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Abstract

Economic and financial time series data can exhibit nonstationary and nonlinear patterns si-

multaneously. This paper studies copula-based time series models that capture both patterns.

We propose a procedure where nonstationarity is removed via a filtration, and then the nonlin-

ear temporal dependence in the filtered data is captured via a flexible Markov copula. We study

the asymptotic properties of two estimators of the parametric copula dependence parameters: the

parametric (two-step) copula estimator where the marginal distribution of the filtered series is es-

timated parametrically; and the semiparametric (two-step) copula estimator where the marginal

distribution is estimated via a rescaled empirical distribution of the filtered series. We show that

the limiting distribution of the parametric copula estimator depends on the nonstationary filtration

and the parametric marginal distribution estimation, and may be non-normal. Surprisingly, the

limiting distribution of the semiparametric copula estimator using the filtered data is shown to be

the same as that without nonstationary filtration, which is normal and free of marginal distribution

specification. The simple and robust properties of the semiparametric copula estimators extend

to models with misspecified copulas, and facilitate statistical inferences, such as hypothesis test-

ing and model selection tests, on semiparametric copula-based dynamic models in the presence of

nonstationarity. Monte Carlo studies and real data applications are presented.
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1. Introduction

Nonstationarity and nonlinearity are important empirical features in economic and financial time se-

ries. For many economic time series, nonstationary behavior is often the most dominant characteristic.

Some series grow in a secular way over long periods of time, others appear to wander around as if they

have no fixed population mean. Growth characteristics are especially evident in time series that repre-

sent aggregate economic behavior. Random wandering behavior is also evident in many financial time

series. In addition, existing literature (e.g. Gallant, Rossi, Tauchen (1993), Granger (2002), Gallant

(2009)) points out that the classical linear time series modelling based on the Gaussian distribution

assumption clearly fails to explain the stylized facts observed in economic and financial data, and that

it is highly undesirable to perform various economic policy evaluations, financial forecasts, and risk

managements based on linear Gaussian models.

Econometric analysis that ignores either nonstationarity or nonlinearity may lead to erroneous

inference for policy evaluations and financial applications. Arguably the most common nonstationarity

in many economic time series are persistency and trending characteristics. Deterministic or stochastic

trend components are usually used to capture these kinds of nonstationarity in time series. In the

presence of a deterministic trend, detrending methods are commonly used to extract this trend and the

residuals are then analyzed as a stationary time series. Unit root and cointegration models are widely

used to model stochastic trends in economic time series. For stationary series, copula-based Markov

models provide a rich source of potential nonlinear dynamics describing temporal dependence and

tail dependence, without imposing any restrictions on marginal distributions. See, e.g., Joe (1997),

Chen and Fan (2006a), Patton (2006, 2009, 2012), Ibragimov (2009), Cherubini, et al (2012) and

the references therein. However, existing large sample theories for estimation and inference on the

copula-based time series models rule out nonstationarity.

An important issue in practice is that nonstationarity and nonlinearity may occur simultaneously.

In this paper, we study copula-based time series models that can capture nonstationarity and non-

linearity (and tail dependence). We propose a sequential procedure where nonstationarity is first

removed via a filtration, and then the nonlinear temporal dependence (and the tail dependence) in the

filtered data is captured by a copula-based first-order stationary Markov model. We are interested in

simple estimation and inference on the copula dependence parameter for the deterministic or stochas-

tic detrended data. We focus on the sequential approach due to its easy implementation in empirical

applications.

An advantage of copula-based modeling approach is to leave the marginal distribution completely

free of parametric assumptions. Nevertheless, many empirical researchers still like to assume mar-

ginal distribution belonging to a parametric family and estimate it parametrically before proceeding

to estimate the copula dependence parameters. For the sake of comparison, we consider both the

2



parametric (two-step) copula estimation where the marginal distribution of the filtered series belongs

to a parametric family, and the semiparametric (two-step) copula estimation where the marginal dis-

tribution of the filtered series is nonparametric. Without nonstationary filtering and for observable

stationary Markov data, both copula estimators are shown to be asymptotically normal, while the

semiparametric copula estimator is obviously robust to misspecification of the marginal distribution.

We show that the copula estimators using nonstationary filtered data have very different properties,

however. In particular, the limiting distribution of the parametric (two-step) copula estimator is af-

fected by the nonstationary filtration and the parametric marginal distribution estimation, and may

be non-normal in the presence of stochastic trends (unit root or cointegration). While the parametric

copula estimator using deterministic trend filtered data is shown to be asymptotically normal, its

asymptotic variance still depends on the filtrating and the parametric marginal specification in a com-

plicated way. Surprisingly, we show that the limiting distribution of the semiparametric (two-step)

copula estimator using the filtered data is the same as that without nonstationary filtration, which

is normal and free of marginal distribution specification. While this surprising result is first derived

for models with correctly specified parametric copulas in Section 3, we show in Section 4 that the

limiting distribution of the semiparametric copula estimator (for the pseudo-true parameters) is still

not affected by the nonstationary filtration even in misspecified parametric copula models. The simple

and robust properties of the semiparametric copula estimators greatly facilitate statistical inferences,

such as hypothesis testing and model selection tests, on semiparametric copula-based dynamic models

in the presence of nonstationarity.

Previously, Chen and Fan (2006b) uses parametric copula to generate contemporaneous dependence

among multivariate standardized innovations of observed weakly-dependent multivariate time series,

where the standardized innovations have no serial dependence. They also obtained a surprising result

that the limiting distribution of their semiparametric two-step copula estimator does not depend on the

stationary filtering in the first step. It is interesting that both papers establish the "no-filtering-effect"

in semiparametric two-step copula parameter estimation. While Chen and Fan (2006b) consider the

contemporaneous copula dependence among multivariate standardized innovations that are orthogonal

to the dynamic filtering part, our paper studies the temporal copula dependence of univariate non-

stationary filtered residuals, and there is dependence among the nonstationary (stochastic trending)

and the stationary parts in our setting.

Monte Carlo studies reveal interesting finite sample behaviors of the parametric and the semi-

parametric copula estimators under various combinations of nonstationary filtration, correctly- and

incorrectly- specified marginal distribution of the filtered series, and copula function specification (with

or without tail dependence). Simulation evidences (in terms of biases and variances) indicate that the

finite sample performance of parametric copula estimator is indeed very sensitive to different types of
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filtration and the parametric estimation of marginal distributions. The semiparametric copula estima-

tor not only is robust to specification of marginal distributions, but also performs very similarly to the

infeasible semiparametric estimator without nonstationary filtering. In comparison to the paramet-

ric copula estimator with correctly specified parametric marginal distributions, the semiparametric

estimator has reasonably good sampling performance over a wide range of copula parameter values.

Simulation patterns are consistent with the theoretical findings in our paper.

To illustrate the practical usefulness of our proposed models and method. We first apply our

method to estimate the short term dynamics in the GNP time series after the cointegrating regression

of GNP on consumption series. Our semiparametric copula estimation and testing using the filtered

data enable us to detect both lower and upper tail dependence in the GNP series (of the USA).

We next apply our method to the famous "CAY" time series that was first constructed in Lettau

and Ludvigson (2001), which is the residual term from a cointegrating regression of consumption

(ct) on asset holding (at) and labor income (yt). According to Lettau and Ludvigson (2001) and

many subsequent work, the "CAY" time series contain important information of future returns at

short horizons. Our semiparametric copula estimation and testing detects very significant lower tail

dependence and relatively weak upper tail dependence in the "CAY" series.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents

estimation of copula parameters for both the parametric and semiparametric models of the filtered

data. It also obtains the large sample properties of the parametric and semiparametric copula esti-

mators. Section 4 considers estimation under possibly misspecified copula models. It also discusses

semiparametric copula model selection tests using nonstationary filtered data. Section 5 presents

Monte Carlo studies and Section 6 provides empirical applications. Section 7 briefly concludes with

future research. In the supplementary appendices, Appendix A displays tables summarizing the Monte

Carlo results, and Appendix B contains the technical proofs. Notation: BM(ω2) denotes a Brownian

motion with variance ω2. For a generic parameter, say, β, we denote the true parameter value by β∗,

the pseudo-true value by β̄ and the feasible estimator by β̂.

2. The Model

We assume that the observed scalar time series {Zt}nt=1 can be modelled as

Zt = X ′tπ
∗ + Yt, (2.1)

where X ′tπ
∗ is the nonstationary component in which Xt is an observed dx-dimensional vector of

nonstationary regressors. For example, Xt may contain deterministic trends, unit root or near unit

root nonstationary time series. Yt is the latent stationary ergodic component that could exhibit

nonlinear temporal dependence and/or tail dependence.
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Estimation of the parameter π∗ in model (2.1) is by now standard (usually an OLS regression

of Zt on Xt) and is not the focus of our paper. Instead we are interested in estimation of the

copula parameter β that captures stationary nonlinear temporal dependence in {Yt}nt=1. Unfortunately

{Yt}nt=1 is unobserved. We shall estimate the latent temporal dependence parameter β and study its

asymptotic properties based on the filtered time series {Ŷt}nt=1, where

Ŷt = Zt −X ′tπ̂,

and π̂ denotes some nonstationary filtering estimator for π∗. We state the basic regularity conditions

on the nonstationary part and the stationary part as follows. The assumptions about the nonstationary

part {X ′tπ∗}nt=1 are the typical ones for trend, unit roots and cointegration, and the assumptions about

the stationary part {Yt}nt=1 are the same as those in Chen and Fan (2006a).

Due to the nonstationarity in Xt, we introduce appropriate re-standardization via a scaling matrix

Dn to facilitate asymptotic analysis. Denoting Xn(r) = n1/2D−1
n X[nr] and Yn(r) = n−1/2

∑[nr]
t=1 Yt for

r ∈ [0, 1], we make the following assumption concerning the nonstationary component and the related

filtration.

Assumption X. In model (2.1), the elements in Xt can be either a deterministic trend function, or

an unit root or local to unit root process such that[
Yn(r)

Xn(r)

]
⇒
[
BY (r)

X(r)

]
, r ∈ [0, 1] as n→∞,

where BY (r) is a Brownian motion, X(r) is a vector of stochastic or deterministic functions. And

Dn (π̂ − π∗)⇒ ξ as n→∞.

The limit of the standardized nonstationary component n1/2D−1
n X[nr], may be stochastic processes

such as Brownian motions, or deterministic functions, or a mixture of both type. BY (r) is a Brownian

motion. In the case when X(r) contains stochastic functions, BY (r) and X(r) may be correlated.

The limiting distribution of the filtration parameter, ξ, is a function of X(·) and may not be a normal
variate. We give below a few examples that are widely used in time series applications. In all these

examples, we use the OLS filtration.

Example 1. Trending Time Series. Xt is a vector of deterministic trend function and n1/2D−1
n X[nr] →

X(r), where X(r) is a piecewise continuous limiting trending function. Let π̂ be the OLS esti-

mator of π∗,

Dn (π̂ − π∗)⇒ ξ1,

where in general ξ1 is a normal variate. In particular, let BY (r) = BM(ω2
Y ) denote the weak

limit of Yn(r) = n−1/2
∑[nr]

t=1 Yt, then

ξ1 =

[∫
X(r)X(r)′dr

]−1 [∫
X(r)dBY (r)

]
,
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which is a mean zero normal random variable with variance-covariance matrix ω2
Y

[∫
X(r)X(r)′dr

]−1.

For example, if the observed time series {Zt}nt=1 contains a linear trend:

Zt = π∗0 + π∗1t+ Yt,

then Xt = (1, t)′ and X(r) = (1, r)′, and the standardization matrix is Dn = diag(n1/2, n3/2).

Example 2. Time Series with a Root Close to Unity. Xt = Zt−1 and π = 1 + c/n. Thus

Xt = Zt−1 can be a unit root (c = 0) or local to unit root process (c < 0). Dn = n, and

n−1/2X[nr] ⇒ X(r) = Jc(r) =
∫ r

0 e
(r−s)cdBY (s), where Jc(r) is a Ornstein—Uhlenbeck process. If

c = 0, J0(r) = BY (r) is simply a Brownian motion. The OLS filtration estimators π̂ converges

at rate-n to a non-normal limit: n (π̂ − π)⇒ ξ2, where

ξ2 =

[∫ 1

0
Jc(r)

2dr

]−1 [∫ 1

0
Jc(r)dBY (r) + λ

]
,

with λ =
∑∞

h=1E(Y1Y1+h).

Example 3 Cointegrated Time Series. Xt = (X ′1t, X
′
2t)
′, where X1t is a vector of deterministic

trend, and X2t is a vector of stochastic nonstationary process, then

n1/2D−1
1nX1,[nr] → X1(r), n−1/2X2,[nr] ⇒ B2(r) = BM(ω2

2),

X1(r) is the limiting trending function, andB2(r) is a stochastic process. LetDn = diag{D1n, n, ··
·, n},

n1/2D−1
n X[nr] → X(r) =

[
X1(r)

B2(r)

]
.

The OLS filtration estimators π̂ has the following limit:

Dn (π̂ − π)⇒
[∫

X(r)X(r)′dr

]−1 [∫
X(r)′dBY (r) + ΛXY

]
,

where Λ′XY = [0,Λ′2Y ]. In typical cointegration models, Λ2Y 6= 0, B2(r) is correlated with BY (r),

and
[∫
B2(r)B2(r)′dr

]−1 ∫
B2(r)dBY (r) is asymmetrically distributed.

The latent component, Yt, is a stationary ergodic process that may display nonlinear dynamics

captured by a copula function. For simplicity, we assume that {Yt}nt=1 is a strictly stationary first-

order Markov process (see, e.g., Chen and Fan 2006a). Higher order Markov process of {Yt}nt=1 can

be handled similarly (see, e.g., Ibragimov, 2009).

Under the assumption that {Yt}nt=1 is a first-order stationary Markov process, its probabilistic

properties are determined by the true joint distribution of Yt−1 and Yt, say, G∗(yt−1, yt). Suppose that

6



Yt has continuous marginal distribution function F ∗(·), then by Sklar’s (1959) Theorem, there exists
an unique copula function C(·, ·) such that

G∗(yt−1, yt) ≡ C(F ∗(yt−1), F ∗(yt)),

where the copula function C(·, ·) is a bivariate probability distribution function with uniform mar-

ginals. Denote the corresponding copula density of C(u, v) by c(u, v), and the density of the marginal

distribution F (·) by f(·), the true conditional density of Yt given Yt−1 is

p(yt|yt−1) = f∗(yt)c(F
∗ (yt−1) , F ∗ (yt)).

We assume the following basic conditions on the dynamics of the latent process {Yt}.
Assumption DGP: {Yt}nt=1 in model (2.1) is a stationary first-order Markov process generated

from (F ∗(·), C(·, ·;β∗)), where F ∗(·) is the true invariant distribution that is absolutely continuous
with respect to Lebesgue measure on the real line; C(·, ·;β∗) is the copula for (Yt−1, Yt), is absolutely

continuous with respect to Lebesgue measure on [0, 1]2.

Assumption MX: The process {Yt} is absolutely regular with mixing coeffi cient β (τ) = O(τ−δ), for

a constant δ > 0.

See Chen and Fan (2006a), Chen, Wu and Yi (2009), Beare (2010), Longla and Peligrad (2012)

and others about suffi cient conditions that most commonly used copula-based Markov processes are

geometric ergodic and hence absolutely regular (or beta-mixing) with exponentially decaying mixing

coeffi cients.

3. Estimation Under Correctly-Specified Copulas

We are interested in estimation and inference on the copula dependence parameter β∗.

3.1. Feasible estimation of copula parameter using filtered data Ŷt

Let Ŷt be the filtered time series, and F̂ (·) be a feasible estimator of the marginal distribution F ∗(·)
using Ŷt. In this paper we propose and study the properties of the following feasible copula estimator

β̂ = arg max
β

Q̂n(F̂ , β), where Q̂n(F̂ , β) =
1

n

n∑
t=2

log c(F̂ (Ŷt−1), F̂ (Ŷt), β). (3.1)

3.1.1. Parametric marginal case

We first consider the parametric case where the marginal distribution of Yt belongs to a parametric

family. Denote the unknown true marginal density function and the distribution function of Yt by
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f(·, α∗) and F (·, α∗), where α is an k1-dimensional vector of unknown parameters. We could then

estimate the true marginal F ∗(·) by F (·, α̂) where

α̂ = arg max
α

n∑
t=1

log f(Ŷt, α), (3.2)

and estimate the copula parameter β∗ by the following “parametric copula estimator”:

β̂P = arg max
β

Q̂n(β), where Q̂n(β) =
1

n

n∑
t=2

log c(F (Ŷt−1, α̂), F (Ŷt, α̂), β).

3.1.2. Nonparametric marginal case

In practice, the exact form of marginal distribution is usually beyond our knowledge and thus the

parametric model of marginal distribution may be misspecified. We now consider a semiparametric

model where the marginal distribution is estimated nonparametrically based on the filtered time series

Ŷt. We use the so-called rescaled empirical distribution function (EDF) to estimate F ∗(·):

F̂n(y) =
1

n+ 1

n∑
t=1

1
(
Ŷt ≤ y

)
,

and estimate the copula parameter β∗ by the following “semiparametric copula estimator”:

β̂SP = arg max
β
L̂n(β), where L̂n(β) =

1

n

n∑
t=2

log c(F̂n(Ŷt−1), F̂n(Ŷt), β).

3.2. Infeasible estimation of copula parameter using Yt

For comparison purpose, we review an infeasible estimator, β̃, of β∗ assuming that Yt is observed.

Let F̃ (·) be an infeasible estimator of the true marginal distribution F ∗(·) using Yt. Then a pseudo
maximum likelihood estimator of β∗ using observed Yt is given by

β̃ = arg max
β

Qn(F̃ , β), where Qn(F̃ , β) =
1

n

n∑
t=2

log c(F̃ (Yt−1), F̃ (Yt), β).

Again, β̃P denotes the parametric copula estimator using the infeasible parametric marginal estimator

F̃ = F (·, α̃), where1

α̃ = arg max
α

n∑
t=1

log f(Yt, α).

1Previously, Joe and Xu (1996) and Joe (2005) studied two-step parametric estimation of copula parameter

β for iid data {(Y1,i, ..., Ym,i)}ni=1 of a multivariate random vector (Y1, ..., Ym) whose concurrent copula density

c(F1(Y1;α1), ..., Fm(Ym;αm);β) links different parametric marginal distributions Fj(Yj ;αj), j = 1, ...,m.
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And β̃SP denotes the semiparametric copula estimator using the infeasible rescaled estimator for F
∗(·):

F̃ (y) = Fn(y) =
1

n+ 1

n∑
t=1

1 (Yt ≤ y) .

Chen and Fan (2006a) has proposed and studied the asymptotic properties of β̃SP for first-order

stationary Markov process Yt.

Comparing β̂ and β̃, the infeasible estimator β̃ assumes that Yt is observed so that it is not affected

by filtration of nonstationarity. In addition to β̃ and β̃SP , we also compare our estimators with the

ideal infeasible estimator β̆, which is the maximum likelihood estimator of β∗ assuming Yt is observed

with a completely known marginal distribution F ∗(·):

β̆ = arg max
β

Qn(F ∗, β), where Qn(F ∗, β) =
1

n

n∑
t=2

log c(F ∗(Yt−1), F ∗(Yt), β). (3.3)

In the next two subsections, we show that although the parameter estimators β̂P and β̃P could have

different asymptotic properties, the semiparametric estimators β̂SP and β̃SP have the same asymptotic

distribution.

3.3. Asymptotic properties of parametric copula estimator

In this subsection we establish the consistency and limiting distribution for the feasible paramet-

ric copula estimators. We introduce some notation in the parametric case. Let g (Yt−1, Yt, α, β) =

log c(F (Yt−1, α), F (Yt, α), β) and gβ (s1, s2, α, β) = ∂g (s1, s2, α, β) /∂β. For i = 1, 2, j = 1, 2, we

define

∂gβ (s1, s2, α, β)

∂α
= gβα (s1, s2, α, β) ,

∂gβ (s1, s2, α, β)

∂β
= gββ (s1, s2, α, β) ,

∂gβ (s1, s2, α, β)

∂sj
= gβj (s1, s2, α, β) ,

∂gββ (s1, s2, α, β)

∂sj
= gββj (s1, s2, α, β) ,

∂gββ (s1, s2, α, β)

∂α
= gββα (s1, s2, α, β) ,

∂gβα (s1, s2, α, β)

∂sj
= gβαj (s1, s2, α, β) ,

∂gβi (s1, s2, α, β)

∂sj
= gβij (s1, s2, α, β) ,

∂gβi (s1, s2, α, β)

∂α
= gβiα (s1, s2, α, β) .

For convenience, we also denote `(u, v, β) = log c(u, v, β), and

∂`(u, v, β)

∂β
= `β (u, v, β) ,

∂`(u, v, β)

∂u
= `1 (u, v, β) ,

∂`(u, v, β)

∂v
= `2 (u, v, β) ,

∂`β (u, v, β)

∂u
= `β1 (u, v, β) ,

∂`β (u, v, β)

∂v
= `β2 (u, v, β) ,

∂`β (u, v, β)

∂β
= `ββ (u, v, β) .

For consistency in the parametric case, we make the following assumptions.
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Assumption ID1: (1) A and B are compact subsets of Rk1 and Rk. (2). q(α) =E[log f(Yt, α)] has a

unique maximizer α∗ ∈ A; and Q(β) =E[`(F (Yt−1, α
∗), F (Yt, α

∗), β)] has a unique maximizer β∗ ∈ B.
(3) f(y, α) is continuous in α ∈ A, and g (α, β) =E[g (Yt−1, Yt, α, β)] is Lipschitz continuous in α ∈ A
and β ∈ B.
Assumption M1 (1) E[supα | log f(Yt, α)|] < ∞, and E

[
supβ∈B,α∈Aδ |g (Yt−1, Yt, α, β)|

]
< ∞. (2)

f(y, α) is uniformly continuous in y, uniformly over α ∈ A, in the sense that for any ε > 0, there exists

δ > 0, such that if |y1 − y2| < δ, then

sup
α∈A
|log f(y1, α)− log f(y2, α)| < ε.

Similarly, g(s1, s2, α, β) is uniformly continuous in (s1, s2, α), uniformly over β ∈ B, in the sense that
for any ε > 0, there exists δ > 0, such that if |s′1 − s′′1|+ |s′2 − s′′2|+ |α′ − α′′| < δ, then

sup
β∈B

∣∣g(s′1, s
′
2, α
′, β)− g(s′′1, s

′′
2, α

′′, β)
∣∣ < ε.

Theorem 1: Under Assumptions DGP, MX, ID1, M1, and X, β̂P = β∗ + op(1).

We introduce additional notation and assumptions for convenience of developing the limiting dis-

tribution of β̂P . Denote

Ωβ = E
[
`β (F ∗(Yt−1), F ∗(Yt), β

∗) `β (F ∗(Yt−1), F ∗(Yt), β
∗)′
]

and

Ωα = E
[
∂ log f(Yt, α

∗)

∂α

∂ log f(Yt, α
∗)

∂α′

]
, Hα = −E

[
∂2 log f(Yt, α

∗)

∂α∂α′

]
.

Assumption ID2: (1). β̂P = β∗ + op(1) and β∗ ∈ int(B) (2) ∂Q̂n(β̂P )/∂β = op(n
−1/2). (3)

`β (s1, s2, β) is Lipschitz continuous in β, `βj (s1, s2, β) are continuous in (s1, s2, β). (3). Hβ =

−E`ββ (F ∗(Yt−1), F ∗(Yt), β
∗) = Ωβ is positive definite. (4). f(·, α∗) and F (·, α∗), are differentiable in

α∗. (5) Hα = Ωα is positive definite,
√
n (α̃− α∗)⇒ N (0,Ωα).

Assumption M2 (1) the derivatives of gβ (s1, s2, α, β) are uniformly continuous in (s1, s2, α, β). (2)

the following limits hold in probability:

Pnj =
1

n

n∑
t=2

gβj (Yt−1, Yt, α
∗, β∗)X ′t−2+jD

−1
n n1/2 = Pj + op(1), j = 1, 2,

Pn3 = n−1
n∑
t=2

gβα (Yt−1, Yt, α
∗, β∗) = P3 + op(1).

HnαY =
1

n

n∑
t=1

∂2 log f(Yt, α
∗)

∂α∂Y

(
X ′tD

−1
n n1/2

)
= HαY + op(1).

10



Theorem 2: Under Assumptions DGP, MX, ID2, M2, and X, as n→∞,
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β Ω#
β H

−1
β

)
−H−1

β

(
P1 + P2 + P3Ω−1

α HαY

)
ξ

where

Ω#
β = lim

n
Var

(
1√
n

n∑
t=2

(
`β (F ∗(Yt−1), F ∗(Yt), β

∗) + P3Ω−1
α

∂ log f(Yt, α
∗)

∂α

))
= Ωβ + P3Ω−1

α P ′3.

An immediate result from Theorem 2 is: in the presence of nonstationarity, the limiting distribution

of the parametric copula estimator may not be normal even asymptotically.

From the proof of Theorem 2, we can decompose the limiting distribution of the parametric

copula estimator β̂ into three components: The first part is N
(

0, H−1
β ΩβH

−1
β

)
= N (0,Ωβ), the

normal limit of the ideal infeasible estimator when Yt is observed with a completely known mar-

ginal F ∗(Yt) = F (Yt, α
∗) (or a known α∗); The second part is N(0, H−1

β P3Ω−1
α P ′3H

−1
β ), the nor-

mal limit from the parametric estimation of marginal parameter α∗ using Yt; The third part is

H−1
β

(
P1 + P2 + P3Ω−1

α HαY

)
ξ, the effect of nonstationary filtration Ŷt. The first two parts are normal

random variates but the third part may not be normal. Unless P1 + P2 + P3Ω−1
α HαY = op(1), the

nonstationary filtration will affect the limiting distribution of the parametric copula estimator β̂P .

In particular, the filtration affects the limiting distribution of
√
n
(
β̂P − β∗

)
directly through Ŷt and

indirectly through α̂. Unless Xt is purely deterministic, the limiting distribution of
√
n
(
β̂P − β∗

)
is

not normal and is generally affected by nuisance parameters in a complicated way.

Remark 1. Recall the simple asymptotic normality result for the ideal infeasible estimator β̆, assum-

ing Yt is observed with a completely known marginal distribution F ∗(·), is given by
√
n
(
β̆ − β∗

)
⇒ N

(
0, H−1

β ΩβH
−1
β

)
= N

(
0, H−1

β

)
= N (0,Ωβ) .

From the proof of Theorem 2, we have

√
n
(
β̃P − β∗

)
⇒ N

(
0, H−1

β Ω#
β H

−1
β

)
.

Since Ω#
β −Ωβ is positive definite, even assuming observable Yt, there is still effi ciency loss of the infea-

sible parametric copula estimator β̃P using a consistent parametric estimator of marginal distribution

F ∗(). Nevertheless, according to Theorem 2, it is unclear which one, β̃P vs β̂P , is more effi cient.

Example 1 (Continued). Trending Time Series. Xt is a vector of deterministic trend with a

limiting trending function X(r). Let

η =
2∑
j=1

Egβj (Yt−1, Yt, α
∗, β∗) + P3Ω−1

α E
[
∂2 log f(Yt, α

∗)

∂α∂Y

]
, (3.4)
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and

ηX = η

∫ 1

0
X(r)′dr

(∫ 1

0
X(r)X(r)′dr

)−1

,

notice that,

Pnj → Pj = Egβj (Yt−1, Yt, α
∗, β∗)

∫ 1

0
X(r)′dr, j = 1, 2,

HnαY → HαY = E
[
∂2 log f(Yt, α

∗)

∂α∂Y

] ∫ 1

0
X(r)′dr,

we have

P1 + P2 + P3Ω−1
α HαY = η

∫ 1

0
X(r)′dr,

and
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β Ω
#
β H

−1
β

)
,

where

Ω
#
β = lim

n→∞
Var

(
1√
n

n∑
t=2

gβ (Yt−1, Yt, α
∗, β∗) + Pn3Ω−1

α

1√
n

n∑
t=1

∂ log f(Yt, α
∗)

∂α
− ηX

∑
t

D−1
n XtYt

)
.

In this example, since the nonstationary component is deterministic and thus is uncorrelated

with Yt, the limiting distribution of Dn (π̂ − π) coming from nonstationary filtration is normal,

and thus the limiting distribution of the parametric copula estimator in this case β̂P is normal

although it is affected by the filtration asymptotically which is reflected in the formula of the

limiting variance matrix Ω
#
β .

Example 2 (Continued). Unit Root. Suppose that the time series Zt is a process with unit root.

Then Xt = Zt−1, π∗ = 1, and the filtration process is an autoregression

Zt = π̂Zt−1 + Ŷt,

n (π̂ − π∗)⇒ ξ2 =

[∫ 1

0
BY (r)2dr

]−1 [∫ 1

0
BY (r)dBY (r) + λ

]
with λ =

∑∞
h=1E(Y1Y1+h). Then,

√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β Ω#
β H

−1
β

)
− ηH−1

β h(BY (r))

where η is defined as (3.4), and

h(BY (r)) =

∫ 1

0
BY (r)dr

[∫ 1

0
BY (r)2dr

]−1 [∫ 1

0
BY (r)dBY (r) + λ

]
.

In this example, the limiting distribution ξ2 coming from nonstationary filtration is non-normal,

and thus the limiting distribution of the parametric copula estimator β̂P is not normal because

it is affected by the filtration asymptotically.

12



Example 3 (Continued). Cointegrated Time Series. Xt = (X ′1t, X
′
2t)
′, where X1t is a vector of

deterministic trend, and X2t is a vector of unit root process, then

Pnj → Pj = Egβj (Yt−1, Yt, α
∗, β∗)

[∫ 1

0
X1(r)′dr,

∫ 1

0
B2(r)′dr

]
, j = 1, 2,

and

HnαY → HαY = E
[
∂2 log f(Yt, α

∗)

∂α∂Y

] ∫ 1

0
X(r)′dr.

Then,
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β Ω#
β H

−1
β

)
− ηH−1

β h3(X1, B2, BY )

where

h3(X1, B2, BY ) =

[∫ 1

0
X1(r)′dr,

∫ 1

0
B2(r)′dr

][[ ∫
X1(r)X1(r)′dr

∫
X1(r)B2(r)′dr∫

B2(r)X1(r)′dr
∫
B2(r)B2(r)′dr

]]−1

×
[ ∫ 1

0 X1(r)dBY (r)∫ 1
0 B2(r)dBY (r) + Λ2Y

]
In this example, since the nonstationary component contains a vector of stochastic nonstationary

process X2t which is usually correlated with Yt, and a bias term Λ2Y , the limiting distribution

coming from nonstationary filtration is not normal. Thus the limiting distribution of the para-

metric copula estimator in this case β̂P is not normal.

3.4. Asymptotic properties of semiparametric copula estimator

We denote the space of continuous probability distributions over the support of Yt as F , then F ∈ F .
For an appropriate positive weighting function w (·) (whose property is specified below in Assumption
SP), we define a weighted metric ‖·‖w as

‖F − F ∗‖w = sup
y
|{F (y)− F ∗(y)} /w(F ∗(y))| .

For a small δ > 0, let Fδ = {F ∈ F : ‖F − F ∗‖w ≤ δ}. Then, F ∗ ∈ Fδ, and Fn ∈ Fδ with probability
approaching 1 as n→∞.
Assumption SP: (1) There exists Y , for |y| > Y , and any sequence δn = o(1), |F (y + δn)− F (y)| ≤
F (y)(1+o(1)). (2) w (·) is a continuous function on [0, 1] which is strictly positive on (0, 1), symmetric
at u = 0.5, and increasing on (0, 1/2], satisfying w(u) ≥ ζ [u(1− u)]µ log(1/(u(1 − u)))µ1 with ζ > 0,

µ1 > 0, µ < 1/2q, q > 1.

We first establish an important Lemma for a weighted empirical process that is of independent

interest to handle filtration for time series. Consider b = (b1, · · ·, bn)′, let

Zn(y, b) =
1√
n+ 1

n∑
t=1

[
1
(
Yt ≤ y + n−1/2bt

)
− F ∗(y + n−1/2bt)

]
13



and denote |b| = maxt |bt|.
Lemma 1. Under Assumptions DGP, MX, SP, and X, for any given B > 0,

sup
|b|≤B

sup
y

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(F ∗(y))

∣∣∣∣ = op(1).

We modify the assumptions ID1 and M1 to facilitate asymptotic analysis in the semiparametric

case.

Assumption ID3: (1). B is a compact subset of Rk. (2) E[`β(F ∗(Yt−1), F ∗(Yt), β)] = 0 if and only

if β = β∗ ∈ B. (3) `β (s1, s2, β) is Lipschitz continuous in β, `βj (s1, s2, β) are continuous in (s1, s2, β).

Assumption M3 (1). E
[
supβ∈B ‖`β (F ∗(Yt−1), F ∗(Yt), β)‖ log (1 + ‖`β (F ∗(Yt−1), F ∗(Yt), β)‖)

]
<∞.

(2). E
[
supβ∈B,F∈Fδ ‖`βj (F (Yt−1), F (Yt), β)‖w(F ∗(Yt−2+j))

]
<∞, j = 1, 2. (3). supy |f(y)/w(F ∗(y))| <

∞.
Theorem 3 below gives the consistency of the semiparametric estimator.

Theorem 3: Under Assumptions DGP, SP MX, ID3, M3, and X, β̂SP = β∗ + op (1).

The following additional assumptions are added for asymptotic normality of β̂SP .

Assumption ID4: (1). Assumption ID3 is satisfied with β∗ ∈ int (B), (2)Hβ = −E`ββ (F ∗(Yt−1), F ∗(Yt), β
∗)

is positive definite. (3). supy |(Fn(y)− F ∗(y)) /w(F ∗(y))| = Op(n
−1/2).

Assumption M4 (1). Let Fη = F ∗ + η [F − F ∗] for η ∈ [0, 1] and F ∈ Fδ, the interchange of
differentiation and integration of `β

(
Fη(Yt−1), Fη(Yt), βη

)
w.r.t η ∈ (0, 1) is valid.

(2) E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`β (F (Yt−1), F (Yt), β)‖2 log (1 + ‖`β (F (Yt−1), F (Yt), β)‖)

]
<∞,

E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`ββ (F (Yt−1), F (Yt), β)‖2

]
<∞.

(3). E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`βj (F (Yt−1), F (Yt), β)‖w(F ∗(Yt−2+j))

]2
<∞, j = 1, 2.

E
[
sup‖β−β∗‖≤δ,F∈Fδ |`βij (F (Yt−1), F (Yt), β)w(F ∗(Yt+i−2))w(F ∗(Yt+j−2))|

]
<∞, i, j = 1, 2.

E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`ββj (F (Yt−1), F (Yt), β)w(F ∗(Yt+j−2))‖

]
<∞, i, j = 1, 2.

Denote

Gn =
1√
n

n∑
t=2

{`β (F ∗(Yt−1), F ∗(Yt), β
∗) +G0(Yt) +G1(Yt−1)} ,

where

Gj(Yt−j) =

∫ 1

0

∫ 1

0
[1 (F ∗(Yt−j) ≤ v2−j)− v2−j ] `β,2−j (v1, v2;β∗) c (v1, v2;β∗) dv1dv2, j = 0, 1.

Let

Ω+
β = lim

n→∞
V ar (Gn) = Ωβ + V ar (G0(Yt) +G1(Yt−1)) .
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Theorem 4: Under Assumptions DGP, SP, MX, ID4, M4, and X, as n→∞,
√
n
(
β̂SP − β∗

)
=
√
n
(
β̃SP − β∗

)
+ op(1)⇒ N

(
0, H−1

β Ω+
βH

−1
β

)
.

In contrast to Theorem 2, which shows that the nonstationary filtration affects the limiting distri-

bution of the parametric copula estimator β̂P , Theorem 4 shows that the nonstationary filtration does

not affect the limiting distribution of the semiparametric copula estimator β̂SP , which is the same as

that of the infeasible semiparametric copula estimator β̃SP using Yt.

From the proof of Theorem 4 in the Appendix, we can again decompose the distribution of the

semiparametric copula estimator β̂SP into three components: The first part is N
(

0, H−1
β ΩβH

−1
β

)
=

N (0,Ωβ), the normal limit of the ideal infeasible estimator β̆ when Yt is observed with a completely

known marginal distribution F ∗(·); The second part, denoted as An2+An4 in the Appendix, is from the

nonparametric estimation of the unknown marginal distribution using Yt, and is also asymptotically

normal; The third part, denoted as An1 +An3 in the Appendix, is the effect of nonstationary filtration

Ŷt. We show in the Appendix that An1 + An3 = op(1), thanks to the fact that the nonparametric

marginal distribution estimator enters the copula score function in a symmetric manner that absorbed

and cancelled the filtration effects. Therefore, the distribution of
√
n
(
β̂SP − β∗

)
is only asymptoti-

cally affected by the first two parts. Consequently, the limiting distribution of
√
n
(
β̂SP − β∗

)
is the

same as that of
√
n
(
β̃SP − β∗

)
, which is always normal.

Remark 2. Chen and Fan (2006b) studied the following class of semiparametric copula-based multi-

variate dynamic models

Zt = (Z1,t, ..., Zd,t) , Zj,t = µj,t(θ
∗) + σj,t(θ

∗)Yj,t,

µj,t(θ
∗) = E[Zj,t|It−1], σ2

j,t(θ
∗) = V arE[Zj,t|It−1],

Yt = (Y1,t, ..., Yd,t) is independent of It−1, and {Yt}nt=1 is i.i.d. over t

where the joint distribution of the multivariate standardized innovation Yt = (Y1,t, ..., Yd,t) has the con-

current copula density c(F1(Y1,t), ..., Fd(Yd,t);β) that links marginal distributions Fj(Yj,t), j = 1, ..., d

of individual standardized innovation at the same time period t. Chen and Fan (2006b) established

that the asymptotic distribution of the semiparametric (two-step) copula parameter estimator using

the filtered standardized innovation Ŷt is the same as that based on true multivariate standardized

innovation Yt, and hence is not affected by the estimation of the dynamic conditional mean and volatil-

ity parameters θ. Although results look similar, we should stress that the result behind Chen and

Fan (2006b) crucially depends on the independence between Yt = (Y1,t, ..., Yd,t) and the dynamic part

It−1 of the observed time series Zt. However, in the presence of nonstationarity (say, unit-root or

cointegration) as in our paper, Xt can be correlated with the residual term Yt, and hence our Theorem

4 could not be explained by that in Chen and Fan (2006b).
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3.5. Semiparametric inference on copula parameters

The simple and robust asymptotic properties of the semiparametric (two-step) copula estimator greatly

simplify all kinds of statistical inferences on copula models for latent {Yt}. In this section, we briefly
mention the Wald test for restrictions on the copula dependence parameters β using the asymptotic

results of Theorem 4.

Consider the general linear restriction H01 : Rβ∗ = r. A leading example is the significance test

for β: H02: β∗j = β0j . Notice that under the null H01 and regularity assumptions,

√
n
(
Rβ̂SP − r

)
⇒ N

(
0, RH−1

β Ω+
βH

−1
β R′

)
,

where Hβ and Ω+
β are defined in Theorem 4. Thus, under H01, as n→∞,

n
(
Rβ̂SP − r

)′ [
RH−1

β Ω+
βH

−1
β R′

]−1 (
Rβ̂SP − r

)
⇒ χ2

dr ,

where dr is the number of restrictions.

In order to construct the Wald test, we need to estimate Ω+
β = limn→∞Var(Gn), and Hβ =

−E`ββ (F ∗(Yt−1), F ∗(Yt), β
∗). We may estimate Hβ by the sample analog:

Ĥβ = − 1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
,

and estimate Ω+
β by a nonparametric kernel estimator:

Ω̂+
β =

M∑
h=−M

K

(
h

M

)
γ̂n(h).

with

γ̂n(h) =
1√
n

n∑
t=2

2≤t,t+h≤n

St

(
F̂n, β̂

)
St+i

(
F̂n, β̂

)
,

where

St+i

(
F̂n, β̂

)
= `β

(
F̂n(Ŷt+i−1), F̂n(Ŷt+i), β̂

)
+ Ĝ0(Ŷt+i) + Ĝ1(Ŷt+i−1)

Ĝj(Ŷt−j) =

∫ 1

0

∫ 1

0

[
1
(
F̂n(Ŷt−j) ≤ v2−j

)
− v2−j

]
`β,2−j

(
v1, v2; β̂

)
c
(
v1, v2; β̂

)
dv1dv2, j = 0, 1.

We define the Wald test statistic as

Wn = n
(
Rβ̂SP − r

)′ [
RĤ−1

β Ω̂+
β Ĥ

−1
β R′

]−1 (
Rβ̂SP − r

)
We assume the following bandwidth condition for the consistency of covariance estimator for Ω+

β .

Assumption BW: As n→∞, M →∞ and M = o(n1/3).

Theorem 5. Under Assumptions DGP, SP, MX, ID3, M3, X, and BW, we have: (1) Ω̂+
β =

Ω+
β + op(1). (2) Under H01, Wn ⇒ χ2

dr
where dr is the number of linearly independent restrictions.
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4. Semiparametric Estimation Under Copula-Misspecification

4.1. Semiparametric two-step estimation of pseudo-true copula parameters

Our previous analysis considers the case where the copula function is correctly specified. In some

applications, economic or finance theory may shed little light on the specification of a parametric

copula model. Although in practice one may select a copula to capture the main source of nonlinear

correlation by eye spotting a simple plot of F̂n(Ŷt) against F̂n(Ŷt−1) to roughly exam the dependence

in data, the copula model is in general an approximation and maybe potentially misspecified. In

practice, there might be multiple parametric copula functions that can generate the similar observed

tail dependence structure. For this reason, in this section we consider our model when the copula

functions are potentially misspecified.

Theorem 4 shows that the nonstationary filtration does not affect the limiting distribution of the

semiparametric copula estimator for correctly specified copula functions. Since Monte Carlo results

reveal the good finite sample performance of semiparametric copula estimator, we shall focus on

semiparametric copula estimator allowing for misspecified copula functions in this section.

Suppose that the true copula function that captures the dependence in Yt is given by C∗(u, v), but

we consider a copula function C(u, v, β) and estimate β by β̂ which maximizes

L̂n(β) =
1

n

n∑
t=2

log c(F̂n(Ŷt−1), F̂n(Ŷt), β),

where F̂n(Ŷt) is the EDF of Yt estimated based on the filtered time series
{
Ŷt

}
as in Section 3.2.

The infeasible semiparametric estimator based on unobserved Yt maximize

Ln(β) =
1

n

n∑
t=2

log c(Fn(Yt−1), Fn(Yt), β).

where

Fn(y) =
1

n+ 1

n∑
t=1

1 (Yt ≤ y) .

The maximizer of Ln(β) will converge to the pseudo-true value β of the copula dependence parameter

defined as the minimizer of the Kullback-Leibler Information Criterion (KLIC) between the candidate

parametric copula density and the true unknown copula density,

β = arg min
β
KLIC (c∗, c (·, β))

where following White (1982),

KLIC (c∗, c (·, β)) = E log c∗(F ∗(Yt−1), F ∗(Yt))− E log c(F ∗(Yt−1), F ∗(Yt), β).
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In the special case when the class of copula functions C(u, v, β) is correctly specified, C∗(u, v) =

C(u, v, β). In this section, we show that, even in the misspecified case, the nonstationary filtration

does not affect the limiting distribution of the semiparametric estimator when it is centered around

the pseudo-true parameter β. Similar to Theorem 2 for the correctly specified case, the limiting

distribution of parametric copula estimators based on filtered time series under copula misspecification

are again affected by the preliminary filtration, and may not be asymptotic normal in the presence of

a nonstationary component.

We still denote `(u, v, β) = log c(u, v, β) and define its derivatives in the same way as in Section 3,

but keep in mind that the copula function is misspecified.

We make the following regularity assumptions, which are parallel to the assumptions in Section

3.4, but modified to accommodate the misspecified copula.

Assumption ID5: (1). β ∈ B, B is a compact subset of Rk. (2) Q(β) =E[`(F ∗(Yt−1), F ∗(Yt), β)]

has a unique maximizer β on B. (3) Q (β) is Lipschitz continuous in β ∈ B.

Theorem 6. Under Assumptions DGP, MX, ID5, M3, and X, β̂ = β + op (1).

Assumption ID6: (1). Assumption ID5 is satisfied with β ∈ int (B), (2). Hβ = −E[`ββ
(
F ∗(Yt−1), F ∗(Yt), β

)
]

is positive definite. (3). supy |(Fn(y)− F ∗(y)) /w(F ∗(y))| = Op(n
−1/2).

Assumption M6: Assumption M4 holds for the misspecified log density `(u, v, β) around the pseudo-

true value β .

Let Ωβ = limn→∞Var
(
Gn
)
where Gn = n−1/2

∑n
j=2 `β

(
Uj−1, Uj , β

)
and Ut = F ∗(Yt),

`β
(
Uj−1, Uj , β

)
= `β

(
Uj−1, Uj , β

)
+

1∑
i=0

E
[
`β,2−i

(
Ut−1, Ut, β

)
[1 (Uj ≤ Ut−i)− Ut−i]

∣∣Uj]

Theorem 7. Under Assumptions DGP, MX, ID6, M6, and X, as n→∞,

√
n
(
β̂SP − β

)
=
√
n
(
β̃SP − β

)
+ op(1)⇒ N

(
0, H

−1
β ΩβH

−1
β

)
.

Theorem 7 shows that, in the case of misspecified copula, the nonstationary filtration does not

affect the limiting distribution of the semiparametric copula estimator β̂SP (centered at the pseudo-

true parameter β), which is again normal, the same as that of the infeasible semiparametric copula

estimator β̃SP using Yt, under misspecification.
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4.2. Semiparametric inference on copula model selection

We next consider copula model selection using the asymptotic result derived in this Section. In prac-

tice, there might be more than one copula functions that can generate the similar observed dependence

structure, and we want to select a copula function among candidate copula functions. Suppose that

there are two candidate classes of parametric copula models given by Cj
(
u1, u2, βj

)
, j = 1, 2. We are

interested in selecting a copula model from these two candidates. Corresponding to the j-th copula,

the conditional log likelihood of Yt given Yt−1 is given by

log f∗(yt) + log cj(F
∗ (yt−1) , F ∗ (yt) , βj).

Notice that the first term log f∗(yt) is not dependent on the copula, we may consider the following

log-likelihood ratio:

LR = log
c2(F ∗ (yt−1) , F ∗ (yt) , β2)

c1(F ∗ (yt−1) , F ∗ (yt) , β1)
.

If we consider the hypothesis H0: Copula model C1 (u1, u2, β1) is not worse than copula model

C2 (u1, u2, β2); vs. H1: Copula model C1 (u1, u2, β1) is worse than copula model C2 (u1, u2, β2). Then,

under H0, LR is small (negative). Otherwise, it is large (positive). In practice, neither F nor Yt are

observed, and have to be replaced by appropriate estimates. Let β̂j (j = 1, 2.) be the semiparametric

estimator
(
β̂SP

)
using the filtered time series

{
Ŷt

}n
t=1

and based on model j, we construct the following

pseudo-likelihood-ratio (PLR) statistic

L̂Rn =
1

n

n∑
t=2

log
c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

c1(F̂n(Ŷt−1), F̂n(Ŷt), β̂1)
,

based on

F̂n(Ŷt) =
1

n+ 1

n∑
j=1

1
(
Ŷj ≤ Ŷt

)
.

For convenience of asymptotic analysis, we introduce the following infeasible PLR statistic LRn

based on unobserved {Yt}nt=1,

LRn =
1

n

n∑
t=2

log
c2(Fn(Yt−1), Fn(Yt), β̃2)

c1(Fn(Yt−1), Fn(Yt), β̃1)
,

where β̃j (j = 1, 2.) are the semiparametric copula estimators based on model j and {Yt}nt=1 and

Fn(Yt) =
1

n+ 1

n∑
j=1

1 (Yj ≤ Yt) .

The following theorem shows that the PLR statistic L̂Rn is asymptotically equivalent to the

infeasible PLR test LRn.
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Theorem 8: Under Assumptions DGP, SP, MX, ID4, M4, and X, as n→∞, (i) If

Pr
{

(Y1, Y2) : c1(F ∗(Y1), F ∗(Y2), β1) 6= c2(F ∗(Y1), F ∗(Y2), β2)
}
> 0,

where βj are the pseudo-true values of the copula dependence parameters,

√
n
(
L̂Rn − LRn

)
= op (1) .

(ii) If Pr
{

(Y1, Y2) : c1(F ∗(Y1), F ∗(Y2), β1) = c2(F ∗(Y1), F ∗(Y2), β2)
}

= 1,

n
(
L̂Rn − LRn

)
= op (1) .

Theorem 8 shows that, under our assumptions, the limiting distribution of the pseudo-likelihood-

ratio (PLR) test L̂Rn is the same as the infeasible PLR statistic LRn based on unobserved Markov

series {Yt}nt=1. Thus, Chen and Fan (2006b) can be slightly modified to conduct PLR copula model

selection test for latent Markov series {Yt} using nonstationary filtered data. In particular, when the
two copula models are generalized non-nested in the sense

Pr
{

(Y1, Y2) : c1(F ∗(Y1), F ∗(Y2), β1) 6= c2(F ∗(Y1), F ∗(Y2), β2)
}
> 0,

the null hypothesis H0 is a composite hypothesis, and we may consider the least favorable configuration

(LFC) which satisfies

E
[
log

c2(F ∗(Yt−1), F ∗(Yt), β2)

c1(F ∗(Yt−1), F ∗(Yt), β1)

]
= 0.

Thus, under the LFC and other regularity Assumptions,

√
nL̂Rn ⇒ N

(
0, ω2

)
, as n→∞,

with

ω2 = limVar

 1√
n

n∑
t=2

s(Ut−1, Ut, β2, β1) +

2∑
j=1

[
1√
n

n∑
l=2

{
g2j

(
Ul, β2

)
− g1j

(
Ul, β1

)}] ,

where

s(Ut−1, Ut, β2, β1) = log
c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
, Ut = F ∗(Yt),

and

gij
(
Ul, βi

)
= E

{[
∂ log ci(Ut−1, Ut, βi)

∂Ut−2+j

]
[(1(Ul ≤ Ut−2+j)− Ut−2+j)]

∣∣∣∣Ul} .
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Let ω̂2 be a consistent long-run variance estimator of ω2 based on

ŝt(β̂1, β̂2) = log
c2(F̂

(
Ŷt−1

)
, F̂
(
Ŷt

)
, β̂2)

c1(F̂
(
Ŷt−1

)
, F̂
(
Ŷt

)
, β̂1)

and for i = 1, 2, j = 1, 2,

ĝt,ij

(
β̂i

)
=

1

n

n∑
l=2

∂ log ci(F̂
(
Ŷl−1

)
, F̂
(
Ŷl

)
, β̂i)

∂Ul−2+j

[(1(F̂
(
Ŷt

)
≤ F̂

(
Ŷl−2+j

)
− F̂

(
Ŷl−2+j

))]
.

Then we may consider the following testing statistic

Ln =

√
nL̂Rn
ω̂

.

Under the LFC and generalized non-nested case,

Ln → N(0, 1), as n→∞.

Many applications using non-nested copula models, the above model selection test is directly

applicable. For theoretical completeness, we could also consider generalized nested case, in which

c1(F ∗(Y1), F ∗(Y2), β1) = c2(F ∗(Y1), F ∗(Y2), β2), a.s.. Denote

Hjn = − 1

n

n∑
t=2

∂2 log cj(F̂n(Ŷt−1), F̂n(Ŷt), βj)

∂β∂β′
→ Hj,β = −E

[
∂2 log cj(F

∗(Yt−1), F ∗(Yt), βj)

∂β∂β′

]

and let Ut = F ∗(Yt), and Gj,n = n−1/2
∑n

j=2 `j,β
(
Uj−1), Uj), βj

)
, j = 1, 2, where

`j,β
(
Uj−1), Uj), βj

)
=

∂ log cj
(
Uj−1), Uj), βj

)
∂βj

+

1∑
i=0

E

[
∂2 log cj

(
Ut−1, Ut, βj

)
∂βj∂Ut−i

[1 (Uj ≤ Ut−i)− Ut−i]
∣∣∣∣∣Uj

]

then [
G2,n

G1,n

]
⇒ N

(
0,

[
Ω2,β Ω2,1

Ω
′
2,1 Ω1,β

])
.

Under the null, 2nL̂Rn converges to a weighted sum of independent χ2
1 random variables in which

the weights (λ1, · · ·, λk1+k2) is the vector of eigenvalues of the following matrix[
Ω2,β Ω2,1

Ω
′
2,1 Ω1,β

][
H
−1
2,β

−H−1
1,β

]
.
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5. Monte Carlo Studies

In this section, we exam the finite sample performance of the parametric and semiparametric copula

estimators based on filtered time series
{
Ŷt

}
. We compare the sampling performance of the semi-

parametric estimator β̂SP with the parametric estimator β̂P under correct and incorrect specifications

of the marginal distribution F ∗ (of the latent Yt); in particular, β̂P ∗ signifies the β̂P under correct

specification and β̂P1 signifies the β̂P under incorrect specification of F
∗. In addition, for comparison

purpose, we also look at two infeasible copula estimators based on the true values of {Yt}: the infea-
sible parametric estimator β̃P ∗ under correct specification of F

∗, and the infeasible semiparametric

estimator β̃SP using {Yt} process (no filtration is needed).
DGP designs: The observed time series {Zt}nt=1 is generated by Zt = X ′tπ

∗ + Yt, where {Yt}nt=1

is a latent first-order stationary Markov process generated from a copula function C(·, ·;β) and a

marginal distribution F ∗ such that the joint distribution of (Yt−1, Yt) is given by

G∗(yt−1, yt) ≡ C(F ∗(yt−1), F ∗(yt);β
∗).

In the Monte Carlo studies, we have examed various combinations of three kinds of filtering part X ′tπ
∗,

four kinds of copula functions C(·, ·;β) with a range value of the copula parameter β, and two kinds

of marginal distributions F ∗.

Three types of X ′tπ
∗: (1) Xt is a deterministic trend process; in particular we use a linear trend,

i.e. Xt = (1, t)′, and {Zt} are generated by

Zt = π∗0 + π∗1t+ Yt with π∗0 = 0.2, π∗1 = 0.3. (5.1)

(2) Zt (and thus Xt = Zt−1) is an unit root process:

Zt = π∗Zt−1 + Yt with π∗ = 1. (5.2)

(3) Xt is an I(1) process and is cointegrated with Zt,

Xt = Xt−1 + εt, with Zt = π∗Xt + Yt, with π∗ = 1. (5.3)

Two types of true marginal distributions: (i) symmetric one: student-t(3) distribution; (ii)

asymmetric one: re-centered Chi-square with d.f. 3.

Four types of copula functions: (A) The Gaussian Copula. Let Φβ(·, ·) be the distribution
function of bivariate normal distribution with mean zeros, variances 1, and correlation coeffi cient β,

and Φ be the CDF of a univariate standard normal. The bivariate Gaussian copula is given by

C(u, v;β) = Φβ(Φ−1(u),Φ−1(v))

=
1

2π
√

1− β2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

{
−(s2 − 2βst+ t2)

2(1− β2)

}
dsdt.
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If the marginal distribution of Yt is F ∗(·). denote Ut = F ∗(Yt), then the joint distribution of Ut and

Ut−1 is

C(ut−1, ut;β) = Φβ(Φ−1(ut−1),Φ−1(ut)).

(B). The Frank copula:

C(u, v;β) = log(β−1)
βu+v

1− β

[
1− (1− βu) (1− βv)

1− β

]−2

, if β > 0, β 6= 1.

(C). The Clayton copula:

C(u, v;β) = [u−β + v−β − 1]−1/β, where β > 0.

(D) The Gumbel copula:

C(u, v;β) = exp
{
−((− lnu)β + (− ln v)β)1/β

}
for 1 ≤ β <∞.

Gaussian and Frank copulas have zero tail dependence. Clayton copula has zero upper tail dependence

but positive lower tail dependence (2−1/β) that increases with β. Gumbel copula has zero lower tail

dependence but positive upper tail dependence (2− 21/β) that increases with β. The overall temporal

dependence in Yt measured as Kendall’s tau is all increasing with copula parameter β in all these

copula models. Finally, the Yt generated according to all these copula functions are automatically

beta-mixing with exponential decay. See, e.g., Chen, Wu and Yi (2009).

For all the above models, we investigate the finite sample performance of the five copula estima-

tors mentioned at the beginning of this section: the three feasible ones β̂SP , β̂P ∗ and β̂P1 use the

nonstationary filtered data; and the two infeasible ones β̃SP and β̃P ∗ use the true Yt process (without

filtration). Recall that β̂SP and β̃SP have the same asymptotic normal distribution, which does not

depend on the filtration or the functional form of F ∗. The infeasible β̃P ∗ is asymptotically normal,

with the limiting distribution independent of the filtration but does depend on the parametric estima-

tion of F ∗. The two feasible parametric estimators β̂P ∗ and β̂P1 have complex limiting distributions

that depend on both the filtration and the parametric estimation of F ∗, while they are asymptotically

normal under deterministic trend filtration, are generally non-normal under stochastic trend (the unit

root and cointegration) filtration.

In Appendix A we present all the monte Carlo tables. For each table, the number of Monte Carlo

repetition is 2000 and the simulated sample size is n = 500 (although we considered a larger sample

size of n = 2000 in a few tables as well). The Monte Carlo bias, variance, and the Ratio of MSE of an

estimator over the MSE of β̂P ∗ denoted by "Rmse", are reported in each table.

All the simulations reveal the following patterns. First, the semiparametric copula estimator β̂SP
performs well in terms of finite sample bias, variance, "Rmse" compared to the correctly specified
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parametric estimator β̂P ∗ in most situations. Second, for all the cases when there is no strong lower

tail dependence, both the semiparametric copula estimator β̂SP and the correctly specified parametric

copula estimator β̂P ∗ perform much better than the parametric copula estimator β̂P1 using incorrectly

specified parametric marginals. The parametric copula estimator for copula dependence parameter β∗

is very sensitive to the specification of parametric marginals, while the semiparametric copula estimator

is truly robust to functional form of marginals as well as the nonstationary filtering. Third, the feasible

semiparametric estimator β̂SP and its infeasible version β̃SP are reasonably close, corroborating the

asymptotic results - the effi ciency loss from filtration in the semiparametric estimators are of second

order magnitude. The feasible parametric estimator β̂P ∗ and its infeasible version β̃P ∗ are less close

to each other, signaling that the parametric estimator is sensitive to nonstationary filtration. Forth,

an interesting exception is the case for Clayton copula with very strong lower tail dependence (or

large parameter value β∗). In this case, the infeasible parametric copula estimator β̃P ∗ performs much

better than the feasible parametric estimator β̂P ∗ and the semiparametric estimators, β̂SP and β̃SP .

The performance of β̂SP is again similar to the infeasible β̃SP for Clayton copula with very strong

lower tail dependence, which has been shown to perform poorly (due to big bias) in Chen, Wu and Yi

(2009).2 We plan to investigate this issue in future research.

6. Empirical Applications

In this section, we consider two empirical applications to highlight the potentials of our proposed

models and methods.

6.1. An application to macro time series

An important literature in empirical macroeconomic analysis is the study of long-run properties and

short term dynamics of GNP. Many studies (e.g. Blanchard 1981, Kydland and Prescott 1980, etc)

argue that GNP reverts to a long term trend following a shock, and that fluctuations in output

represent temporary deviations from the trend. Various macroeconomic theories are designed to

produce and understand the dynamics of transitory fluctuations that deviates from the long run

trend. Studies on the transitory shocks provide important information on the prediction of variation

in GNP growth. (see, e.g. Cochrane (1994), King, Plosser, Stock and Watson (1991)).

A time series that provides a good estimate of the "trend" in GNP is "consumption". Cochrane

(1994) provides empirical evidence on the role of consumption as an measurement of long run compo-

2Chen, Wu and Yi (2009) had shown that Clayton copula generated Markov process {Yt} is beta-mixing with expo-
nential decay. Ibragimov and Lentzas (2017) provided simulation evidence that, in finite samples, the time series plot of

the Clayton copula generated stationary Markov process {Yt} may exhibit a spurious long memory-like behavior when
the lower tail dependence is strong. This might explain the poor finite sample performance in this case
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nent in GNP. In this section, we apply our model to estimate the short term dynamics in GNP time

series based on the cointegrating regression of GNP on consumption. In particular, we consider the

following trending cointegrating regression

Zt = a0 + a1t+ a2Xt + Yt (6.1)

where Zt is the logarithm of real GNP and Xt is the logarithm of real consumption. The permanent

component of the GNP series is characterized by a linear time trend combined with a stochastic trend

Xt. We assume that the latent process {Yt} is a stationary first-order Markov process generated from
a flexible copula C (·, ·;β).

All data are from FRED R© Economic Data.3 We consider quarterly time series from 1947 Q1 to

2019 Q2, with length 290. Consumption is defined as the sum of nondurables and services. We first

exam the nonstationarity of these series. In particular, we apply the ADF test to these series based

on the following regression

Zt = b0 + δt+ ρZt−1 +

p∑
i=1

bi∆Zt−i + εt

The ADF testing statistics of the GDP and consumption time series are −1.530622 (lag length = 3),

and 0.206161 (lag length = 3) respectively, both are smaller (in absolute value) than the 5% critical

value (−3.43), thus the null hypothesis of a unit root can not be rejected.

We then exam the relationship between these two time series based on the cointegrating regression

(6.1). The Engle-Granger two-step cointegration test statistic is −4.13, rejecting the null hypothesis

of no cointegration (5% critical value −3.78).

Next, we study the short term dynamics in the latent process {Yt} using the fitted residual series
{Ŷt} obtained from the cointegrating regression (6.1). Figure 6.1 presents the scatter plot of the

empirical cdf standardized realizations of the filtered time series {Ŷt}. The figure indicates possibly
presence of asymmetric tail dependence.

Given the small sample size of n = 290, to capture possibly asymmetric tail dependence we consider

the Joe-Clayton copula:

C(u, v;β) = 1− {1− [(1− ūβ2)−β1 + (1− vβ2)−β1 − 1]−1/β1}1/β2 , (6.2)

where ū = 1 − u, v = 1 − v, β = (β1, β2)′ and β1 > 0, β2 ≥ 1. This family of copulas has the lower

tail dependence given by λL = 2−1/β1 and the upper tail dependence given by λU = 2− 21/β2 . When

3https://fred.stlouisfed.org/https://fred.stlouisfed.org/
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Figure 6.1: Scatter Plot of the standardized GNP residuals

β2 = 1, the Joe-Clayton copula reduces to the Clayton copula:

C(u, v;β) = [u−β + v−β − 1]−1/β, where β = β1 > 0.

When β1 → 0, the Joe-Clayton copula approaches the Joe copula whose upper tail dependence increase

as β2 increases. See Joe (1997) and Patton (2006) for other properties of the Joe-Clayton copula.

The semiparametric two-step copula parameter estimates are: β̂1 = 3.902; β̂2 = 2.765. We

examine tail dependence based on the copula parameter values β1 and β2. We first test the lower tail

dependence based β1. The estimated value of β1 is 3.902, and the corresponding t-statistic is 5.04

(p-value < 0.1%) which is significantly greater than 0, rejecting the null hypothesis of no lower tail

dependence at 5% level. Next, for upper tail dependence, the estimated value of β2 is 2.765, and the

corresponding t-statistic is 5.36 (p-value < 0.1%). We reject the null hypothesis H0 : β2 = 1 at 5%

level. Thus, we conclude that we find tail dependence in the short term dynamics of GNP.

6.2. An application to financial time series

The CAY time series (Lettau and Ludvigson (2001)) has been often used in macro-finance applications.

Lettau and Ludvigson (2001, 2003, 2009), Chen and Ludvigson (2009) studied the role of consumption

and fluctuations in the aggregate consumption—wealth ratio for predicting stock returns. They argue

that investors who want to maintain a flat consumption path over time will attempt to “smooth
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out” transitory movements in their asset wealth arising from time variation in expected returns.

When excess returns are expected to be higher in the future, forward-looking investors will react by

increasing consumption out of current asset wealth and labor income, allowing consumption to rise

above its common trend with those variables. When excess returns are expected to be lower in the

future, these investors will react by decreasing consumption out of current asset wealth and labor

income, and consumption will fall below its shared trend with these variables. In this way, investors

may insulate future consumption from fluctuations in expected returns, and stationary deviations from

the shared trend among consumption, asset holdings, and labor income are likely to be a predictor of

excess stock returns.

We apply the copula model to capture the short term dynamics in the consumption—wealth ratio

time series. Since this time series is not directly observed, Lettau and Ludvigson (2001) argue that

consumption (ct), asset holding (at) and labor income (yt) are cointegrated, and that deviations

from this shared trend summarize agents’expectations of future returns on the market portfolio. In

particular, the residual term from a cointegrating regression of consumption (ct) on asset holding (at)

and labor income (yt) is called the "CAY" time series by Lettau and Ludvigson (2001). The "CAY"

time series contain important information of future returns at short horizons.

We use the dataset from the website of Martin Lettau. The time series is from 1952Q4 to 1998Q3.

The unit root nonstationarity in time series ct, at, yt can be verified. In particular, the ADF t-test

statistics corresponding to (ct, at, yt) are −1.233, −2.603, −0.7918, thus the unit root hypothesis can

not be rejected. We then consider a cointegrating regression of consumption (ct) on asset holding

(at) and labor income (yt). The Engle-Granger 2-stage cointegration test statistic is -3.93, rejecting

the null hypothesis of no cointegration (the 5% level critical value is -3.81). Figure 6.2 presents the

corresponding scatter plot of standardized realizations of the CAY time series. The figure indicates

presence of lower tail dependence.

We again consider the Joe-Clayton copula model given by (6.2). The semiparametric two-step

copula estimates are β̂1 = 2.050; β̂2 = 1.356. We test lower tail dependence based on β1. The

estimated value of this parameter is 2.05, and the corresponding t-statistic is 4.95 (p-value < 0.1%).

The null hypothesis of no lower tail dependence in the CAY time series is rejected at 5% level of

significance and lower tail dependence is detected.

For upper tail dependence, the estimated value of β2 is 1.356. Corresponding to the null hypothesis

H0 : β2 = 1, the t-statistic is 1.825. We reject the null at 5% level. However, the p-value corresponding

to this t-statistic is 3.414%, we can not reject the null hypothesis at 1% level. Given this marginal

empirical evidence for upper tail dependence, we further conduct a likelihood ratio (LR) test for
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Figure 6.2: Scatter Plot of the standardized CAY residual time series

H0 : β2 = 1. The corresponding LR statistic equals 4, with a p-value equals 4.6%, marginally rejecting

the null at 5% level, but could not reject it even at 4% level of significance. Thus, the evidence of

upper tail dependence is relatively weak.

Thus, we conclude that we find significant lower tail dependence and moderate upper tail depen-

dence in the CAY time series.

7. Conclusion

We propose a component approach to study nonstationary time series with nonlinear short term

dynamics that may also exhibit tail dependence. The observed time series can be decomposed into a

nonstationary part and a stationary Markov component generated via a copula. The nonstationary

component can be removed by a filtration, and the copula-based Markov model is used to capture the

weakly dependent nonlinear dynamics (and the tail dependence) in the filtered time series.

When the marginal distribution of the filtered time series is parametrically estimated, we show that

the limiting distribution of the parametric (two-step) copula estimator can be affected by the filtra-

tion and the estimation of the marginal distribution, and may not be normal under stochastic trend

filtration. However, when the marginal distribution of the filtered time series is nonparametrically

estimated, we find that the limiting distribution of the semiparametric (two-step) copula estimator is
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not affected by the nonstationary filtration and is asymptotically normal. The surprising result for

the semiparametric two-step copula estimator is also extended to models with misspecified residual

copula function. Monte Carlo studies reveal that, for different kinds of nonstationarity, symmetric

or asymmetric unknown marginal distributions, various copula functions with or without tail depen-

dence, our semiparametric (two-step) copula estimator not only is robust, but also performs very

similarly to the infeasible semiparametric copula estimator without filtration. The simple and robust

asymptotic properties of the semiparametric copula estimators greatly simplify statistical inference on

nonstationary filtered copula-based time series models. These results have many practical implications

for empirical analysis of nonstationary nonlinear time series in economics and finance.

The results in this paper can be extended in many directions. First, other copula estimators, such

as those in Oh and Patton (2013) and Chen, Wu and Yi (2009), can be studied. Second, notice that,

given a copula function C(u, v) of the latent first-order Markov process {Yt}, differentiating C(u, v)

with respect to u, and evaluate at u = F ∗(x), v = F ∗(y), we obtain the conditional distribution

of Yt given Yt−1 = x. Consequently, a time series with nonlinear dynamics satisfying the specific

copula can be generated based on the conditional distribution (Chen and Fan 2006a, Chen, Koenker

and Xiao 2009), and thus the bootstrap approach can be studied as an alternative inference method.

Finally, multivariate nonstationary filtration may be considered with the latent stationary multivariate

Markov process {Yt} generated by contemporary and temporal copulas as in Remillard, Papageorgiou
and Soustra (2012), Beare and Seo (2015) and others.
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A. Appendix A: Monte Carlo Results

In the Monte Carlo studies, we have examed various DGPs that are different combinations of three

kinds of filtering part X ′tπ
∗, four kinds of copula functions C(·, ·;β) with a range value of the copula

parameter β, and two kinds of marginal distributions F ∗ of Yt given in Section 5 of the paper. In

each table below, the number of Monte Carlo repetition is 2000 and sample size is n = 500 (we also

considered a larger sample size of n = 2000 in a few tables). The Monte Carlo bias, variance, and

"Rmse" (the Ratio of MSE of an estimator over the MSE of β̂P ∗) are reported in each table.

We investigate the finite sample performance of the semiparametric copula estimator β̂SP , the

parametric copula estimator with corrected specified parametric marginals β̂P ∗ ; the parametric cop-

ula estimator with a normal distribution as the incorrectly specified distribution β̂P1; the infeasible

parametric estimator β̃P ∗ with corrected specified parametric marginals; and the infeasible semipara-

metric estimator β̃SP . Both β̃SP and β̃P ∗ are computed using {Yt} directly, and are presented for
comparison purpose.

Recall that β̂SP and β̃SP have the same asymptotic normal distribution, which does not depend

on any filtration and the specification of F ∗. The infeasible β̃P ∗ is asymptotically normal, with the

limiting distribution independent of the filtration but does depend on the parametric estimation of

F ∗. The limiting distributions of β̂P ∗ and β̂P1 depend on the filtration and the parametric estimation

of F ∗ in complicated ways; they are normal under the deterministic trend filtration, but, are generally

non-normal under the stochastic trend (the unit root and cointegration) filtration.

Table 1 and Table 2 report the finite sample performances of the estimators for models with

deterministic trending time series. In particular, Tables 1A - 1D below summarize simulation results

corresponding to the deterministic trending model (5.1) when the true marginal distribution is student-

t(3) distribution (symmetric dist.), with Table 1A for Gaussian copula, Table 1B for Frank copula,

Table 1C for Clayton copula and Table 1D for Gumbel copula. Similarly, Tables 2A - 2D summarize

results corresponding to the deterministic trending model (5.1) when the true marginal distribution

is re-centered Chi-square with d.f. 3, again with "A to D" corresponding to Gaussian, Frank, Clayton

and Gumbel copulas.

Tables 3 - 6 report the finite sample behaviors of the estimators for models with stochastic trends.

In particular, Tables 3A - 3D correspond to the unit root model when the true marginal distribution

is student-t(3). Tables 4A - 4D summarize results for the unit root model when the true marginal

distribution is re-centered Chi-square with d.f. 3. Tables 5A - 5D correspond to the cointegrated

model when the true marginal distribution is student-t(3). Tables 6A - 6D summarize results for the

cointegrated model when the true marginal distribution is re-centered Chi-square with d.f. 3. Again,

"A to D" correspond to Gaussian, Frank, Clayton and Gumbel copulas.
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Table 1A: Trending Time Series, Gaussian Copula

(True marginal is student t(3))

n = 500

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0066 -0.0077 -0.0063 -0.0042 -0.0033 -0.0049

β̂SP Std 0.0391 0.0438 0.0462 0.0465 0.0445 0.0401

β̂SP Rmse 1.1224 1.0912 1.0613 1.0389 1.0369 1.0588

β̂P ∗ Bias 0.0004 -0.0014 -0.0035 -0.0056 -0.0076 -0.0094

β̂P ∗ Std 0.0374 0.0425 0.0452 0.0455 0.0431 0.0381

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.0046 -0.0151 -0.0193 0.0078 0.0048 -0.0067

β̂P1 Std 0.0721 0.0835 0.0911 0.0945 0.0871 0.0725

β̂P1 Rmse 3.7261 3.9751 4.2273 4.2896 3.9660 3.4407

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 1.1069 1.0763 1.0508 1.0264 1.0181 1.0257

β̃P ∗ Bias 0.0002 -0.0007 -0.0014 -0.0022 -0.0030 -0.0037

β̃P ∗ Std 0.0370 0.0423 0.0450 0.0452 0.0427 0.0375

β̃P ∗ Rmse 0.9758 0.9873 0.9889 0.9775 0.9569 0.9225

n = 500

β̃SPMSE / β̂SP MSE 0.9862 0.9864 0.9901 0.9879 0.9819 0.9687

β̃P MSE / β̂P ∗ MSE 0.9758 0.9873 0.9889 0.9775 0.9569 0.9225

n = 2000

β̃SP MSE / β̂SP MSE 0.9992 0.9981 0.9978 0.9983 0.9980 0.9935

β̃P MSE / β̂P ∗ MSE 0.9977 0.9960 0.9958 0.9926 0.9859 0.9731
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Table 1B: Trending Time Series, Frank Copula

(True marginal is student t(3))

n = 500

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0115 -0.0229 -0.0242 -0.0310 -0.0591 -0.1280

β̂SP Std 0.4025 0.3230 0.2812 0.2812 0.3194 0.3925

β̂SP Rmse 1.2118 1.1066 1.0170 1.0207 1.1254 1.2741

β̂P ∗ Bias 0.0393 0.0093 -0.0103 -0.0288 -0.0581 -0.1116

β̂P ∗ Std 0.3637 0.3077 0.2797 0.2785 0.3006 0.3483

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -1.5653 -1.3416 -0.8315 0.7674 1.2818 1.4765

β̂P1 Std 1.1554 1.1182 1.1144 1.1915 1.2066 1.2242

β̂P1 Rmse 28.2919 32.1860 24.6847 25.6159 33.0572 27.5063

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 1.1879 1.0963 1.0075 1.0124 1.1010 1.1896

β̃P ∗ Bias -0.0144 -0.0134 -0.0108 -0.0092 -0.0112 -0.0128

β̃P ∗ Std 0.3489 0.3022 0.2776 0.2778 0.3003 0.3454

β̃P ∗ Rmse 0.9114 0.9658 0.9857 0.9854 0.9634 0.8935

n = 500

β̃SP MSE / β̂SP MSE 0.9803 0.9907 0.9907 0.9919 0.9783 0.9336

β̃P MSE / β̂P ∗ MSE 0.9114 0.9658 0.9857 0.9854 0.9634 0.8935

n = 2000

β̃SP MSE / β̂SP MSE 0.9935 0.9985 0.9992 0.9993 0.9975 0.9875

β̃P MSE / β̂P ∗ MSE 0.9696 0.9887 0.9965 0.9951 0.9867 0.9615
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Table 1C: Trending Time Series, Clayton Copula

(True marginal is student t(3))

n = 500

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0012 -0.0307 -0.1672 -0.7897 -1.8797 -3.2800

β̂SP Std 0.1040 0.1989 0.4486 0.9392 1.2412 1.4254

β̂SP Rmse 1.3184 1.4836 1.4314 1.2141 1.7435 2.3035

β̂P ∗ Bias -0.0098 -0.0217 -0.0787 -0.3700 -0.9417 -1.6985

β̂P ∗ Std 0.0900 0.1638 0.3923 1.0504 1.4224 1.6333

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.0706 -0.0086 0.1218 0.1131 -0.2723 -0.9375

β̂P1 Std 0.4077 0.5114 0.6111 0.9539 1.3258 1.7819

β̂P1 Rmse 20.8799 9.5796 2.4249 0.7439 0.6296 0.7301

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 1.2899 1.3534 1.3191 1.1583 1.5055 1.8639

β̃P ∗ Bias -0.0026 -0.0069 -0.0171 -0.0257 -0.0240 -0.0160

β̃P ∗ Std 0.0854 0.1343 0.2602 0.6389 1.1813 1.7828

β̃P ∗ Rmse 0.8896 0.6621 0.4246 0.3296 0.4797 0.5725

n = 500

β̃SP MSE / β̂SP MSE 0.9784 0.9122 0.9215 0.9289 0.8635 0.8092

β̃P MSE / β̂P ∗ MSE 0.8896 0.6621 0.4246 0.3296 0.4797 0.5725

n = 2000

β̃SP MSE / β̂SP MSE 0.9948 0.9832 0.9577 0.9464 0.9520 0.9331

β̃P MSE / β̂P ∗ MSE 0.9051 0.7167 0.3915 0.2155 0.1923 0.2537
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Table 1D: Trending Time Series, Gumbel Copula

(True marginal is student t(3))

n = 500

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0379 -0.1785 -0.4513 -0.8697 -1.4093 -2.0454

β̂SP Std 0.1666 0.3793 0.5882 0.7423 0.8490 0.9330

β̂SP Rmse 1.0719 1.0647 1.1286 1.3556 1.7370 2.1476

β̂P ∗ Bias -0.0236 -0.0907 -0.2292 -0.4523 -0.7562 -1.1173

β̂P ∗ Std 0.1633 0.3960 0.6592 0.8717 0.9932 1.0512

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.1096 0.0663 -0.0742 -0.3122 -0.6547 -1.0985

β̂P1 Std 0.3842 0.5599 0.7989 1.0189 1.2148 1.4015

β̂P1 Rmse 5.8626 1.9262 1.3218 1.1775 1.2220 1.3473

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 0.9732 0.8909 0.9349 1.1187 1.4204 1.7311

β̃P ∗ Bias -0.0066 -0.0225 -0.0533 -0.0962 -0.1456 -0.1927

β̃P ∗ Std 0.1264 0.2810 0.4848 0.7297 1.0384 1.4401

β̃P ∗ Rmse 0.5887 0.4815 0.4883 0.5618 0.7054 0.8971

n = 500

β̃SP MSE / β̂SP MSE 0.9079 0.8368 0.8284 0.8252 0.8177 0.8061

β̃P MSE / β̂P ∗ MSE 0.5887 0.4815 0.4883 0.5618 0.7054 0.8971

n = 2000

β̃SP MSE / β̂SP MSE 0.9330 0.8732 0.8819 0.8744 0.8589 0.8521

β̃P MSE / β̂P ∗ MSE 0.6260 0.4710 0.4435 0.4376 0.4451 0.4496
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Table 2A: Trending Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0062 -0.0074 -0.0059 -0.0037 -0.0028 -0.0046

β̂SP Std 0.0387 0.0436 0.0463 0.0466 0.0447 0.0404

β̂SP Rmse 1.3211 1.0519 0.9589 0.9521 0.9309 0.9054

β̂P ∗ Bias -0.0053 -0.0078 -0.0068 -0.0006 0.0083 0.0147

β̂P ∗ Std 0.0337 0.0425 0.0472 0.0479 0.0456 0.0401

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.0897 0.0437 0.0079 -0.0181 -0.0344 -0.0414

β̂P1 Std 0.0302 0.0371 0.0431 0.0476 0.0496 0.0479

β̂P1 Rmse 7.7163 1.7650 0.8457 1.1262 1.6895 2.1902

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 1.3371 1.0460 0.9483 0.9371 0.9077 0.8639

β̃P ∗ Bias 0.0044 0.0029 0.0000 -0.0036 -0.0063 -0.0074

β̃P ∗ Std 0.0320 0.0400 0.0444 0.0446 0.0404 0.0324

β̃P ∗ Rmse 0.9013 0.8646 0.8679 0.8705 0.7763 0.6047
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Table 2B: Trending Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0297 -0.0344 -0.0297 -0.0296 -0.0440 -0.0851

β̂SP Std 0.3970 0.3214 0.2809 0.2819 0.3222 0.4001

β̂SP Rmse 1.3150 1.0811 0.9519 0.9623 0.8341 0.6380

β̂P ∗ Bias -0.0425 -0.0523 -0.0433 0.0036 0.0988 0.2274

β̂P ∗ Std 0.3445 0.3065 0.2863 0.2889 0.3421 0.4589

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.4944 0.0962 0.0035 0.1712 0.3759 0.5257

β̂P1 Std 0.3021 0.2970 0.3018 0.3392 0.4140 0.5400

β̂P1 Rmse 2.7855 1.0084 1.0861 1.7296 2.4664 2.1656

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 1.3188 1.0747 0.9411 0.9508 0.8140 0.6066

β̃P ∗ Bias 0.0033 -0.0013 -0.0065 -0.0132 -0.0208 -0.0255

β̃P ∗ Std 0.3370 0.2967 0.2764 0.2762 0.2943 0.3336

β̃P ∗ Rmse 0.9423 0.9108 0.9114 0.9158 0.6866 0.4267
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Table 2C: Trending Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0077 -0.0524 -0.2290 -0.9035 -1.9578 -3.2889

β̂SP Std 0.1014 0.1830 0.4007 0.8853 1.2933 1.5443

β̂SP Rmse 0.8758 1.0248 1.2213 1.2928 1.2684 1.1733

β̂P ∗ Bias 0.0022 -0.0198 -0.1264 -0.5526 -1.2366 -2.0305

β̂P ∗ Std 0.1086 0.1870 0.3981 0.9655 1.6767 2.6700

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.6251 0.7053 0.7347 0.6051 0.3685 -0.0129

β̂P1 Std 0.1651 0.2284 0.4478 1.1839 2.3474 3.5508

β̂P1 Rmse 35.4067 15.5463 4.2438 1.4283 1.3008 1.1205

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 0.8959 1.0454 1.2109 1.1607 1.0093 0.9198

β̃P ∗ Bias -0.0327 -0.0773 -0.2062 -0.6221 -1.2212 -1.9876

β̃P ∗ Std 0.0851 0.1402 0.2823 0.6896 1.2753 1.8589

β̃P ∗ Rmse 0.7039 0.7254 0.7007 0.6969 0.7183 0.6582
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Table 2D: Trending Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0217 -0.1278 -0.3610 -0.7509 -1.2756 -1.9110

β̂SP Std 0.1736 0.4040 0.6410 0.8087 0.9238 1.0039

β̂SP Rmse 0.9308 0.9498 1.0090 1.1762 1.6286 2.4850

β̂P ∗ Bias 0.1061 0.2632 0.4169 0.5329 0.5779 0.5270

β̂P ∗ Std 0.1471 0.3461 0.6021 0.8668 1.0905 1.2639

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.1716 -0.2440 -0.4207 -0.7133 -1.1187 -1.6247

β̂P1 Std 0.2353 0.5360 0.8422 1.1149 1.3327 1.4940

β̂P1 Rmse 2.5773 1.8340 1.6526 1.6922 1.9876 2.5980

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 0.8052 0.7776 0.8489 1.0421 1.4532 2.1726

β̃P ∗ Bias -0.0091 -0.0234 -0.0334 -0.0305 -0.0072 0.0184

β̃P ∗ Std 0.0758 0.1225 0.2694 0.5207 0.8738 1.2924

β̃P ∗ Rmse 0.1773 0.0822 0.1374 0.2628 0.5013 0.8909
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Table 3A: Unit Root Time Series, Gaussian Copula

(True marginal is student-t(3), n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias 0.0032 -0.0015 -0.0022 -0.0010 -0.0005 -0.0020

β̂SP Std 0.0413 0.0444 0.0464 0.0464 0.0443 0.0398

β̂SP Rmse 0.9609 1.0487 1.0587 1.0552 1.0651 1.0977

β̂P ∗ Bias 0.0149 0.0072 0.0024 -0.0010 -0.0036 -0.0054

β̂P ∗ Std 0.0396 0.0428 0.0451 0.0452 0.0428 0.0376

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.0068 -0.0072 -0.0130 0.0132 0.0094 -0.0024

β̂P1 Std 0.0738 0.0844 0.0918 0.0945 0.0869 0.0720

β̂P1 Rmse 3.0701 3.8195 4.2210 4.4582 4.1482 3.5967

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 0.8674 1.0368 1.0589 1.0549 1.0615 1.0943

Table 3B: Unit Root Time Series, Frank Copula

(True marginal is student-t(3), n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias 0.1320 0.0370 0.0026 -0.0118 -0.0312 -0.0746

β̂SP Std 0.4599 0.3355 0.2831 0.2819 0.3205 0.3926

β̂SP Rmse 0.9452 1.0435 1.0200 1.0293 1.1367 1.3053

β̂P ∗ Bias 0.2276 0.0858 0.0239 -0.0032 -0.0219 -0.0444

β̂P ∗ Std 0.4363 0.3190 0.2793 0.2781 0.3012 0.3469

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -1.3618 -1.2542 -0.7833 0.8126 1.3305 1.5537

β̂P1 Std 1.3053 1.2081 1.1563 1.1914 1.2061 1.2220

β̂P1 Rmse 14.6941 27.7834 24.8172 26.8892 35.3614 31.9379

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 0.6563 0.9518 1.0039 1.0264 1.1317 1.3005
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Table 3C: Unit Root Time Series, Clayton Copula

(True marginal is student-t(3), n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0029 -0.0238 -0.1400 -0.6490 -1.5641 -2.7850

β̂SP Std 0.1032 0.1930 0.4410 1.0001 1.3963 1.6425

β̂SP Rmse 1.4129 1.7608 2.0309 1.7618 1.7485 2.1501

β̂P ∗ Bias -0.0044 -0.0137 -0.0504 -0.2014 -0.4862 -0.9244

β̂P ∗ Std 0.0868 0.1459 0.3207 0.8753 1.5092 2.0019

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.0623 0.0084 0.1702 0.2957 0.1473 -0.1913

β̂P1 Std 0.4181 0.5283 0.6247 0.9293 1.2528 1.6933

β̂P1 Rmse 23.6719 12.9987 3.9770 1.1788 0.6329 0.5972

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 1.4013 1.7206 2.0036 1.7806 1.7425 2.1287

Table 3D: Unit Root Time Series, Gumbel Copula

(True marginal is student-t(3), n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0294 -0.1470 -0.3747 -0.7229 -1.1864 -1.7400

β̂SP Std 0.1641 0.3615 0.5748 0.7517 0.8779 0.9840

β̂SP Rmse 1.3930 1.4290 1.4408 1.3654 1.4689 1.6783

β̂P ∗ Bias -0.0148 -0.0569 -0.1378 -0.2572 -0.4252 -0.6287

β̂P ∗ Std 0.1404 0.3215 0.5548 0.8546 1.1411 1.4091

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.1259 0.1172 0.0386 -0.1034 -0.3119 -0.5863

β̂P1 Std 0.3842 0.5646 0.8089 1.0408 1.2631 1.4861

β̂P1 Rmse 8.1965 3.1196 2.0069 1.3733 1.1414 1.0719

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 1.3284 1.3795 1.3933 1.3545 1.4927 1.7112
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Table 4A: Unit Root Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias 0.0049 0.0010 -0.0003 0.0001 0.0001 -0.0017

β̂SP Std 0.0421 0.0447 0.0462 0.0463 0.0442 0.0398

β̂SP Rmse 1.6123 1.1434 0.9912 0.9845 1.0668 1.2028

β̂P ∗ Bias 0.0026 0.0004 0.0017 0.0027 0.0029 0.0029

β̂P ∗ Std 0.0333 0.0418 0.0463 0.0466 0.0427 0.0362

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.0989 0.0511 0.0137 -0.0133 -0.0301 -0.0372

β̂P1 Std 0.0309 0.0371 0.0429 0.0472 0.0493 0.0475

β̂P1 Rmse 9.6256 2.2816 0.9414 1.1046 1.8186 2.7519

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 1.3922 1.1162 1.0032 0.9870 1.0666 1.1961

Table 4B: Unit Root Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias 0.1025 0.0325 0.0014 -0.0109 -0.0275 -0.0624

β̂SP Std 0.4346 0.3291 0.2801 0.2815 0.3201 0.3923

β̂SP Rmse 1.5689 1.1906 0.9808 0.9860 1.0704 1.0627

β̂P ∗ Bias 0.0513 -0.0012 0.0002 0.0144 0.0327 0.0735

β̂P ∗ Std 0.3528 0.3031 0.2828 0.2833 0.3088 0.3783

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.5930 0.1565 0.0413 0.2045 0.4112 0.5774

β̂P1 Std 0.5355 0.4057 0.3297 0.3397 0.4119 0.5258

β̂P1 Rmse 5.0235 2.0582 1.3803 1.9540 3.5128 4.1070

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 1.2505 1.1307 0.9867 0.9866 1.0703 1.0714
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Table 4C: Unit Root Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0030 -0.0260 -0.1464 -0.6391 -1.4513 -2.5290

β̂SP Std 0.1030 0.1901 0.4360 1.0528 1.7108 2.3180

β̂SP Rmse 1.1142 1.3112 1.4351 1.3368 1.2267 1.1781

β̂P ∗ Bias -0.0068 -0.0431 -0.1549 -0.5338 -1.1085 -1.8549

β̂P ∗ Std 0.0973 0.1619 0.3513 0.9218 1.6954 2.5592

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.6387 0.7224 0.7678 0.7159 0.6593 0.5805

β̂P1 Std 0.1603 0.2091 0.3837 1.0003 2.1043 3.3443

β̂P1 Rmse 45.5370 20.1466 4.9984 1.3336 1.1852 1.1532

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 1.1108 1.3163 1.4329 1.2661 1.0677 1.0360

Table 4D: Unit Root Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0243 -0.1264 -0.3328 -0.6624 -1.1074 -1.6450

β̂SP Std 0.1645 0.3706 0.5923 0.7663 0.8860 0.9805

β̂SP Rmse 1.5436 1.7158 1.8271 1.8169 2.0074 2.3653

β̂P ∗ Bias 0.0432 0.1260 0.2160 0.3035 0.3676 0.3911

β̂P ∗ Std 0.1266 0.2711 0.4538 0.6875 0.9310 1.1822

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.1573 -0.1898 -0.2874 -0.4533 -0.6804 -0.9590

β̂P1 Std 0.2221 0.5060 0.8124 1.1127 1.3962 1.6602

β̂P1 Rmse 4.1361 3.2682 2.9395 2.5562 2.4076 2.3709

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 1.4798 1.6453 1.8024 1.9105 2.2092 2.6276
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Table 5A: Cointegrated Time Series, Gaussian Copula

(True marginal is student t(3), n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0066 -0.0074 -0.0058 -0.0034 -0.0023 -0.0037

β̂SP Std 0.0388 0.0435 0.0462 0.0465 0.0444 0.0398

β̂SP Rmse 1.1386 1.0925 1.0611 1.0460 1.0519 1.0850

β̂P ∗ Bias 0.0003 -0.0011 -0.0025 -0.0039 -0.0053 -0.0066

β̂P ∗ Std 0.0369 0.0422 0.0451 0.0454 0.0430 0.0378

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.0039 -0.0140 -0.0176 0.0102 0.0075 -0.0038

β̂P1 Std 0.0725 0.0838 0.0915 0.0945 0.0870 0.0722

β̂P1 Rmse 3.8714 4.0452 4.2554 4.3448 4.0632 3.5518

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 1.1401 1.0916 1.0567 1.0350 1.0411 1.0730

Table 5B: Cointegrated Time Series, Frank Copula

(True marginal is student t(3), n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0213 -0.262 -0.0233 -0.0257 -0.0470 -0.1018

β̂SP Std 0.3981 0.3216 0.2811 0.2819 0.3196 0.3913

β̂SP Rmse 1.2980 1.1326 1.0182 1.0221 1.1355 1.3120

β̂P ∗ Bias 0.0137 -0.0018 -0.0106 -0.0189 -0.0347 -0.0628

β̂P ∗ Std 0.3496 0.3032 0.2793 0.2793 0.3012 0.3473

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -1.5928 -1.3566 -0.8338 0.7883 1.3134 1.5319

β̂P1 Std 1.2267 1.1657 1.1345 1.1913 1.2069 1.2233

β̂P1 Rmse 33.0116 34.7982 25.3703 26.0401 34.6178 30.8483

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 1.2980 1.1301 1.0099 1.0130 1.1229 1.2770
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Table 5C: Cointegrated Time Series, Clayton Copula

(True marginal is student t(3), n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0004 -0.0280 -0.1519 -0.7054 -1.6939 -2.9915

β̂SP Std 0.1032 0.1927 0.4434 0.9793 1.3301 1.5500

β̂SP Rmse 1.3655 1.6828 1.9211 1.7613 2.1061 2.6836

β̂P ∗ Bias -0.0063 -0.0149 -0.0498 -0.2098 -0.5225 -0.9808

β̂P ∗ Std 0.0881 0.1494 0.3344 0.8849 1.3890 1.8078

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.0647 0.0067 0.1725 0.3067 0.1600 -0.1894

β̂P1 Std 0.4123 0.5222 0.6256 0.9401 1.2729 1.7079

β̂P1 Rmse 22.3337 12.1029 3.6831 1.1824 0.7473 0.6980

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 1.3561 1.6400 1.8475 1.7371 1.9892 2.4468

Table 5D: Cointegrated Time Series, Gumbel Copula

(True marginal is student t(3), n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0349 -0.1676 -0.4205 -0.8015 -1.3003 -1.8937

β̂SP Std 0.1627 0.3558 0.5579 0.7233 0.8493 0.9527

β̂SP Rmse 1.1636 1.2718 1.3916 1.6076 1.9301 2.2544

β̂P ∗ Bias -0.0140 -0.0559 -0.1443 -0.2866 -0.4859 -0.7285

β̂P ∗ Std 0.1537 0.3442 0.5743 0.8018 1.0068 1.2094

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.1251 0.1147 0.0301 -0.1249 -0.3561 -0.6626

β̂P1 Std 0.3855 0.5664 0.8119 1.0448 1.2625 1.4788

β̂P1 Rmse 6.8989 2.7456 1.8822 1.5274 1.3769 1.3172

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 1.1129 1.2088 1.2984 1.4882 1.7713 2.0438
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Table 6A: Cointegrated Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0063 -0.0072 -0.0056 -0.0032 -0.0021 -0.0035

β̂SP Std 0.0388 0.0436 0.0463 0.0465 0.0444 0.0399

β̂SP Rmse 1.3898 1.1142 1.0103 0.9926 0.9952 1.0527

β̂P ∗ Bias -0.0013 -0.0034 -0.0040 -0.0015 0.0033 0.0073

β̂P ∗ Std 0.0333 0.0417 0.0462 0.0468 0.0444 0.0384

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.0911 0.0453 0.0097 -0.0159 -0.0318 -0.0384

β̂P1 Std 0.0302 0.0371 0.0431 0.0474 0.0493 0.0475

β̂P1 Rmse 8.2865 1.9519 0.9062 1.1415 1.7373 2.4417

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Rmse 1.3971 1.1118 1.0040 0.9835 0.9857 1.0339

Table 6B: Cointegrated Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0313 -0.0325 -0.0263 -0.0252 -0.0387 -0.0773

β̂SP Std 0.3968 0.3213 0.2806 0.2816 0.3201 0.3937

β̂SP Rmse 1.3420 1.1197 0.9819 0.9849 0.9466 0.8169

β̂P ∗ Bias -0.0243 -0.0303 -0.0270 -0.0015 0.0548 0.1379

β̂P ∗ Std 0.3427 0.3037 0.2831 0.2849 0.3268 0.4219

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.5008 0.1040 0.0149 0.1884 0.3985 0.5604

β̂P1 Std 0.3628 0.3278 0.3109 0.3385 0.4141 0.5344

β̂P1 Rmse 3.2402 1.2697 1.1977 1.8496 3.0082 3.0429

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Rmse 1.3463 1.1153 0.9757 0.9782 0.9400 0.8075
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Table 6C: Cointegrated Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0034 -0.0399 -0.1888 -0.7936 -1.7964 -3.0777

β̂SP Std 0.1025 0.1872 0.4119 0.9159 1.3067 1.5658

β̂SP Rmse 0.9985 1.1506 1.3626 1.4072 1.4238 1.4918

β̂P ∗ Bias -0.0091 -0.0403 -0.1571 -0.5909 -1.2861 -2.1973

β̂P ∗ Std 0.1022 0.1739 0.3550 0.8333 1.3460 1.7789

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias 0.6315 0.7141 0.7526 0.6658 0.4923 0.1799

β̂P1 Std 0.1626 0.2150 0.3894 0.9684 1.8165 2.6612

β̂P1 Rmse 40.3787 17.4608 4.7656 1.3233 1.0220 0.8901

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Rmse 1.0042 1.1603 1.4019 1.3764 1.2641 1.2949

Table 6D: Cointegrated Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0264 -0.1393 -0.3687 -0.7297 -1.2112 -1.7912

β̂SP Std 0.1646 0.3676 0.5754 0.7426 0.8632 0.9660

β̂SP Rmse 1.4518 1.5389 1.7695 2.0905 2.5928 3.3765

β̂P ∗ Bias 0.0663 0.1697 0.2678 0.3417 0.3741 0.3457

β̂P ∗ Std 0.1214 0.2676 0.4385 0.6338 0.8445 1.0522

β̂P ∗ Rmse 1 1 1 1 1 1

β̂P1 Bias -0.1548 -0.1821 -0.2766 -0.4411 -0.6698 -0.9527

β̂P1 Std 0.2238 0.5124 0.8083 1.0926 1.3600 1.6112

β̂P1 Rmse 3.8690 2.9455 2.7646 2.6779 2.6937 2.8563

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Rmse 1.3843 1.4646 1.7249 2.0810 2.5945 3.3213
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B. Appendix B: Proofs

B.1. The Parametric Models

We first introduce a useful inequality of absolutely regular process given by Yoshihara (1976).

Lemma A. Let xt1 , xt2 , . . . , xtk (with t1 < t2 < · · · < tk) be absolutely regular random vectors with

mixing coeffi cients β(t). Let h(xt1 , xt2 , . . . , xtk) be a Borel measurable function and let there be

a δ > 0 such that

P = max{M1,M2} <∞

where

M1 = sup
t1,t2,...,tk

∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , xt2 , . . . , xtk)

M2 = sup
t1,t2,...,tk

∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk).

Then ∣∣∣∣∫ h(xt1 , . . . , xtk)dF (xt1 , . . . , xtk)− h(xt1 , . . . , xtk)dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk)

∣∣∣∣
≤ 4P

1
1+δ β (tj+1 − tj)

δ
1+δ

for all j.

B.1.1. Consistency of β̂P

For the first step estimator, α̂ = arg maxα∈A
∑n

t=1 log f(Ŷt, α), let q(α) =E[log f(Yt, α)], we need to

verify that

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

log f(Ŷt, α)− q(α)

∣∣∣∣∣ = op (1) ,

where q(α) = E [log f(Yt, α)]. By (1) Assumption ID1(1): compactness of A; (2) Assumption MX:
weak dependence of Yt; (3) Assumption ID1(3): f(y, α) is continuous in α ∈ A; and (4) Assumption
M1(1): E[supα∈A|logf(Yt, α)|] <∞, we can show that

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

log f(Yt, α)− q(α)

∣∣∣∣∣ = op (1) .

Thus, we only need to show that

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

[
log f(Ŷt, α)− log f(Yt, α)

]∣∣∣∣∣ = op (1) .
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Denote the re-standardized Xt by Xt, i.e. Xt = n1/2D−1
n Xt, and define qt (η, α) = log f(Yt −

X ′tη, α). Under Assumption M1(2), we have, for all sequences of positive numbers {εn} with εn = o (1),

sup
α∈A,‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=1

[qt (η, α)− qt (0, α)]

∣∣∣∣∣ = op (1) .

Thus

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

[
log f(Ŷt, α)− log f(Yt, α)

]∣∣∣∣∣
≤ sup

α∈A,‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=1

[qt (η, α)− qt (0, α)]

∣∣∣∣∣ = op (1) .

Together with Assumption ID1(2), we obtain consistency of α̂.

For the second step estimation, we need to verify that supβ∈B

∥∥∥Q̂n(β)−Q(β)
∥∥∥ = op (1), where

Q̂n(β) =
1

n

n∑
t=2

g(Ŷt−1, Ŷt, α̂, β), Q(β) = E [g(Yt−1, Yt, α
∗, β)] .

Denote

Qn(β) =
1

n

n∑
t=2

g(Yt−1, Yt, α
∗, β),

similarly, by: (1) Assumption ID1(1): compactness of B; (2) Assumption MX: weak dependence of Yt;
(3) Assumption ID(3): g(·) is continuous in β; (4) Assumption M1(1): E

[
supβ∈B,α∈Aδ |g(Yt−1, Yt, α, β)|

]
<∞, we have

sup
β∈B
|Qn(β)−Q(β)| = op (1) .

Thus, it suffi ce to show that

sup
β∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣ = op (1) .

Notice that Ŷt = Yt −X ′t (π̂ − π∗) = Yt − n−1/2
(
X ′tn

1/2D−1
n

)
Dn (π̂ − π∗), let

Dn (π̂ − π∗) = δn,
√
n (α̂− α∗) = ∆1n,

then we may write

Q̂n(β) =
1

n

n∑
t=2

g
(
Yt−1 − n−1/2

(
X ′t−1n

1/2D−1
n

)
δn, Yt − n−1/2

(
X ′tn

1/2D−1
n

)
δn, α

∗ + n−1/2∆1n, β
)
.

Recall Xt = n1/2D−1
n Xt, we define

mt (η, α, β) = g
(
Yt−1 −X ′t−1η, Yt −X ′tη, α, β

)
.

51



Under the Assumption M1(2) that g(s1, s2, α, β) is uniformly continuous in (s1, s2, α), uniformly over

β ∈ B, thus we can show that, for all sequences {εn} with εn = o (1),

sup
β∈B,‖α−α∗‖+‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=2

[mt (η, α, β)−mt (0, α∗, β)]

∣∣∣∣∣ = op (1) .

Let η̂ = n−1/2δn, then

Q̂n(β)−Qn(β) =
1

n

n∑
t=2

[mt (η̂, α̂, β)−mt (0, α∗, β)]

Notice that

sup
β∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣

≤ sup
β∈B,‖α−α∗‖+‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=2

[
g(Yt−1 −X ′t−1η, Yt −X ′tη, α, β)− g(Yt−1, Yt, α

∗, β)
]∣∣∣∣∣

= op (1) .

Thus, supβ∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣ = op (1). In addition with Assumption ID1, Theorem 1 is proved.

B.1.2. Limiting Distribution of β̂P

Let g
(
Ŷt−1, Ŷt, α̂, β

)
= log c(F (Ŷt−1, α̂), F (Ŷt, α̂), β), then the likelihood function is given by

Q̂n(β) =
1

n

n∑
t=2

g
(
Ŷt−1, Ŷt, α̂, β

)
.

Let
√
n (β − β∗) = ∆2, and Dn (π̂ − π∗) = δn,

√
n (α̂− α∗) = ∆1n,

√
n
(
β̂ − β∗

)
= ∆2n, then, we

may re-write the criterion function Q̂n(β) as

Vn(∆2)

=
1

n

n∑
t=2

g
(
Yt−1 − n−1/2

(
X ′t−1n

1/2D−1
n

)
δn, Yt − n−1/2

(
X ′tn

1/2D−1
n

)
δn, α

∗ + n−1/2∆1n, β
∗ + n−1/2∆2

)
.

and minβQ̂n(β) is equivalent to min∆2Vn(∆2).

The FOC corresponding to minimize Vn(∆2) w.r.t. ∆2 is given by

∂Vn(∆2)

∂∆2

∣∣∣∣
∆2=∆2n

= 0.

Expanding ∂Vn(∆2)
∂∆2

∣∣∣
∆2=∆2n

around ∆2 = 0, we have

0 =
∂Vn(∆2)

∂∆2

∣∣∣∣
∆2=∆2n

=
1

n

n∑
t=2

gβ

(
Ŷt−1, Ŷt, α̂, β

∗
)

+ n−1/2

[
1

n

n∑
t=2

gββ

(
Ŷt−1, Ŷt, α̂, β

#
)]

∆2n
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where β# is the middle value between β∗ and β̂.

Let Ĥnβ = −n−1
∑n

t=2 gββ

(
Ŷt−1, Ŷt, α̂, β

#
)
, Ŝnβ = n−1/2

∑n
t=2 gβ

(
Ŷt−1, Ŷt, α̂, β

∗
)
. First, denote

η = (η′1, η
′
2, η
′
3)′, by consistency of β̂, Assumption X, and Assumption M2, we can show that, for any

sequence {εn} with εn = o(1),

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gββ (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gββ (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1)

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gβα (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gββ (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1)

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gβj (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gββ (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1),

j = 1, 2

we have

Ĥnβ = Hnβ + op(1),

where

Hnβ = − 1

n

n∑
t=2

gββ (Yt−1, Yt, α
∗, β∗) .

Denote

Snβ =
1√
n

n∑
t=2

gβ (Yt−1, Yt, α
∗, β∗) ,

and expanding gβ
(
Ŷt−1, Ŷt, α̂, β

∗
)
around (Yt−1, Yt, α

∗), Using a similar argument as the previous

term, we can show that

Ŝnβ = Snβ + n−1
n∑
t=2

gβ1 (Yt−1, Yt, α
∗, β∗)X ′t−1n

1/2D−1
n δn

+n−1
n∑
t=2

gβ2 (Yt−1, Yt, α
∗, β∗)

(
X ′tn

1/2D−1
n

)
δn + n−1

n∑
t=2

gβα (Yt−1, Yt, α
∗, β∗) ∆1n + op(1)

Thus,

√
n
(
β̂ − β∗

)
= H−1

nβ Snβ −H
−1
nβ (Pn1 + Pn2)Dn (π̂ − π∗) +H−1

nβ Pn3

√
n (α̂− α∗) + op(1)

= H−1
β N (0,Ωβ)−H−1

β (P1 + P2)Dn (π̂ − π∗) +H−1
β P3

√
n (α̂− α∗) + op(1)

= H−1
β N (0,Ωβ)−H−1

β

(
P1 + P2 + P3Ω−1

α HαY

)
Dn (π̂ − π∗) +H−1

β P3

√
n (α̃− α∗) + op(1)

Notice that
√
n (α̃− α∗) = H−1

nαSnα + op(1), where

Hnα = − 1

n

n∑
t=1

∂2 log f(Yt, α
∗)

∂α∂α′
; Snα =

1√
n

n∑
t=1

∂ log f(Yt, α
∗)

∂α
,
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thus,

√
n
(
β̂ − β∗

)
= H−1

nβ

[
Snβ + Pn3H

−1
nαSnα

]
−H−1

β

(
P1 + P2 + P3Ω−1

α HαY

)
Dn (π̂ − π∗) + op(1).

B.2. The Semiparametric Copula Model

We use ζ and η ∈ (0, 1) to signify generic constants whose value may vary throughout the paper.

Recall that we denote the true values of F and β by F ∗ and β∗. We first restate the important

Lemma 1 from the main text. Consider b = (b1, · · ·, bn)′, let

Zn(y, b) =
1√
n+ 1

n∑
t=1

[
1
(
Yt ≤ y + n−1/2bt

)
− F ∗(y + n−1/2bt)

]
and denote |b| = maxt |bt|.

Lemma 1. Under Assumptions DGP, MX, SP, and X, for any given B > 0,

sup
|b|≤B

sup
y

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(F ∗(y))

∣∣∣∣ = op(1),

Proof of Lemma 1.

Following the argument of Csörgö, Csörgö, Horvath and Mason (1986), Csörgö and Horvath (1993),

Shao and Yu (1996), we only need to show that, for any ε > 0,

lim
L→∞

lim sup
n→∞

Pr

[
sup
y≤−L

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]

= 0, (B.1)

and

lim
L→∞

lim sup
n→∞

Pr

[
sup
y≥L

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]

= 0. (B.2)

We show (B.1), (B.2) can be proved in the same way. For a large L, partition (−∞,−L] into

∪∞j=1(yj , yj−1], with F ∗ (yj) = 2−jδ, where δ = δL = F ∗(−L), then

Pr

[
sup
y≤−L

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]
≤
∞∑
j=1

Pr

[
sup

yj<y≤yj−1

∣∣∣∣Zn(y, b)− Zn(y, 0)

w(2−jδ)

∣∣∣∣ ≥ ε
]
.

Thus, we need to show that

lim
L→∞

lim sup
n→∞

∞∑
j=1

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]
= 0.
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By monotonicity of the indicator function and the distribution function, we have

sup
yj<y≤yj−1

|Zn(y, b)− Zn(y, 0)|

≤ |Zn(yj , b)− Zn(yj , 0)|+ |Zn(yj−1, b)− Zn(yj−1, 0)|

+ sup
yj<y≤yj−1

|Zn(yj−1, 0)− Zn(y, 0)|+ sup
yj<y≤yj−1

|Zn(yj , 0)− Zn(y, 0)|

+
1√
n+ 1

n∑
t=1

[
F ∗(yj−1 + n−1/2bt)− F ∗(yj + n−1/2bt)

]
+

1√
n+ 1

n∑
t=1

[F (yj−1)− F (yj)]

Notice that F ∗ (yj) = 2−jδ, and, under Assumption SP, for large enough n,

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]
≤ Pr {|Zn(yj , b)− Zn(yj , 0)|+ |Zn(yj−1, b)− Zn(yj−1, 0)|

+ sup
yj<y≤yj−1

|Zn(yj−1, 0)− Zn(y, 0)|+ sup
yj<y≤yj−1

|Zn(yj , 0)− Zn(y, 0)|

+C∗
√
n2−jδ ≥ εw(2−jδ)

}
.

We first consider the case when n1/22−jδC∗ ≤ εw(2−jδ)/2, C∗ = 8. Let

S1 =
{
j : n1/22−jδC ≤ εw(2−jδ)/2

}
,

if j ∈ S1,

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
+ Pr

[
|Zn(yj−1, b)− Zn(yj−1, 0)| ≥ εw(2−jδ)

8

]
+ Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]

+ Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj−1)− F (yj−1)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]
We consider each of these terms. In particular, we show that

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
= 0, (B.3)

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
sup

yj<y≤yj−1
|Zn(yj , 0)− Zn(y, 0)| ≥ εw(2−jδ)

8

]
= 0. (B.4)
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and analysis of the other two terms are similar.

For the first term (B.3), by Chebyshev inequality,

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
≤ 26E |Zn(yj , b)− Zn(yj , 0)|2

ε2w(2−jδ)2
.

Under weak dependence of Yt, by definition of yj , Assumption SP, and by the inequality of Yoshi-

hara (1976), we have:

E |Zn(yj , b)− Zn(yj , 0)|2 ≤ ζ
∣∣2−j+1δ

∣∣1/q ,
for ζ > 0, q > 1. Thus, for 1/(2q) > µ,

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
≤ ζ

ε2

 ∞∑
j=1

2−j(1/q−2µ)

 δ1/q−2µ → 0, as δ → 0.

Thus, under our assumptions,

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
= 0

For the second term (B.4), using Billingsley (1968, eq.(22.17)),

Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]

≤ Pr

[∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ yj−1) + F (yj−1)]

∣∣∣∣∣+
√
n2−jδ ≥ εw(2−jδ)

8

]

Notice that n1/22−jδ ≤ εw(2−jδ)/16, using (1) weak dependence of Yt, (2) the Cauchy-Schwarz

inequality, and (3) Yoshihara (1976), we have

Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]

≤
ζ
[
2−jδ

]1/q
[εw(2−jδ)]2

,

and (B.4) can be proved by a similar argument as the proof of (B.3).

Next we consider the case n1/22−jδζ∗ ≥ εw(2−jδ)/2. Let

S2 =
{
j : n1/22−jδζ∗ ≥ εw(2−jδ)/2

}
,

and

∆n,j =
1

8n1/2
εw(2−jδ),
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we divide the interval (−∞, yj−1] into ∪i(yj,i, yj,i+1], where F (yj,i) = i∆n,j , 0 ≤ i ≤ F (yj−1)/∆n,j =

2−j+1δ/∆n,j , then

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]
.

Notice that

sup
yj,i<y≤yj,i+1

|Zn(y, b)− Zn(y, 0)|

≤ |Zn(yj,i, b)− Zn(yj,i, 0)|+ |Zn(yj,i+1, b)− Zn(yj,i+1, 0)|

+ sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)− Zn(y, 0)|+ sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)− Zn(y, 0)|

+
1√
n+ 1

n∑
t=1

[
F ∗(yj,i+1 + n−1/2bt)− F ∗(yj,i + n−1/2bt)

]
+

1√
n+ 1

n∑
t=1

[F (yj,i+1)− F (yj,i)] ,

by definition F (yj,i) = i∆n,j , under Assumption SP, for large n,

sup
yj,i<y≤yj,i+1

|Zn(y, b)− Zn(y, 0)|

≤ |Zn(yj,i, b)− Zn(yj,i, 0)|+ |Zn(yj,i+1, b)− Zn(yj,i+1, 0)|

+ sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)− Zn(y, 0)|+ sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)− Zn(y, 0)|

+
1

4
εw(2−jδ)

and thus

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)− Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)− Zn(y, 0)| ≥ 3εw(2−jδ)

16

]

+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)− Zn(y, 0)| ≥ 3εw(2−jδ)

16

]
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By Billingsley (1968, eq.(22.17)) again,

sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)− Zn(y, 0)| ≤ |Zn(yj,i+1, 0)− Zn(yj,i, 0)|+ 1

8
εw(2−jδ),

thus

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)− Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)− Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)− Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)− Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
We next show that

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)− Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)− Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)− Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
= 0

We use the maximum inequality of Moricz (1982) to bound

E max
1≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)|p ,

and Emax1≤i≤F (yj−1)/∆n,j
|Zn(yj,i, 0)|p. First,

E |Zn(yj,k, b)− Zn(yj,k, 0)− Zn(yj,i, b)− Zn(yj,i, 0)|2 ≤ ζ(k − i)∆n,j .

Next, by Viennet (1997), we obtain a Rosenthal-type inequality for

E |Zn(yj,k, b)− Zn(yj,k, 0)− Zn(yj,i, b)− Zn(yj,i, 0)|p .

For 0 ≤ i < k ≤ 2−j+1δ/∆n,j , let

ψt (j, k, i)

= 1
(
Yt ≤ yj,k + n−1/2bt

)
− 1 (Yt ≤ yj,k) + F ∗(yj,k)− F ∗(yj,k + n−1/2bt)

−1
(
Yt ≤ yj,i + n−1/2bt

)
+ 1 (Yt ≤ yj,i)− F ∗(yj,i) + F ∗(yj,i + n−1/2bt).
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Notice that ψt (j, k, i) is a bounded function, by Theorem 2 of Viennet (1997), and application of

Moricz (1982), we have

E
[

max
1≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)|
]p

≤ ζ3

(
2−jδ

)p1
+ ζ4n

−p2/22−jδ logp(2−j+2δ/∆n,j).

where p1 = p/2, p2 = p− 2, and thus

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
≤

ζ3

(
2−jδ

)p1 + ζ4n
−p2/22−jδ logp(2−j+2δ/∆n,j)

[εw(2−jδ)]p
.

Notice that ∆n,j = 2−3n−1/2εw(2−jδ), and n1/22−jδζ∗ ≥ εw(2−jδ)/2,

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
≤ ζ

[
εw(2−jδ)/8

]−p [(
2−jδ

)p1
+
(
εw(2−jδ)

)−p2 (
δ2−j

)(1+p2)
logp(

n1/2 · 2−j+5δ

εw(2−jδ)
)

]

Under Assumption SP, we have

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)− Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
= 0.

Notice that,

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)− Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
≤ ζ

Emax1≤i≤F (yj−1)/∆n,j
|Zn(yj,i, 0)|p

[εw(2−jδ)]p
.

The analysis of other terms are similar.

B.2.1. Theorem 3.

Notice that

√
n+ 1

(
F̂n(y)− F ∗(y)

)
=
√
n+ 1

(
F̂n(y)− Fn(y)

)
+
√
n+ 1 (Fn(y)− F ∗(y))

The first term,
√
n+ 1

(
F̂n(y)− Fn(y)

)
, captures the preliminary filtering effect, and the second term,

√
n+ 1 (Fn(y)− F ∗(y)), captures the effect of marginal estimation.
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Let Yt(γ) = Yt − n−1/2
(
X ′tD

−1
n n1/2

)
γ, and

Fn,γ(y) =
1

n+ 1

n∑
t=1

1 (Yt(γ) ≤ y) ,

By Lemma 1 and differentiability (and a Taylor expansion) of F ∗, we have that, for γ in an arbitrary

compact set Γ of Rk,

sup
γ∈Γ

sup
y

∣∣∣∣∣
{
√
n+ 1 (Fn,γ(y)− Fn(y))− f(y)

[
1

n

n∑
t=1

X ′tD
−1
n n1/2

]
γ

}/
w(F ∗(y))

∣∣∣∣∣ = op(1). (B.5)

Notice that γ̂ = Dn (π̂ − π∗), then F̂n(y) can be written as

F̂n(y) = Fn,γ̂(y) =
1

n+ 1

n∑
t=1

1 (Yt(γ̂) ≤ y) .

By (B.5), we have

sup
y

∣∣∣∣∣
{
√
n+ 1

(
F̂n(y)− Fn(y)

)
− f(y)

[
1

n

n∑
t=1

X ′tD
−1
n n1/2

]
Dn (π̂ − π∗)

}/
w(F ∗(y))

∣∣∣∣∣ = op(1).

(B.6)

Let

s(F, β) = E
[
∂ log c(F (Yt−1), F (Yt), β)

∂β

]
,

Under our assumptions, the consistency of β̃ can be obtained if

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ = op (1)

By triangular inequality,

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ .
By Chen and Fan (2006a),

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ = op (1) .

Next we verify that
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sup
β∈Θ

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥ = op (1)

Note that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β1(F ηt−1, F
η
t , β)

(
F̂n(Ŷt−1)− Fn(Yt−1)

)∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2(F ηt−1, F
η
t , β)

(
F̂n(Ŷt)− Fn(Yt)

)∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β1(F ηt−1, F
η
t , β) (Fn(Yt−1)− F ∗(Yt−1))

∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2(F ηt−1, F
η
t , β) (Fn(Yt)− F ∗(Yt))

∥∥∥∥∥
where F ηs = ηF̂n(Ŷs) + (1− η)F ∗(Ys), s = t− 1 or t, η ∈ (0, 1).

We can show that the third and fourth terms are op (1) using a similar argument as Chen and Fan

(2006a). We next show that the first two terms are op (1) . Notice that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2

(
F ηt−1, F

η
t , β

) [
F̂n(Ŷt)− Fn(Yt)

]∥∥∥∥∥
≤ 1

n

n∑
t=2

sup
β∈B,F∈Fδ

|`β2 (F (Yt−1), F (Yt), β)w(F ∗(Yt))| sup
t

∣∣∣∣∣ F̂n(Ŷt)− Fn(Yt)

w(F ∗(Yt))

∣∣∣∣∣
By (B.6), we have

sup
t

∣∣∣∣∣ F̂n(Ŷt)− Fn(Yt)

w(F ∗(Yt))

∣∣∣∣∣ = Op

(
n−1/2

)
,

together with Assumption M4, we obtain

sup
β∈Θ

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥ = op (1) .
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B.2.2. Theorem 4.

A Taylor expansion of `β
(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
w.r.t β around β∗ gives

0 =
1

n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
=

1

n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)

+
1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)(
β̂SP − β∗

)
,

where β̊ is a middle value between β̂SP and β
∗, and β̂SP is a consistent estimator of β

∗.

Expanding `β
(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)
around (F ∗(Yt−1), F ∗(Yt)), we have

1√
n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)

=
1√
n

n∑
t=2

`β (F ∗(Yt−1), F ∗(Yt), β
∗)

+
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
+

1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
+

1

n3/2

2∑
i,j=1

n∑
t=2

`βij
(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt+i−2)− F ∗(Yt+i−2)
)] [√

n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)]
where F ηs = ηF̂n(Ŷs) + (1− η)F ∗(Ys), η ∈ (0, 1).

First, for i = 1, 2, j = 1, 2,

1

n3/2

n∑
t=2

`βij
(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt+i−2)− F ∗(Yt+i−2)
)] [√

n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)]
= op (1) .

Consider, for example, the case i = 1, j = 2,∣∣∣∣∣ 1

n3/2

n∑
t=2

`β12

(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt−1)− F ∗(Yt−1)
)] [√

n
(
F̂n(Ŷt)− F ∗(Yt)

)]∣∣∣∣∣
≤ 1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

|`β12 (F (Yt−1), F (Yt), β
∗)w(F ∗(Yt−1))w(F ∗(Yt))|

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
w(F ∗(Yt−1))

∣∣∣∣∣∣
∣∣∣∣∣∣
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
w(F ∗(Yt))

∣∣∣∣∣∣
Under Assumption M4,

1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

|`β12 (F (Yt−1), F (Yt), β
∗)w(F ∗(Yt−1))w(F ∗(Yt))| = op (1) ,
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and by application of Lemma 1,∣∣∣∣∣∣
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
w(F ∗(Yt−1))

∣∣∣∣∣∣ = Op(1),

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
w(F ∗(Yt))

∣∣∣∣∣∣ = Op(1),

thus∣∣∣∣∣ 1

n3/2

n∑
t=2

`β12

(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt−1)− F ∗(Yt−1)
)] [√

n
(
F̂n(Ŷt)− F ∗(Yt)

)]∣∣∣∣∣ = op (1) .

Second, by Taylor expansion,

1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)
=

1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗)

+
1

n3/2

2∑
j=1

n∑
t=2

`ββj

(
F ηt−1, F

η
t , β

)√
n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)
+

1

n3/2

n∑
t=2

`βββ

(
F ηt−1, F

η
t , β

)√
n(β − β),

where β = ηβ∗ + (1− η)̊β. Thus, by Assumptions M4, ST, and Lemma 1,∥∥∥∥∥ 1

n

n∑
t=2

[
`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)
− `ββ (F ∗(Yt−1), F ∗(Yt), β

∗)
]∥∥∥∥∥

≤ 1

n3/2

2∑
j=1

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

‖`ββj (F (Yt−1), F (Yt), β)w(F ∗(Yt+j−2))‖

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)
w(F ∗(Yt+j−2))

∣∣∣∣∣∣
+

1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

‖`βββ (F (Yt−1), F (Yt), β)‖
∥∥∥√n(̊β − β∗)

∥∥∥
= op (1) .

Thus,

1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β

)
=

1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗) + op (1) ,
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Let

An1 =
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt−1)− Fn(Yt−1)

)
,

An2 =
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n (Fn(Yt−1)− F ∗(Yt−1)) ,

An3 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− Fn(Yt)

)
,

An4 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n (Fn(Yt)− F ∗(Yt)) ,

and

Σn = −
[

1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗)

]
, Sn =

1√
n

n∑
t=2

`β (F ∗(Yt−1), F ∗(Yt), β
∗) ,

then we have

Σn

√
n
(
β̂SP − β∗

)
= Sn +An1 +An2 +An3 +An4 + op (1) ,

where An2 +An4 is the effect of estimating F ∗(·) based on Yt (unobserved), and An1 +An3 is the effect

of filtration. Thus, the first part

Sn +An2 +An4

is the leading part of the infeasible estimator based on knowledge of Y ′t s, and the effect of filtration is

captured by An1 and An3.

The analysis of An1 and An3 are similar, we illustrate our proof for An3. Notice that

An3 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− Fn(Yt)

)
= − 1

n2

n∑
t=2

n∑
j=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f (Yt)

[
(Xj −Xt)

′D−1
n n1/2

]
Dn(π̂ − π∗) + op(1).

and

1

n2

n∑
t=2

n∑
j=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f (Yt)

[
(Xj −Xt)

′D−1
n n1/2

]
=

1

n2

∑∑
t>j

`β2 (F ∗(Yj−1), F ∗(Yj), β
∗) f (Yj)

[
X ′tD

−1
n n1/2

]
+

1

n2

∑∑
t>j

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f (Yt)

[
X ′jD

−1
n n1/2

]
− 1

n2

∑∑
t>j

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f (Yt)

[
X ′tD

−1
n n1/2

]
− 1

n2

∑∑
t>j

`β2 (F ∗(Yj−1), F ∗(Yj), β
∗) f (Yj)

[
X ′jD

−1
n n1/2

]
= H1n +H2n −H3n −H4n.
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We investigate the behavior of each of the above terms and show that

H1n →
[∫ 1

0
rX(r)dr

]
E [`β2 (F ∗(Yj−1), F ∗(Yj), β

∗) f(Yj)] ,

H2n →
∫ 1

0

∫ r

0
X(s)dsdrE [`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f (Yt)] ,

H3n →
[∫ 1

0
rX(r)dr

]
E {`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f(Yt)} ,

H4n →
∫ 1

0

∫ r

0
X(s)dsdrE {`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f(Yt)} .

Thus An3 = op(1). Similarly, An1 = op(1). The semiparametric copula estimator of β based on

filtered data is asymptotically equivalent to the infeasible semiparametric copula estimator of β based

on the unobserved data Yt,

Σn

√
n
(
β̂SP − β∗

)
= Σn

√
n
(
β̃SP − β∗

)
+ op (1) = Sn +An2 +An4 + op (1) .

By Chen and Fan (2006a), we can then obtain the result of Theorem 4.

B.2.3. Theorem 5

We may re-write the variance estimator Ω̂+
β as:

Ω̂+
β =

M∑
h=−M

K

(
h

M

)
γn(h) +

M∑
h=−M

K

(
h

M

)
[γn1(h)− γn(h)] +

M∑
h=−M

K

(
h

M

)
[γ̂n(h)− γn1(h)]

where

γn(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St (F, β)St+h (F, β) ,

and

γn1(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F, β̂

)
St+h

(
F, β̂

)
.

The first part,
M∑

h=−M
K

(
h

M

)
γn(h)

is the conventional long-run variance (spectral density) estimator, which converges to Ωβ by the

standard arguments as Hannan (1970).

The second part,
M∑

h=−M
K

(
h

M

)
[γn1(h)− γn(h)] ,
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contains the effect of copula estimation error (β̂ − β), this term converges to 0 following a similar

argument as Andrews (1991, p852).

We now consider the third term,

M∑
h=−M

K

(
h

M

)
[γ̂n(h)− γn1(h)] ,

which contains the estimation error from the filtration and the estimation of marginal. Notice that

γ̂n(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F̂n, β̂

)
St+h

(
F̂n, β̂

)

=
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F, β̂

)
+ St

(
F̂n, β̂

)
− St

(
F, β̂

)] [
St+h

(
F, β̂

)
+ St+h

(
F̂n, β̂

)
− St+h

(
F, β̂

)]

thus

M∑
h=−M

K

(
h

M

)
[γ̂n(h)− γn1(h)]

=
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F̂n, β̂

)
− St

(
F, β̂

)] [
St+h

(
F, β̂

)]

+
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F, β̂

)] [
St+h

(
F̂n, β̂

)
− St+h

(
F, β̂

)]

+

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F̂n, β̂

)
− St

(
F, β̂

)] [
St+h

(
F̂n, β̂

)
− St+h

(
F, β̂

)]

We can verify the order of magnitude for each of these terms. For example, consider the second

term
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F, β̂

)] [
St+h

(
F̂n, β̂

)
− St+h

(
F, β̂

)]
,
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notice that

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F, β̂

) [
St+i

(
F̂n, β̂

)
− St+i

(
Fn, β̂

)]

=
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F, β̂

) 2∑
j=1

`βj

(
F ηn,t+i−1, F

η
n,t+i, β̂

)(
F̂n(Ŷt+i+j−2)− F (Yt+i+j−2)

)

−
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F, β̂

)∫ 1

0
`β,2

(
v1, F

η
n,t+i; β̂

)
c
(
v1, F

η
n,t+i; β̂

)
dv1

(
F̂n(Ŷt+i)− F (Yt+i)

)

−
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F, β̂

)∫ 1

0
`β,1

(
F ηn,t+i−1, v2; β̂

)
c
(
F ηn,t+i−1, v2; β̂

)
dv2

(
F̂n(Ŷt+i−1)− F (Yt+i−1)

)

where F ηn,s = F (Ys) + η
[
F̂n(Ŷs)− F (Ys)

]
, η ∈ [0, 1], denotes a (generic) middle value between F̂n(Ŷs)

and F (Ys). Under our regularity assumptions, the order of magnitude for each of these terms are

op (1). For example

∣∣∣∣∣∣∣∣
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F, β̂

) 2∑
j=1

`βj

(
F ηn,t+h−1, F

η
n,t+h, β̂

)(
F̂n(Ŷt+h+j−2)− F (Yt+h+j−2)

)∣∣∣∣∣∣∣∣
≤ 1√

n

1

n

M∑
h=−M

n∑
t=2

2≤t,t+h≤n

∣∣∣∣K ( h

M

)∣∣∣∣ 2∑
j=1

sup
F∈Fδ

∣∣∣St (F ∗, β̂)w (F ∗(Yt+h+j−2)) `βj

(
F (Yt+h−1), F (Yt+h), β̂

)∣∣∣

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt+h+j−2)− F ∗(Yt+h+j−2)

)
w (F ∗(Yt+h+j−2))

∣∣∣∣∣∣
under our regularity assumptions and the bandwidth condition, the above term is op (1).

Other terms can be verified to be op (1) using similar arguments.

B.2.4. Theorem 8

We show that the filtration does not affect the limiting distribution. Expanding log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)

around β̂2, and notice that the FOC corresponding to β̂2 implies

∑
t

∂ log c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

∂β
= 0,
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in the non-nested case,

Pr

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
6= E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]
> 0

Pr

[
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
6= ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
> 0

we have

1

n

n∑
t=2

log c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

=
1

n

n∑
t=2

log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)− 1

2n

n∑
t=2

(
β2 − β̂2

) ∂2 log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)

∂β∂β′

(
β2 − β̂2

)
=

1

n

n∑
t=2

log c2(Ut−1, Ut, β2) +
1

n

2∑
j=1

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j

[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]
+ op

(
n−1/2

)
and

L̂Rn

=
1

n

n∑
t=2

log
c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

c1(F̂n(Ŷt−1), F̂n(Ŷt), β̂1)

=
1

n

n∑
t=2

log
c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
+

1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]
+op

(
n−1/2

)
.

Thus

L̂Rn − E
[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]
=

1

n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]

+
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]
+op

(
n−1/2

)
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1

n

2∑
j=1

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j

[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]
=

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−1

[
F̂n(Ŷt−1)− Fn(Yt−1)

]
+

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut

[
F̂n(Ŷt)− Fn(Yt)

]
+

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−1
[Fn(Yt−1)− F (Yt−1)]

+
1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
[Fn(Yt)− F (Yt)]

Using similar argument as in the previous Sections, we can show

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut

[
F̂n(Ŷt)− Fn(Yt)

]
=

1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[(
X ′j −X ′t

)
D−1
n n1/2

]
Dn (π̂ − π∗) + op

(
n−1/2

)
=

1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[
X ′jD

−1
n n1/2

]
Dn (π̂ − π∗)

− 1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[
X ′tD

−1
n n1/2

]
Dn (π̂ − π∗) + op

(
n−1/2

)
= op

(
n−1/2

)
and thus

1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]

=
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F (Yt−2+j)] + op

(
n−1/2

)
.

Let

gij
(
Ul, βi

)
= E

{[
∂ log ci(Ut−1, Ut, βi)

∂Ut−2+j

]
[(1(Ul ≤ Ut−2+j)− Ut−2+j)]

∣∣∣∣Ul} ,
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1√
n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F (Yt−2+j)]

=
1√
n

2∑
j=1

n∑
l=2

E
{[

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
[(1(Ul ≤ Ut−2+j)− Ut−2+j)]

∣∣∣∣Ul}

=
2∑
j=1

[
1√
n

n∑
l=2

E
{
g2j

(
Ul, β2

)
− g1j

(
Ul, β1

)}]
,

we have

√
n

(
LRn − E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

])
=

1√
n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]

+
1√
n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F (Yt−2+j)] + op (1)

=
1√
n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]

+

2∑
j=1

[
1√
n

n∑
l=2

E
{
g2j

(
Ul, β2

)
− g1j

(
Ul, β1

)}]
+ op (1)

⇒ N
(
0, ω2

)
In the generalized nested case, denote

Hjn = − 1

n

n∑
t=2

∂2 log cj(F̂n(Ŷt−1), F̂n(Ŷt), βj)

∂β∂β′
→ Hj,β,

Notice that

Pr
[
c2(Ut−1, Ut, β2) = c1(Ut−1, Ut, β1)

]
= 1

thus

Pr

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
= 0 = E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]
= 1

Pr

[
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
=
∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
= 1
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thus,

LRn − E
[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]
=

1

n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]

+
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F (Yt−2+j)

]
+

1

2

(
β2 − β̂2

)
H2n

(
β2 − β̂2

)
− 1

2

(
β1 − β̂1

)
H1n

(
β1 − β̂1

)
+

=
1

2

(
β2 − β̂2

)
H2n

(
β2 − β̂2

)
− 1

2

(
β1 − β̂1

)
H1n

(
β1 − β̂1

)
+ op

(
1

n

)

Let Ut = F ∗(Yt), and Gj,n = n−1/2
∑n

j=2 `j,β
(
Uj−1, Uj , βj

)
, j = 1, 2, where

`j,β
(
Uj−1, Uj , βj

)
=
∂ log cj

(
Uj−1, Uj , β

)
∂β

+
1∑
i=0

E

[
∂2 log cj

(
Ut−1, Ut, β

)
∂β∂Ut−i

[1 (Uj ≤ Ut−i)− Ut−i]
∣∣∣∣∣Uj

]
Ωj,β = lim

n→∞
V ar

(
Gj,n

)
, Hj,β = −E`j,ββ

(
F ∗(Yt−1), F ∗(Yt), βj

)
Using the results of Section 4,

√
n
(
β̂j − βj

)
⇒ N

(
0, H

−1
j,βΩj,βH

−1
j,β

)
.

and

n

[
LRn − E

[
log

c2(F (Yt−1) , F (Yt) , β2)

c1(F (Yt−1) , F (Yt) , β1)

]]
=

1

2
n
(
β2 − β̂2

)
H2n

(
β2 − β̂2

)
− 1

2
n
(
β1 − β̂1

)
H1n

(
β1 − β̂1

)
+op (1)

=
1

2
G′2,nH

−1
2,β (H2n)H

−1
2,βG2,n −

1

2
G′1,nH

−1
1,β (H1n)H

−1
1,βG1,n + op (1)

=
1

2

[
G′2,n G′1,n

] [ H
−1
2,β 0

0 −H−1
1,β

][
G2,n

G1,n

]
+ op (1)

where [
G2,n

G1,n

]
⇒ N

(
0,

[
Ω2,β Ω2,1

Ω
′
2,1 Ω1,β

])
Thus, under the null, 2nLRn converges to a weighted sum of independent χ2

1 random variables in

which the weights (λ1, · · ·, λk1+k2) is the vector of eigenvalues of the following matrix[
Ω2,βH

−1
2,β −Ω2,1H

−1
1,β

Ω
′
2,1H

−1
2,β −Ω1,βH

−1
1,β

]
=

[
Ω2,β Ω2,1

Ω
′
2,1 Ω1,β

][
H
−1
2,β

−H−1
1,β

]
.
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