Electronic Supplementary Information (ESI)

Copper-Catalyzed Coupling Reaction of Unactivated Secondary Alkyl Iodides with Alkyl Grignard Reagents in the Presence of 1,3-Butadiene as an Effective Additive

Ruwei Shen, ${ }^{a}$ Takanori Iwasaki, ${ }^{a}$ Jun Terao ${ }^{b}$ and Nobuaki Kambe* ${ }^{a}$${ }^{a}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871 Japan,${ }^{b}$ Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, KyotoUniversity, Katsura, Nishikyo-ku, Kyoto 615-8510 Japankambe@chem.eng.osaka-u.ac.jp
Table of Contents
Additional Data S2-S3
General S4
Experimental Procedures and Analytical Data of Products S4-S10
References S11
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra Copies of the Products S12-S45

Additional Data

Condition screening

Table S1. Screening of conditions

Entry	Additive (1 equiv)	$\mathbf{2 a}(\%)^{b}$	$\mathbf{3}(\%)^{b, c}$	$\mathbf{4}(\%)^{b}$
1	$1,3-$-Butadiene	90	1	<1
2	None	56	15	8
3^{d}	1,3-Butadiene	89	1	<1
4	1,3-Butadiene	81	2	2
5	Isoprene	85	2	<1
6	1,3-Pentadiene	74	3	1
7^{f}	2,3-Dimethyl-1,3-butadiene	69	5	2
8	1-Phenyl-1-propyne	69	12	6
9	1,5-Cyclooctadiene	56	15	7
10	2,5-Norbornadiene	57	13	6
11^{g}	1,3-Butadiene	N.R.	-	-
12^{g}	None	N.R.	-	-
13^{h}	$1,3-B u t a d i e n e$	N.D.	2	1

${ }^{a}$ To a mixture of $\mathbf{1 a}(0.5 \mathrm{mmol}), n-\mathrm{BuMgCl}(0.75 \mathrm{mmol}, 0.61 \mathrm{M}$ in THF) was added 1,3 -butadiene (0.5 $\mathrm{mmol}, 11.2 \mathrm{~mL})$ and $\mathrm{CuI}(0.015 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction was then stirred at $0^{\circ} \mathrm{C}$. In each case, ca. $9-13 \%$ yield of n-octane resulted from homocoupling of $n-\mathrm{BuMgCl}$ was detected as byproduct. ${ }^{b} \mathrm{GC}$ yield based on 1a (n-decane as internal standard). ${ }^{c}$ Combined GC yields of the olefin byproducts from 1a. ${ }^{d} 1$ $\mathrm{mol} \% \mathrm{CuI} .{ }^{e} 0.5$ equiv. of 1,3 -butadiene was used. ${ }^{f}$ ca. 10% of $\mathbf{1 a}$ was recovered. ${ }^{g}$ No CuI; N.R.: no reaction. ${ }^{h} \mathrm{Et}_{2} \mathrm{O}$ as solvent; N.D.: not detected; 1a was recovered.

Additional results on condition screening are shown in Table S1. When a catalytic amount of copper(I) iodide was added to a solution of 4-phenylbutan-2-yl iodide (1a), $n-\mathrm{BuMgCl}$ (1.5 equiv) and 1,3 -butadiene (1 equiv) in THF at $-78^{\circ} \mathrm{C}$ and then stirred at $0^{\circ} \mathrm{C}$ for 4 h , the cross-coupled product 2 a was obtained in 90% yield along with a small amount of the elimination products $3(1 \%)$ and the hydrodehalided product $4(<1 \%)$ (Table S1, entry 1). In contrast, the reaction catalyzed by CuI without 1,3-butadiene gave a mixture of 2a (56%), 3 (15%) and 4 (8%) (entry 2), clearly indicating that the presence of 1,3 -butadiene is crucial on improving the yield and selectivity. Decreasing the catalytic CuI from $3 \mathrm{~mol} \%$ to $1 \mathrm{~mol} \%$ did not affect the reaction giving a good yield of product (entry 3). However, when the reaction was run with 0.5 equiv of 1,3-butadiene, the yield dropped to 81% (entry 4). We also examined other additives. As shown in Table S1, the use of isoprene gave 2a in 85% yield (entry 5), however, somewhat lower yields were observed when 2,3-dimethylbuta-1,3-diene or penta-1,3-diene was employed (entries 6 and 7). Although we have reported that an alkyne is effective additive in the Cu -catalyzed coupling reaction of primary alkyl halides, ${ }^{11 \mathrm{c}}$ the use of 3 -phenyl 2-propyne in the present reaction gave a moderate yield of 2a but with significant amount of byproducts 3 and $\mathbf{4}$ (entry 8). Neither 1,5-cyclooctadiene nor 2,5-norbornadiene was effective (entries 9 and 10). In addition, the use of other ligands or additives including

TMEDA, PPh_{3}, NMP and PhCN did not improve the yields nor selectivity, and no reaction took place without a copper catalyst (entry 12). This coupling reaction did not proceed in $\mathrm{Et}_{2} \mathrm{O}$ as the solvent resulting in a dark blue mixture, and most of the starting material 1a was recovered (entry 13).

Additional screening of substrates

It has been extremely reported that secondary alkyl halides couple with aryl Grignard reagents employing $\mathrm{Fe}^{\mathrm{S} 1}$ and $\mathrm{Co}^{\mathrm{S} 2}$ as a catalyst. We thus examined such $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ cross-coupling reaction though phenyl Grignard reagent retired the present catalyst and 1a was recovered (eq S1). In addition, sp^{3}-sp coupling also resulted in no reaction (eq S2). ${ }^{\text {S3 }}$ In the previous report, radical mechanism, namely SET from Fe or Co to secondary alkyl halides to generate alkyl radical intermediates and subsequent recombination with catalyst, was proposed. ${ }^{\mathrm{S1}, \mathrm{~S} 2}$ Based on experimental results (see also: eq 1 and Scheme 2), our $\mathrm{Cu} / \mathrm{butadiene}$ system should proceed through a different mechanism, which is probably $\mathrm{S}_{\mathrm{N}} 2$ type mechanism as our previous report. ${ }^{1 \mathrm{c}}$ No reaction took place when 2-adamantyl iodide was used (eq S3). This result may consistent with proposed mechanism.

General

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL ECS-400 (400 MHz and 100 MHz , respectively) spectrometer. Chemical shifts were reported in parts per million (δ) downfield from internal tetramethylsilane. Infrared spectra were recorded with a JASCO Corporation FT/IR-4200 instrument. Both conventional and high resolution mass spectra were recorded with a JEOL JMS-DX303HF spectrometer. GC Mass spectra (EI) were obtained using a JMS-mate operating in the electron impact mode (70 eV) equipped with a RTX-5 30MX.25MMX.25U column. GC analysis was performed on a Shimadzu GC-2014 instrument equipped with a GL Sciences InertCap 5 capillary column. GC yields were determined using n-decane as an internal standard. Grignard reagents were purchased from Aldrich Chemical Company or Kanto Chemical Company and used after titration by a method reported by Knochel, ${ }^{\text {S4 }}$ except for (2-(1,3-dioxolan-2-yl)ethyl) magnesium bromide, ${ }^{\text {S5a }}$ pent-4-enyl magnesium bromide ${ }^{\text {S5b }}$ and hex-5-enylmagnesium bromide ${ }^{\text {Sbb }}$ which were prepared form the corresponding alkyl bromides and magnesium in THF. Secondary alkyl iodides were prepared from the corresponding alcohols according to the literature. ${ }^{\text {S6 }}$

Experimental Procedures and Analytical Data of Products (3-Methylheptyl)benzene (2a) ${ }^{\text {S7 }}$

To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and butylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.61 \mathrm{M}$ in THF) cooled
 to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1.0$ mg), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 77.8 mg of $\mathbf{2 a}(82 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.29-7.25 (m, 2H), 7.19-7.14 (m, 3H), 2.68-2.52 (m, 2H), 1.68-1.54 (m, 1 H), 1.47-1.12 (m, 8H), 0.93-0.87 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,128.3,128.2$, $125.5,39.0,36.6,33.5,32.5,29.2,23.0,19.6,14.2$.
(3-Methylbutyl)benzene (2b) ${ }^{\text {S8 }}$
To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$), methylmagnesium chloride ($0.75 \mathrm{mmol}, C=2.69 \mathrm{M}$ in THF) and 0.5 mL
 of THF cooled to $-78^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched by 1 M HCl aq. Yield of $\mathbf{2 b}$ was determined by GC using n-decane as internal standard due to its volatile.

(3,5-Dimethylhexyl)benzene (2c)

To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and isobutylmagnesium chloride ($0.75 \mathrm{mmol}, C=2.0 \mathrm{M}$ in THF) and 0.5
 mL of THF cooled to $-78^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene ($0.5 \mathrm{mmol}, 11.2$ mL as gas) through a septum using a syringe. After adding a catalytic amount of copper(I)
iodide ($1 \mathrm{~mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 78.5 mg of $\mathbf{2 c}(82 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.28-7.24$ (m, 2 H), 7.21-7.14 (m, 3H), 2.68-2.51 (m, 2H), 1.70-1.44 (m, 3H), 1.43-1.36 (m, 1H), 1.26-1.14 (m, 1H), 1.06-0.99 (m, 1H), 0.92-0.82 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.2,128.3,128.2,125.5,46.6,39.3,33.4,30.1,25.2,23.4,22.3,19.7$; IR (neat NaCl , $\mathrm{v} / \mathrm{cm}^{-1}$) $3086,3063,3027,2954,1939,1798,1604,1496,1455,1384,1366,1169,1075$, 1031, 969, 911, 744, 697; MS (EI) $m / z(\%) 190\left(\mathrm{M}^{+}, 22\right), 105$ (73), 92 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22}$ 190.1722, found 190.1730.

(3,5,5-Trimethylhexyl)benzene (2d) ${ }^{\text {S9 }}$

To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and

2d neopentylmagnesium chloride ($0.75 \mathrm{mmol}, C=2.0 \mathrm{M}$ in THF) and
0.5 mmol 11.2 mL as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 80.2 mg of $\mathbf{2 d}(79 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.1,128.3,128.2,125.5,51.2,41.5,33.7,31.1,30.0,29.1,22.6$; MS (EI) m / z (\%) $190\left(\mathrm{M}^{+}, 22\right), 105(73), 92(100)$; HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22}$ 190.1722, found 190.1730 .

(3-Methylhex-5-enyl)benzene (2e) ${ }^{\text {S10 }}$

To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and
 allylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.66 \mathrm{M}$ in THF) cooled to
 $-78^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1.0$ mg), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether (10 $\mathrm{mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 76.6 mg of $\mathbf{2 e}(88 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $3 \mathrm{H}), 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H})$, 2.11-1.96 (m, 1H), 1.73-1.42 (m, 3H), $0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.9,137.4,128.3,128.2,125.6,115.7,41.2,38.4,33.4,32.4,19.3$.
(3-Methyloct-7-enyl)benzene (2f)
To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and
 pent-4-enylmagnesium bromide ($0.75 \mathrm{mmol}, C=0.66 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas)
through a septum using a syringe. After adding a catalytic amount of copper(I) iodide (1 $\mathrm{mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 86.8 mg of $2 \mathrm{f}(86 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.14 (m, 3H), 5.86-5.75 (m, 1H), 5.01-4.92 (m, 1H), 2.68-2.52 (m, 2H), 2.05-2.00 $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 143.1,139.1,128.3,128.2,125.5,114.2,38.9,36.3$, $34.1,33.4,32.3,26.3,19.6$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3063, 3026 2927, 1940, 1820, 1802, 1640, 1603, 1496, 1455, 1377, 1065, 1031, 995, 909, 744, 697, 638, 516; MS (EI) m/z (\%) $202\left(\mathrm{M}^{+}, 18\right), 131$ (44), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22}$ 202.1722, found 202.1726.

2-(3-Methyl-5-phenylpentyl)-1,3-dioxolane (2g)

To a mixture of (3-iodobutyl)benzene ($0.5 \mathrm{mmol}, 130.0 \mathrm{mg}$) and (2-(1,3-dioxolan-2-yl)ethyl)magnesium bromide ($1.0 \mathrm{mmol}, C=1.0 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene
 $(0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($3 \mathrm{~mol} \%, 3.0 \mathrm{mg}$), the system was closed, and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 4 h and $25^{\circ} \mathrm{C}$ for another 20 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 70.9 mg of $\mathbf{2 g}(61 \%) .19 .2 \mathrm{mg}$ of the starting material (3-iodobutyl)benzene was recovered. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.28-7.25 (m, 2H), 7.18-7.14 (m, 3H), $4.83(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.82(\mathrm{~m}, 4 \mathrm{H})$, 2.69-2.53 (m, 2H), 1.75-1.26 (m, 8H), $0.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.9,128.3,128.2,125.5,104.9,64.82,64.8,38.7,33.3,32.3,31.4,30.8,19.4 ;$ IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3061, 3026 2952, 2876, 1728, 1604, 1496, 1455, 1409, 1378, $1211,1140,1033,973,944,876,746,699,578,514$; MS (CI) $m / z(\%) 235\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS (CI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 235.1698$, found 235.1695.

(3-Propylheptyl)benzene (2h)

To a mixture of (3-iodohexyl)benzene ($0.5 \mathrm{mmol}, 114.1 \mathrm{mg}$) and butylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.60 \mathrm{M}$ in THF) cooled to $-78^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$
 as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 98.2 mg of $\mathbf{2 h}$ (85%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 11 \mathrm{H}), 0.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,128.3,128.2,125.5,37.1,35.7,33.2,33.1,28.9,23.1,14.2$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3063, 3027, 2925, 2858, 1604, 1496, 1455, 1378, 1031, 902, 744,

697; MS (EI) $m / z(\%) 218\left(\mathrm{M}^{+}, 12\right), 91$ (100); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$ 218.2035, found 218.2032.

(3-Ethylhex-5-enyl)benzene (21) ${ }^{\text {S11 }}$

To a mixture of (3-iodohex-5-enyl)benzene ($0.5 \mathrm{mmol}, 143.1 \mathrm{mg}$) and ethylmagnesium bromide ($0.75 \mathrm{mmol}, C=0.56 \mathrm{M}$ in THF)
 cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide (1 $\mathrm{mol} \%, 1.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 65.8 mg of $\mathbf{2 l}(70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.15 (m, 3H), 5.83-5.73 (m, 1H), 5.04-4.99 (m, 1H), 2.61-2.57 (m, 2H), 2.12-2.05 $(\mathrm{m}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,137.3,128.3,128.2,125.6,115.7,38.5,37.5,34.9,33.1,25.6$, 10.8 .

(3-Isopropylheptyl)benzene (2m)

To a mixture of (3-iodo-4-methylpentyl)benzene ($0.35 \mathrm{mmol}, 100.8$ mg) and butylmagnesium chloride ($0.52 \mathrm{mmol}, C=0.60 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene (0.5
 $\mathrm{mmol}, 8.0 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($3 \mathrm{~mol} \%, 2.1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether (10 $\mathrm{mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 60.4 mg of $\mathbf{2 m}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}$, $3 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.34-1.14(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 143.4, 128.3, 128.2, 125.5, 43.4, 34.2, 32.7, 30.1, 29.9, 29.1, 23.1, 19.2, 19.1; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3087, 3063, 3027, 2963, 2927, 2866, 1938, 1867, 1796, 1604, 1496, 1455, 1385, 1367, 1030, 968, 909, 747, 697, 588; MS (EI) $m / z(\%) 218\left(\mathrm{M}^{+}, 12\right), 92$ (100); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} 218.2135$, found 218.2133.

(3-Allylheptyl)benzene (2n)

To a mixture of (3-iodohex-5-enyl)benzene ($0.5 \mathrm{mmol}, 143.1 \mathrm{mg}$) and butylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.60 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene (0.5
 mmol, 11.2 mL as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 105.8 mg of $\mathbf{2 n}(89 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 1 \mathrm{H})$, 2.61-2.57 (m, 2H), 2.11-2.08 (m, 2H), 1.60-1.54 (m, 2H), 1.49-1.43 (m, 1H), 1.34-1.28 $(\mathrm{m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,137.3,128.3$, $128.2,125.6,115.8,37.9,37.0,35.3,33.1,32.9,28.9,23.0,14.1$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3063, 3026, 2925, 2857, 1939, 1821, 1638, 1603, 1496, 1455, 1378, 1031, 994, 910, 745, 698, 575, 512; MS (EI) $m / z(\%) 216\left(\mathrm{M}^{+}, 7\right), 104(23), 91$ (100); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} 216.1878$, found 216.1883.

(3-Allylhex-5-enyl)benzene (2r)

To a mixture of (3-iodohex-5-enyl)benzene ($0.5 \mathrm{mmol}, 143.1 \mathrm{mg}$) and allylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.65 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene (0.5
 $\mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether $(10 \mathrm{~mL} \times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 86.0 mg of $\mathbf{2 s}$ (86%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.83-5.73$ $(\mathrm{m}, 2 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.55(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,136.9,128.32,128.27,125.6,116.2,37.6$, $36.9,34.9,33.0$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3074, 3027, 3001, 2975, 2919, 2859, 1941, 1826, $1639,1604,1496,1454,1415,1349,1029,994,911,745$; MS (EI) $m / z(\%) 200\left(\mathrm{M}^{+}, 2\right)$, 117 (26), 104 (15), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20}$ 200.1565, found 200.1567.

(3-Allyloct-7-enyl)benzene (2s)

To a mixture of (3-iodooct-7-enyl)benzene ($0.5 \mathrm{mmol}, 157.1$ mg) and allylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.65 \mathrm{M}$ in
 THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene ($0.5 \mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper (I) iodide ($1 \mathrm{~mol} \%, 1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 91.2 mg of $\mathbf{2 t}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.27(\mathrm{~m}, 3 \mathrm{H})$, 7.22-7.19 (m, 3H), 5.89-5.76 (m, 2H), 5.01-4.96 (m, 4H), 2.65-2.61 (m, 2H), 2.14-2.04 $(\mathrm{m}, 4 \mathrm{H}), 1.65-1.33(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,139.0,137.1,128.31$, $128.26,125.6,115.9,114.3,37.9,36.9,35.3,34.1,33.0,32.7,25.9$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) 3075, 3027, 2976, 2926, 2858, 1940, 1822, 1639, 1604, 1496, 1455, 1415, 1361, 1031, 993, 910, 745, 698; MS (EI) $m / z(\%) 228$ (M ${ }^{+}$, 4), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} 228.1878$, found 228.1879.
(3-(Pent-4-enyl)oct-7-enyl)benzene (2t)
To a mixture of (3-iodooct-7-enyl)benzene $(0.5 \mathrm{mmol}, 157.1$ mg) and pent-4-enylmagnesium bromide ($1.0 \mathrm{mmol}, C=$

0.66 M in THF) cooled to $-78^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3-butadiene (0.5 mmol , 11.2 mL as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 103.8 mg of $\mathbf{2 t}(81 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.93(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.06-2.01 (m, 4H), 1.59-1.54 (m, 2H), 1.40-1.31 (m, 11H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,139.1,128.3,128.2,125.5,114.3,36.9,35.6,34.2,33.1,32.9,25.9$; IR (neat $\left.\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}\right) 3076,3026,2975,2927,2856,1939,1820,1640,1604,1496,1455,1415$, 1369, 1031, 992, 909, 745, 698, 638; MS (EI) m/z (\%) 256 (M ${ }^{+}$, 7), 185 (17), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} 256.2191$, found 256.2197 .

(3-(Pent-4-enyl)non-8-enyl)benzene (2u)

To a mixture of (3-iodooct-7-enyl)benzene ($1.0 \mathrm{mmol}, 314.2 \mathrm{mg}$) and hex-5-enylmagnesium bromide ($2 \mathrm{mmol}, C=0.66 \mathrm{M}$ in
 THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of
1,3-butadiene ($1 \mathrm{mmol}, 22.4 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 2.0 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction was quenched by 1 M HCl aq ., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 195.8 mg of $\mathbf{2 u}(73 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.24 (m, 3H), 7.18-7.15 (m, 3H), 5.86-5.76 (m, 2H), 5.02-4.93 (m, $4 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,139.1,128.3,128.2,125.5,114.3,114.2,37.0,35.6$, $34.2,33.8,33.2,33.1,32.9,29.3,26.0,25.9$; IR (neat $\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}$) $3076,3026,2976$, 2927, 2857, 1940, 1821, 1640, 1604, 1496, 1455, 1415, 1369, 1031, 993, 909, 745, 698, 641; MS (EI) $m / z(\%) 270\left(\mathrm{M}^{+}, 10\right), 91(100)$; HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30}$ 270.2348, found 270.2349 .

(4-Ethylhept-6-en-1-ynyl)benzene (2v)

To a mixture of (4-iodohex-1-ynyl)benzene ($0.5 \mathrm{mmol}, 142.1 \mathrm{mg}$) and allylmagnesium chloride ($0.75 \mathrm{mmol}, C=0.66 \mathrm{M}$ in THF) cooled to $-78{ }^{\circ} \mathrm{C}$, was introduced 1 equiv. of 1,3 -butadiene (0.5
 $\mathrm{mmol}, 11.2 \mathrm{~mL}$ as gas) through a septum using a syringe. After adding a catalytic amount of copper(I) iodide ($1 \mathrm{~mol} \%, 1 \mathrm{mg}$), the system was closed, and the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . After completion as monitored by GC analysis, the reaction was quenched by 1 M HCl aq., and the product was extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 55.6 mg of $\mathbf{2 v}$ (56%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 5.86-5.75$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.7, 131.5, 128.1, 127.4, 124.1, 116.4, 88.7, 81.6, 38.9, 37.5, 25.8, 22.9, 11.3; IR (neat
$\left.\mathrm{NaCl}, ~ v / \mathrm{cm}^{-1}\right) 3019,2966,2924,2400,1711,1490,1428,1363,1216,928,956,670 ; \mathrm{MS}$ (EI) $m / z(\%) 198\left(\mathrm{M}^{+}, 15\right), 169$ (83), 142 (68), 115 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ 198.1409, found 198.1410.

(2-(Cyclopent-3-enyl)ethyl)benzene (5a) ${ }^{\text {S12 }}$

To a solution of (3-allylhex-5-enyl)benzene ($0.35 \mathrm{mmol}, 70.0 \mathrm{mg}$) in 1
 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added the Grubbs $1^{\text {st }}$ catalyst ($5 \mathrm{~mol} \%, 14.3 \mathrm{mg}$) under N_{2}. After the reaction was stirred at $40^{\circ} \mathrm{C}$ for 24 h , the mixture was concentrated under reduced pressure. Purification by silica gel column chromatography with hexane afforded 55.4 mg of $\mathbf{5 a}(92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.15 (m, 3H), 5.67 (, $2 \mathrm{H}), 2.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.20(\mathrm{~m}$, $1 \mathrm{H})$, 2.05-1.99 (m, 2H), 1.75-1.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,129.9$, 128.4, 128.2, 125.6, 38.9, 38.4, 37.1, 34.7.

4-Phenethylcyclohept-1-ene (5b)

Following a similar procedure as described above from $2 \mathbf{s}(0.41 \mathrm{mmol}$, 92.5 mg) afforded 70.6 mg of $\mathbf{5 b}(87 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.84-5.71(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.59$

5b $(\mathrm{m}, 2 \mathrm{H}), 2.21-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.15(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0$, 132.7, 130.4, 128.3, 128.2, 125.5, 38.8, 38.0, 36.9, 34.4, 33.6, 28.8, 25.5. IR (neat NaCl , $\mathrm{v} / \mathrm{cm}^{-1}$): 3085, 3062, 3022, 2918, 1940, 1865, 1799, 1653, 1604, 1496, 1453, 1348, 1280, 1178, 1053, 1117, 1078, 1031, 903, 835, 748, 698, 639, 573; MS (EI) m/z (\%) $200\left(\mathrm{M}^{+}\right.$, 65), 129 (13), 104 (100), 91 (88), 67 (29); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} 200.1565$, found 200.1571 .

References

S1 Cross-coupling of unactivated secondary alkyl halides with aryl Grignard reagents has been well established, for reviews, see: (a) W. M. Czaplik, M. Mayer, J. Cvengroš and A. J. von Wangelin, ChemSusChem, 2009, 2, 396; (b) E. Nakamura and N. Yoshikai, J. Org. Chem., 2010, 75, 6061; For recent examples, see: (c) L. Dieu and O. Dauguils, Org. Lett., 2010, 12, 4277; (d) H.-h. Gao, C.-h. Yan, X.-P. Tao, Y. Xia, H.-M. Sun, Q. Shen and Y. Zhang, Organometallics, 2010, 29, 4189; (e) T. Hatakeyama, Y.-I. Fujiwara, Y. Okada, T. Itoh, T. Hashimoto, S. Kawamura, K. Ogata, H. Takaya and M. Makamura, Chem. Lett., 2011, 40, 1030; (f) X. Qian, L. N. Dawe and C. M. Kozak, Dalton Trans., 2011, 40, 933;
S2 (a) H. Ohmiya, H. Yorimitsu and K. Oshima, J. Am. Chem. Soc., 2006, 128, 1886; (b) G. Cahiez, C. Chaboche, C. Duplais and A. Moyeux, Org. Lett., 2009, 11, 277; Ni: (c) O. Vechorkin, V. Proust and X. Hu, J. Am. Chem. Soc., 2009, 131, 9756.

S3 The coupling reaction of unactivated secondary alkyl halides with alkynyl Grignard reagents is less explored. For the reported examples, see: (a) H. Ohmiya, H. Yorimitsu and K. Oshima, Org. Lett., 2006, 8, 3093; (b) T. Hatakeyama, Y. Okada, Y. Yoshimoto and M. Nakamura, Angew. Chem., Int. Ed., 2011, 50, 10973; For examples on coupling of primary alkyl halides with alkynyl Grignard reagents, see: (c) L. M. Yang, L. F. Huang and T. Y. Luh, Org. Lett., 2004, 6, 1461; (d) H. Someya, H. Ohmiya, H. Yorimitsu and K. Oshima, Org. Lett., 2007, 9, 1565; (e) O. Vechorkin, A. Godinat, R. Scopelliti and X. Hu, Angew. Chem., Int. Ed., 2011, 50, 11777.

S4 A. Krasovskiy and P. Knochel, Synthesis, 2006, 5, 890-891.
S5 (a) K. Fukumoto, K. Suzuki, H. Nemoto, T. Kametani and H. Furuyama, Tetrahedron, 1982, 38, 3701-3704; (b) L. Eberson and L. Greci, J. Org. Chem., 1984, 49, 2135-2139.
S6 G. L. Lange and C. Gottardo, C., Synth. Commun., 1990, 20, 1473-1479.
S7 M. Akita, H. Yasuda and A. Nakamura, Bull. Chem. Soc. Jpn., 1984, 57, 480-487.
S8 D. H. R. Barton, L. Bohe and X. Lusinchi, Tetrahedron, 1990, 46, 5273.
S9 3M Innovative Properties Company, Patent: US6974877 B2, 2005.
S10 M. Sai, H. Yorimitsu and K. Oshima, Bull. Chem. Soc. Jpn., 2009, 82, 1194-1196.
S11 T. Mukaiyama, et al. Chem. Lett., 1977, 1257-1260.
S12 R. L. Danheiser, J. J. Bronson and K. Okano, J. Am. Chem. Soc., 1985, 107, 4579-4581.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra Copies of the Products

1ヵ8t SZ!
¢0ZZ ${ }^{\circ} \mathrm{BZD}$

$1607^{\prime} \varepsilon \triangleright 1$ \qquad

-

nыd

6281 <ct

$0870^{\circ} 0-$

$\varepsilon \varepsilon \varsigma 96$ \qquad
$8 t 82.92 \quad$

$+9899 l$
0000 LL
9518 Ll
Stor 711 ——
LZIG GZ
$10 \subset 2$ '821
6918.821
8Z1 6\&1
2980 ED \qquad

\qquad

6918%
9628%
6018%

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

19 COP
${ }^{508} 87$ \qquad

${ }_{6098} 701$ _

${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3})
ש

1989%
0000%
602%

$168 \% 921$
$10 C 2821$
6518

(1) \qquad

${ }^{3} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 \qquad
$89 \angle 9 \cdot 9 /$
$0000 \cdot \mathrm{Ll}$
$9 \downarrow 18 \cdot L l$
\square

\qquad

$069 Z^{\prime}$ LE1 \qquad

[^0]

 $1691911 \square$
0809 G
$84 \angle 2.821$ $\xlongequal{2}$
2916981 \qquad
166 L $2 \boldsymbol{} 1$ \qquad

$92912=$
$1881 \% 2=$
$1692 \%=$
$0012 L=$
$9662 L$

1290 ' zl \qquad
$\underset{8571.821}{\angle 8 E t}=$
9009' 181
$9 t t<\cdot 9 \varepsilon 1$ \qquad

92L9 G

$\angle 8912=$
$99212=$
$05012=$
$9992 \%=$
$0512 \%=$
9662%

90LL Zも

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]:

