COORDINATED PROPOSAL FOR 100GBASE-SR4, 100GBASE-UR4, CPPI-4 AND CAUI-4 PIERS DAWE SEPTEMBER 2012 ipt

Supporters

- Oren Sela
- John Petrilla
- Marc Verdiell
- Kevin Burt
 Samtec
- Jonathan King Finisar

Mellanox

Samtec

Avago Technologies

Introduction

- Aim to be compatible with:
 - QSFP+
 - 40GBASE-SR4
 - 40GBASE-CR4
 - 100GBASE-CR4
 - CEI-28G-VSR
- Allow retimed modules and active cables now, unretimed for the future
- Leverage 100GBASE-CR4/KR4's 256b/257b FEC but can do without it for lowest latency short links

Names and options 1

- Following Backplane Ethernet practice
- Same name whether FEC used or not
- 100GBASE-SR4 has CDR in module for optical transmitter
 - Can use CPPI-4 or CAUI-4 on Tx side
- 100GBASE-UR4 does not need CDR in optical module
 - Lower power but reduced reach: "SR-lite"
- 100GBASE-SR4 and 100GBASE-UR4 are interoperable
 - Over 100GBASE-UR4 reach
- Specification reaches between 20 and 100 m, aligned to objectives
 - There may be an opportunity to stretch one of these, as we learn just how much the latest lasers and 100GBASE-KR4 FEC help us

ipt

Names and options 2

- Following Backplane Ethernet practice
- Same name whether FEC used or not
 - Hosts that support 100GBASE-CR4 will have FEC in the host
 - Could support traditional 64B/66B without FEC
 - Adds additional complexity and latency for 20-lane deskew
 - Not needed for 100GBASE-CR4 or 100GBASE-KR4
 - CFP modules can include FEC in the module
 - PCS can easily tell FEC from non-FEC signals; PMD and PMA don't need to know because line rate is the same
- 100GBASE-SR4 has CDR in module for optical transmitter
 - Can use CPPI-4 or CAUI-4 on Tx side
- 100GBASE-UR4 does not need CDR in optical module
 - Lower power but reduced reach: "SR-lite"
- 100GBASE-SR4 and 100GBASE-UR4 are interoperable
 - Over 100GBASE-UR4 reach
- Specification reaches between 20 and 100 m, aligned to objectives
 - There may be an opportunity to stretch one of these, as we learn just how much the latest lasers and 100GBASE-KR4 FEC help us
 - Reach also depends on fibre type. Base specs on 100 m of OM4, work out reach on OM3

ipt

Method

- Assume a host channel as for 100GBASE-CR4 (similar to CEI-28G-VSR)
- Keep the module simple
- Use the host's Tx FFE and Rx equalizer
 - Use same (256b/257b) FEC as 100GBASE-KR4/CR4
- The worst crosstalk in the electrical link is expected to be at the QSFP connector, so make the eye at least partly open there
 - Host uses knowledge of its own channel to set its Tx FFE
- Use a reference equalizer or similar technique for specification where necessary, similar to CEI-28G-VSR
 - But more restricted range of CTLE settings
- Leverage experience from InfiniBand FDR specification especially for signal swings, mixed-mode reflections, testing with crosstalk
- Aim to keep transmitted optical powers same as 40GBASE-SR4

Uncertainties

- Optical specs may be challenging
 - If so, increase Tx optical power: move all Tx powers, Rx overload and budget in step
 - Optical transmitter would need two setups
 - May require higher supply voltage to stop laser driver and transimpedance amplifier running out of headroom
 - May require host to tell the module when to use 25G/lane mode and when to use 10G/lane mode
- Electrical specs may be challenging
 - Longest/worst host traces may need module CDR(s)
 - Other traces can reduce power by switching it off
- Mode partition noise
 - A better understanding of mode partition noise might affect the longer reaches by less than 10%

Not included

- Compliance board details
 - Use a combination of Annex 86A, InfiniBand FDR, OIF, and proposals for 100GBASE-CR4
 - Detail of compliance board loss will affect e.g. transition times, reference CTLE settings
- Chip-to-chip CAUI-4
- Chip-to-module CAUI-4 specs that rely on FEC

IPTRONICS · COPENHAGEN 2012 Table xA-1 CPPI-4 host electrical output specifications at TP1a

		nPPI				CPPI-4		CAUI-4		
Parameter description		Min	Max	Units	Conditions	Min	Max	Min	Max	Comments
					Referred to					
					signal					
Single ended output voltage		-0.3	4	V	common	-0.3	4	-0.3	4	_
AC common-mode output voltage		_	15	mV	RMS	-	20	_	20	Not as important as we feared
Termination mismatch at 1 MHz		_	5	%		(n/	′a)	(n,	/a)	Use Sdc22 spec which controls
		See								skew-induced conversion as well
Differential output return loss		86A.4.1.1	_	dB		Eqn. A-1	—	Eqn. A-1	—	as R matching
		See								Unwisely deleted from 802.3-
Common-mode output return loss		86A.4.1.2	—	dB		Eqn. A-2	_	Eqn. A-2	_	_2012
Common-mode to differential output re	eturn loss				i	Eqn. A-3	—	Eqn. A-3	—	Sdc22 (see equations for <i>f</i> ranges)
Output transition time, 20% to 80%		28	_	ps		Around 10	TBD	Around 10	TBD	
J2 Jitter output		_	0.17	UI		-	0.19	-	0.45	
J9 Jitter output		_	0.29	UI		_	0.31	_	0.63	
Data Dependent Pulse Width Shrinkage	(DDPWS)	_	0.07	UI		_	0.10	(n,	/a)	
Equalized J2 Jitter output						_	0.10	_	0.3	With fixed CTLE or similar
Equalized J9 Jitter output						_	0.22	-	0.52	These three items estimate the
Equalized DDPWS						_	0.05	(n,	/a)	"unequalizable jitter"
Q _{sq} for XLPPI		45	—	V/V		45	—	45	—	
Q _{sq} for CPPI		43		V/V				(n,	/a)	
		Specificatio	on values							
Eye mask coordinates: X1, X2		0.11, (0.31	UI	Hit ratio = 5	0.13,	0.33	0.24	0.45	
Y1, Y2		95, 3		mV	× 10 ⁻⁵	95,		95,	350	
Crosstalk source VMA, each input lane		700	D	mV	At TP4	47	70	4	70	Same as module output
Crosstalk source transition times, 20% t	o 80%	34		ps	At TP4	Around 8	to 10 TBD	Around 8	to 10 TBD	Ditto
Eqn. 86A-1 (in S-parameter form for cor	mparison wi	ith other spe	cs)			Eqn. xA-1		-		-
Sddxx <= -12 + 2sqrt(f) 0.01 <= f <	4.11					Sddxx <= -:	12+fn(<i>f</i>) TB	D 0.05 <=	<i>f</i> <= 25.79)
-6.3+13log10(f/5.5) 4.11 <= f <										
		ASE-SR4/n		c		Eqn. xA-2				
Sccxx <= $-7 + 1.6f$ $0.01 \le f < 2.5$ Blu					GBASE-	Sccxx <= -2	0.3	$2 \le f \le 5$		
-3 2.5 $\leq f \leq 11.1$ UR			.02 011	,	00,102			$\leq f \leq 25.79$)	
			-4 ("chip	to mo	dule") spec					
		ative numb	· ·		· •		L5+0.5 <i>f</i> or	similar, 0.0	5 <= <i>f</i> <= 2	15.79
September 2012 Coordinate	d proposal	for 100GBA	ASE-SR4	l, 1000	BASE-UR4		-			9

int

Table xA-2 CPPI-4 module electrical input specifications at TP1 and TP1a

		nPPI				CPPI-4		CAUI-4		
Parameter description	Test point	Min	Max	Units	Conditions	Min	Max	Min	Max	Comments
					Referred to					
					TP1 signal					
Single ended input voltage tolerancea	TP1a	-0.3	4	V	common	-0.3	4	-0.3	4	
AC common-mode input voltage tolerance	TP1a	15	_	mV	RMS	20	_	20	_	
		See 86A.4.1.			10 MHz to					(see equations for
Differential input return loss	TP1	1	_	dB	11.1 GHz	Eqn. A-1	—	Eqn. A-1	0	f ranges)
Common-mode input return loss	TP1				1	Eqn. A-2	_	Eqn. A-2	_	
					10 MHz to					50 MHz to
Differential to common-mode input return loss	TP1	10	—	dB	11.1 GHz	10	_	10	_	26.79 GHz
J2 Jitter tolerance	TP1a	0.17	_	UI		0.19	—	0.45	—	e.g. J2 not
J9 Jitter tolerance	TP1a	0.29	_	UI		0.31	_	0.63	_	yellow
Data Dependent Pulse Width Shrinkage (DDPWS)	TD4	0.07				0.1		0.22		because must be
tolerance	TP1a	0.07		UI		0.1	_	0.22	_	same as
		Specific valu								another, in this case in
Eye mask coordinates: X1, X2 Y1, Y2	TP1a	0.11, (95, 3		UI mV	Hit ratio = 5 × 10–5	0.13, 95, 3		0.24, 95, 3		Table xA-1
Crosstalk calibration signal VMA	TP4	85		mV	While calibrating compliance signal	47		47		Same as module output
Crosstalk calibration signal transition times, 20% to			2121101		~		<u> </u>			
80% T		34		ps		Around 8	to 10 TBC	Around 8 t	to 10 TBC	Ditto

a The single ended input voltage tolerance is the allowable range of the instantaneous input signals. b The crosstalk calibration signals are applied to the mated HCB-MCB at TP4a and measured at TP4 following the same principles as the host electrical input calibration (see 86A.5.3.8.5). They are removed before testing.

a [same]

b [Add regular text to explain, replace footnote *b* with reference to new text]

İpı Table x-6 100GBASE-SR4 or 100GBASE-UR4 optical transmit characteristics

40GBA	SE-SR4 o	r 100GBASE	-SR10	100	GBASE-SR4	
Description	Туре	Value	Unit	100GBASE-I	JR4	
Center wavelength	Range	840 to 860	nm	840 to	o 860	
RMS spectral width ^a	Max	0.65	nm	0.65	0.6	
Average launch power, each lane	Max	2.4	dBm	2.	4	
Average launch power, each lane	Min	-7.6	dBm	-7	.6	
Optical Modulation Amplitude (OMA), each lane	Max	3	dBm	3	3	
Optical Modulation Amplitude (OMA), each lane	Min	-5.6 ^b	dBm	-5	.6 ^b	
Difference in launch power between any two lanes (OMA)	Max	4	dB	L	ļ	
Peak power, each lane	Max	4	dBm	L	l	
Launch power in OMA minus TDP, each lane	Min	-6.5	dBm	TBD	TBD	
Transmitter and dispersion penalty (TDP), each lane	Max	3.5	dB	TBD	TBD	
Extinction ratio	Min	3	dB	3	3	
Optical return loss tolerance	Max	12	dB	1	2	
		>= 86% at 19 µm,		>= 86% a <= 30% a	· · · · · · · · · · · · · · · · · · ·	
		<= 30% at				
Encircled flux ^c		4.5 μm				
				Around	Albunu	SR contains Tx CDR,
		0.23, 0.34,		0.25, 0.36,	0.21, 0.32,	UR need not
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		0.43, 0.27,		0.45, 0.27,		
Hit ratio 5×10–5 hits per sample		0.35, 0.4		0.35, 0.4	0.35, 0.4	
Average launch power of OFF transmitter, each lane	Max	-30	dBm	3	80	

a RMS spectral width is the standard deviation of the spectrum.

b Even if the TDP < 0.9 dB, the OMA (min) must exceed this value.

c If measured into type A1a.2 or type A1a.3 50 µm fiber in accordance with IEC 61280-1-4.

a [same]

b Even if the TDP < TBD dB, the OMA (min) must exceed this value.

c [same]

Table x–5—SIGNAL_DETECT value definition

Receive conditions	SIGNAL_DETE	CT value
For any lane; Average optical power at TP3 <= –30 dBm		FAIL
For all lanes;		ОК
[(Optical power at TP3 >= Minimum OMA, each lane, in Table (compliant 100GBASE–SR4 or 100GBASE–UR4 signal input as	•	
		Unspeci
All other conditions		fied

Just as Clause 86

Table x-7 Characteristics of signal within, and at the receiving end of, a compliant optical channel

40GBASE-SR4 and 100GBASE-SR10										
Description	Mini	Minimum Maximur			Minimu	m	Maximum			
Fiber type	OM3	OM4		10	OGBASE-UR4	100GBA	SE-SR4			
Total average power for 40GBASE–SR4	-3.5	-3.1	+8.4	dBm	-3.3	-3.5	+8.4			
Total average power for 100GBASE–SR10	+0.5	+0.9	+12.4	dBm		(n/a)	-			
Average power, each lane	-9.5	-9.1	+2.4	dBm	-9.3	-9.5	+2.4			
Optical Modulation Amplitude (OMA), each										
lane	-7.5	-7.1	+3	dBm	-7.3	-7.5	+3.0			

IPTRONICS · COPENHAGEN 2012 Table x-8 100GBASE-SR4 or 100GBASE-UR4 optical receiver characteristics

4	OGBASE-S	R4 or 100GE	BASE-SR10	100G	BASE-SR4	-
Description	Туре	Value	Unit	100GBAS	E-UR4	
Center wavelength, each lane	Range 840 to 860		nm	840 to 860		
Damage threshold ^a	Min 3.4		dBm	3.4		
Average power at receiver input, each lane	Max	2.4	dBm	2	.4	
	Min	-9.5	dBm	-9.3	-9.5	
Receiver reflectance	Max	-12	dB		12	
Optical Modulation Amplitude (OMA), each lane	Max	3	dBm	3	3	
Stressed receiver sensitivity in OMA, each lane ^b	Max	-5.4	dBm	-5.4	-5.4	
Peak power, each lane	Max	4	dBm	4	1	
Conditions of stressed receiver sensitivity test:						
Vertical eye closure penalty (VECP) ^c , each lane	_	1.9	dB	2.7	2.7	Assuming
Stressed eye J2 Jitter ^c , each lane	—	0.3	UI	0.34	0.34	performance with FEC
Stressed eye J9 Jitter ^c , each lane	—	0.47	UI	0.6	0.6	will follow non-FEC (Hope that we don't need
OMA of each aggressor lane	—	-0.4	dBm	-C).4	with-FEC Rx specs if we have
Receiver jitter tolerance in OMA, each lane ^d	Max	-5.4	dBm	As SRS	As SRS	non-FEC specs)
Conditions of receiver jitter tolerance test:						
Jitter frequency and peak-to-peak amplitude	_	(75, 5)	(kHz, UI)	(187	.5, 5)	
Jitter frequency and peak-to-peak amplitude		(375, 1)	(kHz, UI)	(937	.5, 1)	
OMA of each aggressor lane	—	-0.4	dBm	-C).4	

a [same]

at TP3 (see x.y.z).

a The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

b Measured with conformance test signal at TP3 (see 86.8.4.7).

c Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver. The apparent discrepancy between VECP and TDP is because VECP is defined at eye center while TDP is defined with ±0.15 UI offsets of the sampling instant.

c [same]

b Measured with conformance test signal

d This is a test of the optical receiver's ability to track low-frequency jitter and is inappropriate for any subsystem that does not include a CRU. d [same]

Table x-9 100GBASE–SR4 and 100GBASE–UR4 illustrative link power budgets Table x-13 Fiber optic cabling (channel) characteristics at 850 nm

				-					
	100GB/	ASE-UR4	100GBASE–SR4						
Parameter	OM3 OM4 Unit			OM3		0	M3	OM4	
				No FEC	With FEC	No FEC	With FEC	No FEC	With FEC
Effective modal bandwidth at 850 nm ^a	2000	4700	MHz∙km	20	000	20	00	4700	
Power budget (for maximum TDP)	8	8.3		8.0?	9.5?	8.0?	9.5?	8.0?	9.5?
Operating distance	0.5 to 100	0.5 to 150	m	0.5 to 20	0.5 to 50?	0.5 to 30?	0.5 to 75?	0.5 to 40?	0.5 to 100
Channel insertion loss ^b	1.9	1.5	dB	1.6	1.7	1.6	1.8	1.6	1.9
Allocation for penalties (for maximum TDP) ^c	6.4	6.5	dB	6.4	7.6	6.4	7.6	6.4	7.6
Unallocated margin	0	0 0.3 ^d		0	0.2	0	0.1	0	0
Additional insertion loss allowed 0 dB					0				

a Per IEC 60793-2-10.

b The channel insertion loss is calculated using the maximum distances specified in Table 86–2 and cabled optical fiber

attenuation of 3.5 dB/km at 850 nm plus an allocation for connection and splice loss given in x.y.z.

С

c Link penalties are used for link budget calculations. They are not requirements and are not meant to be

tested.

d This unallocated margin is not available for use.

The reaches in yellow are just placeholders at present

e for use. 40GBASE-SR4 or 100GBASE-SR10						100GBASE–UR4 100GBASE–SR4						
Description	Туре	OM3	OM4	Unit	OM3	OM4	0	M3	OM4			
					No FEC	With FEC	No FEC	With FEC	No FEC	With FEC		
Operating distance	Max	100	150	m	20	50?	30?	75?	40?	100		
Cabling Skew	Max	7	9	ns	79							
Cabling Skew Variation ^a	Max	2	.5	ns			2	2.5				
Channel insertion loss	Min	(0	dB	0							
Channel insertion loss ^b	Max	1.9 ^c	1.5 ^d	dB	1.6	1.7	1.6	1.8	1.6	1.9		

a An additional 300 ps of Skew Variation could be caused by wavelength changes, which are attributable to the transmitter not the channel.

b These channel insertion loss values include cable, connectors, and splices.

c 1.5 dB allocated for connection and splice loss. Use notes a, b only

d 1 dB allocated for connection and splice loss.

Table x-14 Optical fiber and cable characteristics

Description	OM3ª	OM4 ^b	Unit
Nominal core diameter	5	0	μm
Nominal fiber specification wavelength	8	50	nm
Effective modal bandwidth (min)c	2000	4700	MHz∙km
Cabled optical fiber attenuation (max)	3	.5	dB/km
Zero dispersion wavelength (λ0)	1295 <= λ	.0 <= 1340	nm
Chromotic discoursion along (max) (CO)		$= \lambda 0 <= 1310$ and for 1310 < 130	n n /n m 2 /m
Chromatic dispersion slope (max) (S0)	0.000375×(1590 – λ0)	$tor 1310 <= \lambda 0 <= 1340$	ps/nm ² km

Just as Clause 86

a IEC 60793-2-10 type A1a.2

b IEC 60793-2-10 type A1a.3

c When measured with the launch conditions specified in Table x-6.

Table xA–3 CPPI-4 module electrical output specifications at TP4

nPPI				CPPI-4		CAUI-4		
Min	Max	Units	Conditions	Min	Max	Min	Max	Comments
			Referred					
			to signal					
-0.3	4	V	common	-0.3	4	-0.3	4	
								Not as important as we feared,
	7.5	mV		_	17.5	—	17.5	matches CEI-28G-VSR
	5	%		(n/	/a)	(n/	/a)	Use Sdc22 spec which controls skew-
See			10 MHz to					induced conversion as well as R
86A.4.2.1	—	dB	11.1 GHz	Eqn. A-1	—	Eqn. A-1	_	matching
See			10 MHz to					
86A.4.2.2	—	dB	11.1 GHz	Eqn. A-2	_	Eqn. A-2		Unwisely deleted from 802.3-2012
eturn loss				Eqn. A-3	—	Eqn. A-3	—	
				Around 8		Around 8		
				to 10		to 10		
28	—	ps		TBD		TBD		
_	0.42	UI		_	0.6		0.42	
_	0.65	UI		(n/	/a)	—	0.6	
								With adjustable CTLE or
vithout FEC)				—	0.5	—	0.28	similar
vithout FEC)				—	0.7	—	0.5	Ditto
vith FEC)				_	0.5	(n/	/a)	Ditto
with FEC)				—	0.7	(n/	/a)	Ditto
Specificat	tion							
values	š							
0.29, 0.	.5	UI	Hit ratio =	Around (0.45, 0.5	Around 0	.22, 0.43	
150, 42	.5	mV	5 × 10–5	40,	250	50,	250	
700		mV	At TP1a	66	50	66	50	Same as host output
37		ps	At TP1a	Around	10 TBD	Around	10 TBD	Ditto
	Min -0.3 	Min Max 0.3 4 0.3 4 7.5 5 See 86A.4.2.1 86A.4.2.2 eturn loss 28 0.42 0.65 without FEC) vithout FEC) vith FEC) 0.29, 0.5 150, 425 700	Min Max Units -0.3 4 V - 7.5 mV - 5 % See 86A.4.2.1 - dB See 86A.4.2.2 - dB eturn loss - 0.42 UI - 0.42 UI - - 0.65 UI - without FEC) - 0.65 UI with FEC) - - 0.29, 0.5 UI mV 0.29, 0.5 UI mV 700 mV -	MinMaxUnitsConditionsReferred to signalReferred to signal -0.3 4V -0.3 7mV -0.3 610See 86A.4.2.110MHz to 11.1 GHzSee 86A.4.2.2-dB11.1 GHzeturn loss-0.42UIeturn loss-0.65UIvithout FEC)0.65vithout FEC)without FEC)with FEC)0.29, 0.5 150, 425UIHit ratio = 	MinMaxUnitsConditionsMinReferred to signalReferred to signalReferred to signal-0.34Vcommon-0.3-7.5mV5%(n)See10 MHz to 86A.4.2.1-dBSee10 MHz to 86A.4.2.2-dBSee10 MHz to 86A.4.2.2-cgn. A-1See10 MHz to 10 MHz to 86A.4.2.2-cgn. A-2eturn lossEqn. A-30.42UI0.65UI(n)(n)vithout FEC)vithout FEC)vithout FEC)vith FEC)0.29, 0.5UIHit ratio = mV-0.29, 0.5UIHit ratio = mV-0.29, 0.5WIHit ratio = mV4round 0 40,700mVAt TP1a66	MinMaxUnitsConditionsMinMaxReferred to signalReferred to signalReferred to signal1-0.34Vcommon-0.34-7.5mV-17.5-5% (n/a) See10 MHz to 86A.4.2.1Eqn. A-1-See10 MHz to 86A.4.2.2-dB11.1 GHzSee10 MHz to 11.1 GHzEqn. A-2-eturn lossEqn. A-3-28-psTBD-0.42UI-0.6-0.65UI (n/a) vithout FEC)-0.5vithout FEC)-0.5with out FEC)-0.7Specification valuesmV5 × 10-548, -250700mVAt TP1a660	Min Max Units Conditions Min Max Min -0.3 4 V common -0.3 4 -0.3 -0.5 mV $-$ 17.5 $ (n/a)$ (n/a) See 10 MHz to B 11.1 GHz Eqn. A-2 $-$ Eqn. A-3 $-$ Eqn. A-3 eturn loss Eqn. A-3 $-$ Eqn. A-3 $-$ Eqn. A-3 -0.42 UI $ 0.6$ $ -$ 0.42 UI $ 0.7$	Min Max Units Conditions Min Max Min Max -0.3 4 V common -0.3 4 -0.3 4 -0.5 mV -17.5 -17.5 -17.5 -17.5 -17.5 See 10 MHz to 11.1 GHz Eqn. A-1 $$ $eqn. A-2$ $ eqn. A-3$ $-$ Eqn. A-3 $ eqn. A-3$ <td< td=""></td<>

Table xA-4 CPPI-4 host electrical input specifications at TP4 and TP4a

	NPPI					CPPI-4		CAUI-4		
Parameter description	Test point	Min	Max	Units	Conditions	Min	Max	Min	Max	Comments
					Referred					
					to signal					
Single ended input voltage ^a	TP4	-0.3	4	V	common	-0.3	4	-0.3	4	
AC common-mode input voltage tolerance	TP4	7.5	_	mV	RMS	17.5	_	17.5	_	
										(see
Differential input return loss	TP4a	86A.4.2.1	_	dB		Eqn. A-1	_	Eqn. A-1	_	equations for
Common-mode input return loss	TP4a					Eqn. A-2	_	Eqn. A-2	_	f ranges)
					10 MHz to					50 MHz to
Differential to common-mode input return loss	TP4a	10	_	dB	11.1 GHz	10	_	10	_	26.79 GHz
Host input signal tolerance, interface BER limit										
(when used without FEC)		—	10-12			—	10-12	—	10-12	
Host input signal tolerance, interface BER (whe	n used with	FEC)				—	6.7x10 ⁻⁵	(n/	′a)	
Conditions of host electrical receiver signal										
tolerance test: ^b										
		Specifi	cation				With	Specifi	cation	
		val	ues			No FEC	FEC	valı	ues	
Eye mask coordinates: X1, X2		0.29	, 0.5	UI	Hit ratio =	Around (0.45, 0.5	Around 0	.22, 0.43	
Y1, Y2	TP4	150,	425	mV	5×10–5	40,	250	50,	250	
Transition time, 20% to 80%	TP4	3	4	ps		Arou	nd 17	Arour	nd 17	
J2 Jitter	TP4	0.4	42	UI		0.	6	0.4	42	
J9 Jitter	TP4	0.0	65	UI		(n/	′a)	0.	6	
Data Dependent Pulse Width Shrinkage										
(DDPWS)	TP4	0.3	34	UI		0.4	45	0.	4	
Equalized J2 Jitter	TP4					0.5	0.5	0.2	28	
Equalized J5 Jitter	TP4					0.7	_	(n/	′a)	Could define CAUI-4
Equalized J9 Jitter	TP4					—	0.7	0.	5	with & w/o FEC
VMA of aggressor lanes	TP4	85	50	mV		47	' 0	47	70	Same as host input
Crosstalk calibration signal VMA	TP1a	70	00	mV		66	50	66	50	Same as host output
Crosstalk calibration signal transition times,]
20% to 80%	TP1a	3	7	ps		Around	10 TBD	Around	10 TBD	Ditto
20% to 80%	TP1a		7	ps		Around	<u>10 TBD</u>	Around	10 TBD] Ditto

a The host is required to tolerate (work correctly with) input signals with instantaneous voltages anywhere in the specified range.

b The specification values are test conditions for measuring signal tolerance and are not characteristics of the host (see 86A.5.3.8).

b The specification values are test conditions for measuring signal tolerance and are not characteristics of the host (see xA.y.z). September 2012 Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-4

xA.6 Recommended electrical channel

between the PMA IC	(TPO or TP5) and TP1	a or TP4a				
Sdd21 >= -0.5	().01 <= <i>f</i> < 0.11				
-0.114 - 0.3	8914sqrt(<i>f</i>) - 0.846 <i>f</i> 0.	11 <= <i>f</i> < 7	Sdd21 >= -0.5	0.0	$1 \le f \le 0.?$	
35.91 - 6. 3	291 <i>f</i>	7 <= f < 8	-? - ?sqr	t(f) - ?f 0.?	<= <i>f</i> < 13	
-14.72	-	8 <= <i>f</i> <= 11.1	? -?f	13	<= <i>f</i> < 25.7	'9
Sdd21 <= 0.22 -0.46f	0.01 <= <i>f</i> <= 7				Ra	ntio of about 2.5
3	7 <= <i>f</i> <= 11.1		Sdd21 <= 0.22 -?f	0.01 <= <i>f</i> <=	25.79 to	3, as for nPPI
			Add: recommende	ed max ILDrm	ns (might be t	ighter for CPPI-4 than for CAUI-4)

The recommended maximum loss of the host PCB only (without connector or HCB) at 5.15625 GHz is 4.4 dB. The recommended maximum loss of the host PCB only (without connector or HCB) at 12.890625 GHz is 6.8? dB.

Comparison with CEI-28G-VSR

Host to module

Host-to-Module Electrical Specifications at TP1a (host

output)				CPPI-4		CAUI-4		
Parameter	Min	Max	Units	Min	Max	Min	Мах	
Differential Voltage pk-pk	-	900	mV	- (700	—	700	
Common Mode Noise rms	-	17.5	mV	_	20		20	
Differential Termination Mismatch	-	10	%	See Sdc22 spec See Sdc22 s			22 spec	
Differential Return Loss	-	Eqn. 1-2	dB	Eqn. A-1		Eqn. A-1		
Common to Differential Mode Conversion								
(SDC22)	-	Eqn 1-3	dB	Eqn. A-3		Eqn. A-3		
				Around 10		Around		
Transition Time: 20/80%	10	-	ps	TBD		10 TBD		
Common Mode Voltage	-0.3	2.8	V	Single ended voltage spec -0.3 to +4				
Eye width at 10-15 probability (EW15) ¹	0.46	-	UI	—	EJ9 0.22	_	EJ9 0.52	
Eye height at 10-15 probability (EH15) ¹	100	-	mV	?	_	?	—	

Host-to-Module Electrical Specifications at TP1 (module

input)				CPPI-4		CAUI-4	
Parameter	Min	Max	Units	Min	Max	Min	Max
Overload Differential Voltage pk-pk	900	-	mV	_	700	_	700
Differential Termination Mismatch	-	10	%	See Sdc22 spec		See Sdc22 spec	
Differential Return Loss	-	Eqn 1-2	dB	Eqn. A-1		Eqn. A-1	
Common to Differential Mode Conversion (SDC11)	-	Eqn 1-3	dB	10	_	10	—
Stressed Receiver Test	See 1.3.1	0.2.1		Yes		Yes	

Crosstalk parameters for Host Output test and Module input test calibration at

TP4				CPPI-4	CAUI-4
		Target			
Parameter	Used in test	value	units	Spec value	Spec value
Crosstalk Amplitude differential voltage pk-pk	Host Output test and module stressed receiver test calibration	900	mV		VMA 470
	Host Output test and module	300	IIIV		Around 8
Crosstalk transition time 20-80%	stressed receiver test calibration	9.5	ps		to 10 TBD

Comparison with CEI-28G-VSR Module to host

Module-to-Host Electrical Specifications at TP4 (module output)				CPPI-4		CAUI-4	
Parameter	Min	Max	Units	Min	Max	Min	Max
Differential Voltage, pk-pk	- (900	mV	_	500	_	500
Common Mode Noise, rms	-	17.5	mV	_	17.5	—	17.5
Differential Termination Mismatch	-	10	%	See Sdo	See Sdc22 spec		22 spec
Differential Return Loss	-	Eqn 1-2	dB	Eqn. A-1	_	Eqn. A-1	—
Common Mode to Differential Conversion							
Return Loss		Eqn 1-3	dB	Eqn. A-3	—	Eqn. A-3	—
				Around 8		Around 8	
Transition Time: 20/80%	9.5	_	ps	to 10 TBD		to 10 TBD	
Vertical Eye Closure (VEC)	-	6.5	dB	_	?	_	?
Eye width at 10-15 probability (EW15)	0.57	-	UI	_	EJ9 0.7	_	EJ9 0.5
Eye height at 10-15 probability (EH15)	240	-	mV	?	_	?	_

Module-to-Host Electrical Specifications at TP4a (ho	CPPI-4			CAUI-4				
Parameter	Min	Max	Units	Min	Max	Min	Max	
Overload Differential Voltage pk-pk	900	-	mV	_	500	_	500	
Differential Termination Mismatch	-	10	%	See Sco	22 spec	See Scd22 spec		
Differential Return Loss	-	Eqn 1-2	dB	Eqn. A-1	-	Eqn. A-1	_	
Common Mode to differential conversion Loss	nmon Mode to differential conversion Loss Eqn 1-3 -		dB	See Sco	See Scd22 spec		See Scd22 spec	
Stressed Receiver Test	See 1.3.10.2.1			Yes		Yes		
Common Mode Voltage common mode voltage is generated by host	-0.3	2.8	V	Single ended voltage spec -0.3 to +4				

Crosstalk parameters for Module Output and H	CPPI-4	CAUI-4			
		Target			
Parameter	Used in test	value	units	Spec value	Spec value
Crosstalk Amplitude differential voltage pk-pk	Module Output test and host				
	stressed receiver test calibration	900	mV	VMA 660	VMA 660
Crosstalk transition time 20%-80%	Module Output test and host			Around 10	Around 10
	stressed receiver test calibration	10	ps	TBD	TBD