script, cursive 

script, and semi-cursive script (From left to right) 

The standard script is used in daily life. The clerical script 

is similar to standard script, but has thicker strokes and 

shorter and wider in shape. It was once used in the official 

documents in ancient China. The seal script is the oldest of 

the five style, and is usually carved on stones instead of 

paper. Semi-cursive and cursive are defined relatively. The 

semi-cursive style is more casually written than standard 

script but more carefully written than cursive style. If the 

character is written fast and casual enough, it becomes the 

cursive style. In this sense, we also expect to see 

correlations between some styles of TCC.  

   Therefore, in this project the input of our algorithm is an 

image of TCC character. We then use CNN to output a 

predicted style category of that character. We train CNN 

on individual TCC characters and test the influence of 

different depth and filter numbers on prediction 

performance. We also visualize the exacted features to 

evaluate whether the features make sense or not and how 

CNN recognizes TCC. 
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2. Related Work 

In our literature search, we found that there are recent 

works which implement CNN technique on Chinese 

character recognition. Yang et al. [1] applied deep 

convolutional network on handwritten Chinese characters 

with a serial-parallel architecture to train several neural 

networks in parallel and make prediction based on a 

probability threshold on each CNN output. In a recent 

CS231N project, Zhang [2] trained CNN on handwritten 

Chinese characters dataset and evaluated the performance 

of different CNN filter numbers and depth. Although 

handwritten Chinese characters share similarity with TCC, 

there are major difference among the them. In terms of 

recognitions goal, handwritten Chinese character 

recognition aims to predict the label of every character, 

whereas in our project, our goal is to recognize TCC 

styles, which makes the task easier in terms of number of 

classes. Another difference is that, handwritten Chinese 

characters are usually written with pen, which have very 

thin line width, whereas TCC characters are written with 

brush and have significant features in the width of every 

line.  

Many TCC recognition approaches focus on how to 

extract both the contour features and the width features. 

And different variations of HOG feature have been used. 

For example, Lu et al. [3] used a method of feature 

extraction called SC-HoG descriptor to represent the shape 

of TCC characters. However, most of the approaches use 

K nearest neighbor as classifier to solve the problem. And 

we didn’t find examples of using CNN on TCC 

recognition. 

3. Methods 

  We use architecture of CNN based on VGGnet model 

[4]. Since one of our goal in this project is to investigate 

the influence of number of layers and number of filters on 

the performance of the classification. We built eight 

different CNN models. The difference of the configuration 

of the models are the number of layers and number of 

filters. In every model, we use filters of 3x3 with stride of 

1 and zero-padding of 1 to preserve input height and 

width, and use max-pooling with 2x2 filters and stride of 2 

for down-sampling. Table 2 shows the detail layout of 

each model. Our models are built using Keras library [5] 

with theano backend [6]. 

Our baseline model is L6, which has 3 convolutional 

layers followed by 3 fully-connected layers. We then 

increase one more convolutional layer in L7 and L7+ 

models. The difference between L7 and L7+ is that we 

increase the number of filters in L7+ model. In L9 and 

L9+ model, we add two more convolutional layers 

between non-linearity and max-pooling. As is described by 

[4], we stack two convolutional layers with 3x3 filters. The 

Table 1. CNN configuration of 8 different models 

stacking of two 3x3 convolutional layers is equivalent to 

one 5x5 convolutional layers in terms of the effective 

receptive field, but with fewer number of parameters and 

more non-linearity activation layers. Between L9 and L9+, 

we want to test the influence of putting additional layers in 

the front versus in the back of the convolutional layers.  

We added 2 more convolutional layers in L11 and L11+ 

models. And in L11+ we add batch-normalization layers 

after every convolutional layer. The batch normalization 

layer perform normalization for each training mini-batch.  

In training process, it computes the mean and variance 

over the mini-batch input and then normalize the input. 

And the scale and shift parameters can be learned during 

the training process. The equations are shown below. 

 
 According to Ioffe and Szegedy[7], batch normalization 

is able to stabilize the learning process, and allow using of 

higher learning rate. These advantages of batch-

normalization help us a lot during the training of L11+, but  
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also introduce some problems, which will be discussed in 

the next section. In L13 model, we add one additional 

conv-conv-max-pooling structure to make the network 

deeper.  

  Although not shown in Table 1, we use non-linearity 

ReLU activation after convolutional layers in every model 

except L11+. In L11+, the ReLU layers are used after 

batch normalization layers. We use softmax function to 

compute the loss. The equation of softmax function is 

shown below.   

 
For weights initialization, we use normal 

initialization based on fan-in with a variance equal to 2/nl, 

as is described by He et al. [8], the equation is shown 

below.  

 
     

    Such method of initialization is used to prevent 

complete saturation of neurons as we build deeper and 

deeper network models.  

    For optimizer, we use stochastic gradient descent with 

Nesterov Momentum update. The idea is that with 

Nesterov momentum update, we are able to build up 

velocity along flat directions and move one step first along 

the momentum update and use the gradient at the new 

point to make the gradient step, instead of making the 

momentum step and gradient step at the same point. The 

update equations are shown below.  

4. Dataset and Pre-processing 

    During initial literature review, we studied several TCC 

database. We choose to use a Calligraphic Character 

Dictionary called CADAL, as is introduced by Zhang and 

Nagy [9] Although CADAL contains thousands of 

calligraphy images, we didn’t choose to use whole images 

as data. Instead, we used CADAL’s pre-segmented 

calligraphic characters to form our dataset. These 

characters are segmented from whole calligraphic works 

by CADAL. In this way, we also increase the size of our 

dataset. We collected 15000 TCC characters, with 3000 

characters for each style. We use 12000 characters for 

training, and 1200 characters for validation, and 1800 for 

test. 

We did preprocessing on our dataset. The dataset 

contains JPEG format RGB images with various 

dimensions.  First, we imported the images into MATLAB 

and computed the mean height and width of the images. 

The result is shown in Table 2.  
Table 2. Mean Height and Width of Images of Dataset  

 Standard Clerical Seal Semi-

Cursive 

Cursive Total 

Num. 3000 3000 3000 3000 3000 15000 

H. 104 103 170 123 119 124 

W. 112 131 123 112 95 136 

 

Initially, we planned to use size of 128*128 as normalized 

dimensions in order to achieve more max-pooling layers 

with stride of 2. However, when we loaded our models on 

rye machine, the memory wasn’t enough. Therefore, we 

rescaled the image to 96*96, which could still achieve 

enough max-pooling layers, as well as saving memory. We 

used the same input image sizes for every model for 

consistency even though we moved our model to AWS 

later. 

Then we converted the RGB images to grayscale 

images. We want the images to be resized according to 

their largest dimension. Therefore, the largest dimension 

of the images will be 128, and the aspect ratio remains the 

same. Xia et al. [10] suggested that when doing 

preprocessing on TCC images, man-made seals and 

background (which sometimes contains ink stains) should 

be removed. However, since we will use CNN, we want to 

test the capability of CNN on handling these conditions. 

Therefore, we didn’t remove any seals or ink stains.  Next, 

we adjusted the contrast level of the images, which is 

suggested by Zhang [2]. We padded the images by 

repeating the border elements to center the character in the 

images.  Finally, we computed the mean value of all the 

images and subtracted the mean from every image. We 

exported the dataset as a single array of dimension 

15000*1*96*96, which will be used for training and 

testing. The image example after each step is shown in Fig. 
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2.  

5. Experiments 

    As is mentioned in the previous section, we trained our 

models on 12000 samples and used 1200 samples for 

validation. Initially, we could only train with a batch size 

lower than 80 on rye machine. Larger batch size would 

cause memory allocation error since the rye machine 

doesn’t have more memory. We tested several batch size 

and found that lower batch size would increase the training 

time without enhancing performance significantly. So we 

used a batch size of 64. We used the same batch size for 

every model for consistency even though we moved our 

model to AWS later. 

For every model, we trained the model by one epoch 

with no learning rate decay, no weights regularization or 

dropout, and tuned only learning rate, starting from a 

learning rate value that was too high. And then we 

decreased the learning rate by a factor of two until we find 

a good range of learning rate. Then we added learning rate 

decay if the loss stopped to decrease in two or more 

epochs. We also added weight regularization and dropout 

if we saw overfitting. Also, we found that adding dropout 

of 0.25 after non-linearity to every model is good enough 

if overfitting is observed. Excessive overfitting could be 

dealt with higher weight regularization rate. With a 

narrower range of learning rate and weight regularization, 

we finally do random search to find the best pair of these 

two hyper parameters. In practice, this procedure reduced 

our time for tuning than doing random search on a wide 

range in the beginning, since we have 8 models to train. 

For most models, 15 epochs are enough to observe the 

validation accuracy stabilize during the last 1-2 epochs. 

Table 3 shows the hyper parameters we used for every 

model. To evaluate the performance of every model, we 

tested them on 1800 test samples to exam the overall 

accuracy of correct style recognition rate.  
Table 3 Hyper parameters choices for each model 

 L6 L7 L7+ L9 L9+ L11 L11+ L13 

lr 1.62e-6 8.1e-

6 

3.4e-5 4.6e-

5 

5.1e-5 3.3e-5 8.2e-4 1.96e-

5 

decay 5.5e-3 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3 

wr 2.1e-6 0 1.3e-6 1.9e-

8 

0 0 3.1e-4 1.1e-6 

 

6. Results and Discussion 

Table 4 shows the results of the performance of the 8 

models. Comparing L6, L7, L9, L11, and L13, it suggests 

that increasing the number of layers will improve the 

performance. It appears that increasing the number of 

filters doesn’t improve the performance, as both the 

validation and test accuracy of L7 model is a bit higher 

than those of L7+ model. Putting additional layers in the 

back of the convolutional layers have a better performance 

than putting them in the front, as L9+ has higher validation 

and test accuracy than L9. Adding batch normalization 

also improve the performance as L11+ model has a higher 

validation and test accuracy than L11. Also, the 

performance of L11+ is also better than L13 which has 

more convolutional layers but doesn’t have batch 

normalization layers.  
Table 4. Validation and Test Performance of All Models 

 

Then we analyzed the recognition ratio of all classes 

performed by the L11+ model, which has the best 

validation and test accuracy among all models. The 

recognition ratios are shown in Table 4. Each column 

represents the ground truth style of a sample, and each row 

represents the predicted style of a sample. The numbers in 

the table stand for the ratio of all samples of a certain style 

in that corresponding column that are labeled as a certain 

style in that corresponding row. Therefore, the numbers on 

the diagonal represents the correct recognition ratio of the 

five styles. According to the table, the top 3 accuracy 

belongs to the clerical, cursive and seal styles. 
Table 5. Recognition Ratio of all classes in L11+ Model 

 

 
Figure 3. Recognition Ratio of all classes in L11+ Model 
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 Fig. 3 shows the same results as table 4 for better 

presentation of the recognition ratio, it can be seen from 

the figure that a significant number of semi-cursive 

samples are mislabeled as the standard and cursive style. 

This is largely because that semi-cursive samples are 

sometimes similar to standard and cursive style samples. 

According to the definition of the semi-cursive style, it is 

more casual than the standard style, and less casual than 

the cursive style. The relativeness in the definition 

suggests that semi-cursive samples are more difficult to be 

recognized. Some examples of the mislabeled samples are 

shown in Fig. 4.  

 
Figure 4. Examples of Mislabeled Images 

One important characteristic of these mislabeled samples 

is that they are all simple Chinese characters with very few 

strokes. This makes their styles less explicit. In fact, some 

of these characters are really ambiguous in terms of styles. 

And they are defined into a certain style largely because of 

the style of the whole TCC image from which they are 

cropped. This also suggests that using images that contains 

several TCC character as sample input instead of 

individual character may output better performance.  

For visualization of the L11+ model, we applied two 

methods to evaluate the feature activation map. Since we 

use filter size of 3x3, visualizing the filter weights directly 

is not very helpful because of the low resolution. Instead, 

we reconstructed images of feature activation maps at 

several layers. First, we loaded the model with the weights 

of the best L11+ model, and use images generated with 

random noise as input. We then extracted the output of the 

target convolutional layer after the ReLU activation, and 

defined a customized loss that corresponded to the 

activation. Next, we back propagated the model to find the 

gradient of the input image that maximize the loss, and use 

gradient ascent to generate images. The result images are 

shown in the Fig. 5. Since the reconstructed images are 

grayscale images, it is harder to see the feature textures in 

the images. Still, it can be observed that some images are 

filled with lines of certain directions, and some images 

have small circles which look like bubbles. And some 

images appear to be the same but with different rotation 

angles. These features suggest that the CNN model is 

looking for certain patterns within the images to increase 

activation.  

The other method for visualization is to use real images 

as input and output the feature activation map after ReLU 

directly to see the activation. First, we chose 5 images 

from different styles and extracted the activation maps of 

different convolutional layers. The feature activation maps 

of several filters are shown in Figure 6. From the output of 

the first convolutional layer that uses training images as 

input, it shows that some of the filters activates certain 

edge lines of the character, and other filters activates the 

body of character strokes.  

During the observation of each filter, we found that the 

feature map of some filters are completely black. And for 
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deeper layers, we observed increasing potion of filters that 

are completely black. Therefore, we focused on a fixed  

 

filter and found that some filters activate some images 

while are completely back on other images. This suggests 

that some higher layer filters are looking for certain 

features of the input images. 

7. Conclusion and future work   

    In this project, we explored the performance of CNN 

models on TCC recognition. We constructed 8 different 

models with different number of convolutional layers and 

different number of filters. And we found that increasing 

number of convolutional layers, in other word, building 

deeper network models increases the overall recognition 

accuracy of the model. And increasing number of filters 

didn’t increase the accuracy in our case. We also found 

that the best model in our configurations is the 11-layer 

network with batch normalization.  

    During visualization of, we used two methods to 

reconstruct the images which maximize activation of 

certain layers, as well as to view the feature activation map 

directly. And we observed that there are images containing 

series of lines in a certain directions and images containing 

small bubble like features. We also noticed that some 

images are similar in terms of the texture displayed but 

have different rotation angles.  

When viewing the feature activation maps, we found 

that in the first convolutional layers, some filters activate a 

certain part of the edge of the characters, while other filters 

activate the body of each stroke of the characters. We also 

found that while some higher layers’ filters are completely 

black in one images, they show activation when seeing 

other images. 

For future work, if we were given more time or had 

more teammates, we would look into the work of 

recognizing images that have several characters instead of 

only one. We would also do a better data-preprocessing 

and do data augmentation to the training images.  
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