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working on  the top, second,. . . path of a  unique stack. 
Furthermore, the stack ordering and  path extension can be  
performed in parallel by different machines operating 
under  a  central control. 
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Convolutional Source Encoding 
MARTIN E. HELLMAN, MEMBER, IEEE 

Absiract-4 certain communicat ions problems, such as  remote 
telemetry, it is important that any  operat ions performed at the transmitter 
be  of a  simple nature, while operat ions performed at the receiver can  
frequently be  orders of magni tude more complex. Channel  coding is 
well matched to such situations while conventional source coding is not. 
To  overcome this difficulty of usual source coding, we propose using a  
convolutional encoder  for joint source and  channel  encoding. When  the 
channel  is noiseless this scheme reduces to a  convolutional source code 
that is simpler to encode  than any  other optimal noiseless source code 
known to date. In either case, decoding can be  a  minor variation on  
sequential decoding. 

I. INTRODUCTION 

vv 
E SHOW that convolutional codes can be  used at 
rates greater than one  to achieve optimal noiseless 

source coding and  that a  type of sequential decoder  can be  
used for decoding such codes. Since the encoder  is extremely 
simple, this technique is well suited to remote telemetry 
and  other applications where encoder  complexity must be  
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m inimized, even if it is at the expense of greatly increased 
decoder  complexity. 

Huffman’s optimal technique [1] for noiseless source 
coding is frequently satisfactory for sources with simple 
statistics. However, a  Huffman code is not easily imple- 
mented for a  source with long complex memory. Also, 
such variable length codes require buffers that can dominate 
the encoding complexity. In contrast, the technique des- 
cribed herein is usable on  sources with memory and  gives a  
tied rate code. 

Although the primary interest here is in convolutional 
source coding for use on  noiseless channels, it is easiest 
to understand the technique when used for joint source 
and  channel  coding and  when an  arbitrary error propagat ing 
code is used. The  compression problem is a  special case 
within this more general  framework and, as we shall see, 
it is the error propagat ing nature of convolutional codes 
that allows their use. 

Let us, therefore, for ease of explanation, first consider a  
system that receives English text from a  source, compresses 
it by 2  : 1  by removing part of the redundancy, and  then uses 
a  rate 3  code, which entails a  2: 1  expansion, to correct 
transmission errors. Overall, the encoder  is rate one. It 
seems somewhat wasteful to remove redundancy only to 
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add it in for error correction. Of course, the natural re- 
dundancy of the source is not used for error correction 
because it is not well matched to that task. 

For example, if the message “I AM NOT ABLE TO 
PROVIDE SUPPORT.” is received as “I AM NOT AGLE 
TO PROVSDE SUPPORT.“, the two errors, indicated by 
italics are easily corrected. However, a single transmission 
error can produce an undetected error: “I AM NOW 
ABLE TO PROVIDE SUPPORT.“. If single errors are 
more likely to occur than multiple errors, the correctable 
error patterns are not the most probable. In some sense 
we have chosen the wrong coset leaders. 

In this paper we suggest using error propagating codes 
as a simple means for transforming the natural redundancy 
of the source into a usable form. Since error propagating 
codes are usually avoided [Z], it may seem somewhat 
surprising for us to recommend their use. The above example 
will help to illuminate the motivation behind this suggestion. 
Suppose the message “I AM NOT ABLE TO PROVIDE 
SUPPORT.” was encoded by a rate one error propagating 
code. If a single character error occurs, the T of NOT can 

’ still be received as a W, but now the remainder of the 
message will appear garbled: “I AM NOWJ.NXAAVWM, 
EWTY,ROVBGZ,RI”. It is easy to detect that an error 
has occurred, and without much difficulty it can even be 
corrected. The most likely possibility is that the J of NOWJ 
should be a space. Forcing this by a single character cor- 
rection causes two errors to propagate, and the output will 
again appear garbled : 

“I AM NOW HU.CVKIWXRORBHUWTZHUIGK*“. 

When all other possible corrections on the J of NOWJ are 
tried they too yield meaningless output. Assuming a single 
error, we then try corrections on the W of NOWJ. All 
except the proper correction cause meaningless output. The 
code used for this example is described in an earlier paper 
[3] which discussed using error propagating codes for the 
detection of errors. 

In this paper we show that error propagating codes can 
be used to correct virtually all errors, so long as the entropy 
rate of the source is less than the capacity of the channel. 
We prove this in a general manner that extends to code’ 
rates both above one (compression) and less than one. 
First, we show that convolutional codes are error propagat- 
ing. Then we use the joint source and channel coding 
theorem, developed by Gallager for block codes [4, p. 5341, 
[S, p. 1621, to prove a similar joint source and channel 
coding theorem for convolutional codes when used on a 
discrete memoryless source and channel. This proof is very 
short, but provides little insight into decoding techniques. 
We, therefore, outline a proof that shows that a type of 
sequential decoder can be used. A somewhat heuristic 
argument is then given which shows that the results extend 
to more interesting real-life sources. 

The technique to be proposed has a tree structure. 
Jelinek [6] proposed using tree codes for coding with 
respect to a distortion measure and found very encouraging 
complexity requirements as compared to block codes. 

ek 

t 
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Fig. 1. Rate one binary error propagating code. 

However, the technique used here transfers most of the 
complexity to the decoder, while Jelinek’s technique 
transfers it to the encoder. In some sense, these techniques 
are duals. 

Independently of each other and of this author, two others 
realized the applicability of convolutional codes to source 
coding. Priority for the basic idea belongs to them and one 
contribution of this paper will be to bring additional atten- 
tion to their work. In an unpublished report, Blizard [7] 
suggested using a sequential decoding metric that takes the 
a priori probabilities of the source into account. He showed 
that this allowed data to be decoded at rates above the usual 
computational cutoff. Koshelev [8], [9] independently 
came to the same conclusion and derived an Hcomp for a 
source. He showed that if Hcomp is less than Rcomp, then the 
expected number of computations per decoded bit was 
finite. Of course, Hcomp is greater than H, the true entropy 
rate of the source. 

The approach of this paper is somewhat different since it 
almost ignores the computational requirements of the 
decoder, and instead concentrates on showing the optimality 
of the technique. This position is based on two motivating 
factors. First, concern here is primarily with the complexity 
of the encoder. Second, as will be shown later, it appears 
that the computational burden on the decoder can be 
greatly reduced by a simple preceding operation. The 
ideas in this paper are also related to those of Velasco and 
Souza [lo] and of Massey and Ancheta [l 11. 

II. ERRORPROPAGATING CODES 
A binary rate one perfectly error propagating code is an 

invertible mapping from binary strings u to binary strings 
x(u) of the same length. Both the mapping and its inverse 
are causal (and hence causally invertible). The crucial 
property is as follows : Let y = x 0 e, where e is the channel 
sequence. Then, letting i. denote the location of the first 
error, when the inverse mapping is applied to y the output 
ii agrees with u in the first i, - 1 positions but is totally 
random after the i. position. 

In [3], it is shown that the encoder-decoder pair shown 
in Fig. 1 has the required properties provided v = N, the 
length of the binary strings. The encoder is a rate one con- 
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volutional encoder  with the first stage of the shift register 
tapped with probability one. All other stages are tapped 
independently, each with probability 3. 

O f course, error propagat ion is perfect only when averaged 
over the ensemble of codes. However, one  can think of 
choosing a  code (i.e., the {Ui}bl) and  building an  encoder  
and  decoder  without telling the receiver which code is 
being used. Until the first channel  error occurs, the receiver 
is not affected by the choice of code. One  time  unit after 
the first channel  error, the receiver is affected, but only by 
the choice of a,. That is, if the receiver knew the information 
sequence, it could then compute a,, but not {ai}bz, on  
the basis of the decoded information sequence. At the 
next time  unit, the receiver is affected by a, and  u2, etc. 
Even though we had  specified the code, it still is random as 
far as the receiver is concerned. 

The  extension to nonbinary error propagat ing codes is 
obvious [4, p. 2081. A more interesting generalization is to 
error propagat ing codes with rates other than one. Rate l/n 
codes are constructed in the usual way by transmitting n 
different mod-2 sums of the shift register contents. The  first 
stage of the shift register is included in each of the n sums, 
and  later stages are included independently and  at random 
in each sum. In the absence of noise the outputs of any 
one  of the mod-2 sums is sufficient for decoding. In the 
presence of noise the different streams provide independent 
information about the message. 

Rate m  codes are constructed by shifting m source bits at 
a  time  into the shift register and  transmitting one  mod-2 
sum. The  taps are chosen as before. Rate m/n codes are 
obtained by shifting in m source bits at a  time  and  trans- 
m itting n different mod-2 sums. 

If the rate of the code is larger than one, then it is not 
always possible to reproduce the source sequence from the 
source coded data. However, as shown in Section III, if 
the rate of the source is less than the capacity of the channel  
(both measured in bits per second), the decoding will almost 
surely be  performed correctly. Reliable communicat ion is 
thus possible using these techniques at all rates where it is 
al lowed by any other type of system. 

III. PROOF OF OPTIMALITY 

We now prove that, for a  discrete memoryless source and  
channel, convolutional codes can be  used to perform reliable 
joint source and  channel  coding provided that H, the 
entropy of the source, is less than C, the capacity of the 
channel, both measured in bits per second. We  utilize the 
following theorem [4, p: 5341, [5, p. 1621  in the proof. 

Theorem 1: Let L source outputs u  of a  discrete memory-  
less source with single letter distribution Q(u) be  encoded 
into x(u), a  sequence of N channel  inputs to a  discrete 
memoryless channel  with transition probabilities P(y 1  x). 
Also, within each codeword, let the N letters be  chosen 
independently according to p*(x), the distribution that 
achieves capacity. Then  if, on  an  individual basis, each 
incorrect codeword is independent [4, pp. 206-2081 of 
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P,(L,N) is upperbounded by 

P,(L,N) I 2**[ -a(NCe - LH,,)] (1) 

where Co is the capacity of the channel  in bits per use, HO 
is the entropy of the source in bits per source output, and  
LY > 0. A maximum uposteriori probability (MAP) decoder  
is assumed. 

Remark: We are not trying to find the tightest possible 
bound  on  error probability. If a  tighter bound  is desired, 
then the more general  expression for P&N) given in 
[4, p. 5341  should be  used, and  optimized over its variable 
parameters. 

We  are now in a  position to prove the joint source and  
channel  coding theorem for convolutional codes. 

Theorem 2: If R < CO/HO and MAP decoding is used, 
then there exist convolutional codes of rate R that can be  
reliably decoded when used for joint source and  channel  
coding. 

Remarks: If the channel  is noiseless and  of the same 
alphabet size as the source then CO/HO 2 1, and  the con- 
volutional code is operating as a  source code at a  rate 
above one. Note that in the terminology used here a  rate 
two code achieves a  2: 1  compression. This is consistent 
with the definition of a  rate for error correcting codes but 
is the inverse of the usual definition of a  rate for source 
codes. 

Also, note that convolutional codes lose an  additional 
fraction of their rate through the need  for a  trailer of known 
bits to be  inserted at the end  of the source sequence [12]. 
As is well known, and  as can be  seen from the proof below, 
this additional loss is negligible for long block lengths. 
This additional loss is, therefore, neglected in defining the 
rate of the convolutional code. In the proof we take the 
constraint length of the code to equal  the message length 
plus trailer length plus one. In practice a  shorter constraint 
length will usually be  used. 

Proof: If R = m/n then m source outputs are shifted 
into the encoder,  and, n channel  inputs are produced by 
the encoder,  each unit of time. Let us consider an  encoder  
that operates in this fashion for k time  units and  then 
shifts in a  trailer of mT known symbols for the next T 
units of time. Letting A denote the size of the source 
alphabet, overall this produces a  tree code of depth k + T, 
with A” branches emanat ing from each node  at depths 
between zero and  k - 1, and  one  branch emanat ing from 
each node  at depths between k and k + T  - 1. Nodes at 
depth k + Tare terminal nodes of the tree. Thus, overall, 
we encode km source outputs into (k + T)n transmissions, 
and  the actual rate of the code, including trailer loss, is 

R,,, = km/Ilk + Th l 
= R/(1 + T/k) (2) 

measured in transmissions per source output. 
We  now upperbound P,, the block error probability 

the correct codeword, the ensemble error probability averaged over the usual ensemble of convolutional codes. 
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In what follows, all probabilities are tacitly ensemble 
probabilities. First we use the union bound to obtain 

k-l 

pe 5 C  pe,j 
j=O 

(3) 

where Pe, j is the probability that at least one terminal node 
that first stems from the correct path at depth j has higher 
a posteriori probability than the correct codeword (terminal 
node). 

By starting the convolutional encoder with a one in the 
first stage we produce a “generalized” coset code, and each 
codeword has independent identically distributed component 
letters. By proper choice of the encoder output function we 
can make this distribution as close to p*(x) as desired [4, 
p. 2081, and we thus assume p*(x) to be the distribution on 
individual codeword letters. It is also well known that, in 
an infinite constraint length convolutional code, the letters 
comprising two different codewords are independent except 
for the letters on the common portion of their paths. The 
codewords thus meet the conditions of Theorem 1 for 
bounding Pe,j. We take L=(k-j)m and N= 
(k + T - j)n. The only problem is that not all source 
L-tuples are considered. Rather, only the correct source L- 
tuple (corresponding to the last L source outputs) and those 
.Gtuples disagreeing with the correct L-tuple in the first 
position are considered in the calculation of P,, j. However, 
Pe,j is clearly upperbounded by P,(L,N) since the latter 
includes all potential error events of the former. Therefore, 
combining (1) and (3), we obtain 

k-l 

P, 5 j;. 2**(-a[(k + T - j)nC, - (k - j)mH,]} 

< 2-aTnCo i$o 2**[-ai(nC, - mH,)] 

= 2-“T”Co[1/(1 _ 2-W3-7&))] (4) 
provided nCo > mH,, which is equivalent to the assumption 
R < Co/Ho. 

From (4), we see that P, can be made as small as desired 
merely by choosing T to be large enough. R,,, can then be 
made to approach R by letting k + co with T fixed. 

Q.E.D. 

IV. SEQUENTIAL DECODING 

The MAP decoding assumed in the above proof suffers 
from the usual exponential growth in complexity with the 
block length. Fortunately, the tree structure of convolu- 
tional codes (and of error propagating codes in general) 
permits the use of a modified sequential decoding algorithm. 
Because of lim itations of space, we only outline the proof. 
The metric increment along a branch going from a node at 
depth j - 1 to a node at depth j is 

m(um9 = In LQWYY I MY)], j<k 

m(v) = In CP(Y I 4/p(~)l - m& 
k+lljsk+T (5) 

where u is the source m-tuple corresponding to the branch, 
x is the n-tuple that would have been transmitted if the 
branch were traversed, and y is the received n-tuple during 
the jth time unit. As usual, P(y) is defined by 

P(v) = c P*@)JYY 1x1. 
x 

We have proved that the usual sequential decoding 
algorithms, when used with these metrics, allow reliable 
decoding at all rates R < Co/Ho. The proof is complicated 
by the nonhomogeneity of the metric increments (since 
they depend on u), but this can be handled by upperbounding 
P, by P@) + x!ZA ENj, where P(p) is the probability 
that the metric drops by more than p units along any 
portion of the correct path, and EN, is the expected number 
of terminal nodes first stemming from the correct path at 
depth j, and with final metric less than /? below the metric 
of the correct path at depth j. /? is a parameter of the 
algorithm and grows roughly logarithmically in k. 

The expected metric increment on the correct path can 
be shown to equal nCo - mHo and is thus positive for 
R < Co/Ho. P(B), therefore, goes to zero exponentially in 
/I and grows at worst linearly in k. Hence a logarithmic 
growth of/i in k suffices to keep P(/?) at an acceptably low 
level. 

Upperbounding ENj is somewhat more difficult because 
of the nonhomogeneity in the metric. Fortunately, a rather 
simple bound ENj < ENj’ works, where Nj’ is the number 
of terminal nodes with metrics above -p in a tree with 
maximal depth k + T - j and with T nonbranching final 
stages and where all the x are chosen independently of y. 
This is similar to upperbounding Pe,j by P,(L,N) in the 
proof of Theorem 2 and corresponds to including the correct 
path, and all paths stemming from it at depth j + 1 or 
greater, in the set of potential error causing paths. To 
compensate for this addition, we make the codewords thus 
added different from, and independent of, their actual values. 

Then, with m inor variations on the usual bounding 
techniques for sequential decoding, it is possible to show 
that P, + 0 as k + co provided T grows logarithmically 
in k. 

Example: Consider encoding a memoryless binary source 
with p = P(1) = 0.1 for transmission over a noiseless 
binary channel. Since Ho = H(0.1) = 0.469 bits/source 
output and Co = 1 bit/transmission, the maximum 
theoretical compression coefficient is 2.132 to 1. If a rate 
two convolutional code is used there are four paths leaving 
each node, but there is only one transmitted bit per branch. 
If the jth received bit disagrees with a branch connecting a 
node at depth j - 1 to a node at depth j, that path is 
assigned a metric of -co since then P(y 1 x) = 0. If the 
received bit agrees with the hypothesized transmission, the 
metric increment m  is In [Q(u) * l/($)1 = In [2Q(u)]. For 
u = 00, m  = In [2(0.9)‘] = 0.482; for u = 01 or 10, m  = 
-1.715; and for u = 11, m  = -3.912. Normalizing, we 
find that every occurrence of u = 0 adds + 1 to the metric 
and every occurrence of u = 1 adds -8.109. The expected 
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metric on the correct path is (0.9)(+ 1) + (O.l)( - 8.109) = 
0.089, which is positive. The moment generating function 
of the metric increment per branch on a “typical” incorrect 
path with half zeros and half ones is 

g(s) = [(e” + e-8*10gs)/2]2. 

The minimum of g(s) is near s = 0.23 and is Smin = 0.49950. 
That this minimum is below, 3 is crucial to the success of 
the decoder, which is operating at rate two, and thus typically 
has two branches per node that are not ruled out by the 
received data. The product of gmin and the number of 
branches per node must be less than one to guarantee 
“extinction” of incorrect subtrees. 

In practice one would tend to use metric values of + 1 
and - 8, or + 10 and - 81 and use integer arithmetic for 
metric calculation. We im$lemented such a decoder and 
found promising computational requirements even at this 
high rate. However, the experiment was small in scope and 
cannot be construed as strong evidence of reasonable 
computational requirements. Indeed, we would expect that 
in long blocks of data we would see large fluctuations in the 
required decoding effort since we are operating above 
Rcomp PI. 

V. SOURCES WITH MEMORY AND PREDISTORTION 

The proofs given thus far depend on the source being 
memoryless. In this section, we argue that the simplicity 
of the encoder need not be greatly increased when dealing 
with more interesting sources with memory (e.g., video or 
speech). However, it appears that the complexity of the 
decoder then becomes astronomical. We explore possible 
techniques for returning the decoder complexity to the 
realm of reason without sacrificing too much simplicity at 
the encoder. However, this is largely conjecture. What is 
needed is a better understanding of the tradeoffs between 
encoder and decoder complexity. 

As an example of a source with memory, let us first 
consider the English language since its structure is easily 
understood. If the decoder uses a metric that corresponds 
to a first-order approximation to English (i.e., letters are 
independent but not uniformly distributed), then it is 
possible to obtain as much compression as if the source 
really were emitting first-order English. This is because only 
the distribution of the metric on the correct path is different 
from that for a true first-order English source with no 
memory. The distribution of the metric increments on 
incorrect paths is not affected. Yet, while the metric in- 
crements on the correct path will exhibit some memory, 
if we look’ at the total metric increment along a large 
number of successive branches, we will find little difference 
in behavior from having a true first-order English source. 
This is because of the quasi-ergodic nature of actual English. 

If the decoder uses an n-gram approximation in calculat- 
ing metric values, then higher compression factors are 
possible. For large n this compression factor approaches 
the “true” maximum compression coefficient of English. 

A similar argument indicates that, in video, the use of a 
large number of previously decoded neighboring picture 
elements to generate the distribution on the next element 
to be decoded should allow as much compression as any 
other information-preserving compression technique. 

It is important that the constraint length of the encoder 
be long compared to the memory of the source so that high 
detail areas of a picture or atypical words in English (e.g., 
QUIZZICAL) can “borrow” redundancy from more 
redundant portions of the source output. This increases 
the cost of the encoder, but not significantly since the cost 
grows only linearly in the constraint length. Of more concern 
is the exponential growth of computation and, therefore, 
cost at the decoder as it searches almost exhaustively over 
these atypical regions. 

If the encoder could determine the regions of atypicality 
in the source output, it could take one of several actions. 
It could vary its rate and although this would require a buffer, 
we believe that this technique would have a lower prob- 
ability of buffer overflow than other techniques for a fixed 
buffer size and compression coefficient. This is because 
the decoder can still “borrow” redundancy from more 
redundant portions of the source output, thereby requiring 
less variation in code rate. 

Another action the encoder could take would be to 
distort the source output in the atypical regions, making 
it look locally more typical. For example, in decoding a 
memoryless binary source with p = 0.1, we once used a 
slightly mismatched metric and found that four bit errors 
were made in a region with higher than usual density of 
ones, u = * * . 11OOOOOOO10000000110 * * * to be precise. 
We could probably have avoided this decoding error by 
changing any of the five ones to a zero prior to compression. 
This would have incurred only one bit error instead of four 
and also would have reduced the decoding effort. 

This two-stage source encoding (predistortion followed 
by compression) has advantages over certain more usual 
methods. For example, in transform coding [13] of video, 
the distortion is introduced in an undetermined manner, 
and detail information is hard to distinguish from noise. 
With the suggested two-stage technique, the distortion is 
introduced in a deterministic manner, and this manner can 
be chosen to preserve informative data. Gray [14] has been 
led by a different line of reasoning to the same conclusion 
concerning the desirability of this predistortion process 
being followed by noiseless coding. 

These ideas are also closely related to those of Koshelev 
[9], who suggested “smoothing” of the source output to 
ease the computational burden on the decoder. His smooth- 
ing operation is a predistortion so that the maximal metric 
drop on the correct path does not exceed some prespecified 
level. The distortion is removed by adding a supplementary 
block of information that corrects the distortion. 

Of course, the need to calculate the metric on the correct 
path (or equivalently to isolate the atypical regions in the 
source output) increases encoder complexity. For a memory- 
less source, this is not usually a significant cost (e.g., add 
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+1 when u = 0 and -8 when u = 1). However, a source compelling desire for accuracy), the technique of using 
with complex memory will have a complex metric. If the error propagating codes for error correction is hardly new. 
encoder uses a poorer, but simpler, approximation to the “Give me a fruitful error anytime, full of seeds, bursting 
source in calculating its metric, it will partially ease the with its own corrections.“i 
decoding burden. Here is an obvious tradeoff in encoder 
and decoder complexity. Whether it will lead to practical VII. ACKNOWLEDGMENT 
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