International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Cooling Load Estimation Using CLTD/CLF Method for an Educational Building of Institute of Engineering & Technology Devi Ahilya Vishwavidyalaya Indore

Mukesh Waskel¹, Sharad Chaudhary²

¹M.E. Scholar IET DAVV Indore

²Professor IET DAVV Indore

Abstract: Cooling load calculation may be used to accomplish to many objectives such as provide information about the heat gain into the conditioned space through the building envelope, varies in magnitude from minimum cooling required to a maximum value, size of the A/C system. In this paper calculated the manually cooling load estimated for summer season applied the method to the Indore, these methods are very widely used by air conditioning engineers as they yield reasonably accurate results and estimations can be carried out manually in a relatively short time, that method accounts for the combined effect of inside and outside temperature difference, daily temperature range ,solar radiation and storage in the construction building mass. It is affected by latitude orientation, tilt, month, day, hour, etc. In this paper cooling load calculation is done for the two storey education building through the calculation it is obtained that total heat gain in the ground floor is about (72483W approximate 20.71 TR) and first floor is about (145362W approximate 41.53 TR). The maximum heat gain from the roofs about 24.44% of the total heat.

Keywords: Cooling load, CLTD/CLF, A/C System

1. Introduction

The building sector represents about 33% of electrical consumption in India. Bureau of energy efficiency ECBC compliant buildings can use up to 40 to 60% less energy than conventional building about 60% of the total energy requirement in the building is allocated for the air-conditioning plant installed to use the cooling purpose¹. The method of heat Gain determination is using cooling load temperature differential (CLTD) and cooling load factors (CLF) based on ASHRAE 1997 fundamental handbook and then verified by data provided by contractor of building.² Calculation of thermal load helps us to install accurate air conditioning equipment and air handling unit³.. Design outside conditions is selected from a long-term database. The take any actual year, but are conditions will not representative of the location of the building⁴ the load on the building due to solar radiation is estimated for clear sky conditions, full load capacity, the building orientation, weather condition, building size, buildings materials etc. Cooling load calculation for class rooms, CAD lab faculty room and practical labs Indore is a city in the state of Madhya Pradesh college building located at IET DAVV at latitude: 22.72n long: 75.80e at an elevation of about 567meters above sea level Building

2. Literature Survey

Anurag Kumar Singh at el (1) Cooling load estimation for Library is done for the library. Through the calculation it is obtained that total heat gain in the library and gives the suggestion for the size of air conditioning system.

Deepak Kumar Yadav at el (2) Cooling load estimation of a room cooling load calculated through ms-excel program for month of April and determined the size of air conditioning system.

F.A. Ansari at el (3) A Simple Approach for Building Cooling Load Estimation to compared the result in computer software and thumb rule in this paper use some building parameters and its orientation before starting the construction and describe the technique.

Deepak V K, at el (4) The cooling load calculation is done for two floors of a show room in a mall using CLTD/CLF method according to the load analysis, suitable airconditioning systems were selected for the building and Duct sizing is calculated by velocity reduction method.

The current paper discusses about cooling Load Calculation using CLTD/CLF method for educational building.

3. Data Collection and Methodology

3.1 Basic information

Before estimating cooling load of any building there are some basic information's are necessary to design an exact HVAC systems, like building orientation, weather condition, building spacing, buildings materials etc.

3.1.1 Orientation of building -

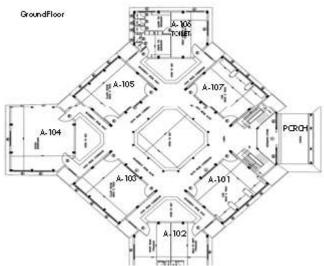
Building orientation (N, S, E, W, NE, SE, SW, NW, etc)

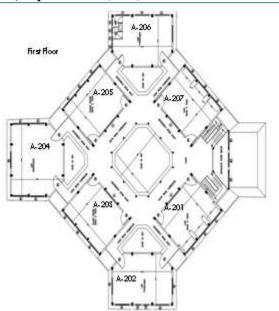
3.1.2 Building Location-

College building located at IET DAVV at Latitude Lat: 22.72N Long: 75.80E at an elevation of about 567meters above sea level

3.1.3. Climate conditions of space for June-

Indore has a composite climate zone ,maximum temperature in summer 32° C to 42° relative humidity in wet months 60% to 95% and minimum in dry month 30% to 40%


Table 1: Inside and outside design temperature
--


Item	T db in °C	Twb in Relative °C Humidity		Specific humidity (Kg/kg of d .a.)
			%	
Inside	24	17	50	0.0095
Outside	40.5	25	28	0.0135
Difference	16.5			0.004
Average temp	29.45 °C	Dail	y range	11.21°C

Average temperature & Daily range from ISHRAE Handbook 2014 (table 1-T-4)

Outside temperature are calculated for 21 June 4pm according to carrier handbook shown in below table-

3.1.4 Architectural Plan

3.1.5 Building specification

Description	Item	specification					
Walls	outer walls and cement plaster	20mm					
	Inner wall sand cement plaster	12mm					
	Clay Bricks	200x100x100mm					
Foundation	RCC (M-20)						
Roof and	RCC slab(M-20)	150mm					
structure	Ceiling sand cement plaster	4mm					
	Outer sand cement plaster	6mm					
Flooring	Kota stone(stair case)	20mm					
	concrete	25mm					
Window	frame (wooden)	145x235x30mm					
	shutter (wooden)	60x115mm					
Glass	Single clear	6mm thick					
Doors	Frame and shutter	1100x2300mm					

3.1.6 Dimensions of Building Ground Floor-

Ground floor of building having five rooms, such as computer labs, faculty room practical labs and classroom etc.

First floor-

First floor of building having seven rooms which is classrooms labs etc.

Table 3:	Dimension	of building
----------	-----------	-------------

Table 3. Dimension of building								
Room No.	Length(m)	Width(m)	Area(m ²)					
A-101CAD Lab	9.5	7.6	72.2					
A-102 Faculty Room	10.8	7.75	83.7					
A-103som Lab	9.5	7.6	72.2					
A-104 RAC Lab	9.55	10.93	83.07					
A-105 TOM Lab	9.5	7.6	72.2					
A-107 DOM Lab	9.5	7.6	72.2					
Height 3.3 meter								
A-201 Class Room	9.5	7.6	72.2					
A-202 Vib. lab	10.9	7.75	84.47					
A-203 Class Room	9.5	7.6	72.2					

Volume 7 Issue 3, March 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

A-204 Class Room	10.93	9.55	104.4			
A-205 Class Room	9.5	7.6	72.2			
A-206 App. Chem. Lab	10.9	7.75	84.47			
A-207 Class Room 9.5 7.6 72.2						
Height of each room 4.2 and 2.65 meter						

 Table 4: Thermodynamics properties of building material and calculate the value of U

	calculate			
S.N.	Material	Thick.	Thermal	U
			Conductivity	w/m ^{2 o}
			W/m. C	с
1	Wall			
	Outer Plaster Cement	20mm	8.65	2.36
	Inner Plaster Cement	12mm		
	Bricks	200mm	0.77	
2	Roof			
	Outer Plaster	6mm		3.82
	Inner Plaster	4mm		
	Concrete	150mm	1.73	
3	Flooring			3.65
	Granite	25mm	1.73	
	Concrete	20mm		
4	Doors Wooden	25mm	0.1	2.43
5	Window Glass	6mm	0.78	4.2

3.2 Components of cooling load

The total building cooling load consists of heat transferred through the building envelope (walls, roof, floor, windows, doors etc.) and heat generated by occupants, equipment, and lights.

3.2.1 Solar heat gain through glass

The space of glass window cooling load Q is calculated as $Q = A_{unshaded} \cdot SHGF \cdot CLF \cdot SC$

Where $A_{unshaded} = Area of the glass windows in m²$

 $SHGF = solar \ heat \ gain \qquad w/m^2 \qquad (\text{ASHRAE 1985 fundamental handbook chapter-26 table 11})$

CLF= Cooling load factor, (CLF For Glass ASHRAE 1985 fundamental Handbook chapter 26 table 14)

SC=Shading Coefficient, (SC=0.6 ,IIT Khadagpur notes unit 33 tabe-33.2)

3.2.2 Transmission heat gain

Q = UA (CLTD)CLTD=8 for glass taken from-ASHRAE 1985 Fundamentals Handbook chapter 26 table 10) Where U= Overall heat transfer coefficient w/m² ^oC

3.3 Heat transfer through opaque surfaces

This is a sensible heat transfer process. The heat transfer rate through opaque surfaces such as walls, roof, floor, doors etc. is given by

Q opaque =A .U. CLTD

3.3.1 Solar Transmission Gain From Wall

Solar transmission gain from wall depend upon the mass of the wall and orientation

Mass of wall per unit area .02(1885) +0.2(1600) + 0.012(1885) =380kg/m2

Adjustments to Values:

CLTD _{corre} = [(CLTD+LM) . K + (25.5- Ti) + (T _{av} - 29.4)] (CLTD from ASHRAE 1985 Fundamental handbook chapter 26 table 7)

LM = latitude –month correction from CLTD correction for latitude and month applied In Walls And Roofs, North Latitude (Ref-AHRAE 1989 Fundamental handbook chapter 26 table-9

K = color adjustment factor, k = 1 for dark colored

3.3.2 Solar transmission gain from roofs-

Q roof=A .U. CLTD (CLTD from ASHRAE fundamental handbook 1985 chapter 26 table 5)

3.3.3 Calculation of heat gain through floor -

Q _{floor} =A .U. CLTD the value of CLTD =2.5

3.3.4 Calculation of heat gain through doors -

Q $_{doors}$ =A .U. CLTD the value of CLTD =16.5

4. Load due to occupants

The internal cooling load due to occupants consists of both sensible and latent heat It depends the population and activity level of the occupants

4.1 Sensible heat gain from occupants-

Q S (Occupants)=No. of people x sensible heat gain /person x CLF $% \left({{\sum {k \in {\mathbb{N}}} {{{\left({{\sum {k \in {{\sum {k \in {{\sum {k \in {{\sum {k E}} } {{\left({{\sum {k E} } {{\left({{\sum {k E} } {{\sum {k E} } {{\left({{\sum {k E} } {{\sum {k E} } {{\sum {k E} } {{\left({{\sum {k E} } {$

((CLF = 0.852 ASHRAE Handbooks 1985)

If the conditioned space temperature is higher, sensible decreases and the latent heat gain increases. CLF is determined by the time the occopats come into the building and for how long they stay in the building the value of sensible heat gain taken 70W/person

4.2 Latent heat gain from occupants

 Q_{L} (Occupants) =No. of people x Latent heat gain /person The value of latent heat gain taken 45 W /person

5. Heat gain through lights

Lighting adds sensible heat to the conditioned space. Since the heat transferred from the lighting system consists of both radiation and convection. Cooling Load Factor is used to account for the time lag. Thus the cooling load due to lighting system is given

Q $_{\rm lighting} = installed$ wattage x Usage factor x Ballast factor $\,$ x CLF

Volume 7 Issue 3, March 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART2018997

The usage factor accounts for any lamps that are installed but are not switched on at the time at which load calculations are performed Its value depends upon the type of use usage factor taken 1 ,CLF value for class room taken 0.6 for 6hrs lights on Ballast factor for fluorescent light 1.25.

6. Heat gain through appliances-

The general electric equipments, computers, printers, fax machines, projector, adds sensible heat in the air conditioning space

Q equipments = Total wattage x Usage factor x CLF

Table- 5 Heat Gain Rate For Classroom And Faculty RoomAppliances (Watts) (Ref- ASHRAE handbook 2001)

Appliance	Average	ontinuous	Ideal
Computer17" Monitor	90	.5	25
projector	250	0	50
Laser printer	100	0	10

7. Heat Gain through Infiltration

Uncontrolled entry of untreated, outdoor air directly into the conditioned space. Infiltration of outdoor air into the indoors takes place due to wind and stack effects. Control infiltration by revolving doors, use of air curtains and sealing of windows and doors. Estimate infiltration rate as it depends on type and age of the building, indoor and outdoor conditions, ACH, wind velocity and direction, outdoor temperature and humidity. (ACH=1.5)

7.1 Sensible heat transfer rate due to infiltration is given by: $Q_{S,} = m_o C_{pm} (t_o - t_I)$

7.2 Latent heat transfer rate due to infiltration is given by: $Q_{L,} = m_o \ h_{fg} \ (W_o - W_i)$

Table: Summery of cooling load

Heat	A-201	A-202	A-203	A-204	A-205	A-206	A-207	
Component								
Solar glass	634	2095	577	1431	356	1083	2036	
Walls	3431	3310	3305	3586	3381	3530	4195	
roofs	7488	8761	7047	9312	6137	7445	7047	
Floor	771	0	0	0	0	0	0	
Doors	179	179	179	179	179	179	179	
Lights	340	240	240	240	240	240	240	
Appliances'	5233	90	340	340	340	90	340	
People	3085	2616	5233	5233	5233	2616	5233	
Infiltration	21401	3062	3085	3707	3085	3085	3085	
Total in watt	21401	20353	20006	24028	18951	18268	217845	
TR	6.11	5.83	5.72	6.87	5.41	5.22	6.39	

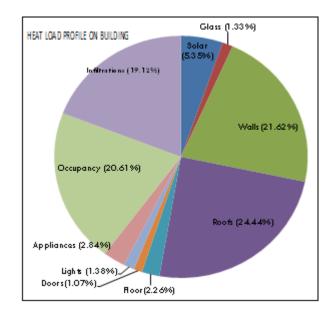

Table 6: First floor

Table 7: Ground Floor							
Heat source	A-101	A-102	A-103	A-104	A-105	A-107	
Solar glass	634	1190	577	1534	356	2036	
Walls	3134	3546	3309	5221	3246	3900	
Floor	659	764	659	758	659	659	
Doors	179	179	179	179	179	179	
Lights	240	120	240	240	240	240	
Appliances'	2500	280	370	90	530	530	
People	2616	419	2616	2616	2616	2616	
Infiltration	2955	3385	2955	4244	2955	2955	
Total in watts	12917	9883	10905	14882	10781	13115	
TR	3.69	2.82	3.12	4.25	3.08	3.75	

Note-The ventilation load ignore because this load is take consider when the size of air conditioning is calculate

8. Results & Discussion

The results show that the total cooling load for the two floors is 62.24 tons, distributed between the two floors as follows ground floor 20.71 tons and the first floor 41.53 tons. The size of air conditioning system is depends on the amount of outside air taken into the system, factor of safety and by pass factor

9. Conclusion

The cooling load calculation is done for ground floor and first floor using CLTD/CLF method. Right-sizing the AC system begins with an accurate understanding of cooling loads on a space. The values determined by the cooling load calculation process dictate the equipment selection. The maximum heat load through floor about 24.44% of total heat.

References

 Energy conservation building code CBC user guideline 1st printed July 2009 reprinted 2011

- [2] M. D. Suziyanas. N. Ninaa, t. M. Yusofb and a. A. S. Basirulb analysis of heat gain in computer laboratory and excellent Centre by using CLTD/CLF/SCL method Malaysian technical universities conference on engineering & technology 2012, mucet 2012 Part 2 mechanical and manufacturing engineering
- [3] Hani H. Sait Estimated Thermal Load and Selecting of Suitable Air-Conditioning Systems for a Three Story Educational Building The 3rdinternational Conference on Sustainable Energy Information Technology (SEIT 2013)
- [4] Tousif Ahmed software development for cooling load estimation by CLTD method IOSR journal of mechanical and civil engineering (IOSR-JMCE) ISSN: 2278-1684volume 3, issue 6 (Nov. - Dec. 2012), pp 01-06
- [5] Prof. Deepak Kumar Yadav1, Aviral Srivastava Cooling load estimation of a room International Research Journal of Engineering and Technology (IRJET)Volume: 04 Issue: 05 | May -2017
- [6] ISHRAE Handbook, HVAC Engineers' handbook, inch pound version, second edition, 2014.
- [7] Carrier handbook load estimation part -1
- [8] IIT Khadagpur NPTEL notes lesson 33,34 35 Version 1 ME, IIT Khadagpur 1
- [9] ASHRAE1985 Fundamentals Handbook (SI), Cooling and Heating Load Calculations,
- [10] Khandakar Mozammel Hossan Study of performance of an air conditioning system And cooling load calculation by using developed Software for a building Thesis department of mechanical engineering Bangladesh university of engineering & technology, (BUET) Dhaka-1000, Bangladesh
- [11] Sandip Kumar Sahu thesis of Cooling Load Estimation for a Multi-story office building 2018 Department of mechanical engineering National institute of technology Rourkela 76900811) Anurag Tiwari1 Dr. P.K .Jhinge Cooling Load Estimation using CLF/CLTD/SCL Method: A Review *IJSRD* - International Journal for Scientific Research & Development| Vol. 3, Issue 06, 2015 | ISSN (online): 2321-0613
- [12] C. P. Arora, Refrigeration and Air conditioning, Mc -Grew Hill, New Delhi, Second Edn.1994
- [13] Shan K. Wang Handbook of Air Conditioning and Refrigeration second edition-200 McGraw-Hill

Author Profile

Dr .Sharad Chaudhary working as Assistant Professor of Mechanical Engineering Department in the Department at IET DAVV INDORE. His areas of research are Thermal engineering. He is having 18 years

of teaching experience

Mukesh Waskel Currently pursuing his Master Of Engineering in Design and Thermal at IET DAVV Indore. He is a lecture in refrigeration and airconditioning branch at MJP Govt. Polytechnic College Khandwa .He is Having 10 Year Teaching Experience