Coordinate Systems

Review

What is a Map Projection?
> Datums

- Geographic Coordinate System

What is a Map Projection?

> Transformation of 3D surface to 2D flat sheet

- Causes distortion in the shape, area, distance or direction of data
- Uses mathematical formulas to relate spherical coordinates to planar coordinates
- Different projections cause different distortions
- Map projections designed for specific purpose i.e. large-scale data in limited area

Datums

- Spheroids approximate earth's shape
- Datum defines position of spheroid relative to center of the earth
$>$ Datum defines origin and orientation of lat/long lines
- Local datum aligns spheroid to fit surface in a particular area

Geographic Coordinate System

> Uses 3D spherical surface to define locations
> Often incorrectly called a datum

- Includes angular unit of measure, prime meridian and datum
> Point referenced by longitude/latitude
$>$ Angles measured by degrees

Possible Error Associated with Coordinate Systems

Comparison of 2 Projections

Errors from Projections

- because we are trying to represent a 3-D sphere on a 2-D plane, distortion is inevitable
> thus, every two dimensional map is inaccurate with respect to at least one of the following:
- area
- shape
- distance
- direction

General Classes of Projections

- Cylindrical
- tangent case, secant case, transverse tangent case, oblique tangent case
- Conic
- tangent case, secant case
- Azimuthal
- tangent case, secant case
- Miscellaneous
" unprojected

Cylindrical Projections

CylIndrical Projection Surface

Secant Cyilndrical Projectlon

Cylindrical Projections

Triansverse Gyllind rical Projection Surface

Conic Projections

Conical Projection Surface

Planar Projections

Planar Projection Surface Slecamt Planar Projection

Map Projection Parameters

- Map projection alone not enough to define projected coordinate system.
- Must know values for parameters in order to re-project dataset
$>$ Parameters specify origin and customize a projection for specific area of interest

Linear Parameters

- False Easting and False Northing - ensure x, y values are positive
- Scale Factor - Unitless value reduces overall distortion

Angular Parameters

- Azimuth - defines center of projection
- Central Meridian - Defines origin of the x coordinates
- Longitude of Origin - synonymous with Central Meridian
- Latitude of Origin - defines origin of the y coordinates
- Standard Parallel 1 and Standard Parallel 2 - used with conic projections to define latitude lines where scale is 1.

Projections by Property Preserved: Shape and Area

- Conformal (orthomorphic)
- preserves local shape by using correct angles; local direction also correct
- lat/long lines intersect at 90 degrees
- area (and distance) is usually grossly distorted on at least part of the map
- no projection can preserve shape of larger areas everywhere
- use for 'presentations'; most large scale maps by USGS are conformal
- examples: mercator, stereographic
- Equal-Area (Equivalent or homolographic))
- area of all displayed features is correct
- shape, angle, scale or all three distorted to achieve equal area
- commonly used in GIS because of importance of area measurements
- use for thematic or distribution maps;
- examples: Alber's conic, Lambert's azimuthal

Projections by Property Preserved: Distance and Direction

- Equidistant
- preserves distance (scale) between some points or along some line(s)
- no map is equidistant (i.e. has correct scale) everywhere on map (i.e. between all points)
- distances true along one or more lines (e.g. all parallels) or everywhere from one point
- great circles (shortest distance between two points) appear as straight lines
- important for long distance navigation
- examples: sinusoidal, azimuthal
- True-direction
- provides correct direction (bearing or azimuth) either locally or relative to center
- rhumb lines (lines of constant direction) appear as straight lines
- important for navigation
- some may also be conformal, equal area, or equidistant
- examples; mercator (for local direction), azimuthal (relative to a center point)

Projections by Geometry:

Planar/Azimuthal/Zenithal

$>$ map plane is tangent to (touches) globe at single point
$>$ accuracy (shape, area) declines away from this point
$>$ projection point ('light source') may be

- earth center (gnomic): all straight lines are great circles
- opposite side of globe (stereographic): conformal
- infinitely distant (orthographic): 'looks like a globe’
- good for polar mappings: parallels appear as circles
$>$ also for navigation (laying out course): straight lines from tangency point are all great circles (shortest distance on globe).

Projections by Geometry: Conical

- map plane is tangent along a line, most commonly a parallel of latitude which is then the map's standard parallel
- cone is cut along a meridian, and the meridian opposite the cut is the map's central meridian
> alternatively, cone may intersect (secant to) globe, thus there will be two standard parallels
- distortion increases as move away from the standard parallels (towards poles)
> good for mid latitude zones with east-west extent (e.g. the US), with polar area left off
- examples: Alber's Equal Area Conic, Lambert's Conic Conformal

Projections by Geometry: Cylindrical

> as with conic projection, map plane is either tangent along a single line, or passes through the globe and is thus secant along two lines
> mercator is most famous cylindrical projection; equator is its line of tangency
> transverse mercator uses a meridian as its line of tangency

- oblique cylinders use any great circle
- lines of tangency or secancy are lines of equidistance (true scale), but other properties vary depending on projection

Commonly Encountered Map Projections in Texas

> Universal Transverse Mecator

- State Plane
- Texas Statewide Mapping System

Universal Transverse Mercator (UTM)

State Plane Coordinate System (SPCS)

- began in 1930s for public works projects
> states divided into 1 or more zones (~ 130 total for US)
- Five zones for Texas
- Different projections used:
- transverse mercator (conformal) for States with large N/S extent
- Lambert conformal conic for rest (incl. Texas)
- some states use both projections (NY, FL, AK)
- oblique mercator used for Alaska panhandle

Parameters for SPCS in Texas

State \& Zone Name
Texas, North
Texas, North Central
Texas, Central
Texas, South Central
Texas, South

Abbrev. Datum ZONE

TX_N	5326	4201
TX_NC	5351	4202
TX_C	5376	4203
TX_SC	5401	4204
TX_S	5426	4205

State Plane Zones - Lambert Conformal Conic Projection (parameters in degrees, minutes, seconds)
Zone 1st Parallel 2nd Parallel C. Meridian Origin(Latitude) False Easting (m) False Northing(m)
NAD83

TX_N	343900	361100	-1013000	340000	200000	1000000
TX_NC	320800	335800	-983000	314000	600000	2000000
TX_C	300700	315300	-1002000	294000	700000	3000000
TX_SC	282300	301700	-990000	275000	600000	4000000
TX_S	261000	275000	-983000	254000	300000	5000000

NAD27	333900	361100	-1013000
TX_N	3430		
TX_NC	320800	335800	-973000
TX_C	300700	315300	-1002000
TX_SC	282300	301700	-990000
TX_S	261000	275000	-983000

340000	609601.21920	0
314000	609601.21920	0
294000	609601.21920	0
275000	609601.21920	0
254000	609601.21920	0

Texas Statewide Mapping System

NAD-27

Projection: Lambert Conformal Conic Ellipsoid: Clarke 1866
Datum: North American 1927
Longitude of Origin: W 100ㅇ (-100)

Standard Parallel \# 1: N 27²5'
Standard Parallel \# 2: N 34으́
False Easting: 3,000,000 feet
False Northing: 3,000,000 feet
Unit of Measure: feet (international)

NAD-83
Projection: Lambert Conformal Conic Ellipsoid: GRS-80
Datum: North American 1983
Longitude of Origin: W 100ㅇ (-100)
Latitude of Origin: N 31ㅇ 10'
Standard Parallel \# 1: N 270 25'
Standard Parallel \# 2: N 340 55'
False Easting: 1,000,000 feet
False Northing: 1,000,000 feet
Unit of Measure: meters

Brazos County Projections

- City of Bryan, Brazos County
- State Plane, TxCentral, NAD-27, feet
- City of College Station, BCSMPO
- State Plane, TxCentral, NAD-83, feet
- TAMU
- State Plane, TxCentral, NAD-83, meters
> Texas Department of Transportation
- Lambert Conformal (Shackelford), NAD-27/NAD-83, feet/meters
- Texas Digital Orthometric Quadrangles
- UTM, Zone 14, NAD-83, meters

Choosing an Appropriate Projection

- You must consider the map's
" subject
" purpose
- The subjects area's
- size
- shape
- location
> also, the audience and general attractiveness, size and shape of page, appearance of the graticule

Choosing an Appropriate Projection

subject and map purpose

- for distribution maps, use equal-area
- for navigation, use projections that show azimuths or angles properly
size and shape of area
> Some projections are better suited to east-west extent, others to north-south
- for small areas (large-scale), projection is relatively unimportant, but for large areas it is VERY IMPORTANT
> interrupted or uninterrupted? Water, land, or both?

Choosing an Appropriate Projection

location

- Conic projections for mid-latitudes, especially areas with greater east-west extent than north-south
- An oblique conic or polyconic is suitable for midlatitude north-south areas
- Cylindrical for equatorial regions
- azimuthal (planar) for poles

Because...

- Cylindricals are true at the equator and distortion increases toward the poles
- conics are true along some parallel between the poles and equator
- Azimuthals are true only at their center point, but distortion is generally worst at the edges

Summary on Projections an Coordinate systems

- GCS uses 3D spherical surface to define locations
- Points referenced by latitude and longitude
- Latitude: Parallels; equator is origin
- Longitude: Meridians; Prime Meridian is origin
- Spheroids more accurately depict earth than sphere
- Datum defines position of spheroid relative to center of the earth
- Datum defines origin and orientation of lat/long lines
- Map projection transforms 3D surface to 2D
- Map projections distort shape, area, distance or direction of data

Conceptual Summary of Projections an Coordinate systems

X-Y coordinates
--derived via projection from lat/long
--represent position on 2-D flat map surface

Lines of latitude and Longitude
--are drawn on the spheroid
--establish position on 3-D spheroid
Spheroid: "math model representing geoid"
Spheroid+tiepoint=datum
Fーー - Geoid:

Elevation may be:
--above geoid (traditional surveying)
--above spheroid (GPS)
This guy's latitude and longitude (and elevation) differ depending on spheroid used.
--line of equal gravity
--mean sea level with no wind or tides

References

- Clark, K.C. 1997. Getting Started with Geographic Information Systems.
- Davis, B.E. 1996. GIS: A Visual Approach.
- DeMers, M.N. 1997. Fundamentals of Geographic Information Systems.
> http://www.esri.com/ 24-May-2000
> http://www.colorado.Edu/geography/gcraft/n otes/mapproj/mapproj_f.html
> Mitchell, A. 1999. The ESRI Guide to GIS Analysis, Vol, 1: Geographic Patterns and Relationships.
- Theobald, DM. 1999. G/S Concepts \& Arclifew Methools.
- Zeiler, Michael. 1999. Modelfing Our World: The ESRI civide to Ceondatabace Decionn.

