
Convolutional neural network of atomic surface

structures to predict binding energies for

high-throughput screening of catalysts

Seoin Back,†,‡ Junwoong Yoon,†,‡ Nianhan Tian,† Wen Zhong,† Kevin Tran,†

and Zachary W. Ulissi∗,†

†Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

‡These authors contributed equally to this work.

E-mail: zulissi@andrew.cmu.edu

1



Abstract

High-throughput screening of catalysts can be performed using density functional

theory calculations to predict catalytic properties, often correlated with adsorbate bind-

ing energies. However, more complete investigations would require an order of 2 more

calculations compared to the current approach, making the computational cost a bot-

tleneck. Recently developed machine-learning methods have been demonstrated to

predict these properties from hand-crafted features but have struggled to scale to large

composition spaces or complex active sites. Here, we present an application of deep-

learning convolutional neural network of atomic surface structures using atomic and

Voronoi polyhedra-based neighbor information. The model effectively learns the most

important surface features to predict binding energies. Our method predicts CO and

H binding energies after training with 12,000 data for each adsorbate with a mean

absolute error of 0.15 eV for diverse chemical space. Our method is also capable of

creating saliency maps that determine atomic contributions to binding energies.
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Understanding atomic and molecular interactions with solid surfaces is a basis for pre-

dicting catalytic properties in heterogeneous catalysis. Density functional theory (DFT)

calculations have played an important role in understanding these interactions and estimat-

ing binding strengths accurately with respect to the corresponding experimental measure-

ments (MAE = ∼0.2 eV).1,2 Binding energies can be used as descriptors to predict catalytic

properties such as electrochemical onset potentials,3,4 turn over frequencies,5 product selec-

tivity6 based on scaling relations between binding energies of reaction intermediates,3,7,8 and

Brønsted-Evans-Polanyi relation between reaction energies and kinetic barriers.8,9

In the past decades, high-throughput screenings of catalysts have been performed mainly

using simple metal/alloy systems, and the most stable and second most stable facets such

as FCC (111) and (100) have been used due to their low surface energies.10,11 In addition,

one descriptor has been usually used to predict catalytic activities—e.g., H, OH and CO

binding energies to predict theoretical overpotentials of H2 evolution/oxidation reactions, O2

reduction reaction and CO2 reduction reaction, respectively.11–14 To more completely study

catalytic properties of materials, however, we need to reconsider those two assumptions.

First, the most stable facet is not always most active. For example, concave Au nanoparticles

consisting of a large portion of high index facets showed much higher catalytic activity

and selectivity compared to thin film consisting of stable facets.15 Therefore, it is essential

to consider several possible facets and a number of unique active sites on those facets,16

increasing the computational cost by a factor of 20, assuming we consider 5 facets and 4

possible active sites. Second, one may want to extend a chemical space to explore, but it has

been frequently observed that the scaling relations do not hold anymore for systems other

than metal/alloy systems. Examples include single metal atom embedded in two-dimensional

materials, p-block atom embedded in metals, and metal dichalcogenides.17–20 Therefore, we

need to consider all reaction intermediates, increasing the computational cost by a factor of

5∼10.4,21 Altogether, the required computational cost becomes an order of 2 more expensive

than the current high-throughput screenings, making the computational cost of DFT a main
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bottleneck. Thus, it is essential to develop strategies to alleviate the computational cost

issue.

Recent developments of machine-learning (ML) techniques and their applications to catal-

ysis have suggested that the ML could substantially facilitate the high-throughput screenings.

Based on ML predicted binding energies, one could reduce the number of DFT calculations

by excluding unpromising candidates.16,22,23 For example, using fingerprints based on se-

lected chemical and physical features of active sites and their neighbor information, many

artificial neural network (ANN) models have been successful in achieving an acceptable accu-

racy (MAE = ∼0.2 eV) with respect to the DFT calculated binding energies. Unfortunately,

many models are based on electronic features of active surface atoms, such as d-band charac-

teristics, requiring ab-initio level computational cost to prepare them. Therefore, ML models

that use readily available data and that achieve high accuracy with the minimal number of

training DFT data are strongly desirable to pursue an efficient catalyst search over the broad

chemical space.

Recently, Xie and Grossman applied a deep-learning convolutional neural network (CNN)

on top of a graph representation of bulk crystals to predict various properties24,25 and reached

DFT accuracy after training with ∼30,000 DFT calculated data. The graph representation of

the crystals includes information of atomic features and interatomic distances, and iterative

convolutions extract neighbor information to update atomic feature vector. Note that none

of expensive electronic structure information was used during the process; only the crystal

structures and basic atomic features were used.

In this work, we use a modified form of this CNN method to predict CO and H binding

energies on diverse surfaces of pure metals, metal alloys, and intermetallic surfaces. In our

method, we collect the graph connections based on Voronoi polyhedra to take into account

additional adsorbate atoms. We report state-of-the-art MAEs of 0.15 eV for both CO and H

binding energy predictions using 12,000 training data for each adsorbate across a far larger

collection of surface composition and structure than previously possible. We further show
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that our method can be used to create saliency maps to determine atomic contributions to

binding energies and to automatically detect failed DFT calculations.

We modified the bulk crystal prediction code to better represent surface features. In the

previous effort of the CNN applications to bulk property predictions, the authors encoded

atomic information and interatomic bonding interactions into node and edge vectors, respec-

tively,24 where the node vectors include the basic atomic information and the edge vectors

contain atomic indices of nearest neighbor atoms and their bonding distances from the cen-

ter atom. The main difference between bulk structures and our atomic surface structures

is that the latter contain adsorbate atoms, where their initial positions are arbitrarily set

by users. Since a goal of our method is to predict binding energies using initial structures

as inputs, the arbitrariness of the initial adsorbate position should be addressed. We note

that there is no such arbitrariness in the graph representation of bulk crystals, since the final

relaxed structures were used.24 To resolve this arbitrariness, we modified the code so that we

can incorporate neighbor information based on Voronoi polyhedra as implemented in Pymat-

gen26 as ”VoronoiConnectivity” (Figure 1b). Voronoi polyhedra, also known as Wigner-Seitz

cell,27 of atoms in surface structures could provide local environment information as a solid

angle. Each atomic polyhedron encompasses space in which distance to the center atom is

less than or equal to the distance to other atoms. Solid angles between the plane shared

by polyhedra of two adjacent atoms and center atoms are calculated, and values normalized

to the maximum solid angle that belongs to the center atom were used to represent local

environments of the center atom. We note that larger solid angles correspond to stronger

interaction between the center and the neighbor atoms. To prepare atomic feature vectors,

we used the identical tabulated atomic information as in the original code.24

In some cases, the binding site changes from the initially set site to a more stable site

during structure relaxation—e.g., from a top site to a bridge site. Since binding site changes

could affect a prediction performance, we tested this effect by including a connectivity dis-

tance information from adsorbate atoms to all atoms in the surface structure taken from
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the final relaxed structures (Figure 1). We compared the prediction performance of training

with initial structures only, final structures only, and initial structures with the connectivity

distance information of adsorbates obtained from the final structures (Figure S1). Obviously,

the prediction performance of training with final structures was best (MAE = 0.13 eV) and

that with initial structures was worst (MAE = 0.19 eV), while that with initial structures

and the adsorbate distance information lies in between (MAE = 0.15 eV). For the rest of

this work, we present the results trained with initial structures and the adsorbate distance

information, but we highlight that training with initial structures only already demonstrated

a reasonable prediction accuracy.

1

2 2
2

c. Connectivity distanceb. Neighbor features a. Atomic features

Atomic features The number of neighbor atoms

Neighbor features

Connectivity distance

- Group

- Period

- Electronegativity

- Covalent Radius

- Valence Electrons

- First Ionization Energy

- Eletron Affinity

- Block

- Atomic Volume

Figure 1: A graphical representation of converting an atomic structure containing n atoms
into numerical inputs for the convolutional neural network. (a) 9 basic atomic properties
are presented by one-hot encoding24 to prepare the atomic feature vectors. (b) Neighbor
information was encoded using the solid angle (Ω) based on the Voronoi polyhedron. The
grey skeleton indicates the Voronoi polyhedron of Cu atom, and the solid angle between Fe
atom and the shared plane of Cu and Fe polyhedrons is marked. Other nearest neighbor
atoms were omitted for simplicity. Color code for atoms: Cu (blue), Fe (brown), C (grey),
O (red). (c) The connectivity distances from adsorbate to all atoms in surface structures are
counted. A side view of the surface structure with adsorbate CO molecule, surface atoms
up to the second layer and their corresponding connectivity distances are presented as an
example.

Once we converted atomic structures into graph representations, we concatenated atomic
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Figure 2: Schematic illustration of the convolutional neural network on top of the graph
representation of atomic surface structures. Dark red and red blocks correspond to atomic
and neighbor feature vectors as in Figure 1. Pink blocks correspond to the connectivity
distance vectors used as a filter to exclude atoms that are too far from adsorbates (higher
than the connectivity distance of 2). More details are elaborated in the main text.

feature vectors of atom i and j (vi and vj) and neighbor feature vectors between atom i and

j (u(i,j)), i.e., z(i,j) = vi ⊕ vj ⊕ u(i,j). We then utilized the same convolutional layer (eqn

(1)) as described in Ref.24

vt
i = vt−1

i +
∑
j

σ
(
zt−1
(i,j)W

t−1
f + bt−1

f

)
� g
(
zt−1
(i,j)W

t−1
s + bt−1

s

)
(1)

where � denotes an element-wise multiplication, σ denotes a sigmoid function, g denotes

non-linear activation functions (”Leaky ReLu” in this study), W and b denote weights and

biases of the neural networks, respectively. After R convolutional layers, resulting vectors

are then fully connected via K hidden layers, followed by a linear transformation to scalar

values. Distance filters were applied to exclude contributions of atoms that are too far from

the adsorbates. At this stage, (1) atomic contributions of each atom to binding energies

could be predicted and (2) mean pooling layer is applied to predict DFT calculated binding

energies (Figure 2).

The neural network is trained to minimize the loss function (MAE) between the DFT

calculated and predicted binding energies using Adam optimizer with decoupled weight decay

(L2 Regularization coefficient: 10−5) and warm restart.28 We tested two pooling functions

(sum and mean) and four activation functions (Sigmoid, Softplus, leaky ReLu, ReLu) and

the comparison results are presented in Figure S2. We divided DFT results into 20 % and
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80 % of test and training sets, respectively. To prevent the overfitting, the validation set (25

% of training sets) was used to optimize hyperparameters (Table S1).

Table 1: A comparison of our DFT data and the number of parameters of our
model to literature values, where the goal was to predict binding energies. We
counted all unique components (element, stoichiometry, space group, facet) in
literature and our DFT data. For the previous studies that did not explicitly
mention the number of total DFT data or parameters, we estimated based on
the presented results. The number of parameters indicate how complicated the
model is. Specific parameter components of our model are summarized in Table
S2.

Element Stoichiometry Space group Facet Total DFT data Parameters Methods
Calle-Vallejo et al.29 1 1 1 22 132 2 GCNa

Abild-Pederson et al.30 13 1 3 6 165 2 SRb

Dickens et al.31 45 3 3 3 901 2 EDc

Noh et al.32 28 3 1 1 263 101 ∼ 102 MLd

Andersen et al.33 9 3 1 4 884 ∼ 101 MLd

Li et al.22 24 4 1 1 1,032 ∼ 102 MLd

Batchelor et al.34 5 1 1 1 1,869 15 (O), 55 (OH) MLd

This work 37 96 110 41 43,247 4,938 (CO), 6,738 (H) MLd

ageneralized coordination number, bscaling relations, celectronic descriptors,
dmachine-learning.

We first compare how our DFT datasets and method are different from the previous

approaches29–34 (Table 1). First, the DFT data used in most previous studies covered only

the limited chemical space—e.g., materials consisting of up to two elements based mainly

on transition metals, fixed elemental compositions for alloys (1:1, 1:3) and low-index facets

of the most common crystal structures (FCC (111), FCC (100), HCP (0001)). On the other

hand, our DFT datasets include materials consisting of up to four elements using 37 elements,

96 stoichiometries, 110 space groups and 41 facets. Second, the number of parameters in

our CNN method is substantially more compared to the previous approaches. For binding

energy predictions through scaling relations,30 generalized coordination numbers29 or elec-

tronic descriptors,31 only two parameters (slope and bias) are optimized through a linear

regression. ANNs consisting of an input layer, several hidden layers and an output layer are

reported to have ∼102 parameters.22,33,34 In our deep-learning CNN, there are thousands of

parameters to be optimized during the training so that it can predict binding energies on a

variety of surfaces of catalysts. However, we note that simpler methods are useful in specific
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cases, which will be discussed in the last part.

Figure 3 shows the performance of our method on predicting CO and H binding energies.

We note that a difference in the prediction accuracy between CO and H using the small

number of data could be originated from their data distribution; the standard deviations

of CO and H DFT binding energies are 0.65 and 0.42 eV, respectively. In both cases,

we observed a systematic decrease in the error metric (MAE) as the number of training

atomic structures increased. Interestingly, we observed a near convergence of the prediction

accuracy at 5,000 and 8,000 training data for CO and H, respectively, similar to our previous

work.16 For comparison, we also plotted MAE obtained using 12,000 training data from

our previous work,16 where fingerprint-based surrogate models were trained. We note that

exact comparison is not available since training/validation/test data splitting was not used

previously, but training/test splitting was used instead. The previously reported values are,

thus, the lower-limit accuracy of the model. The best MAEs we achieved for the CO and

H binding energy prediction are 0.15 eV in both cases, and 86 % of test data are within

the accuracy of 0.25 eV. We highlight that MAEs for CO and H binding energy prediction

in this study are lower by 0.05 eV compared to our previous model. Given a reasonable

accuracy of our model and facile preparation of input data, we expect this method could be

applied for the high-throughput catalyst screening to remove unpromising candidates, thus,

reducing the number of DFT jobs.

After the convolutional layers and the fully connected layers, the resulting output vectors

are linearly transformed to scalar values for each atom, which are then filtered by the con-

nectivity distance criterion. We only considered atoms with the connectivity distance up to

2 as they are expected to strongly interact with adsorbates. These values are then averaged

in the pooling layer and the resulting value corresponds to the predicted binding energies.

Thus, the linearly transformed scalar values represent the contribution of corresponding

atoms to the predicted binding energies. We note that the prediction accuracy change was

negligible (< 0.01 eV) even we included all the atoms, indicating that the first and the sec-
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Figure 3: Mean absolute error (MAE) of test set with respect to the number of training
atomic structures for binding energy predictions of (a) CO and (b) H. The horizontal dashed
lines correspond to the standard deviation of DFT binding energies. As a comparison, we
added the prediction error from our previous study (green and red star).16 Two-dimensional
histograms of DFT-calculated and CNN-predicted binding energies of (c) CO and (d) H.
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ond nearest-neighbor of adsorbates mainly contribute to binding energies. In Figure 4, we

present a graphic representation of each atomic contribution to binding energies using CO

adsorption at top and bridge sites of Cu (211) surface as an example. We normalized the

atomic contribution into [0,1] range by mapping the minimum and the maximum values of

the contributions to 0 and 1, respectively. Clearly, we observe that surface atoms directly

interacting with adsorbates have the highest contribution to the binding energies. We also

visualized atomic contributions using the connectivity distance up to 4, and, as expected,

their contributions are found to be negligible (Figure S3). This result rationalizes the use

of the first and second nearest neighbor to extract neighbor information of active sites for

the preparation of fingerprints in our previous model.16 An example of bimetallic surface

is shown in Figure S4. We note that the conventional DFT calculations are not capable of

isolating the calculated binding energies into each atomic contribution.

a. b. 

Figure 4: Graphic representations of atomic contributions to CO binding energies at (a) top
and (b) bridge site of Cu (211) surface. Darker spheres indicate higher contributions. Only
atoms within the connectivity distance of 2 are considered and transparent spheres indicate
atoms with connectivity distances higher than 2.

Another feature of our method is to automatically detect wrong DFT calculations in

datasets, which may take lots of time by human analysis. Since our workflow in GASpy

automatically performs DFT calculations (see the Computational Methods for details of cal-
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culations), there could be a few incorrect atomic structures and binding energies, where the

final relaxed structures significantly differ from the initial structures due to surface recon-

structions or unphysical initial atomic structures (Figure S5). Since our model uses neighbor

information based on the Voronoi polyhedra, it cannot accurately predict binding energies of

structures where atomic structural change is significant. After training, we considered data

outside of ±3σ as outliers and this process was repeated two times (Figure S6 and S7). Out

of 20,771 and 22,361 data for CO and H binding, 622 and 628 outliers were detected.

The deep-learning CNN results presented in this work suggest that, given sufficient train-

ing data, it could be effective in reducing computational cost issue in the high-throughput

screenings. However, we highlight that simpler methods may be more effective for specific

cases or smaller datasets. Details are discussed in the following:

• For systems consisting of single metal element, generalized coordination number (GCN)

is the best choice. The GCN analysis on low and high index Pt facets in various sizes

of Pt nanoparticles predicted OH* binding energies very accurately (MAE ∼0.056 eV)

using only 20 DFT data.29 In addition, one can easily count the GCN of active sites.

However, an extension of this method to alloy or other materials has not been reported.

• Scaling relations and electronic descriptors, such as d-band center, are suitable for a

dozens of metal/alloy DFT data. The drawback of the scaling relation is that it is

adsorbate-specific and a model should be optimized for each adsorbate of interest.30

For d-band center analysis, one should perform DFT optimization and post density-

of-states analysis to calculate d-band center values. Further, a preparation of inputs

requires DFT calculations for new systems to obtain binding energies of atomic species

or d-band center values.

• Artificial neural networks (ANN) have also shown a similar accuracy to the scaling

relations or electronic descriptors,22,32–34 and they are suitable for hundreds/thousands

of DFT data of similar metal/alloy systems. They require a careful preprocessing of
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fingerprints which could considerably affect the prediction accuracy. A preparation of

inputs for a binding energy prediction of new systems is usually fast as most of the

fingerprints are determined beforehand.

• The deep-learning methods, CNN as in this study, could predict binding energies for

a variety of surfaces without a preparation of fingerprints as they collect all the in-

formation automatically. However, the main drawback of the deep-learning is that it

requires lots of data (> 10,000 DFT data). As we want to include diverse materials

for the high-throughput screenings, the deep-learning methods would be ideally suited

to this purpose.

In summary, we modified the original crystal graph CNN code by Xie and Grossman24

to collect neighbor information using Voronoi polyhedra for the application in predicting

binding energies on heterogeneous catalyst surfaces. Our method predicted CO and H bind-

ing energies with 0.15 eV MAE for a variety of materials which have never been considered

previously. Given the reasonable accuracy of our model, we expect that binding energy

prediction from our method could help to rule out unpromising candidates and reduce the

number of DFT jobs in the high-throughput catalyst screening to effectively facilitate a cat-

alyst discovery. Furthermore, our method successfully partitioned the calculated binding

energies into each atomic contribution, rationalizing the use of the first and second nearest

neighbor atoms for the preparation of fingerprints. It also automatically detected wrong

DFT calculations generated during the high-throughput calculations, which will be useful to

remove those outliers from the datasets.

Computational Methods

We collected DFT calculated results of CO and H binding on surfaces of pure metals, metal

alloys and intermetallic alloys from our open-source GASpy database (∼20,000 data for each

adsorbate). In the following, the calculation procedure is elaborated and more details can
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be found in our previous publication.16

Our DFT calculated data were automatically generated as follows; 1) 1,499 bulk struc-

tures from the Materials Project35 are relaxed. 2) Using the optimized bulk structures,

unique surfaces with Miller indices between −2 and 2 are enumerated, resulting in 17,507

surfaces. 3) All unique active sites are identified, 1,684,908 sites in total. 4) Using ”Materials

Id” in the Materials Project as an user input, all the required jobs (structure relaxation with

and without adsorbates) are automatically submitted to supercomputers. 4) The calculated

binding energies and initial/final structures of successfully completed jobs with a residual

force less than 0.05 eV/Å are uploaded to our GASpy database.

We used Pymatgen26 to enumerate various surfaces and to find unique active sites. We

used Luigi36 and Fireworks37 to manage high-throughput DFT calculations across many

clusters. DFT calculations were performed using VASP code38,39 with the revised Perdew-

Burke-Ernzerhof (RPBE) functional2 and projector augmented wave (PAW) pseudopoten-

tial.40
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(29) Calle-Vallejo, F.; Mart́ınez, J. I.; Garćıa-Lastra, J. M.; Sautet, P.; Loffreda, D. Fast

prediction of adsorption properties for platinum nanocatalysts with generalized coor-

dination numbers. Angew. Chem. Int. Ed. 2014, 53, 8316–8319.

(30) Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T.; Moses, P. G.;

Skulason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies for

hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99,

016105.

(31) Dickens, C. F.; Montoya, J. H.; Kulkarni, A. R.; Bajdich, M.; Nørskov, J. K. An

electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces.

Surf. Sci. 2019, 681, 122–129.

(32) Noh, J.; Back, S.; Kim, J.; Jung, Y. Active learning with non-ab initio input features

toward efficient CO2 reduction catalysts. Chem. Sci. 2018, 9, 5152–5159.

(33) Andersen, M.; Levchenko, S.; Scheffler, M.; Reuter, K. Beyond scaling relations for the

description of catalytic materials. ACS Catal. 2019, 9, 2752–2759.

18



(34) Batchelor, T. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.;

Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule

2019, 3, 834–845.

(35) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.;

Gunter, D.; Skinner, D.; Ceder, G. Commentary: The Materials Project: A materials

genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.

(36) Bernhardsson, E.; Freider, E.; Rouhani, A. Luigi, a Python package that builds complex

pipelines of batch jobs. 2012; https://github.com/spotify/luigi, (bithub, 2012).

(37) Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher, M.; Brafman, M.;

Petretto, G.; Rignanese, G.-M.; Hautier, G. et al. FireWorks: a dynamic workflow sys-

tem designed for high-throughput applications. Concurrency Computat.: Pract. Exper.

2015, 27, 5037–5059.

(38) Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals.

Phys. Rev. B 1993, 48, 13115.

(39) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals

and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

(40) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-

wave method. Phys. Rev. B 1999, 59, 1758.

19


