Copyright © 2005-2007

R oo [Tox £ o o SRR 1
1. What iS SPring WED SEIVICES?ccoiiiiiiiiiiiiiee ettt 2
90 R 1 g1 (0o (U T (1o o [P O PP P PPPPPPPPPPPPPPPRt 2

1.2. RUNLIME ©NVITONIMENTueiiiiiiiiiee ittt e e e s nnnaee s 2

2. WHY CONEraCt FITSt? ..ot e e e e e e e e e e s e st e e e e e e e s s enneeees 4
P28 R 1 1 11 o 1 o o PR 4

2.2. Object/XML Impedance MiSMatChcccviiiiiiiiiiiiiec e 4
A T G DI = (1= 0 Lo 4

2.2.2. UNPOItabI@ TYPES ... 4

2.2.3. CYCliC graphs ... 5

2.3. Contract-first versus ContraCt-1asteeeviiiiiiiiiiiiie e 6
G T I = o] 6

2.3.2. PEITOMMEAINCEeeiiiiee ettt e e e e e e e e e e e e e s e ennneees 7

2.3.3. REUSADITILY .vvvviieeiiiiee ettt e e e e e e e e e e e 7

2,34, VEISIONING ...evviieieitiie ettt e ettt e et e ettt e e sabb e e e e s et e e s abb e e e e s annbeeeeenees 7

3. Writing Contract-First WED SErVICEScccuvviiiiiiee et 8
10300 I g 11 0o (1 o ISR 8

G T 1V === o [8
2.1 HOGAY oot 8

322 EMPIOYEE ... 8

3.2.3. HOlIDAYREQUESEeeeieiiiiiie ettt 9

3.3, DAA CONLIAET ...t e e e s st e e e e e e e sanneees 9

34, SEIVICE COMIACE ..eiiiiiiiieeiitiiee sttt e e ettt et e et e e e et e e e e s b e e e e nnbee e e s snneeeeann 11

G H T @ = 11 o 1 = oo =t 13

3.6. Implementing the ENdPOINt ... 14
3.6.1. Handling the XML MESSAJEeuveiiiiiieeiiiiee e 14

3.6.2. Routing the Message to the ENdpointcccevveiiiieiieiiiiiee e 16

3.6.3. Providing the Service and Stub implementationccccccoeevviiiieeeeeennn. 17

3.7. PUBIISNING the WSDLeeiiiiiiiiie ettt 17

I c = (= o PR OPPRRRRR 19
4. Shared COMPONENEScoiieiiiiie e e e e e e e e e s et e e e e e e e e s s nnbereeeeaeeeeannnneees 20
4.1, WED SEIVICE MESSAPESeeeeiutrreeeiauiieeeeaaiteeaesasseeeeaasseeeeaasneeeeeaasnneeeaanreeaesannees 20
4,11, VEDSEr Vi CEMESSAGE tevvunierirrunierettiiearestseeeestneeeestaeeeestseeresneeessnneaeennns 20

4. 1.2, SOAPMESSAGE wruueerrrunieeieriieerestieeseetateeeestateeeestteeseetteeeeetteesrstneerssraneeees 20

4.1.3. MESSAQE FACLOMIES ..oeeeeiiieiiiiiee e e e e e ettt e e e e s e e e e e e e e e e e e e e e e e 20

4. 1.4, MESSAGECTONE EXE tevuiernieiruereteeetreetneeesneerstaeesteeeaeartnersnerenserreeraneerenns 22

4.2, TranSPOrt CONt @XT wevuuieeeiiuieeeirtteeeistaeeeeettaseeeertseeeestreeeesansaeeesnnsaeeesnnsaeeesnnaaaees 22

4.3. Handling XML With XPathcccciiiiiii e 23
4.3.1. XPat NEXPI @SSi ON eeeeeeiiiiiiiiieieeeeeeeeeettuiasseeeeeeeeestnneeeeeeseessssnnaaeaeeeeeennnes 23

4.3.2. XPat NTEMPI AL E 1evevrrrruiiieeeiiieeittiee e e e e e e e e e ettt e e e e e e e ee et e e eeaeeeerrba e aeeaes 24

4.4. Message Logging and TraCingeeeeeeeeiiiiiiiiereeeeeessssiiinneeeee e e s s ssnsnseeeeeeessennes 25

5. Creating a Web service With Spring-WS ... 26
o300 R 1 11 [F o 1 o o PSS 26

5.2. The MessageDi SPAt ChET ..iccciiiiiiiiiiieiiccceieeeeeee ettt 26

5.3, TTBINSPOITSeeeeeiiiee ettt et e e e e st e e e e e s s s s n b e et e e e e e s s annnbbreeeeeens 27
5.3.1. MessageDi spat Cher SEr VI €6 ..ciiiieiiiieiiiiiiieeeeeeeeeerees e e e e e e e eete e e e eeeeeens 27

5.3.2. Wiring up Spring-WSin aDi spat cher Servl etccccccovvvcivvvieeeeeeessiennnne 30

5.3.3. IMS traNSPON ..cevveeiee e e e e e e e e e e e e arae 31

Spring Web Services

5.3.4. Email transportcooevvviiiiiiiieeee e 31
5.3.5. Embedded HTTP Server transporteeeeviireeeenniieees e 32
5.3.6. XIMPP ranNSPONeeveieeeiiiiiiiieieee e et e e e e e ee e 33

5.4, ENCPOINESeeiiieiitiie ettt ettt e e ettt e et e e e e e e e e e e e 34
5.4.1. @ndpoi nt handling MEthOdScoociiiieiiee e, 36

5.5. ENAPOINt MapPINgS ...cceeeeiiiiiiiiiiie e e e ecetirre e e e e e s et re e e e e e e s e et rre e e e e e e e e s s ennnnees 40
5.5.1. WS-AUArESSING ..oooveeiee et ste e st e et e e e s e e e e snneeae e ennneeeeens 41
5.5.2. Intercepting requests - the Endpoi nt I nt er cept or interface............cccee... 43

5.6. HaNdliNg EXCEPLIONSccouviiieiiiiiiee ettt e e 45
5.6.1. SoapFaul t Mappi NgEXCePt i ONRESOl VEI ...cccivviiiiiiiiieieeeeeeeeiiie e e e e eeeaaaan 45
5.6.2. SoapFaul t Annot at i ONEXCEPt i ONRESO! VET ..vviivveieiiiiiiieeeriieeeeerie e e enaannns 46

5.7. Server-side tESHINGuvvviieeie e e e a e e e 46
5.7.1. Writing server-side integration testS ... a7
5.7.2. Request Creat or @NA ReqUEST Cr @At OF'S ..uuuueiresisisisieisisnnnnnnannnnnnnnns 49
5.7.3. ResponseMat cher and ResponseMat Chersccvvvvvveveveeeeeieieeieeieeeeeeeeeeeen, 49

6. Using Spring Web Services on the Clientooooiiiiiiiiiiiie e 51
6.1, INEFOTUCTION ...ttt e e e e e e e nreeeeeas 51
6.2. Using the client-side APlooviiiiiiee e 51
B.2.1. VDSEr Vi CETENPI AL € wuuuieiiiiiiieiiiiieeeeeetie e e e eete e e e et e e e erteeeeeanaeeeesnaeeeesnnns 51
6.2.2. Sending and receiving aWebSer Vi CENVBSSAGE «.eovuurrreerrvrrreesiireeeesirneeanns 54
6.2.3. Sending and receiving POJOs - marshalling and unmarshalling 55
6.2.4. WebSer vi ceMessageCal | DACKccuvviiiiiieiiiiiiiiiie et eeaeaaa 55
6.2.5. VbSer vi CEMESSAGEEXT T ACT OF ivvvvniiiiereiererriieererrieeresteeeressaeeresnnneeresnns 56

6.3. Client-SIde tESHINGccvvvieiiee e e e e e s et r e e e e e e 56
6.3.1. Writing client-side integration testScccccuuuurrmiriimnineeiirnennn. 57
6.3.2. Request Mat cher and Request Mt Cher'Sccuvveieeeeeeeieeieiiiieeeeeeeeeeervennnns 59
6.3.3. ResponseCreat or aNd ReSPONSECr AL OF'S .vvvvveveeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 60

7. Securing your Web services With SPring-WSc.oviiiiiiiiiiiiee e 62
4% O 1 g1 (o [¥ o1 o o PRSP RPOPPPRPPRRIN 62
T.2. XWSSECUF T LY Nt EF CEPL OF tirvuniiiiieiti e et ie it e e e et e e s a e e e s et e e raa e et e ssaeeraneenras 62
A T Q=Y £ o = TSN 63
7.2.2. AULNENTICALTION ...eeiiiiieeiiiiie et e e e e e e e e e e e e e 65
7.2.3. Digital SIQNLUMNESooiiiiiiiie et 70
7.2.4. EnCryption and DECIYPLIONccovuiiieiiiiiiieeiiiiee et 72
7.2.5. Security Exception Handlingccoooiiiiiieiieee e 73

7.3. VESA] SECUMT t Y1 NEEF CEPL OF tivuiiiriiieteeitiee et e et e et ee et e e et e e et e ranaeeaneerreesreares 74
7.3.1. Configuring Vs4j Securi t yl Nt €r CePL OF .uuvvieeeeeeeeeiirrrreereeeeesseirrreeeeeeens 74
7.3.2. Handling Digital CertifiCatescccoeiiiiiiiiiiiiiiiiennnnnenennnennnens 75
ACTC I ANU 1141 o111 1 Lo o RSOSSN 75
7.3.4. SECUNtY TIMESLAIMPSevveieiiiiiie ettt e e 77
7.3.5. Digital SIQNALUMESoeeiiiiiiiieeeiieie et 78
7.3.6. Encryption and DECIYPLIONeeeiieeeeiiiiiiiiiee et e e e 80
7.3.7. Security Exception Handlingcoooviiiiiiieiiee e, 82

[11. OthEr RESDUICESeeeieiiiiee e ettt e e e e e e ettt e e e e e e s s ettt eeeeeeeeesaaneteeeeeeaeeesaannnneeneaeeaesaannnes 83
BibliOGrapnyoeeeiiiie e 84

Preface

In the current age of Service Oriented Architectures, more and more people are using Web Services
to connect previously unconnected systems. Initially, Web services were considered to be just another
way to do a Remote Procedure Call (RPC). Over time however, people found out that there is a big
difference between RPCs and Web services. Especially when interoperability with other platformsis
important, it is often better to send encapsulated XML documents, containing al the data necessary
to process the request. Conceptually, XML-based Web services are better off being compared to
message queues rather than remoting solutions. Overall, XML should be considered the platform-
neutral representation of data, the interlingua of SOA. When developing or using Web services, the
focus should be on this XML, and not on Java

Spring Web Services focuses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services
using one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message
dispatching framework, a WS-Security solution that integrates with your existing application security
solution, and a Client-side API that follows the familiar Spring template pattern.

Thisdocument provides areference guideto Spring-WS'sfeatures. Since thisdocument is still awork-
in-progress, if you have any requests or comments, please post them on the support forums at http://
forum.springframework.org/forumdisplay.php?f=39.

http://forum.springframework.org/forumdisplay.php?f=39
http://forum.springframework.org/forumdisplay.php?f=39

Part I. Introduction

Thisfirst part of the reference documentation isan overview of Spring Web Services and the underlying concepts.
Spring-WS is then introduced, and the concepts behind contract-first Web service development are explained.

Chapter 1. What is Spring Web Services?

1.1. Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating
document-driven Web services. Spring Web Services aims to facilitate contract-first SOAP service
development, allowing for the creation of flexible web services using one of the many ways to
manipulate XML payloads. The product is based on Spring itself, which means you can use the Spring
concepts such as dependency injection as an integral part of your Web service.

People use Spring-WSfor many reasons, but most are drawn to it after finding alternative SOAP stacks
lacking when it comes to following Web service best practices. Spring-WS makes the best practice
an easy practice. This includes practices such as the WS- basic profile, Contract-First devel opment,
and having a loose coupling between contract and implementation. The other key features of Spring
Web services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on
message payload, SOAP Action header, or an XPath expression.

XML API support. Incoming XML messages can be handled not only with standard JAXP APIs
such as DOM, SAX, and StAX, but also JDOM, domdj, XOM, or even marshalling technologies.

Flexible XML Marshalling. The Object/ XML Mapping module in the Spring Web Services
distribution supports JAXB 1 and 2, Castor, XMLBeans, JBX, and XStream. And because it is a
separate module, you can use it in non-Web services code as well.

Reusesyour Spring expertise. Spring-WS uses Spring application contexts for all configuration,
which should help Spring devel opers get up-to-speed nice and quickly. Also, the architecture of Spring-
WS resembles that of Spring-MVC.

Supports WS-Security. WS-Security alows you to sign SOAP messages, encrypt and decrypt
them, or authenticate against them.

Integrates with Acegi Security. The WS-Security implementation of Spring Web Services
provides integration with Acegi Security [http://acegisecurity.org]. This means you can use your
existing Acegi configuration for your SOAP service as well.

Built by Maven. Thisassists you in effectively reusing the Spring Web Services artifacts in your
own Maven-based projects.

Apachelicense. You can confidently use Spring-WS in your project.

1.2. Runtime environment

Spring Web Services requires a standard Java 1.5 Runtime Environment. Java 1.6 is also supported.
Spring-WS also requires Spring 3.0 or higher.

Spring-WS consists of a number of modules, which are described in the remainder of this section.

e The XML module (spring-xni .jar) contains various XML support classes for Spring Web
Services. Thismoduleismainly intended for the Spring-WSframework itself, and not aWeb service
developers.

http://acegisecurity.org
http://acegisecurity.org

What is Spring Web Services?

e The Core module (spring-ws-core.jar) is the central part of the Spring's Web services
functionality. It provides the central WebServiceMessage and SoapMessage interfaces, the
server-side framework, with powerful message dispatching, and the various support classes for
implementing Web service endpoints; and the client-side WwebSer vi ceTenpl at e.

« The Support module (spri ng-ws-support.jar) contains additional transports (JMS, Email, and
others).

» The Security package (spring-ws-security.jar) provides a WS-Security implementation that
integrateswith the core Web service package. It allowsyou to add principal tokens, sign, and decrypt
and encrypt SOAP messages. Additionally, it allows you to leverage your existing Spring Security
security implementation for authentication and authorization.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows
indicate dependencies, i.e. Spring-WS Core depends on Spring-XML and the OXM module found in

Spring 3.

Spring Spring-ws
OXM Support
Spring-Ws
Care
Spring Spring-wWs
XML Security

Dependencies between Spring-WS modules

Chapter 2. Why Contract First?

2.1. Introduction

When creating Web services, there are two development styles: Contract Last and Contract First.
When using a contract-last approach, you start with the Java code, and let the Web service contract
(WSDL, see sidebar) be generated from that. When using contract-first, you start with the WSDL
contract, and use Java to implement said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL fileisan XML document that
describes a Web service. It specifies the location of the service and the operations (or methods)
the service exposes. For more information about WSDL, refer to the WSDL specification [http://
www.w3.org/TR/wsdl], or read the WSDL tutorial [http://mwww.w3schools.com/wsdl/]

Spring-WS only supports the contract-first development style, and this section explains why.

2.2. Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch [http://
en.wikipedia.org/wiki/Object-Relational_impedance_mismatch], there is a similar problem when
converting Java objects to XML. At first glance, the O/X mapping problem appears simple: create
an XML element for each Java object, converting all Java properties and fields to sub-elements or
attributes. However, things are not as simple asthey appear: thereisafundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Javal,

2.2.1. XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to
that subclass. In XSD, you can extend adatatype by restricting it: that is, constraining the valid values
for the elements and attributes. For instance, consider the following example:

<si npl eType nane="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/ >
</restriction>
</ si npl eType>

ThistyperestrictsaX SD string by ways of aregular expression, allowing only three upper case letters.
If this type is converted to Java, we will end up with an ordinary j ava. | ang. Stri ng; the regular
expression islost in the conversion process, because Java does not alow for these sorts of extensions.

2.2.2. Unportable types

One of the most important goals of aWeb serviceisto beinteroperable: to support multiple platforms
such as Java, .NET, Python, etc. Because all of these languages have different classlibraries, you must

"Most of the contents in this section wasi nspired by [apine] and [effective-enterprise-java).

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Why Contract First?

use some common, interlingual format to communicate between them. That format is XML, which is
supported by all of these languages.

Because of this conversion, you must make sure that you use portable types in your service
implementation. Consider, for example, a service that returnsaj ava. uti |l . Tr eeMap, like so:

public Map getFlights() {
/] use a tree map, to make sure it's sorted
TreeMap map = new TreeMap();
map. put (" KL1117", " Stockhol nt);

return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is
no standard way to describe amap in XML, it will be proprietary. Also, even if it can be converted
to XML, many platforms do not have a data structure similar to the Tr eemvap. So when a .NET client
accesses your Web service, it will probably end up with a Syst em Col | ecti ons. Hasht abl e, which
has different semantics.

This problem is also present when working on the client side. Consider the following XSD snippet,
which describes a service contract:

<el enent nane="Cet Fl i ght sRequest ">
<conpl exType>
<al | >
<el enent nanme="departureDate" type="date"/>
<el enent nane="fronl' type="string"/>
<el enent nane="to" type="string"/>
</all>
</ conpl exType>
</ el ement >

This contract defines a request that takes an date, which is a XSD datatype representing a year,
month, and day. If we call this service from Java, we will probably use either aj ava. util. Date
or java. util . Cal endar . However, both of these classes actually describe times, rather than dates.
So, we will actually end up sending data that represents the fourth of April 2007 at midnight
(2007- 04- 04T00: 00: 00), which is not the same as2007- 04- 04.

2.2.3. Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {
private String nunber;
private List<Passenger> passengers;

/'l getters and setters omitted

}

public class Passenger ({
private String nane;
private Flight flight;

/] getters and setters omtted

}

Why Contract First?

Thisisacyclic graph: the Fl i ght refersto the Passenger , which refers to the FI i ght again. Cyclic
graphs like these are quite common in Java. If we took a naive approach to converting thisto XML,
we will end up with something like:

<flight nunber="KL1117">
<passenger s>
<passenger >
<nane>Arj en Pout sma</ nane>
<flight nunber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nane>
<flight nunmber="KL1117">
<passenger s>
<passenger >
<nane>Arj en Pout sma</ nane>

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem isto use references to objects that were already marshalled, like so:

<flight nunmber="KL1117">
<passenger s>
<passenger >
<nane>Arj en Pout sma</ nane>
<flight href="KL1117" />
</ passenger >

</ passenger s>
</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML
validator to validate this structure. Another issue is that the standard way to use these references in
SOAP (RPC/encoded) has been deprecated in favor of document/literal (see WS-I Basic Profile[http://
www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle Attribute]).

These arejust afew of the problems when dealing with O/X mapping. It isimportant to respect these
issues when writing Web services. The best way to respect them isto focus on the XML completely,
while using Java as an implementation language. Thisiswhat contract-first is all about.

2.3. Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons
for preferring a contract-first development style.

2.3.1. Fragility

Asmentioned earlier, the contract-last devel opment style results in your web service contract (WSDL
and your XSD) being generated from your Java contract (usualy an interface). If you are using this
approach, you will have no guarantee that the contract stays constant over time. Each time you change
your Java contract and redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This
means changing your current SOAP stack for adifferent one (for whatever reason), might also change
your web service contract.

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute
http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute
http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

Why Contract First?

When aweb service contract changes, users of the contract will have to be instructed to obtain the new
contract and potentially change their code to accommodate for any changes in the contract.

Inorder for acontract to be useful, it must remain constant for aslong as possible. If acontract changes,
you will have to contact al of the users of your service, and instruct them to get the new version of
the contract.

2.3.2. Performance

When Javais automatically transformed into XML, there is no way to be sure asto what is sent across
the wire. An object might reference another object, which refers to another, etc. In the end, half of
the objects on the heap in your virtual machine might be converted into XML, which will result in
slow response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it
is exactly what you want.

2.3.3. Reusability

Defining your schemain aseparate file allowsyou to reusethat filein different scenarios. If you define
an AirportCodein afilecaledai rl i ne. xsd, like so:

<si npl eType name="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/ >
</restriction>
</ si npl eType>

Y ou can reuse this definition in other schemas, or even WSDL files, using ani nport statement.
2.3.4. Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed
sometimes. In Java, this typically results in a new Java interface, such as Airli neServi ce2, and a
(new) implementation of that interface. Of course, the old service must be kept around, because there
might be clients who have not migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such
alooser coupling alows us to implement both versions of the contract in one class. We could, for
instance, use an XSLT stylesheet to convert any "old-styl€" messages to the "new-style" messages.

Chapter 3. Writing Contract-First Web
Services

3.1. Introduction

This tutorial shows you how to write contract-first Web services, that is, developing web services
that start with the XML Schema/WSDL contract first followed by the Java code second. Spring-WS
focuses on this development style, and this tutorial will help you get started. Note that the first part of
this tutorial contains almost no Spring-WS specific information: it is mostly about XML, XSD, and
WSDL. The second part focuses on implementing this contract using Spring-WsS.

The most important thing when doing contract-first Web service development is to try and think in
terms of XML. This means that Java-language concepts are of lesser importance. It isthe XML that
is sent across the wire, and you should focus on that. The fact that Javais used to implement the Web
service is an implementation detail. An important detail, but a detail nonethel ess.

Inthistutorial, wewill defineaWeb servicethat is created by a Human Resources department. Clients
can send holiday request formsto this service to book a holiday.

3.2. Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service.
We will start out by determining what these messages |ook like.

3.2.1. Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday
looks likein XML:

<Hol i day xm ns="http://nyconpany. com hr/schenmas" >
<St art Dat e>2006- 07- 03</ St art Dat e>
<EndDat e>2006- 07- 07</ EndDat e>

</ Hol i day>

A holiday consists of a start date and an end date. We have also decided to use the standard | SO 8601
[http://www.cl.cam.ac.uk/~mgk25/iso-time.html] date format for the dates, because that will save a
lot of parsing hassle. We have also added a namespace to the element, to make sure our elements can
used within other XML documents.

3.2.2. Employee

There is also the notion of an employee in the scenario. Here iswhat it looks like in XML.:

<Enpl oyee xm ns="http://nyconpany. conl hr/ schenmas" >
<Nunber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Name>
<Last Name>Pout sma</ Last Nanme>

</ Enpl oyee>

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Writing Contract-First Web Services

We have used the same namespace as before. If this <enpl oyee/ > element could be used in other
scenarios, it might make sense to use a different namespace, such as http:// myconpany. conl
enpl oyees/ schenas.

3.2.3. HolidayRequest

Both the holiday and employee element can be put in a<Hol i dayRequest / >:

<Hol i dayRequest xm ns="http://nyconpany. coni hr/schemas" >
<Hol i day>
<St art Dat e>2006- 07- 03</ St ar t Dat e>
<EndDat e>2006- 07- 07</ EndDat e>
</ Hol i day>
<Enpl oyee>
<Nunber >42</ Nunber >
<Fi r st Name>Ar j en</ Fi r st Nane>
<Last Name>Pout sma</ Last Nanme>
</ Enpl oyee>
</ Hol i dayRequest >

The order of the two elements does not matter: <enpl oyee/ > could have been the first element just as
well. What isimportant isthat al of thedataisthere. Infact, the dataisthe only thing that isimportant:
we are taking a data-driven approach.

3.3. Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize
thisinto a schema. This data contract defines the message format we accept. There are four different
ways of defining such a contract for XML.:

e DTDs

XML Schema (XSD) [http://www.w3.0rg/XML/Schema]

RELAX NG [http://www.relaxng.org/]

Schematron [http://www.schematron.con/]

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and
Schematron certainly are easier than XML Schema. Unfortunately, they are not so widely supported
across platforms. We will use XML Schema.

By far the easiest way to create an XSD isto infer it from sample documents. Any good XML editor
or Java IDE offers this functionality. Basically, these tools use some sample XML documents, and
generate a schema from it that validates them all. The end result certainly needs to be polished up,
but it's a great starting point.

Using the sample described above, we end up with the following generated schema:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="htt p: // myconpany. coni hr/ schemas"
xm ns: hr="http://myconpany. cont hr/ schenas" >
<xs: el ement nanme="Hol i dayRequest ">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement ref="hr:Holiday"/>

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.relaxng.org/
http://www.schematron.com/
http://www.schematron.com/

Writing Contract-First Web Services

<xs: el enment ref="hr:Enpl oyee"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="Hol i day" >
<xs: conpl exType>
<Xs: sequence>
<xs:element ref="hr:StartDate"/>
<xs: el ement ref="hr:EndDate"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="StartDate" type="xs: NMTCKEN'/ >
<xs: el ement name="EndDat e" type="xs: NMTOKEN'/ >
<xs: el ement nanme="Enpl oyee" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="hr:Nunber"/>
<xs:el ement ref="hr:FirstNanme"/>
<xs:el ement ref="hr:Last Name"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="Nunber" type="xs:integer"/>
<xs: el ement nanme="First Name" type="xs: NCNane"/ >
<xs: el ement name="Last Nane" type="xs: NCNane"/ >
</ xs: schema>

This generated schema obviously can be improved. The first thing to notice is that every type has a
root-level element declaration. This means that the Web service should be able to accept al of these
elements as data. Thisis not desirable: we only want to accept a <Hol i dayRequest / >. By removing
the wrapping element tags (thus keeping the types), and inlining the results, we can accomplish this.

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: hr="http://myconpany. com hr/schemas"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="htt p:// myconpany. coni hr/ schenas" >
<xs: el ement nanme="Hol i dayRequest ">
<xs: conpl exType>
<XS: sequence>
<xs: el ement name="Hol i day" type="hr: HolidayType"/>
<xs: el ement name="Enpl oyee" type="hr: Enpl oyeeType"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: conpl exType name="Hol i dayType" >
<Xs: sequence>
<xs:el ement name="StartDate" type="xs: NMTCKEN'/ >
<xs: el enent nanme="EndDat e" type="xs: NMTOKEN'/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="Enpl oyeeType" >
<Xs: sequence>
<xs:el ement name="Nunber" type="xs:integer"/>
<xs: el enent nanme="First Nanme" type="xs: NCNane"/ >
<xs: el ement name="Last Nane" type="xs: NCNane"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

The schema till has one problem: with a schema like this, you can expect the following messages
to validate:

10

Writing Contract-First Web Services

<Hol i dayRequest xm ns="http://nyconpany. conl hr/ schenmas" >
<Hol i day>
<StartDate>this is not a date</Start Date>
<EndDat e>nei t her is this</EndDate>
</ Hol i day>
<l-- ... -->
</ Hol i dayRequest >

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent
built-in dat e type which we can use. We also change the NCNanes to st ri ngs. Finally, we change the
sequence iN <Hol i dayRequest /> to al | . Thistellsthe XML parser that the order of <Hol i day/ > and
<Enpl oyee/ > isnot significant. Our final XSD now looks like this:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: hr="http:// myconpany. coni hr/ schemas"
el enent For nDef aul t =" qual i fi ed"
t ar get Namespace="ht t p: / / myconpany. cont hr/ schenas" >
<xs: el ement nane="Hol i dayRequest" >
<xs: conpl exType>

<xs:al |l >
<xs:el ement name="Hol i day" type="hr:HolidayType"/> o
<xs: el ement nanme="Enpl oyee" type="hr: Enpl oyeeType"/>

</xs:all>

</ xs: conpl exType>
</ xs: el enent >
<xs: conpl exType name="Hol i dayType" >
<Xs:sequence>
<xs:el ement nane="StartDate" type="xs:date"/>
<xs: el ement nanme="EndDat e" type="xs:date"/> O
</ xs: sequence> O
</ xs: conpl exType>
<xs:conpl exType nanme="Enpl oyeeType" >
<Xs:sequence>
<xs: el ement name="Nunmber" type="xs:integer"/>
<xs:el ement name="FirstName" type="xs:string"/>
<xs: el ement name="Last Nane" type="xs:string"/> o
</ xs: sequence> o
</ xs: conpl exType>
</ xs: schenma>

0 all tellsthe XML parser that the order of <Hol i day/ > and <Enpl oyee/ > is not significant.

O Weusethexsd: dat e datatype, which consist of ayear, month, and day, for <St ar t Dat e/ > and
<EndDat e/ >.

[0 xsd:stringisusedfor thefirst and last name.

We store thisfileashr. xsd.

3.4. Service contract

A service contract is generally expressed as a WSDL [http://www.w3.org/TR/wsdl] file. Note
that in Spring-WS, writing the WSDL by hand is not required. Based on the XSD and some
conventions, Spring-WS can create the WSDL for you, as explained in the section entitled Section 3.6,
“Implementing the Endpoint”. Y ou can skip to the next section if you want to; the remainder of this
section will show you how to write your own WSDL by hand.

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the
schema from the definition, we will use a separate namespace for the WSDL definitions. http: //
myconpany. com hr/ definitions.

11

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

Writing Contract-First Web Services

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="http://schemas. xrm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // nyconpany. com hr/schemas"
xm ns:tns="http://myconpany. conl hr/ definitions"
t ar get Namespace="ht t p: // myconpany. conf hr/ def i ni ti ons" >
<wsdl : types>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<xsd:inport namespace="http:// myconpany. conf hr/schemas" schemaLocati on="hr.xsd{/>
</ xsd: schema>
</ wsdl : t ypes>

Next, we add our messages based on the written schematypes. We only have one message: one with
the <Hol i dayRequest / > we put in the schema:

<wsdl : mressage nane="Hol i dayRequest " >
<wsdl : part el ement ="schema: Hol i dayRequest” name="Hol i dayRequest "/ >
</ wsdl : ressage>

We add the message to a port type as an operation:

<wsdl : port Type name="HumanResource">
<wsdl : operati on nanme="Hol i day" >
<wsdl| : i nput nmessage="tns: Hol i dayRequest" nane="Hol i dayRequest"/ >
</ wsdl : operati on>
</ wsdl : port Type>

That finished the abstract part of the WSDL (the interface, as it were), and |leaves the concrete part.
The concrete part consists of abi ndi ng, which tellsthe client how to invoke the operations you've just
defined; and aser vi ce, which tellsit where to invokeit.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make
sure you use document/literal for the soap: bi ndi ng elements (r pc/ encoded is deprecated), pick a
soapActi on for the operation (in this case htt p: / / myconpany. coni Request Hol i day, but any URI
will do), and determine the | ocat i on URL where you want request to comein (in thiscasehtt p: //

myconpany. com humanr esour ces):

<wsdl : definitions xm ns:wsdl ="http://schemas. xn soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: schema="htt p: // myconpany. conf hr/ schemas"
xm ns:tns="http:// myconpany. coni hr/definitions"
t ar get Nanespace="http:// myconpany. coni hr/ definitions">
<wsdl : t ypes>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<xsd:inport namespace="http://nyconpany. conl hr/ schenmas" O
schemaLocati on="hr. xsd"/ >
</ xsd: schema>
</ wsdl : t ypes>
<wsdl : mressage nane="Hol i dayRequest " > O
<wsdl : part el ement ="schema: Hol i dayRequest” name="Hol i dayRequest "/ > O
</ wsdl : mressage>
<wsdl : port Type nane="HunmanResource"> O
<wsdl : operati on name="Hol i day" >
<wsdl : i nput message="t ns: Hol i dayRequest" nane="Hol i dayRequest"/> o
</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="HunmanResour ceBi ndi ng" type="tns: HunenResour ce" > 0o
<soap: bi ndi ng styl e="docunent" O
transport="http://schemas. xm soap. or g/ soap/ http"/> O

12

Writing Contract-First Web Services

<wsdl : operati on nanme="Hol i day" >
<soap: operati on soapAction="http://nmyconpany. com Request Hol i day"/ > O
<wsdl : i nput name="Hol i dayRequest ">
<soap: body use="literal"/> O
</ wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nane="HunmanResour ceServi ce">
<wsdl : port bi ndi ng="t ns: HumanResour ceBi ndi ng" name="HumanResour cePort "> o
<soap: address | ocati on="http://| ocal host: 8080/ hol i dayServi ce/"/> o
</ wsdl : port>
</ wsdl : servi ce>
</ wsdl : definitions>

We import the schema defined in Section 3.3, “ Data Contract”.

We define the Hol i dayRequest message, which gets used in the por t Type.

The Hol i dayRequest typeisdefined in the schema.

We define the HumanResour ce port type, which gets used in the bi ndi ng.

We define the HumanResour ceBi ndi ng binding, which gets used in the port .

We use adocument/literal style.

Thelitera htt p: // schemas. xm soap. or g/ soap/ ht t p signifiesa HTTP transport.

The soapAct i on attribute signifies the soaPActi on HTTP header that will be sent with every
request.

Thehttp://1 ocal host: 8080/ hol i dayServi ce/ addressisthe URL where the Web service can
be invoked.

O Oo0oo0oo0ooogd

|

Thisisthe final WSDL. We will describe how to implement the resulting schema and WSDL in the
next section.

3.5. Creating the project

Inthissection, wewill beusing Maven3[http://maven.apache.org/] to createtheinitial project structure
for us. Doing so is not required, but greatly reduces the amount of code we have to write to setup our
HolidayService.

The following command creates a Maven3 web application project for us, using the Spring-WS
archetype (that is, project template)

nmvn archetype: create -DarchetypeG oupl d=or g. spri ngframework. ws \
- DarchetypeArtifact! d=spring-ws-archetype \
- Dar chet ypeVer si on=2. 1. 4. RELEASE \
- Dgr oupl d=com myconpany. hr \
-Dartifactld=holidayService

This command will create a new directory called hol i dayServi ce. In this directory, there is a
"src/ mai n/ webapp' directory, which will contain the root of the WAR file. You will find the
standard web application deployment descriptor * VEB- | NF/ web. xm ' here, which defines a Spring-
WS MessageDi spat cher Ser vl et and maps all incoming requests to this servlet.

<web-app xm ns="http://java. sun.com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun.com xm / ns/j 2ee
http://java. sun. com xm / ns/j 2ee/ web- app_2_4. xsd"
version="2.4">

13

http://maven.apache.org/
http://maven.apache.org/

Writing Contract-First Web Services

<di spl ay- nane>MyConpany HR Hol i day Servi ce</di spl ay- nane>

<!-- take especial notice of the name of this servliet -->
<servl et >

<servl et - nane>spri ng- ws</ servl et - nane>

<servl et-cl ass>org. springframewor k. ws. transport. http. MessageDi spat cher Servl et </ seryl et - cl ass>
</ servl et>

<servl et - mappi ng>
<servl et - nane>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In addition to the above ' VEB- | NF/ web. xni * file, you will also need another, Spring-WS-specific
configuration file, named ' WEB- | NF/ spri ng-ws-servl et. xm ' . This file contains all of the Spring-
WS-specific beans such as EndPoi nt's, WebSer vi ceMessageRecei vers, and suchlike, and is used
to create a new Spring container. The name of this file is derived from the name of the
attendant servlet (in this case ' spring-ws') with' -servl et. xm ' appended to it. So if you defined
a MessageDi spat cher Servl et with the name ' dynanite', the name of the Spring-WS-specific
configuration file would be' WEB- | NF/ dynani te-servl et. xm ' .

(Y ou can see the contents of the' WEB- | NF/ spri ng-ws-servl et. xm ' filefor thisexamplein 7?7?.)

Once you had the project structure created, you can put the schema and wsdl from previous section
into' VEB- | NF/* folder.

3.6. Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. An endpoint is
typically created by annotating a class with the @ndpoi nt annotation. In this endpoint class, you will
create one or more methods that handle incoming request. The method signatures can be quite flexible:
you can include just about any sort of parameter type related to the incoming XML message, as will
be explained later.

3.6.1. Handling the XML Message

In this sample application, we are going to use JDom [http://www.jdom.org] to handle the XML
message. We are also using XPath [http://www.w3schools.com/xpath/], because it allows us to select
particular parts of the XML JDOM tree, without requiring strict schema conformance.

package com nyconpany. hr. ws;

i nport java.text.Sinpl eDat eFor nat ;
i nport java.util.Date;

i nport org. springfranework. beans. f act ory. annot ati on. Aut owi r ed;

i nport org. springfranework.ws. server. endpoi nt. annot at i on. Endpoi nt;

i mport org.springframework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;

i nport org.springfranework.ws. server. endpoi nt . annot at i on. Request Payl oad;

i mport com nyconpany. hr. servi ce. HumanResour ceSer vi ce;
i nport org.jdom El enent;

i mport org.jdom JDOVExcepti on;

i mport org.jdom Nanespace;

i nport org.jdom xpat h. XPat h;

@ndpoi nt O

14

http://www.jdom.org
http://www.jdom.org
http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

Writing Contract-First Web Services

public class HolidayEndpoint {
private static final String NAMESPACE URI = "http://myconpany. conl hr/schemas";
private XPath start Dat eExpression;
private XPath endDat eExpr essi on;
private XPath nanmeExpression;
private HumanResour ceServi ce humanResour ceServi ce;
@\ut owi r ed
publ i ¢ Hol i dayEndpoi nt (HumanResour ceServi ce humanResour ceSer vi ce) O
t hrows JDOVException {
t hi s. hunanResour ceSer vi ce = humanResour ceSer vi ce;

Nanmespace nanespace = Nanespace. get Nanespace("hr", NAMESPACE URI);

st art Dat eExpressi on = XPat h. new nstance("//hr: StartDate");
st art Dat eExpr essi on. addNanmespace(hanespace) ;

endDat eExpr essi on = XPat h. new nstance("//hr: EndDate");
endDat eExpr essi on. addNanespace(nanmespace) ;

naneExpressi on = XPat h. newi nst ance("concat (//hr: FirstNane,' ',//hr:LastNane)");
nanmeExpr essi on. addNanmespace(nanespace) ;
}
@Payl| oadRoot (nanespace = NAMESPACE_URI, |ocal Part = "Hol i dayRequest") O
public void handl eHol i dayRequest (@equest Payl oad El enent hol i dayRequest) O
throws Exception {
Si npl eDat eFor mat dat eFor mat = new Si npl eDat eFor nat ("yyyy- Mt dd") ;
Date startDate = dat eFornat. parse(start Dat eExpression. val ueX (hol i dayRequest));
Dat e endDat e = dat eFor mat . par se(endDat eExpr essi on. val ueX (hol i dayRequest));
String nane = naneExpression. val ue (hol i dayRequest);
humanResour ceSer vi ce. bookHol i day(startDate, endDate, nane);
}

The Hol i dayEndpoi nt is annotated with @ndpoi nt . This marks the class as a special sort of
@onponent , suitable for handling XML messagesin Spring-WS, and also making it eligible for
suitable for component scanning.

The Hol i dayEndpoi nt requires the HumanResour ceSer vi ce business service to operate, so
we inject the dependency via the constructor and annotate it with @ut owi red. Next, we set
up XPath expressions using the JDOM API. There are three expressions. //hr: Start Dat e
for extracting the <Start Date> text value, //hr: EndDate for extracting the end date and
concat (//hr:FirstNane,' ',//hr:LastNane) for extracting and concatenating the names of
the employee.

The @rayl oadRoot annotation tells Spring-WS that the handl eHol i dayRequest method is
suitablefor handling XML messages. The sort of message that thismethod can handleisindicated
by the annotation values, in this case, it can handle XML elementsthat have the Hol i dayRequest
local part and the http://nycompany. cont hr/ schermas hamespace. More information about
mapping messages to endpointsis provided in the next section.

Thehandl eHol i dayRequest (. .) method isthe main handling method method, which gets passed
with the <Hol i dayRequest / > element from theincoming XML message. The @equest Payl oad
annotation indicates that the hol i dayRequest parameter should be mapped to the payload of
the request message. We use the XPath expressions to extract the string values from the XML

15

Writing Contract-First Web Services

messages, and convert these valuesto Dat e objectsusing asi npl eDat eFor mat . With thesevalues,
we invoke a method on the business service. Typically, thiswill result in a database transaction
being started, and some records being altered in the database. Finally, we define avoi d return
type, which indicatesto Spring-WSthat we do not want to send aresponse message. |f we wanted
aresponse message, we could have returned a JDOM Element that represents the payload of the

response message.

Using JDOM s just one of the options to handle the XML: other options include DOM, dom4j,
XOM, SAX, and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JBX, and
XStream, asis explained in the next chapter. We chose JDOM because it gives us access to the raw
XML, and because it is based on classes (not interfaces and factory methods as with W3C DOM and
domdj), which makes the code less verbose. We use X Path because it is less fragile than marshalling
technologies: we don't care for strict schema conformance, as long as we can find the dates and the
name.

Because we use JDOM, we must add some dependencies to the Maven pom xmi , which isin the root
of our project directory. Here is the relevant section of the POM:

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf ramewor k. ws</ gr oupl d>
<artifactld>spring-ws-core</artifactld>
<versi on>2. 1. 4. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j donx/ gr oupl d>
<artifactld>jdonk/artifactld>
<ver si on>1. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>jaxen</artifactld>
<versi on>1. 1</ versi on>
</ dependency>
</ dependenci es>

Here is how we would configure these classes in our spring-ws-servlet.xm Spring XML
configuration file, by using component scanning. We al so instruct Spring-WS to use annotation-driven
endpoints, with the <sws: annot at i on- dri ven> element.

<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xm ns: sws="htt p://wwm. spri ngframewor k. or g/ scherma/ web- servi ces"
xsi : schemaLocati on="htt p://wwmv. spri ngframework. or g/ scherma/ beans http://wwmv springframewor k. or g/ schen
http://ww. spri ngframework. or g/ schema/ web- servi ces http://ww. springframework. or g/ schema/ web- servi ce
htt p: // ww. spri ngfranewor k. or g/ schenma/ cont ext http://ww. springfranmework. or g/ schema/ cont ext/ spri ng-c

<cont ext : conponent - scan base- package="com nyconpany. hr"/>
<sws: annot ati on-driven/>

</ beans>

3.6.2. Routing the Message to the Endpoint

As part of writing the endpoint, we also used the @ay! oadRoot annotation to indicate which sort of
messages can be handled by the handl eHol i dayRequest method. In Spring-WS, this process is the

16

Writing Contract-First Web Services

responsibility of an Endpoi nt Mappi ng. Here we route messages based on their content, by using a
Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng. The annotation used above:

@rayl oadRoot (nanmespace = "http://myconpany. conl hr/schemas", |ocal Part = "Hol i dayRequest")

basically means that whenever an XML message is received with the namespace http://
myconpany. cont hr/ schemas and the Hol i dayRequest local name, it will be routed to the
handl eHol i dayRequest method. By using the <sws:annotation-driven> element in our
configuration, we enable the detection of the @ayl oadRoot annotations. It is possible (and quite
common) to have multiple, related handling methods in an endpoint, each of them handling different
XML messages.

There are aso other ways to map endpoints to XML messages, which will be described in the next
chapter.

3.6.3. Providing the Service and Stub implementation

Now that we have the Endpoint, we need HurmanResour ceSer vi ce and its implementation for use by
Hol i dayEndpoi nt .

package com nmyconpany. hr. servi ce;
import java.util.Date;

public interface HumanResourceService {
voi d bookHol i day(Date startDate, Date endDate, String nane);

}

For tutorial purposes, we will use a simple stub implementation of the HumanResour ceSer vi ce.

package com myconpany. hr. servi ce;
i nport java.util.Date;

i nport org.springfranework. st ereotype. Servi ce;

@vervi ce O
public class StubHumanResourceService inplenents HumanResour ceService {
public void bookHol i day(Date startDate, Date endDate, String nanme) {

System out. println("Booking holiday for [" + startDate + "-" + endDate + "] for ["|+ nane +

}

[0 ThestubHumanResour ceSer vi ce iSannotated with @er vi ce. This marks the class as a business
facade, which makes this a candidate for injection by @ut owi r ed in Hol i dayEndpoi nt .

3.7. Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need
to write aWSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is
how we define the generation:

<sws: dynam c-wsdl id="holiday"
port TypeNanme="HumanResour ce"
| ocationUri="/holidayServicel"
t ar get Nanespace="htt p:// myconpany. coni hr/ defi nitions">

o I o |

17

"]

Writing Contract-First Web Services

<sws: xsd | ocati on="/WEB-| NF/ hr. xsd"/> 0
</ sws: dynam c- wsdl >

[0 Theid determines the URL where the WSDL can be retrieved. In this case, the id is hol i day,
which means that the WSDL can be retrieved as hol i day. wsdl in the servlet context. The full
URL will typically behtt p: //1 ocal host : 8080/ hol i daySer vi ce/ hol i day. wsdl .

0 Next, we set the WSDL port type to be HumanResour ce.

0 Weset thelocation where the service can bereached: / hol i daySer vi ce/ . Weuse arelative URI
and we instruct the framework to transform it dynamically to an absolute URI. Hence, if the
service is deployed to different contexts we don't have to change the URI manually. For more
information, please refer to Section 5.3.1.1, “Automatic WSDL exposure”

For the location transformation to work, we need to add an init parameter to spri ng- ws servlet
inweb. xm :

<init-paranp
<par am nanme>t r ansf or mMAédl Locat i ons</ par am nane>
<par am val ue>t r ue</ par am val ue>

</init-paranm>

O We define the target namespace for the WSDL definition itself. Setting this attribute is not
required. If not set, the WSDL will have the same namespace as the XSD schema.

[0 Thexsd element refersto the human resource schemawe defined in Section 3.3, “ Data Contract”.
We simply placed the schema in the VeB- | NF directory of the application.

You can create a WAR file using mvn ingtall. If you deploy the application (to Tomcat, Jetty,
etc.), and point your browser at this location [http://localhost:8080/holiday Service/holiday.wsdl], you
will see the generated WSDL. This WSDL is ready to be used by clients, such as soapUl [http://
www.soapui.org/], or other SOAP frameworks.

That concludes thistutorial. The tutorial code can be found in the full distribution of Spring-WS. The
next step would beto look at the echo sample application that is part of the distribution. After that, look
at the airline sample, which isabit more complicated, because it uses JAXB, WS-Security, Hibernate,
and atransactional service layer. Finally, you can read the rest of the reference documentation.

18

http://localhost:8080/holidayService/holiday.wsdl
http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/
http://www.soapui.org/
http://www.soapui.org/

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring Web Services.
This includes a chapter that discusses the parts common to both client- and server-side WS, a chapter devoted
to the specifics of writing server-side Web services, a chapter about using Web services on the client-side, and
a chapters on using WS-Security.

19

Chapter 4. Shared components

In this chapter, we will explore the components which are shared between client- and server-side
Spring-WS devel opment. These interfaces and classes represent the building blocks of Spring-WS, so
it isimportant to understand what they do, even if you do not use them directly.

4.1. Web service messages

4.1.1. webSer vi ceMessage

One of the coreinterfaces of Spring Web ServicesisthewbsSer vi ceMessage. Thisinterface represents
a protocol -agnostic XML message. The interface contains methods that provide access to the payload
of the message, in the form of aj avax. xni . t ransf orm Sour ce Or aj avax. xm . transform Resul t .
Sour ce and Resul t are tagging interfaces that represent an abstraction over XML input and output.
Concrete implementations wrap various XML representations, as indicated in the following table.

Sour ce/Result implementation Wraps XML representation
javax.xm .transform dom DOVBour ce or g. w3c. dom Node
javax.xm .transform dom DOVResul t or g. w3c. dom Node
javax.xm .transform sax. SAXSour ce org. xm . sax. | nput Sour ce

org. xm . sax. XM_Reader
javax.xm .transform sax. SAXResul t or g. xm . sax. Cont ent Handl er

javax.xm .transform stream StreanSource java.io.File, java.io.lnputStream

java.io. Reader

javax.xm .transform stream StreanResul t java.io.File, java.io. Qut put St ream

java.io. Witer

In addition to reading from and writing to the payload, a Web service message can write itself to an
output stream.

4.1.2. SoapMessage

The SoapMessage iS a subclass of webServi ceMessage. It contains SOAP-specific methods, such
as getting SOAP Headers, SOAP Faults, etc. Generally, your code should not be dependent on
SoapMessage, because the content of the SOAP Body (the payload of the message) can be obtained via
get Payl oadSour ce() and get Payl oadResul t () inthewebSer vi ceMessage. Only when it is necessary
to perform SOAP-specific actions, such as adding a header, getting an attachment, etc., should you
need to cast WebSer vi ceMessage tO SoapMessage.

4.1.3. Message Factories

Concrete message implementations are created by a WebSer vi ceMessageFact ory. This factory can
create an empty message, or read a message based on an input stream. There are two concrete
implementations of webSer vi ceMessageFact or y; oneis based on SAAJ, the SOAP with Attachments
API for Java, the other based on Axis 2's AXIOM, the AXis Object Model.

20

and

or

or

Shared components

4.1.3.1. saaj SoapMessageFact ory

The Saaj SoapMessageFact or y uses the SOAP with Attachments API for Javato create SoapMessage
implementations. SAAJis part of J2EE 1.4, so it should be supported under most modern application
servers. Hereis an overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version
BEA WebLogic 8 11

BEA WebL ogic 9 1.11.22

IBM WebSphere 6 12

SUN Glassfish 1 13

& Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement all the 1.2 interfaces, but throws a
Unsuppor t edQper at i onExcept i on when called. Spring Web Services has a workaround: it uses SAAJ 1.1 when operating on
WebL ogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. Y ou wire up a Saaj SoapMessageFact ory like so:

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFactory" [>

Note

SAAJisbased on DOM, the Document Object Model. Thismeansthat all SOAP messages
are stored in memory. For larger SOAP messages, this may not be very performant. In that
case, the Axi onBoapMessageFact or y might be more applicable.

4.1.3.2. Axi onBoapMessageFact ory

The Axi onSoapMessageFactory uses the AXis 2 Object Model to create SoapMessage
implementations. AXIOM isbased on StAX, the Streaming API for XML. StAX providesa pull-based
mechanism for reading XML messages, which can be more efficient for larger messages.

To increase reading performance on the Axi onSoapMessageFact ory, you can set the payloadCaching
property to false (default istrue). Thiswill read the contents of the SOAP body directly from the socket
stream. When this setting is enabled, the payload can only be read once. This means that you have to
make sure that any pre-processing (logging etc.) of the message does not consumeit.

Y ou use the Axi onBoapMessageFact ory as follows:

<bean i d="nessageFactory" cl ass="org. springfranmewor k. ws. soap. axi om Axi onSoapMessageFact ory{ >
<property nanme="payl oadCachi ng" val ue="true"/>
</ bean>

In addition to payload caching, AXIOM also supports full streaming messages, as defined in the
St r eam ng\WebSer vi ceMessage. This means that the payload can be directly set on the response
message, rather than being written to aDOM tree or buffer.

Full streaming for AXIOM is used when a handler method returns a JAXB2-supported object. It will
automatically set this marshalled object into the response message, and write it out to the outgoing
socket stream when the response is going out.

For more information about full streaming, refer to the classlevel Javadoc for
St reani ng\WebSer vi ceMessage and St r eani ngPay! oad.

21

Shared components

41.3.3.SOAP 1.10r1.2

Both the Saaj SoapMessageFact ory and the Axi onSoapMessageFact ory have a soapV ersion property,
where you can inject a SoapVer si on constant. By default, the version is 1.1, but you can set it to 1.2
like so:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns:util="http://ww.springfranmework. org/schema/util"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schena/ uti |
http://ww. springframework. org/ schema/util/spring-util-2.0.xsd">

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFact ory"
<property nanme="soapVersion">
<util:constant static-field="org.springfranework.ws.soap. SoapVer si on. SOAP_12"/ >
</ property>

</ bean>

</ beans>

In the example above, we define a Saaj SoapMessageFact ory that only accepts SOAP 1.2 messages.
Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not
backwards compatible with 1.1 because it uses a different XML namespace. Other major
differences between SOAP 1.1 and 1.2 include the different structure of a Fault, and the
fact that soaPAct i on HTTP headers are effectively deprecated, thought they still work.

One important thing to note with SOAP version numbers, or WS-* specification version
numbers in general, is that the latest version of a specification is generally not the most
popular version. For SOAP, thismeansthat currently, thebest versiontouseis1.1. Version
1.2 might become more popular in the future, but currently 1.1 isthe safest bet.

4.1.4. MessageCont ext

Typically, messages come in pairs: a request and a response. A request is created on the client-side,
which is sent over some transport to the server-side, where aresponse is generated. This response gets
sent back to the client, where it isread.

In Spring Web Services, such a conversation is contained in a MessageCont ext , which has properties
to get request and response messages. On the client-side, the message context is created by the
VebSer vi ceTenpl at e. Onthe server-side, the message context isread from the transport-specific input
stream. For example, in HTTP, it is read from the Ht t pSer vI et Request and the response is written
back to the Ht t pSer vl et Response.

4.2. Transport Cont ext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why,
for instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but
rather by mesage content.

22

Shared components

However, sometimes it is necessary to get access to the underlying transport, either on the client or
server side. For this, Spring Web Services has the Tr anspor t Cont ext . The transport context allows
accessto the underlying webSer vi ceConnect i on, whichtypically isaHt t pSer vl et Connect i on onthe
server side; or aHt t pUr | Connect i on OF ConmonsHt t pConnect i on on the client side. For example, you
can obtain the |P address of the current request in a server-side endpoint or interceptor like so:

Transport Cont ext context = Transport Cont ext Hol der. get Transport Cont ext () ;

Ht t pSer vl et Connecti on connection = (HttpServl et Connecti on)context. get Connection();
Ht t pSer vl et Request request = connection. get Htt pServl et Request () ;

String i pAddress = request. get Renot eAddr () ;

4.3. Handling XML With XPath

One of the best ways to handle XML isto use XPath. Quating [effective-xml], item 35:

XPath is a fourth generation declarative language that alows you to specify which
nodes you want to process without specifying exactly how the processor is supposed
to navigate to those nodes. X Path's datamodel isvery well designed to support exactly
what almost all developers want from XML. For instance, it merges al adjacent
text including that in CDATA sections, allows values to be calculated that skip over
comments and processing instructions™ and include text from child and descendant
elements, and requires all external entity referencesto be resolved. In practice, X Path
expressions tend to be much more robust against unexpected but perhapsinsignificant
changes in the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use X Path within your application: the faster XPat hExpr essi on
or the more flexible XPat hTenpl at e.

4.3.1. XPat hExpr essi on

The xPat hExpr essi on is an abstraction over a compiled XPath expression, such as the Java 5
j avax. xn . xpat h. XPat hExpr essi on, or the Jaxen XpPath class. To construct an expression in an
application context, there is the XPat hExpr essi onFact or yBean. Here is an example which uses this
factory bean:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ schena/ beans
http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd" >

<bean i d="nanmeExpressi on" class="org. springframework. xm . xpat h. XPat hExpr essi onFact or yBean"
<property nanme="expression" val ue="/Cont acts/ Contact/Nane"/>
</ bean>

<bean i d="nyEndpoi nt" cl ass="sanpl e. MyXPat hCl ass" >
<constructor-arg ref="nameExpressi on"/>

</ bean>

</ beans>

The expression above does not use namespaces, but we could set those using the namespaces property
of the factory bean. The expression can be used in the code as follows:

package sanpl e;

23

Shared components

public class MyXPat hd ass {
private final XPathExpressi on nameExpression;

public MyXPat hCl ass(XPat hExpr essi on nameExpressi on) {
t hi s. naneExpr essi on = naneExpr essi on;

}

public void doXPat h(Docunent docurent) {
String nane = naneExpression. eval uat eAsStri ng(docunent. get Docunent El enent ());
Systemout. println("Nanme: " + nane);

For amore flexible approach, you can use aNodeMapper , which is similar to the Rowvapper in Spring's
JDBC support. The following example shows how we can use it:

package sanpl e;
public class MyXPat hCl ass {
private final XPathExpressi on contact Expression;

publ i c MyXPat hCl ass(XPat hExpr essi on cont act Expressi on) {
t hi s. cont act Expressi on = cont act Expr essi on;

}

public void doXPat h(Docunent docunent) {
Li st contacts = contact Expression. eval uat e(docunent,
new NodeMapper () {
public oject mapNode(Node node, int nodeNun) throws DOVException {
El ement contact El enent = (El emrent) node;

El ement naneEl ement = (El enent) contact El enent . get El ement sByTagNane(" Nane").|ten(0);
El ement phoneEl enent = (El ement) contact El enent . get El enent sByTagNanme(" Phone").iten(0);
return new Cont act (naneEl enent . get Text Content (), phoneEl enent . get Text Content());

}
5)s

/1 do something with |ist of contact objects

Similar to mapping rowsin Spring JDBC's RowMapper , €ach result node is mapped using an anonymous
inner class. In this case, we create a Cont act object, which we use later on.

4.3.2. XPat hTenpl at e

The xPat hExpr essi on only allowsyou to evaluate asingle, pre-compiled expression. A moreflexible,
though slower, alternativeisthe xpat hTenpl at e. This classfollows the common template pattern used
throughout Spring (JdbcTemplate, InsTemplate, etc.). Here is an example:

package sanpl e;

public class MyXPat hC ass {
private XPathQperations tenplate = new Jaxpl3XPat hTenpl ate();
public void doXPat h(Source source) {

String nane = tenpl ate. eval uateAsString("/ Contacts/ Contact/Nane", request);
/! do something with name

24

Shared components

4.4. Message Logging and Tracing

When developing or debugging aWeb service, it can be quite useful to look at the content of a (SOAP)
message when it arrives, or just before it is sent. Spring Web Services offer this functionality, viathe
standard Commons Logging interface.

Caution

Make sure to use Commons Logging version 1.1 or higher. Earlier versions have class
loading issues, and do not integrate with the Log4J TRACE level.

To log al server-side messages, simply set the or g. spri ngf r amewor k. ws. ser ver . MessageTr aci ng
logger to level DEBUG or TRACE. On the debug level, only the payload root element
is logged; on the TRACE level, the entire message content. If you only want to log
sent messages, use the org. springframework.ws. server. MessageTraci ng. sent |Ogger; or
org. springframewor k. ws. server. MessageTr aci ng. r ecei ved t0 l0g received messages.

On the client-side, similar loggers exist: or g. spri ngf ramewor k. ws. cl i ent. MessageTr aci ng. sent

and or g. spri ngf ramewor k. ws. cl i ent . MessageTr aci ng. r ecei ved.

Hereisan examplel og4j . properti es configuration, logging the full content of sent messages on the
client side, and only the payload root element for client-side received messages. On the server-side,
the payload root is logged for both sent and received messages.

| 0g4j . r oot Cat egor y=I NFO, st dout
| og4j . | ogger. org. springfranmework. ws. client. MessageTraci ng. sent =TRACE
| og4j .| ogger. org. springfranework. ws. client.MessageTraci ng. recei ved=DEBUG

| og4j .| ogger. org. springfranmework. ws. server. MessageTr aci ng=DEBUG
| 0g4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender . st dout . | ayout =or g. apache. | og4j . Patt er nLayout
| 0g4j . appender. st dout . | ayout. Conversi onPattern=% [%{3}] % ¥n

With this configuration, atypical output will be:

TRACE [client. MessageTraci ng. sent] Sent request [<SQOAP-ENV: Envel ope xml ns: SOAP- ENV=". ..

DEBUG [server. MessageTraci ng. recei ved] Recei ved request [Saaj SoapMessage {http://exanpl e. con}request]
DEBUG [server. MessageTr aci ng. sent] Sent response [Saaj SoapMessage {http://exanpl e.con}response]

DEBUG [cl i ent. MessageTraci ng. recei ved] Recei ved response [Saaj SoapMessage {http://exanpl e. con}response

25

Chapter 5. Creating a Web service with
Spring-WS

5.1. Introduction

Spring-WS's server-side support is designed around a MessageDi spat cher that dispatches incoming
messages to endpoints, with configurable endpoint mappings, response generation, and endpoint
interception. Endpoints are typically annotated with the @ndpoi nt annotation, and have one or more
handling methods. These methods handle incoming XML request messages by inspecting parts of
the message (typically the payload), and create some sort of response. Y ou annotate the method with
another annotation, typically @ay! oadRoot , to indicate what sort of messagesit can handle.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of
XML handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM,
domd4j, and XOM), SAX or StAX for faster performance, XPath to extract information from the
message, or even marshalling techniques (JAXB, Castor, XMLBeans, JiBX, or XStream) to convert
the XML to objects and vice-versa.

5.2. The MessageDi spat cher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML
messages to endpoints. Spring-WS's MessageDi spat cher is extremely flexible, allowing you to use
any sort of class as an endpoint, aslong asit can be configured in the Spring 10C container. In away,
the message dispatcher resembles Spring'sDi spat cher Ser vl et , the “Front Controller” used in Spring
Web MVC.

The processing and dispatching flow of the essageDi spat cher isillustrated in thefollowing sequence

diagram.
‘MessageDispatcher| EndpointMapping .EndpointAdapter endpoint
dispatchi{request) i | i :
gelEndpoint{request) : : \
n endpoaint } i i
T ppertstendpoint) | ;
C invoke(request, endpoint) | !
E invoke(request) E
: ____response ||
] response 1
___response | |
- |

The request processing workflow in Spring Web Services

26

Creating a Web service with Spring-WS

When aMessageDi spat cher iSset up for use and arequest comes in for that specific dispatcher, said
MessageDi spat cher starts processing the request. The list below describes the complete process a
reguest goes through when handled by a Messagebi spat cher :

1. An appropriate endpoint is searched for using the configured Endpoi nt Mappi ng(s) . If an endpoint
is found, the invocation chain associated with the endpoint (pre-processors, post-processors, and
endpoints) will be executed in order to create a response.

2. An appropriate adapter is searched for the endpoint. The MessageDi spat cher delegates to this
adapter to invoke the endpaint.

3. If aresponseisreturned, itissent onitsway. If no responseisreturned (which could be dueto apre-
Or post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint
exception resolversthat are declared in the application context. Using these exception resolversallows
you to define custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDi spat cher has severa properties, for setting endpoint adapters, mappings, exception
resolvers. However, setting these properties is not required, since the dispatcher will automatically
detect all of these types that are registered in the application context. Only when detection needs to
be overriden, should these properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream and
output stream. As a result, transport specific requests need to read into a MessageCont ext . For
HTTP, this is done with a wbsSer vi ceMessageRecei ver Handl er Adapt er, which is a Spring Web
Handl er | nt er cept or , SO that the MessageDi spat cher canbewiredinastandard Di spat cher Ser vl et .
There is a more convenient way to do this, however, which is shown in Section 5.3.1,
“MessageDi spat cher Servl et ”.

5.3. Transports

Spring Web Services supports multiple transport protocols. The most common isthe HTTP transport,
for which a custom servlet is supplied, but it is also possible to send messages over IMS, and even
email.

5.3.1. MessageDi spat cher Ser vl et

The MessageDi spat cher Ser vl et isastandard Ser vl et which conveniently extends from the standard
Spring Web Di spat cher Ser vl et , and wrapsaMessageDi spat cher . Assuch, it combinesthe attributes
of these into one: as a MessageDi spat cher, it follows the same request handling flow as described in
the previoussection. Asaservlet, thevessageDi spat cher Servl et isconfiguredintheweb. xn of your
web application. Requests that you want the MessageDi spat cher Servl et to handle will have to be
mapped using aURL mappinginthesameweb. xm file. Thisisstandard Java EE servlet configuration;
an example of such aMessageDi spat cher Ser vl et declaration and mapping can be found below.

<web- app>

<servl et >
<servl et - nane>spri ng- ws</ servl et - nanme>
<servl et-cl ass>org. springframewor k. ws. transport. http. MessageDi spat cher Servl et </ seryl et - cl ass>
<l oad- on- st artup>1</1| oad-on-start up>

27

Creating a Web service with Spring-WS

</servl et >

<servl et - mappi ng>
<servl et - nane>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In the example above, all requests will be handled by the' spri ng-ws' MessageDi spat cher Servl et .
This is only the first step in setting up Spring Web Services, because the various component beans
used by the Spring-WS framework also need to be configured; this configuration consists of standard
Spring XML <bean/ > definitions. Because the MessageDi spat cher Servl et is a standard Spring
Di spat cher Servl et, it will look for a file named [servl et-nane] - servl et.xnl in the WEB- | NF
directory of your web application and create the beans defined there in a Spring container. In the
example above, that meansthat it looksfor '/ WEB- | NF/ spri ng-ws-ser vl et. xni . Thisfilewill contain
all of the Spring Web Services beans such as endpoints, marshallers and suchlike.

5.3.1.1. Automatic WSDL exposure

The MessageDi spat cher Servl et will automatically detect any wédl Definition beans defined in
it's Spring container. All such wedl Defi nition beans that are detected will also be exposed via a
W&dl Defi ni ti onHandl er Adapt er ; this is a very convenient way to expose your WSDL to clients
simply by just defining some beans.

By way of an example, consider the following <st at i c- wsdl >definition, defined in the Spring-WS
configuration file (/ VEB- | NF/ [ser vl et - name] - ser vl et . xm). Take notice of the value of the 'i d'
attribute, because this will be used when exposing the WSDL..

<sws:static-wsdl id="orders" |ocation="/WEB-|NF/ wsdl/orders.wsdl"/>

The WSDL defined in the 'or der s. wsdl ' file can then be accessed via GET requests to a URL of the
following form (substitute the host, port and servlet context path as appropriate).

http://1 ocal host: 8080/ spri ng-ws/ orders. wsdl

Note

All wsdl Definition bean definitions are exposed by the MessageDi spat cher Ser vl et
under their bean id (or bean name) with the suffix . wsdl . So if the bean id is echo, the
host name is "server”, and the Servlet context (war name) is "spring-ws', the WSDL can
be obtained viaht t p: / / server/ spri ng- ws/ echo. wsdl

Another nice feature of the MessageDispatcherServiet (or more correctly the
Wsdl Defi ni ti onHandl er Adapt er) isthat it is able to transform the value of the 'l ocati on' of al the
WSDL that it exposes to reflect the URL of the incoming request.

Please note that this'l ocat i on' transformation feature is off by default.To switch this feature on, you
just need to specify an initialization parameter to the MessageDi spat cher Ser vl et , like so:

<web- app>

<servl et >
<servl et - nane>spri ng- ws</ servl et - nane>

28

Creating a Web service with Spring-WS

<servl et -cl ass>org. spri ngfranmework. ws.transport. http. MessageDi spat cher Servl et </ servl et : cl ass>
<i nit-paranr
<par am nane>t r ansf or mMAsd| Locat i ons</ par am nane>
<par am val ue>t rue</ par am val ue>
</init-paran>
</servlet>

<servl et - mappi ng>
<servl et - nanme>spri ng- ws</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

Consult the class-level Javadoc on the wsdl Def i ni ti onHandl er Adapt er classto learn more about the
whole transformation process.

As an dternative to writing the WSDL by hand, and exposing it with <st at i c- wsdl >, Spring Web
Services can also generate aWSDL from an X SD schema. This is the approach shown in Section 3.7,
“Publishing the WSDL". The next application context snippet shows how to create such a dynamic
WSDL file:

<sws: dynami c-wsdl id="orders"
port TypeNanme="COr der s"
| ocationUri="http://|ocal host: 8080/ ordersService/">
<sws: xsd | ocati on="/WEB- | NF/ xsd/ Or der s. xsd"/ >
</ sws: dynam c- wsdl >

The <dynami c- wsdl > builds a WSDL from a XSD schema by using conventions. It iterates over all
el ement elementsfound in the schema, and creates anessage for al elements. Next, it creates WSDL
oper at i on for all messages that end with the defined request or response suffix. The default request
suffix is Request ; the default response suffix is Response, though these can be changed by setting
the requestSuffix and responseSuffix attributes on <dynanmi c-wsdl />, respectively. It also builds a
por t Type, bi ndi ng, and ser vi ce based on the operations.

For instance, if our orders. xsd schema defines the Get Or der sRequest and Get Or der sResponse
elements, <dynani c- wsdl > Will create a Get Or der sRequest and Get Or der sResponse message, and a
Get Or der s operation, whichisput in acor der s port type.

If you want to use multiple schemas, either by includes or imports, you will want to put Commons
XML Schema on the class path. If Commons XML Schemaiis on the class path, the above <dynani c-

wsdl > element will follow all XSD imports and includes, and will inlinetheminthe WSDL asasingle
XSD. This greatly simplifies the deployment of the schemas, which still making it possible to edit
them separately.

The <dynani c-wsdl > element depends on the Defaul t Wédl 11Defi ni tion class. This definition
class uses WSDL providers in the org.springframework.ws.wsdl.wsdl11.provider package and the
Provi der BasedWsdl 4j Def i ni ti on to generateaWSDL thefirst timeitisrequested. Refer to the class-
level Javadoc of these classes to see how you can extend this mechanism, if necessary.

Caution
Even though it can be quite handy to create the WSDL at runtime from your XSDs, there

are a couple of drawbacks to this approach. First off, though we try to keep the WSDL
generation process consistent between releases, thereis still the possibility that it changes

29

Creating a Web service with Spring-WS

(dlightly). Second, the generation isabit slow, though once generated, the WSDL iscached
for later reference.

It is therefore recommended to only use <dynani c- wsdl > during the development stages
of your project. Then, we recommend to use your browser to download the generated
WSDL, storeit in the project, and expose it with <st at i ¢- wsdl >. Thisisthe only way to
be really sure that the WSDL does not change over time.

5.3.2. Wiring up Spring-WS in a Di spat cher Ser vl et

As an dternative to the MessageDi spat cher Servl et, you can wire up a MessageDi spat cher in
a standard, Spring-Web MVC Di spat cher Servl et . By default, the Di spat cher Servl et can only
delegate to Control | ers, but we can instruct it to delegate to a MessageDi spat cher by adding a
WebSer vi ceMessageRecei ver Handl er Adapt er to the servlet's web application context:

<beans>

<bean cl ass="org. springframework.ws.transport. http. WbServi ceMessageRecei ver Handl er Adapter"/ >

<bean cl ass="org. spri ngframewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="defaul t Handl er" ref="nessageDi spatcher"/>

</ bean

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework.ws. soap. server. SoapMessageDi spat cher"/>

<bean cl ass="org. spri ngfranmewor k. web. servl et. nmvc. Si npl eControl | er Handl er Adapter"/ >

</ beans>

Note that by explicitly adding the webSer vi ceMessageRecei ver Handl er Adapt er, the dispatcher
servlet does not load the default adapters, and is unable to handle standard Spring-MV C Cont rol | ers.
Therefore, we add the Si npl eCont r ol | er Handl er Adapt er at the end.

In a similar fashion, you can wire up a W&dl Defi nitionHandl er Adapter to make sure the
Di spat cher Ser vl et can handle implementations of the wédl Def i ni ti on interface:

<beans>
<bean cl ass="org. springframework.ws. transport. http. WebSer vi ceMessageRecei ver Handl er Adapter"/ >
<bean cl ass="org. springframework.ws.transport. http.Wdl DefinitionHandl er Adapter"/>

<bean cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="nmappi ngs" >
<pr ops>
<prop key="*.wsdl ">nmyServi ceDefinition</prop>
</ props>
</ property>
<property name="defaul t Handl er" ref="nessageD spatcher"/>
</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework.ws. soap. server. SoapMessageDi spat cher"/>
<bean id="nyServiceDefinition" class="org. springframework.ws.wsdl.wsdl 11. Si npl eWsdl 11Defi ni ti on">

<prop nanme="wsdl " val ue="/WEB-| NF/ myServi ceDefintion. wsdl"/>
</ bean>

30

Creating a Web service with Spring-WS

</ beans>

5.3.3. JMS transport

Spring Web Services supports server-side IMS handling through the JIM S functionality provided in
the Spring framework. Spring Web Services provides the webSer vi ceMessageli st ener to plug in to
a Messageli st ener Cont ai ner . This message listener requires a WebSer vi ceMessageFact ory to and
MessageDi spat cher to operate. The following piece of configuration shows this:

<beans>

<bean i d="connectionFactory" class="org. apache. acti veng. Acti veMXonnecti onFact ory">
<property nanme="broker URL" val ue="vm//| ocal host ?br oker. persi st ent =f al se"/ >
</ bean>

<bean i d="nessageFactory" class="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean cl ass="org. springframework.jms.|istener. Def aul t Messageli st ener Cont ai ner" >
<property nanme="connectionFactory" ref="connecti onFactory"/>
<property name="desti nati onNane" val ue="Request Queue"/ >
<property nanme="nessageLi stener">
<bean cl ass="org. springfranmewor k. ws. transport.jns. WebSer vi ceMessageli st ener">
<property name="nessageFactory" ref="messageFactory"/>
<property name="nessageReceiver" ref="nmessageD spatcher"/>
</ bean>
</ property>
</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework.ws. soap. server. SoapMessageDi spat cher">
<property name="endpoi nt Mappi ngs" >
<bean
cl ass="org. spri ngframewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi r
<property nanme="defaul t Endpoi nt">
<bean cl ass="com exanpl e. \y/Endpoi nt"/ >
</ property>
</ bean>
</ property>
</ bean>
</ beans>

As an dternative to the webServi ceMessagelistener, Spring Web Services provides a
WebSer vi ceMessageDr i venBean, an EJB MessageDr i venBean. For more information on EJB, refer to
the class level Javadoc of the webSer vi ceMessageDr i venBean.

5.3.4. Email transport

In addition to HTTP and JM S, Spring Web Services also provides server-side email handling. This
functionality is provided through the mai | MessageRecei ver class. This class monitors a POP3 or
IMAP folder, converts the email to awebSer vi ceMessage, sends any response using SMTP. The host
names can be configured through the storeUri, which indicates the mail folder to monitor for requests
(typically a POP3 or IMAP folder), and a transportUri, which indicates the server to use for sending
responses (typically a SMTP server).

How the Mai | MessageRecei ver monitors incoming messages can be configured with a pluggable
strategy: the Moni t ori ngSt r at egy. By default, apolling strategy is used, where theincoming folder is
polled for new messages every fiveminutes. Thisinterval can be changed by setting the pollinglnterval
property on the strategy. By default, al Moni tori ngStrat egy implementations delete the handled
messages; this can be changed by setting the del eteM essages property .

31

Creating a Web service with Spring-WS

As an dternative to the polling approaches, which are quite inefficient, there is a monitoring
strategy that uses IMAP IDLE. The IDLE command is an optional expansion of the IMAP email
protocol that allows the mail server to send new message updates to the mai | MessageRecei ver
asynchronoudly. If you use a IMAP server that supports the IDLE command, you can plug in
the I mapl di eMoni t ori ngSt r at egy into the monitoringStrategy property. In addition to a supporting
server, you will need to use JavaMail version 1.4.1 or higher.

The following piece of configuration shows how to use the server-side email support, overiding the
default polling interval to a value which checks every 30 seconds (30.000 milliseconds):

<beans>
<bean i d="nessageFactory" cl ass="org.spri ngframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="nessagi ngRecei ver" cl ass="org. springfranework.ws.transport. mail.Mi | MessageRecei ver">
<property nanme="nessageFactory" ref="messageFactory"/>
<property name="fronm' val ue="Spring-W5s SCAP Server &l t;server@xanple.com>"/>
<property name="storeUri" val ue="imap://server:s04p@ nap. exanpl e. com | NBOX"/ >
<property name="transportUri" val ue="sntp://sntp.exanple.conm'/>
<property name="nessageReceiver" ref="messageD spatcher"/>
<property name="nonitoringStrategy">
<bean cl ass="org. springframework.ws.transport. mail.nonitor.PollingMnitoringStrategy">
<property name="pol linglnterval" val ue="30000"/>
</ bean>
</ property>
</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework. ws. soap. server. SoapMessageDi spat cher">
<property name="endpoi nt Mappi ngs" >
<bean
cl ass="org. spri ngframewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi r
<property nanme="defaul t Endpoi nt">
<bean cl ass="com exanpl e. \y/Endpoi nt"/ >
</ property>
</ bean>
</ property>
</ bean>
</ beans>

5.3.5. Embedded HTTP Server transport

Spring Web Services provides a transport based on Sun's JRE 1.6 HTTP server [http://java.sun.com/
javase/6/docs/jrefapi/net/httpserver/spec/index.html]. The embedded HTTP Server is a standalone
server that is simple to configure. It lends itself to a lighter alternative to conventional servlet
containers.

When using the embedded HT TP server, no external deployment descriptor is needed (web. xm). You
only need to define an instance of the server and configureit to handleincoming requests. Theremoting
module in the Core Spring Framework contains a convenient factory bean for the HTTP server: the
Si npl eHt t pSer ver Fact or yBean. The most important property is contexts, which maps context paths
to corresponding Ht t pHand| er S.

Spring Web Services provides 2 implementations of the HtpHandl er interface
Wedl DefinitionHttpHandl er and WebServi ceMessageRecei ver Ht t pHandl er. The former maps
an incoming GET request to a wdlDefinition. The latter is responsible for handling
POST requests for web services messages and thus needs a \WbServi ceMessageFact ory
(typically a saaj SoapMessageFactory) and a WbServiceMessageReceiver (typicaly the
SoapMessageDi spat cher) to accomplish its task.

32

http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html
http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html
http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html

Creating a Web service with Spring-WS

To draw paradlels with the servlet world, the contexts property plays the role of serviet
mappings in web. xm and the WebServi ceMessageRecei ver Ht t pHandl er IS the equivaent of a
MessageDi spat cher Ser vl et .

The following snippet shows a simple configuration example of the HTTP server transport:

<beans>
<bean i d="nessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="nmessageRecei ver" class="org. springfranmework.ws. soap. server. SoapMessageDi spat cher" >
<property nanme="endpoi nt Mappi ngs" ref="endpoi nt Mappi ng"/ >
</ bean>

<bean i d="endpoi nt Mappi ng" cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot &
<property nanme="def aul t Endpoi nt" ref="stockEndpoint"/>
</ bean>

<bean id="httpServer" class="org.springfranmework.renpting. support.Sinpl eHt t pServer Fact or yBean" >
<property name="cont exts">
<n’ap>
<entry key="/StockService.wsdl" val ue-ref="wsdl Handl er"/ >
<entry key="/StockService" val ue-ref="soapHandl er"/>
</ map>
</ property>
</ bean>

<bean i d="soapHandl er" cl ass="org. springframework.ws.transport. http. WebServi ceMessageRecei ver Ht t pt
<property name="nessageFactory" ref="nmessageFactory"/>
<property nanme="nessageRecei ver" ref="nmessageReceiver"/>
</ bean>

<bean i d="wsdl Handl er" cl ass="org. spri ngframework.ws.transport. http. Wdl DefinitionHttpHandl er">
<property nanme="definition" ref="wsdl Definition"/>

</ bean>
</ beans>
For more information on the Si npl eHt t pSer ver Fact or yBean, refer to

the Javadoc [http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/
support/SimpleHttpServerFactoryBean.html].

5.3.6. XMPP transport

Finally, Spring Web Services 2.0 introduced support for XMPP, otherwise known as Jabber. The
support is based on the Smack [http://www.igniterealtime.org/projects/smack/index.jsp] library.

Spring Web Services support for XMPP is very similar to the other transports: there is a a
XnppMessageSender for the WebSer vi ceTenpl at e and and a XnppMessageRecei ver to use with the
MessageDi spat cher .

The following example shows how to set up the server-side XM PP components:

<beans>
<bean i d="nessageFactory" cl ass="org.spri ngfranmework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="connection" class="org.springframework.ws.transport.xnpp. support. XnmppConnect | onFact or yBe
<property name="host" val ue="j abber.org"/>
<property name="user nane" val ue="usernane"/>
<property nanme="password" val ue="password"/>
</ bean>

33

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html
http://www.igniterealtime.org/projects/smack/index.jsp
http://www.igniterealtime.org/projects/smack/index.jsp

Creating a Web service with Spring-WS

<bean i d="nessagi ngRecei ver" cl ass="org. spri ngfranmework.ws.transport.xnmpp. XnppMessageRecei ver" >

<property nanme="nessageFactory" ref="nessageFactory"/>
<property nanme="connection" ref="connection"/>
<property name="nessageReceiver" ref="nmessageD spatcher"/>

</ bean>

<bean i d="nessageDi spatcher" cl ass="org. spri ngfranework. ws. soap. server. SoapMessageDi spat cher">

<property nanme="endpoi nt Mappi ngs" >
<bean

cl ass="org. spri ngframewor k. ws. server . endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi r

<property nanme="def aul t Endpoi nt">
<bean cl ass="com exanpl e. \yEndpoi nt"/>
</ property>
</ bean>
</ property>

</ bean>

</ beans>

5.4. Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which istypically defined by a business service interface. An endpoint interprets
the XML request message and uses that input to invoke a method on the business service (typicaly).
The result of that service invocation is represented as a response message. Spring-WS has a wide

variety of endpoints, using various ways to handle the XML message, and to create a response.

Y ou create an endpoint by annotating a class with the @ndpoi nt annotation. In the class, you define
one or more methods that handle the incoming XML request, by using a wide variety of parameter
types (such as DOM elements, JAXB2 objects, etc). Y ou indicate the sort of messages a method can
handle by using another annotation (typically @ayl oadRoot).

Consider the following sample endpoint:

package sanpl es;

i mport

i mport
i mport
i mport
i mport

org. w3c. dom El enent ;

org. springfranmewor k. beans. fact ory. annot ati on. Aut owi r ed;

org. spri ngframewor k. ws. server. endpoi nt. annot ati on. Endpoi nt ;
org. springframework. ws. server. endpoi nt. annot at i on. Payl oadRoot ;
or g. springframewor k. ws. soap. SoapHeader ;

@Endpoi nt
public class Annotati onOrder Endpoi nt {

private final OrderService orderService;

@\ut owi r ed
publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {

}

this. order Service = orderServi ce;

@rayl oadRoot (| ocal Part = "order", nanespace = "http://sanples")
public void order(@Request Payl oad El ement orderEl ement) {

Order order = createOrder(orderEl enment);

order Servi ce. creat eOr der (order);

}

@Payl| oadRoot (| ocal Part = "order Request"”, nanespace = "http://sanpl es")
@ResponsePayl oad

34

Creating a Web service with Spring-WS

public O der getOder(@RequestPayl oad O der Request order Request, SoapHeader header) { O
checkSoapHeader For Sonet hi ng(header) ;
return orderService. get Order (orderRequest.getld());

}

O Theclassisannotated with @ndpoi nt , marking it as a Spring-WS endpaint.

O Theconstructor ismarked with @ut owi r ed, sothat the Or der Ser vi ce business serviceisinjected
into this endpoint.

O Theorder methodtakesaEl enent asaparameter, annotated with @equest Payl oad. Thismeans
that the payload of the message is passed on this method as a DOM element. The method has a
voi d return type, indicating that no response message is sent.

For more information about endpoint methods, refer to Section 5.4.1, “@ndpoi nt handling
methods’.

O Theget O der method takes a Or der Request as a parameter, annotated with @request Payl oad
as well. This parameter is a JAXB2-supported object (it is annotated with @m Root El errent).
Thismeans that the payload of the message is passed on to this method as aunmarshalled object.
The SoapHeader type is also given as a parameter. On invocation, this parameter will contain
the SOAP header of the request message. The method is a so annotated with @esponsePay! oad,
indicating that the return value (the o der) is used as the payload of the response message.

For more information about endpoint methods, refer to Section 5.4.1, “@ndpoi nt handling
methods’.

O Thetwo handling methods of this endpoint are marked with @ayl oadRoot , indicating what sort
of request messages can be handled by the method: the get & der method will be invoked for
requests with a or der Request local name and a ht t p: / / sanpl es hamespace URI; the or der
method for requests with aor der local name.

For more information about @ay! oadRoot , refer to Section 5.5, “Endpoint mappings”.

To enable the support for @ndpoi nt and related Spring-WS annotations, you will need to add the
following to your Spring application context:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: sws="http://wwmv. spri ngframework. or g/ scherma/ web- servi ces"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranework. or g/ schena/ web- servi ces
http://ww. springframework. or g/ scherma/ web- servi ces/ web- servi ces- 2. 0. xsd">

<sws: annot ati on-driven />

</ beans>

In the next couple of sections, a more elaborate description of the @ndpoi nt programming model is
given.

Note

Endpoints, like any other Spring Bean, are scoped as a singleton by default, i.e. one
instance of the bean definition is created per container. Being a singleton implies that

35

Creating a Web service with Spring-WS

more than one thread can use it at the same time, so the endpoint has to be thread
safe. If you want to use a different scope, such as prototype, refer to the Spring
Reference documentation [http://static.springframework.org/spring/docs/2.5.x/reference/
beans.html#beans-factory-scopes] .

Notethat all abstract base classes provided in Spring-WS are thread safe, unless otherwise
indicated in the class-level Javadoc.

5.4.1. @ndpoi nt handling methods

In order for an endpoint to actually handle incoming XML messages, it needs to have one or more
handling methods. Handling methods can take wide range of parametersand return types, but typically
they have one parameter that will contain the message payload, and they return the payload of the
response message (if any). You will learn which parameter and return types are supported in this
section.

Toindicatewhat sort of messagesamethod can handl e, the method istypically annotated with either the
@ayl oadRoot Or @oapAct i on annotation. Y ou will learn more about these annotationsin Section 5.5,
“Endpoint mappings’.

Here is an example of a handling method:

@Payl oadRoot (| ocal Part = "order", nanespace = "http://sanpl es")
public void order(@Request Payl oad El ement orderEl ement) {
Order order = createOrder(orderEl ement);

or der Servi ce. creat eOr der (order);

}

Theor der method takesaEl enent as aparameter, annotated with @equest Payl oad. This means that
the payload of the message is passed on this method asa DOM element. The method hasavoi d return
type, indicating that no response message is sent.

5.4.1.1. Handling method parameters

The handling method typically has one or more parameters that refer to various parts of the incoming
XML message. Most commonly, the handling method will have a single parameter that will map to
the payload of the message, but it is also possible to map to other parts of the request message, such
as a SOAP header. This section will describe the parameters you can use in your handling method
signatures.

To map a parameter to the payload of the request message, you will need to annotate this parameter
with the @equest Payl oad annotation. This annotation tells Spring-WS that the parameter needs to be
bound to the request payload.

The following table describes the supported parameter types. It shows the supported types, whether
the parameter should be annotated with @request Payl oad, and any additional notes.

Name Supported parameter @equest Payl oad Additional notes
types required?

and sub-interfaces
(DOVBour ce, SAXSour ce,
St r eanBour ce, and
St AXSour ce)

36

TrAX javax. xm . transf orm Sour ce O Enabled by default.

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes

Creating a Web service with Spring-WS

Name

W3C DOM

domdj

JDOM

XOM

StAX

Supported
types

parameter @Request Payl oad
required?

or g. w3c. dom El enent O

org. don¥j . El enent O

org. jdom El enent O

nu. xom El emrent 0

javax. xm . stream XM.St r eanReader []
and

javax. xm . stream XM_LEvent Reader

Additional notes

Enabled by default

Enabled when domd4j ison
the classpath.

Enabled when JDOM is
on the classpath.

Enabled when XOM ison
the classpath.

Enabled when StAX ison
the classpath.

XPath

double, O
or g. w3c. Node,

org. w3c. dom Nodeli st,

or type tha can

be converted from a

String by a Spring 3

conversion service [http://
static.springsource.org/
spring/docs/3.0.x/spring-
framework-reference/

html/
validation.html#core-
convert], and

is annotated
@XPat hPar am

Any boolean,
String,

that
with

default,
54111,

Enabled by
see Section
¥ @Pat hPar am'.

M essage context

org. springfranmewor k. ws. cont ext . Mes[slageCont ext

Enabled by defavllt.

SOAP

or g. springframewor k. ws. soap. SoapMeSlsage,

org. spri ngframewor k. ws. soap. SoapBody,

org. springfranewor k.

ws
ws
ws. soap. SoapEnvel ope,
ws

org. spri ngf ramewor k.
and

. soap. SoapHeader ,

org. springframewor k. ws. soap. SoapHeader El enent S
when used in combination
with the @oapHeader
annotation.

Enabled by defavllt.

JAXB2

Any type that s O
annotated with

javax. xm . bi nd. annot at i on. Xm Root El enment ,
and

j avax. xm . bi nd. JAXBEI enent .

Enabled when JAXB2 is
on the classpath.

37

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert

Creating a Web service with Spring-WS

Name Supported parameter @request Payl oad Additional notes
types required?
OXM Any type supported O Enabled when the
by a Spring OXM unmarshal l er atribute
Unnar shal | er [http:// of <sws: annot at i on-
static.springsource.org/ driven/ > is specified.

spring/docs/3.0.x/spring-
framework-reference/
html/
oxm.html#d0e26164].

Here are some examples of possible method signatures:

public void handl e(@Request Payl oad El enent el enent) ‘

This method will be invoked with the payload of the request message as a DOM

org. w3c. dom El enent .

° public void handl e(@Request Payl oad DOMSour ce donfSour ce, SoapHeader header) ‘

This method will be invoked with the payload of the request message as a
javax. xm . transf or m dom DOVBour ce. The header parameter will be bound to the SOAP header
of the request message.

° public void handl e(@Request Payl oad MyJaxb2Cbj ect request Obj ect, @Request Payl oad El enent |el ement, Me:

This method will be invoked with the payload of the request message unmarshalled into a
MyJaxb2Qbj ect (which is annotated with @m Root El enent). The payload of the message is aso
given asaDOM El enent . The whole message context is passed on as the third parameter.
Asyou can see, there are alot of possibilities when it comes to defining handling method signatures.
It is even possible to extend this mechanism, and to support your own parameter types. Refer to the
class-level Javadoc of Def aul t Met hodEndpoi nt Adapt er and Met hodAr gunent Resol ver to see how.

5.4.1.1.1. @Pat hPar am

One parameter type needs some extra explanation: @pPat hParam The idea here is that you simply
annotate one or more method parameter with an XPath expression, and that each such annotated
parameter will be bound to the evaluation of the expression. Here is an example:

package sanpl es;

i nport javax.xm .transform Source;

i mport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt;

i nport org.springfranework.ws. server. endpoi nt. annot at i on. Nanespace;

i mport org.springframework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;
i mport org.springframework. ws. server. endpoi nt. annot ati on. XPat hPar am

@ndpoi nt
public class Annotati onOr der Endpoi nt {

private final OrderService orderService;

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {
this.orderServi ce = order Servi ce;

38

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164

Creating a Web service with Spring-WS

}

@Payl| oadRoot (| ocal Part = "order Request"”, nanespace = "http://sanpl es")
@Nanmespace(prefix = "s", uri="http://sanples")
public O der getOder(@XPathParam("/s:orderRequest/ @d") int orderld) {
Order order = orderService. get Order(orderld);
/'l create source fromorder and return it

}

}

Sinceweusethe prefix 's' in our XPath expression, we must bind it totheht t p: / / sanpl es namespace.
This is accomplished with the @anespace annotation. Alternatively, we could have placed this
annotation on the type-level to use the same namespace mapping for all handler methods, or even the
package-level (in package-i nf o. j ava) to useit for multiple endpoints.

Using the @Pat hPar am you can bind to all the data types supported by XPath:
* boolean or Bool ean

* double or Doubl e

® String

* Node

* NodelLi st

In addition to this list, you can use any type that can be converted from a String by a Spring 3
conversion service [http://stati c.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
validation.html#core-convert].

5.4.1.2. Handling method return types

To send a response message, the handling needs to specify a return type. If no response message is
required, the method can simply declare avoi d return type. Most commonly, the return typeis used to
create the payload of the response message, but it is also possible to map to other parts of the response
message. This section will describe the return types you can use in your handling method signatures.

To map the return value to the payload of the response message, you will need to annotate the method
with the @esponsePayl oad annotation. This annotation tells Spring-WS that the return value needs
to be bound to the response payload.

The following table describes the supported return types. It shows the supported types, whether the
parameter should be annotated with @esponsePayl oad, and any additional notes.

Name Supported return types @responsePayl oad Additional notes
required?
No response voi d O Enabled by default.
TrAX j avax. xnl . transf orm Source O Enabled by default.
and sub-interfaces
(DOVBour ce, SAXSour ce,
St r eanBour ce, and
St AXSour ce)
W3C DOM or g. w3c. dom El enent 0 Enabled by default

39

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert

Creating a Web service with Spring-WS

j avax. xm . bi nd. JAXBEI erent .

spring/docs/3.0.x/spring-
framework-reference/
html/
oxm.html#d0e26096].

Asyou can see, there are alot of possibilities when it comes to defining handling method signatures.
It is even possible to extend this mechanism, and to support your own parameter types. Refer to the
class-level Javadoc of Def aul t Met hodEndpoi nt Adapt er and Met hodRet ur nVal ueHandl er t0 see how.

5.5. Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to
appropriate endpoints. There are some endpoint mappings that are enabled out
of the box, for example, the Payl oadRoot Annot ati onMet hodEndpoi nt Mapping oOr the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, but let's first examine the general concept of an
Endpoi nt Mappi ng.

An Endpoi nt Mappi ng delivers a Endpoi nt I nvocat i onChai n, which contains the endpoint that
matches the incoming request, and may also contain a list of endpoint interceptors that will
be applied to the request and response. When a request comes in, the MessageDi spat cher
will hand it over to the endpoint mapping to let it inspect the request and come up with an
appropriate Endpoi nt | nvocat i onChai n. Then the MessagebDi spat cher will invoke the endpoint and
any interceptors in the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can
mani pul ate the request or the response, or both) isextremely powerful. A lot of supporting functionality
can be built into custom Endpoi nt Mappi ngS. For example, there could be a custom endpoint mapping
that chooses an endpoint not only based on the contents of a message, but also on a specific SOAP
header (or indeed multiple SOAP headers).

40

Name Supported returntypes @responsePayl oad Additional notes
required?
domdj org. domdj . El enent O Enabled when dom4j ison
the classpath.
JDOM org. j dom El enent O Enabled when JDOM is
on the classpath.
XOM nu. xom El enent 0 Enabled when XOM ison
the classpath.
JAXB2 Any type that s O Enabled when JAXB2 is
annotated with on the classpath.
j avax. xm . bi nd. annot ati on. Xm Root El erment ,
and

OXM Any type supported by a 0 Enabled when the
Spring OXM WNar shal | er mar shal | er attribute
[http:// of <sws: annot at i on-
static.springsource.org/ driven/ > is specified.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096

Creating a Web service with Spring-WS

Most endpoint mappings inherit from the Abst r act Endpoi nt Mappi ng, which offers an 'interceptors
property, which is the list of interceptors to use. Endpointinterceptors are discussed in
Section 5.5.2, “Intercepting requests - the Endpoi nt I nt er cept or interface”. Additionaly, thereisthe
‘defaultEndpoint’, which is the default endpoint to use when this endpoint mapping does not result in
amatching endpoint.

Asexplained in Section 5.4, “ Endpoints’, the @ndpoi nt styleallowsyou to handle multiplerequestsin
oneendpoint class. Thisistheresponsibility of the et hodEndpoi nt Mappi ng. Thismapping determines
which method is to be invoked for an incoming request message.

There are two endpoint mappings that can direct requests
to methods: the Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng and the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, both of which are enabled by using
<sws: annot at i on-dri ven/ > in your application context.

The Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng USeS the @ayl oadRoot annotation, with the
| ocal Part and nanespace elements, to mark methods with a particular qualified name. Whenever a
message comes in which has this qualified name for the payload root element, the method will be
invoked. For an example, see above.

Alternatively, the SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng USES the @oapAct i on annotation
to mark methods with a particular SOAP Action. Whenever a message comes in which has this
SOAPAct i on header, the method will be invoked.

5.5.1. WS-Addressing

WS-Addressing specifies atransport-neutral routing mechanism. It isbased on aTo and Act i on SOAP
header, which indicate the destination and intent of the SOAP message, respectively. Additionally,
WS-Addressing allows you to define a return address (for normal messages and for faults), and a
unique message identifier which can be used for correlation . Hereis an example of aWS-Addressing

message:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / www. W3. or g/ 2003/ 05/ soap- envel ope"
xm ns: wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
<SOAP- ENV: : Header >
<wsa: Messagel D>ur n: uui d: 21363e0d- 2645- 4eb7- 8af d- 2f 5eelbb25cf </ wsa: Messagel D>
<wsa: Repl yTo>
<wsa: Addr ess>htt p: / / exanpl e. coni busi ness/ cl i ent 1</ wsa: Addr ess>
</ wsa: Repl yTo>
<wsa: To S: nust Understand="true">http://exanpl e/ com fabri kanx/ wsa: To>
<wsa: Action>http://exanpl e. coni f abri kanf mai | / Del et e</ wsa: Acti on>
</ SOAP- ENV: Header >
<SQAP- ENV: Body>
<f:Delete xm ns:f="http://exanpl e. coni fabrikant'>
<f: maxCount >42</f : maxCount >
</f:Del ete>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

In this example, the destination is set to http://exanpl e/ coni f abri kam while the action is set
tohttp://exanpl e. con f abri kami mai | / Del et e. Additionally, there is a message identifier, and an
reply-to address. By default, thisaddressisthe "anonymous" address, indicating that aresponse should
be sent using the same channel as the request (i.e. the HTTP response), but it can also be another
address, asindicated in this example.

For more information on WS-Addressi ng, see http://en.wikipedia.org/wiki/WS-Addressing.

41

http://en.wikipedia.org/wiki/WS-Addressing

Creating a Web service with Spring-WS

In Spring Web Services, WS-Addressing is implemented as an endpoint mapping.
Using this mapping, you associate WS-Addressing actions with endpoints, similar to the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng described above.

5.5.1.1. Annot at i onAct i onEndpoi nt Mappi ng

The Annot at i onAct i onEndpoi nt Mappi ng is similar to the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, but uses WS-Addressing headers instead of the
SOAP Action transport header.

To use the Annot at i onAct i onEndpoi nt Mappi ng, annotate the handling methods with the @cti on
annotation, similar to the @ayl oadRoot and @soapAct i on annotations described in Section 5.4.1,
“@ndpoi nt handling methods’ and Section 5.5, “Endpoint mappings’. Hereis an example:

package sanpl es;

i mport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt;
i nport org. springfranework. ws. soap. addr essi ng. server. annot ati on. Acti on

@ndpoi nt
public class AnnotationOrder Endpoi nt {
private final OrderService orderService;

publ i ¢ Annot ati onOr der Endpoi nt (Or der Servi ce order Servi ce) {
this.orderServi ce = order Servi ce;

}

@\ction("http://sanpl es/ Request Order")

public O der getOder (O derRequest orderRequest) {
return orderService. get Order (order Request.getld());

}

@Action("http://sanpl es/ CreateOrder")
public void order(Order order) {
or der Servi ce. creat eO der (order);

}

The mapping above routes requests which have a WS-Addressing Action of http://sanpl es/
Request Or der 10 the get Or der method. Requests with ht t p: / / sanpl es/ Cr eat eOr der Will be routed
to the or der method..

By default, the Annot at i onAct i onEndpoi nt Mappi ng supports both the 1.0 (May 2006), and the August
2004 editions of WS-Addressing. These two versions are most popular, and are interoperable with
Axis1land 2, JAX-WS, XFire, Windows Communication Foundation (WCF), and Windows Services
Enhancements (WSE) 3.0. If necessary, specific versions of the spec can be injected into the versions

property.

In addition to the @ct i on annotation, you can annotate the class with the @ddr ess annotation. If set,
the value is compared to the To header property of the incoming message.

Finally, thereisthe messageSenders property, which isrequired for sending response messagesto non-
anonymous, out-of-bound addresses. You can set MessageSender implementations in this property,
the same as you would on the webSer vi ceTenpl at e. See Section 6.2.1.1, “URIs and Transports”.

42

Creating a Web service with Spring-WS

5.5.2. Intercepting requests - the Endpoi nt I nt er cept or interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely
useful when you want to apply specific functionality to certain requests, for example, dealing with
security-related SOAP headers, or the logging of request and response message.

Endpoint interceptors are typically defined by using a <sws;interceptors > element in your
application context. In this element, you can simply define endpoint interceptor beans that apply to
all endpoints defined in that application context. Alternatively, you can use <sws: payl oadRoot > Of
<sws: soapAct i on> elements to specify for which payload root name or SOAP action the interceptor
should apply. For example:

<sws: i nt ercept or s>
<bean cl ass="sanpl es. Myd obal I nterceptor"/>
<sws: payl oadRoot nanespaceUri ="http://ww. exanpl e. conl' >
<bean cl ass="sanpl es. MyPayl oadRoot | nt er ceptor"/ >
</ sws: payl oadRoot >
<sws: soapAction val ue="http://ww. exanpl e. conf SoapActi on">
<bean cl ass="sanpl es. MySoapActi onl nterceptor1"/>
<ref bean="nySoapActi onl nterceptor?2"/>
</ sws: soapActi on>
</ sws:interceptors>

<bean i d="nySoapActi onl nterceptor2" class="sanpl es. M/SoapActi onl nterceptor2"/>

Here, we define one 'global’ interceptor (MG obal I nterceptor) that intercepts all request and
responses. We aso define an interceptor that only applies to XML messages that have the htt p: //
www. exanpl e. comas a payload root namespace. Here, we could have defined al ocal Part attributein
addition tothenanespaceuri tofurther limit the messagestheinterceptor appliesto. Finally, we define
two interceptors that apply when the message has a ht t p: / / ww. exanpl e. coni SoapAct i on SOAP
action. Notice how the second interceptor is actualy a reference to a bean definition outside of the
<i nt er cept or s> element. Y ou can use bean references anywhereinside the <i nt er cept or s> element.

Interceptors must implement the Endpointinterceptor interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used
for handling the request message before the actua endpoint will be executed, one that can be used
for handling a normal response message, and one that can be used for handling fault messages, both
of which will be called after the endpoint is executed. These three methods should provide enough
flexibility to do all kinds of pre- and post-processing.

The handl eRequest (. .) method on the interceptor returns a boolean value. Y ou can use this method
to interrupt or continue the processing of the invocation chain. When this method returnst r ue, the
endpoint execution chain will continue, when it returns f al se, the MessageDi spat cher interprets
this to mean that the interceptor itself has taken care of things and does not continue executing the
other interceptors and the actual endpoint in the invocation chain. The handl eResponse(..) and
handl eFaul t (. .) methods aso have a boolean return value. When these methods return f al se, the
response will not be sent back to the client.

There are a number of standard Endpoi nt | nt er cept or implementations you can use in your Web
service. Additionally, there is the xwsSecuri tyl nt er cept or, Which is described in Section 7.2, “

XwsSecuritylnterceptor ”

43

Creating a Web service with Spring-WS

5.5.2.1. pPayl oadLoggi ngl nt er cept or and SoapEnvel opelLoggi ngl nt er cept or

When developing a Web service, it can be useful to log the incoming and outgoing XML messages.
SWS facilitates this with the Payl oadLoggi ngl nt er cept or and SoapEnvel opelLoggi ngl nt er cept or

classes. The former logsjust the payload of the message to the Commons Logging Log; the latter logs
the entire SOAP envelope, including SOAP headers. The following example shows you how to define
them in an endpoint mapping:

<sws: i nt er cept or s>
<bean cl ass="org. spri ngframework. ws. server. endpoi nt.interceptor. Payl oadLoggi ngl nterceptor"/>
</ sws:interceptors>

</ beans>

Both of these interceptors have two properties. 'logRequest’ and 'logResponse’, which can be set to
f al se to disable logging for either request or response messages.

5.5.2.2. pPayl oadVal i dat i ngl nt er cept or

One of the benefits of using a contract-first development style is that we can use the
schema to validate incoming and outgoing XML messages. Spring-WS facilitates this with the
Pay| oadVal i dat i ngl nt er cept or . Thisinterceptor requires areference to one or more W3C XML or
RELAX NG schemas, and can be set to validate requests or responses, or both.

Note

Note that request validation may sound like a good idea, but makes the resulting Web
servicevery strict. Usually, it is not really important whether the request validates, only if
the endpoint can get sufficient information to fullfill arequest. Validating the responseis
agood idea, because the endpoint should adhere to its schema. Remember Postel's Law:
“Be conservative in what you do; be libera in what you accept from others.”

Here is an example that uses the Payl oadVal i dati ngl nterceptor; in this example, we use the
schema in /WEB- 1 NF/ orders. xsd to validate the response, but not the request. Note that the
Pay| oadVal i dat i ngl nt er cept or can also accept multiple schemas using the schemas property.

<bean i d="validatinglnterceptor"
cl ass="org. spri ngfranmewor k. ws. soap. server. endpoi nt. i nt ercept or. Payl oadVal i dati ngl nterceptor">
<property name="schema" val ue="/WEB-I| NF/ orders. xsd"/ >
<property nanme="val i dat eRequest" val ue="fal se"/>
<property nane="val i dat eResponse" val ue="true"/>
</ bean>

5.5.2.3. Payl oadTr ansf or mi ngl nt er cept or

To transform the payload to another XML format, Spring Web Services offers the
Payl oadTr ansf or mi ngl nterceptor. This endpoint interceptor is based on XSLT style sheets,
and is especialy useful when supporting multiple versions of a Web service: you can
transform the older message format to the newer format. Here is an example to use the

Payl oadTr ansf or mi ngl nt er cept or:

<bean i d="transform nglnterceptor”
cl ass="org. spri ngfranmewor k. ws. server. endpoi nt. i nt er cept or. Payl oadTr ansf or m ngl nt er cept or">
<property name="request Xslt" val ue="/WEB- | NF/ ol dRequests. xslt"/>
<property name="responseXslt" val ue="/WEB- | NF/ ol dResponses. xslt"/>
</ bean>

Creating a Web service with Spring-WS

We are simply transforming requests using / WEB- | NF/ ol dRequest s. xsl t, and response messages
using / VEB- | NF/ ol dResponses. xsl t. Note that, since endpoint interceptors are registered at the
endpoint mapping level, you can simply create a endpoint mapping that applies to the "old style"
messages, and add the interceptor to that mapping. Hence, the transformation will apply only to these
"old style" message.

5.6. Handling Exceptions

Spring-WS provides Endpoi nt Excepti onResol vers to ease the pain of unexpected exceptions
occurring while your message is being processed by an endpoint which matched the request. Endpoint
exception resolvers somewhat resemble the exception mappings that can be defined in the web
application descriptor web. xm . However, they provide amoreflexibleway to handle exceptions. They
provide information about what endpoint was invoked when the exception was thrown. Furthermore,
a programmatic way of handling exceptions gives you many more options for how to respond
appropriately. Rather than expose the innards of your application by giving an exception and stack
trace, you can handle the exception any way you want, for example by returning a SOAP fault with
a specific fault code and string.

Endpoint exception resolvers are automatically picked up by the Messagebi spat cher, SO no explicit
configuration is necessary.

Besides implementing the Endpoi nt Excepti onResol ver interface, which is only a matter of
implementing the resol veExcepti on(MessageContext, endpoi nt, Exception) method, you
may aso use one of the provided implementations. The simplest implementation is the
Si npl eSoapExcept i onResol ver , which just creates a SOAP 1.1 Server or SOAP 1.2 Receiver Fault,
and uses the exception message as the fault string. The Si npl eSoapExcept i onResol ver isthe default,
but it can be overriden by explicitly adding another resolver.

5.6.1. SoapFaul t Mappi ngExcept i onResol ver

The SoapFaul t Mappi ngExcept i onResol ver iS a more sophisticated implementation. This resolver
enables you to take the class name of any exception that might be thrown and map it to a SOAP Faullt,
like so:

<beans>
<bean i d="exceptionResol ver"
cl ass="org. spri ngframewor k. ws. soap. server. endpoi nt. SoapFaul t Mappi ngExcept i onResol ver"
<property name="defaul t Fault" val ue="SERVER"'/ >
<property name="excepti onMappi ngs">
<val ue>
org. springfranmewor k. oxm Val i dati onFai | ur eExcepti on=CLI ENT, | nval i d r equest
</ val ue>
</ property>
</ bean>
</ beans>

The key values and default endpoint use the format f aul t Code, faul t Stri ng, | ocal e, where only the
fault code is required. If the fault string is not set, it will default to the exception message. If the
language is not set, it will default to English. The above configuration will map exceptions of type
Val i dat i onFai | ur eExcept i on to aclient-side SOAP Fault with afault string "1 nval i d request", as
can be seen in the following response:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " >
<SOAP- ENV: Body>

45

Creating a Web service with Spring-WS

<SQAP- ENV: Faul t >
<faul t code>SOAP- ENV: Cl i ent </ f aul t code>
<faultstring>lnvalid request</faultstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception
message as fault string.

5.6.2. SoapFaul t Annot at i onExcept i onResol ver

Finally, itisalso possible to annotate exception classes with the @oapFaul t annotation, to indicate the
SOAP Fault that should be returned whenever that exception is thrown. In order for these annotations
to be picked up, you need to add the SoapFaul t Annot at i onExcept i onResol ver to your application
context. The elements of the annotation include a fault code enumeration, fault string or reason, and
language. Here is an example exception:

package sanpl es;

i nport org.springfranework.ws. soap. server. endpoi nt . annot ati on. Faul t Code;
i mport org.springframework. ws. soap. server. endpoi nt. annot ati on. SoapFaul t ;

@soapFaul t (faul t Code = Faul t Code. SERVER)
public class MyBusi nessException extends Exception {

public Mydient Exception(String nessage) {
super (nmessage) ;

}

Whenever the M/Busi nessExcept i on is thrown with the constructor string " cops! " during endpoint
invocation, it will result in the following response:

<SQAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SCOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Qops! </faul tstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

5.7. Server-side testing

When it comes to testing your Web service endpoints, there are two possible approaches:
« Write Unit Tests, where you provide (mock) arguments for your endpoint to consume.

The advantage of this approach isthat it's quite easy to accomplish (especially for classes annotated
with @ndpoi nt); the disadvantage is that you are not really testing the exact content of the XML
messages that are sent over the wire.

« Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, IMock,
etc. The next section will focus on writing integration tests, using the test featuresintroduced in Spring
Web Services 2.0.

46

Creating a Web service with Spring-WS

5.7.1. Writing server-side integration tests

Spring Web Services 2.0 introduced support for creating endpoint integration tests. In this context, an
endpoint is class handles (SOAP) messages (see Section 5.4, “Endpoints”).

The integration test support lives in the org.springframework.ws.test.server package. The core class
in that package is the MockwebServi ced i ent. The underlying idea is that this client creates a
request message, and then sends it over to the endpoint(s) that are configured in a standard
MessageDi spat cher Servl et application context (see Section 5.3.1, “MessageDi spat cher Servl et ™).
These endpointswill handle the message, and create aresponse. The client then receivesthis response,
and verifiesit against registered expectations.

Thetypical usage of the MockWebSer vi ceCl i ent iS:

1

Create a MockWebSer vi ced i ent instance by caling
MockWebServi ced i ent.created ient (ApplicationContext) or
MockWebServi ced i ent.created ient (\WbServi ceMessageRecei ver,

WebSer vi ceMessageFact ory) .

Send request messages by calling sendRequest (Request Creator), possibly by using the
default Request Cr eat or implementations provided in Request Creat or s (which can be statically
imported).

. Set up response expectations by calling andExpect (ResponseMat cher), possibly by using the

default Responsenat cher implementations provided in ResponseMat cher s (which can be statically
imported). Multiple expectations can be set up by chaining andExpect (ResponseMat cher) calls.

Note

Note that the MockwebsSer vi ced i ent (and related classes) offers a 'fluent' API, so you
can typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you
through the process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services
inyour unit tests. Sometimesit might be useful to inspect the request or response message
to find out why a particular tests failed. See Section 4.4, “Message Logging and Tracing”
for more information.

Consider, for example, this simple Web service endpoint class:

i mport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt;
i nport org.springfranework. ws. server. endpoi nt . annot at i on. Request Payl oad;
i mport org.springframework. ws. server. endpoi nt. annot at i on. ResponsePayl oad;

@ndpoi nt o
public class Custoner Endpoi nt {

@ResponsePayl oad O
publ i ¢ Cust omer Count Response get Cust oner Count (O
@Request Payl oad Cust omer Count Request request) { O

Cust omer Count Response response = new Cust oner Count Response() ;
response. set Cust oner Count (10) ;
return response;

}

47

Creating a Web service with Spring-WS

The cust oner Endpoi nt in annotated with @ndpoi nt . See Section 5.4, “Endpoints’.

The get Cust omer Count () method takes a Cust onmer Count Request as argument, and returns
a Cust oner Count Response. Both of these classes are objects supported by a marshaller. For
instance, they can have a @m Root El enent annotation to be supported by JAXB2.

A typical test for cust omer Endpoi nt would look like this:

i nport javax.xm .transform Source;

i mport
i nport
i mport
i mport
i nport

i mport
i nport
i mport

i mport
i mport
i mport

org. spri ngframewor k.
or g. spri ngframewor k.
org. spri ngfranmewor k.
org. spri ngframewor k.
or g. spri ngframewor k.

org.junit.Before;
org.junit. Test;

beans. fact ory. annot ati on. Aut owi r ed;

cont ext . Appl i cati onCont ext ;

t est. cont ext. Cont ext Confi gurati on;
test.context.junit4.SpringJUnit4d assRunner;
xm . transform StringSource;

org.junit.runner. RunWth;

org. spri ngframewor k.

ws. t est. server. MockWebServi ced i ent;

static org.springfranework.ws.test.server. Request Creators. *;

static org.springfranework.ws.test.server. ResponseMat chers. *;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Confi guration("spring-ws-servlet.xm")
public class Custoner Endpoi ntlntegrationTest {

@\ut owi r ed
private ApplicationContext applicationContext;

private MockWebServi ced ient nockCient;

@efore
public void createCient() {

nockd i ent = MockWebServi ceC i ent.createdient(applicationContext);

}

@est

public void custonerEndpoint() throws Exception {
Source request Payl oad = new Stri ngSource(

"<cust omer Count Request xm ns='http://springframework. org/spring-ws'>" +
"<cust omrer Name>John Doe</ cust onmer Nane>" +
"</ cust omer Count Request >") ;
Source responsePayl oad = new StringSource(
"<cust ormer Count Response xm ns=' http://springframework. org/spring-ws'>" +
"<cust onmer Count >10</ cust oner Count >" +
"</ cust omrer Count Response>") ;

nockd i ent. sendRequest (wi t hPayl oad(r equest Payl oad)) . o
andExpect (payl oad(responsePayl oad)) ; O

The cust oner Endpoi nt | nt egrat i onTest imports the MckwebSer vi ced i ent, and statically
imports Request Cr eat or s and ResponseMat chers.

This test uses the standard testing facilities provided in the Spring Framework. This is not
required, but is generally the easiest way to set up the test.

The application context is a standard Spring-WS application context (see Section 5.3.1,
“MessageDi spat cher Servlet”), read from spring-ws-serviet.xm . In this case, the

48

Creating a Web service with Spring-WS

application context will contain a bean definition for Cust oner Endpoi nt (or a perhaps a
<cont ext : conponent - scan /> iS used).

O Ina@sef ore method, we create a MockWebSer vi ced i ent by using the createC i ent factory
method.

O We send a request by calling sendRequest () With a withPayl oad() Request Creator
provided by the statically imported Request Cr eat or s (See Section 5.7.2, “Request Cr eat or and

Request Creat ors”).

We aso set up response expectations by calling andExpect() with a payl oad()
ResponseMat cher provided by the statically imported ResponseMat chers (see Section 5.7.3,
“ResponseMat cher and ResponseMat chers™).

This part of the test might look a bit confusing, but the Code Completion features of your
IDE are of great help. After typing sendRequest (, Simply type ctrl-space, and your IDE
will provide you with a list of possible request creating strategies, provided you statically
imported Request Cr eat or s. The same applies to andexpect (, provided you statically imported

ResponseMat chers.

5.7.2. Request Creat or and Request Creat ors

Initially, themockwebSer vi ced i ent Will need to create arequest message for the endpoint to consume.
The client uses the Request Cr eat or Strategy interface for this purpose:

public interface RequestCreator {

WebSer vi ceMessage creat eRequest (WebSer vi ceMessageFact ory nmessageFact ory)
throws | CExcepti on;

Y ou can write your own implementations of this interface, creating a request message by using the
message factory, but you certainly do not have to. The Request Creat or s class provides a way to
create aRequest Cr eat or based on a given payload in thewi t hPayl oad() method. Y ou will typically
statically import Request Creat or s.

5.7.3. ResponseMat cher and ResponseMat cher s

When the regquest message has been processed by the endpoint, and a response has been received,
the MockWebSer vi ced i ent can verify whether this response message meets certain expectations. The
client usesthe ResponseMat cher strategy interface for this purpose:

public interface ResponseMatcher {

voi d mat ch(WebServi ceMessage request,
WebSer vi ceMessage response)
throws | OException, AssertionError;

Once again you can write your own implementations of this interface, throwing AssertionErrors
when the message does not meet your expectations, but you certainly do not have to, as the
ResponseMat cher s class provides standard ResponseMat cher implementations for you to use in your
tests. You will typically statically import this class.

The ResponseMat cher s class provides the following response matchers:

49

Creating a Web service with Spring-WS

ResponseMat cher s method Description

payl oad() Expects a given response payload.

val i dPayl oad() Expects the response payload to validate against given
XSD schema(s).

xpat h() Expects agiven X Path expression to exist, not exit, or

evaluate to agiven value.

soapHeader () Expects a given SOAP header to exist in the response
message.

noFaul t () Expects that the response message does not contain a
SOAP Faullt.

nust Under st andFaul t (), client OrSender Fault (), Expects the response message to contain a specific
server Or Recei ver Faul t (), and SOAP Faullt.
ver si onM smat chFaul t ()

Y ou can set up multiple response expectations by chaining andexpect () cals, like so:

nockd i ent . sendRequest (. ..).
andExpect (payl oad(expect edResponsePayl oad)) .
andExpect (val i dPayl oad(schemaResource));

For more information on the request matchers provided by ResponseMat cher s, refer to the classlevel
Javadoc.

50

Chapter 6. Using Spring Web Services on
the Client

6.1. Introduction

Spring-WS provides a client-side Web service API that allows for consistent, XML-driven access to
Web services. It also caters for the use of marshallers and unmarshallers so that your servicetier code
can deal exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-
side access API. It contains template classes that simplify the use of Web services, much like the core
Spring JdbcTenpl at e does for IDBC. The design principle common to Spring template classesis to
provide helper methods to perform common operations, and for more sophisticated usage, delegate to
user implemented callback interfaces. The Web service template follows the same design. The classes
offer various convenience methods for the sending and receiving of XML messages, marshalling
objectsto XML before sending, and allows for multiple transport options.

6.2. Using the client-side API

6.2.1. WebSer vi ceTenpl at e

ThewebSer vi ceTenpl at e iSthe coreclassfor client-side Web service accessin Spring-WS. It contains
methods for sending Sour ce objects, and receiving response messages as either Sour ce Or Resul t.
Additionally, it can marshal objects to XML before sending them across a transport, and unmarshal
any response XML into an object again.

6.2.1.1. URIs and Transports

ThewebSer vi ceTenpl at e classusesan URI asthe message destination. Y ou can either set adefaultUri
property on thetemplateitself, or supply an URI explicitly when calling amethod on thetemplate. The
URI will be resolved into a ebSer vi ceMessageSender , which is responsible for sending the XML
message across a transport layer. Y ou can set one or more message senders using the messageSender
or messageSenders properties of the webSer vi ceTenpl at e Class.

6.2.1.1.1. HTTP transports

There are two implementations of the webSer vi ceMessageSender interface for sending messages
via HTTP. The default implementation is the Ht t pUr | Connect i onMessageSender , which uses the
facilitiesprovided by Javaitself. Theaternativeisthe H t pConponent sMessageSender , which usesthe
Apache HttpComponents HttpClient [http://hc.apache.org/httpcomponents-client-gal. Use the latter
if you need more advanced and easy-to-use functionality (such as authentication, HTTP connection
pooling, and so forth).

Tousethe HTTPtransport, either set the defaultUri to something likeht t p: / / exanpl e. coni ser vi ces,
or supply theuri parameter for one of the methods.

The following example shows how the default configuration can be used for HTTP transports:

<beans>

51

http://hc.apache.org/httpcomponents-client-ga
http://hc.apache.org/httpcomponents-client-ga

Using Spring Web Services on the Client

<bean i d="nessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngfranework.ws. client.core. WbServi ceTenp| ate">

<constructor-arg ref="nessageFactory"/>
<property nanme="defaul tUri" val ue="http://exanpl e. coni WebServi ce"/ >
</ bean>

</ beans>

The following example shows how override the default configuration, and to use Apache HttpClient
to authenticate using HT TP authentication:

<bean i d="webServi ceTenpl ate" class="org. springframework.ws.client.core. WbServi ceTenpl at el >
<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. springframework.ws.transport. http. H t pConponent sMessageSender " >
<property name="credential s">
<bean cl ass="org. apache. http. aut h. User nanePasswor dCr edent i al s" >
<constructor-arg val ue="john: secret"/>
</ bean>
</ property>
</ bean>
</ property>
<property name="defaul tUri" value="http://exanpl e.com WebService"/>
</ bean>

6.2.1.1.2. JMS transport

For sending messages over IMS, Spring Web Services provides the JnsMessageSender . This class
uses the facilities of the Spring framework to transform the webSer vi ceMessage into a JMS Message,
send it on itsway on a Queue Or Topi ¢, and receive aresponse (if any).

To use the JnsMessageSender, you need to set the defaultUri or uri parameter to a IMS URI,
which - at a minimum - consists of the j nms: prefix and a destination name. Some examples of
JMS URIs are: j ms: SoneQueue, j ns: SomeTopi c?pri orit y=3&del i ver yMbde=NON_PERSI STENT, and
j ms: Request Queue?r epl yToName=ResponseNane. For more information on this URI syntax, refer to
the class level Javadoc of the JnsMessageSender .

By default, the JnsMessageSender send JMS Byt esMessage, but this can be overriden to use
Text Messages by using the nessageType parameter on the JIMS URI. For example: j ns: Queue?
messageType=TEXT_MESSAGE. Notethat Byt esMessages arethe preferred type, because Text Messages
do not support attachments and character encodings reliably.

The following example shows how to use the JMS transport in combination with an ActiceMQ
connection factory:

<beans>

<bean i d="nmessageFactory" class="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFactory"/ >

<bean i d="connectionFactory" class="org. apache. acti veng. Acti veMonnecti onFactory">
<property name="broker URL" val ue="vm//| ocal host ?br oker. persi st ent =f al se"/ >
</ bean>

<bean i d="webServi ceTenpl ate" cl ass="org. springfranmework.ws. client.core. WbServi ceTenp| ate">

<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. springfranmework.ws. transport.jns. JnsMessageSender " >
<property nanme="connectionFactory" ref="connecti onFactory"/>

52

Using Spring Web Services on the Client

</ bean>
</ property>
<property name="defaul t Uri" val ue="j ns: Request Queue?del i ver yMode=NON_PERSI| STENT"/ >
</ bean>

</ beans>

6.2.1.1.3. Email transport

Spring Web Services also provides an email transport, which can be used to send web service
messages via SMTP, and retrieve them via either POP3 or IMAP. The client-side email functionality
is contained in the Mai | MessageSender class. This class creates an email message from the request
WebsSer vi ceMessage, and sends it via SMTP. It then waits for a response message to arrive in the
incoming POP3 or IMAP server.

To use the Mai | MessageSender , Set the defaultUri or uri parameter to amai | t o URI. Here are some
URI examples: mai | t o: j ohn@xanpl e. com and nmai | t o: ser ver @ ocal host ?subj ect =SOAPY%20Test .
Make sure that the message sender is properly configured with a transportUri, which indicates the
server to usefor sending requests (typically a SMTP server), and astoreUri, which indicates the server
to poll for responses (typically a POP3 or IMAP server).

The following example shows how to use the email transport:

<beans>
<bean i d="nessageFactory" cl ass="org.spri ngframework.ws. soap. saaj . Saaj SoapMessageFact ory"/ >

<bean i d="webServi ceTenpl ate" cl ass="org. springframework.ws. client.core. WbServi ceTenp| ate">

<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">

<bean cl ass="org. springfranmework.ws. transport. mail.Mil MessageSender" >

<property name="fronm' val ue="Spring-W5s SOCAP Client & t;client@xanple.comigt;"/>

<property name="transportUri" value="sntp://client:s04p@ntp. exanpl e. cont'/ >

<property nanme="storeUri" val ue="imap://client:s04p@ map. exanpl e. coni | NBOX'/ >

</ bean>

</ property>

<property nanme="defaul tUri" val ue="mailto: server @xanpl e. con?subj ect =SOAP%20Test "/ »

</ bean>

</ beans>

6.2.1.1.4. XMPP transport

Spring Web Services 2.0 introduced an XMPP (Jabber) transport, which can be used to send and
receive web service messages via XMPP. The client-side XMPP functionality is contained in the
XnppMessageSender class. Thisclass creates an X M PP message from therequest WebSer vi ceMessage,
and sendsit via XMPP. It then listens for a response message to arrive.

To wuse the XxmppMessageSender, set the defaultUri or uri parameter to
a xmpp URI, for example xnpp:johndoe@abber.org. The sender aso requires
an XwPConnection to work, which can be conveniently created using the

org. springframework. ws.transport.xnmpp. support. XnppConnect i onFact or yBean.

The following example shows how to use the xmpp transport:

<beans>

53

Using Spring Web Services on the Client

<bean i d="nessageFactory" cl ass="org.springfranmework.ws. soap. saaj . Saaj SoapMessageFactory"/ >

<bean i d="connection" class="org. springframework.ws.transport.xnpp. support. XnppConnect | onFact or yBe
<property name="host" val ue="j abber.org"/>
<property name="usernane" val ue="usernane"/>
<property nanme="password" val ue="password"/>
</ bean>

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngfranmework.ws. client.core. WbServi ceTenp| ate">
<constructor-arg ref="nessageFactory"/>
<property name="nessageSender">
<bean cl ass="org. spri ngfranmewor k. ws. t ransport. xnmpp. XnppMessageSender " >
<property name="connection" ref="connection"/>
</ bean>
</ property>
<property name="defaultUri" val ue="xnpp: user @ abber.org"/ >
</ bean>

</ beans>

6.2.1.2. Message factories

In addition to a message sender, the WwebServiceTenplate requires a Web service
message factory. There are two message factories for SOAP: Saaj SoapMessageFactory and
Axi omSoapMessageFact ory. If no message factory is specified (via the messageFactory property),
Spring-WS will use the saaj SoapMessageFact ory by default.

6.2.2. Sending and receiving a WbSer vi ceMessage

The websSer vi ceTenpl at e contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Source and those that return a Resul t.
Additionally, there are methods which marshal and unmarshal objects to XML. Here is an example
that sends a simple XML message to a Web service.

i mport java.io. StringReader;
i mport javax.xm .transform stream StreanResult;
i nport javax.xm .transform stream StreanfSour ce;

i mport org.springframework. ws. WebSer vi ceMessageFact ory;
i nport org.springfranework.ws.client.core. WbServi ceTenpl at e;
i mport org.springframework. ws. transport.WbServi ceMessageSender ;

public class WbServicedient {

private static final String MESSACGE =
"<message xm ns=\"http://tenpuri.org\">Hell o Web Servi ce Wrl d</ nessage>";

private final WebServi ceTenpl ate webServi ceTenpl ate = new WebServi ceTenpl ate();

public void setDefaultUri (String defaultUri) {
webServi ceTenpl ate. set Defaul t Uri (defaul t Uri);

}

/'l send to the configured default URI

public void sinpl eSendAndRecei ve() {
St reanSource source = new StreanSource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResult(System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t (source, result);

}

/1 send to an explicit URI
public void custonSendAndRecei ve() {

Using Spring Web Services on the Client

St reanSour ce source = new StreanSource(new StringReader (MESSAGE)) ;

StreanResult result = new StreanmResult (System out);

webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t ("http:/ /| ocal host: 8080/ Anot her WebSer vi ce",
source, result);

<beans xm ns="http://ww. springframework. or g/ schema/ beans" >

<bean i d="webServiceCient" class="WbServiceCient">
<property name="defaultUi" value="http://| ocal host: 8080/ WebSer vi ce"/ >
</ bean>

</ beans>

The above example uses the webServi ceTenpl ate to send a hello world message to the web
servicelocated at ht t p: / /1 ocal host : 8080/ WebSer vi ce (inthe case of the si mpl eSendAndRecei ve()
method), and writes the result to the console. The webSer vi ceTenpl at e is injected with the default
URI, which is used because no URI was supplied explicitly in the Java code.

Please notethat the webSer vi ceTenpl at e classisthread-safe once configured (assuming that all of it's
dependencies are thread-safe too, which is the case for all of the dependencies that ship with Spring-
WS), and so multiple objects can use the same shared WebSer vi ceTenpl at e instance if so desired.
The webSer vi ceTenpl at e €XPOSES a zero argument constructor and messageFactory/messageSender
bean properties which can be used for constructing the instance (using a Spring container or plain Java
code). Alternatively, consider deriving from Spring-WS's ebSer vi ceGat eway Support convenience
base class, which exposes convenient bean properties to enable easy configuration. (Y ou do not have
to extend this base class... it is provided as a convenience class only.)

6.2.3. Sending and receiving POJOs - marshalling and unmarshalling

In order to facilitate the sending of plain Java objects, the webServi ceTenpl ate has a number
of send(..) methods that take an ject as an argument for a message's data content. The
method nar shal SendAndRecei ve(..) in the WbServi ceTenpl ate class delegates the conversion
of the request object to XML to a marshal | er, and the conversion of the response XML to an
object to an Unnmar shal | er. (For more information about marshalling and unmarshaller, refer to the
Spring documentation [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/oxm.html].) By using the marshallers, your application code can focus on the business object
that is being sent or received and not be concerned with the details of how it is represented as XML.
In order to use the marshalling functionality, you have to set a marshaller and unmarshaller with the
marshaller/unmarshaller properties of the webSer vi ceTenpl at e class.

6.2.4. WebServi ceMessageCal | back

To accommodate the setting of SOAP headers and other settings on the message, the
WebSer vi ceMessageCal | back interface gives you access to the message after it has been created, but
beforeit is sent. The example below demonstrates how to set the SOAP Action header on a message
that is created by marshalling an object.

public void marshal Wt hSoapAct i onHeader (MyObj ect 0) {

webSer vi ceTenpl at e. nar shal SendAndRecei ve(o, new WebSer vi ceMessageCal | back() {

55

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Using Spring Web Services on the Client

public void doWthMessage(WebServi ceMessage nessage) {
((SoapMessage) nessage) . set SoapAction("http://tenpuri.org/Action");
}
1)

Note

Note that you can aso use the
org. springframewor k. ws. soap. cl i ent. core. SoapActi onCal | back to set the SOAP
Action header.

6.2.4.1. WS-Addressing

In addition to the server-side WS-Addressing support, Spring Web Services also has support for this
specification on the client-side.

For setting WS-Addressing headers on the client, you can use the
or g. spri ngf ramewor k. ws. soap. addr essi ng. cl i ent. ActionCal | back. This calback takes the
desired Action header as a parameter. It also has constructors for specifying the WS-Addressing
version, and a To header. If not specified, the To header will default to the URL of the connection

being made.

Hereis an example of setting the Act i on header to htt p: / / sanpl es/ Request O der :

webSer vi ceTenpl at e. mar shal SendAndRecei ve(o, new ActionCal | back("http://sanpl es/ Request Order"));

6.2.5. WebServi ceMessageExt ract or

The webServiceMessageExtractor interface is a low-level callback interface that allows
you to have full control over the process to extract an ject from a received
WebSer vi ceMessage. The WebServi ceTenpl ate will invoke the extractData(..) method on a
supplied webSer vi ceMessageExt r act or While the underlying connection to the serving resource is
still open. The following example illustrates the webSer vi ceMessageExt r act or in action:

public void marshal Wt hSoapActi onHeader (final Source s) {
final Transfornmer transfornmer = transfornerFactory. newlransforner();
webSer vi ceTenpl at e. sendAndRecei ve(new WebSer vi ceMessageCal | back() {
public void doWthMessage(WebServi ceMessage nessage) {
transforner.transforn(s, nessage.getPayl oadResult());
b
new WebServi ceMessageExtractor () {
public oject extractDat a(WebServi ceMessage nessage) throws | OException
// do your own transforms with nmessage. get Payl oadResul t ()
11 or nessage. get Payl oadSour ce()

1)

6.3. Client-side testing

When it comes to testing your Web service clients (i.e. classes that uses the WebSer vi ceTenpl at e to
access a Web service), there are two possi ble approaches:

56

Using Spring Web Services on the Client

« Write Unit Tests, which simply mock away thewebSer vi ceTenpl at e class, WebSer vi ceQper at i ons
interface, or the complete client class.

The advantage of this approach is that it's quite easy to accomplish; the disadvantage is that you
are not really testing the exact content of the XML messages that are sent over the wire, especially
when mocking out the entire client class.

» Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, JMock,
etc. The next section will focus on writing integration tests, using the test features introduced in Spring
Web Services 2.0.

6.3.1. Writing client-side integration tests

Spring Web Services 2.0 introduced support for creating Web service client integration tests. In this
context, aclient isaclass that uses the webSer vi ceTenpl at e t0 access a Web service.

The integration test support lives in the org.springframework.ws.test.client package. The core class
in that package is the MockwebSer vi ceSer ver . The underlying idea is that the web service template
connectsto thismock server, sendsit request message, which the mock server then verifies against the
registered expectations. If the expectations are met, the mock server then prepares aresponse message,
which is send back to the template.

Thetypical usage of the MockWebSer vi ceSer ver is:

1. Create a MbckWebSer vi ceSer ver instance by calling
MockWebSer vi ceServer. creat eServer (WebServi ceTenpl ate),
MockWebSer vi ceSer ver. cr eat eSer ver (\WebSer vi ceGat ewaySupport), or
MbckWebSer vi ceSer ver. creat eServer (Appl i cati onCont ext).

2. Set up request expectations by calling expect (Request Matcher), possibly by using the
default Request Mat cher implementations provided in Request Mat cher s (which can be statically
imported). Multiple expectations can be set up by chaining andExpect (Request Mat cher) calls.

3. Create an appropriate response message by calling andRespond(ResponseCr eat or) , possibly by
using the default ResponseCr eat or implementations provided in ResponseCr eat or s (which can be
statically imported).

4. UsethewebSer vi ceTenpl at e as normal, either directly of through client code.

5. Call MockwebSer vi ceServer . veri fy() to make sure that all expectations have been met.
Note

Note that the MockwebSer vi ceSer ver (and related classes) offers a 'fluent' API, so you
can typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you
through the process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services
inyour unit tests. Sometimesit might be useful to inspect the request or response message

57

Using Spring Web Services on the Client

to find out why a particular tests failed. See Section 4.4, “Message Logging and Tracing”
for more information.

Consider, for example, this Web service client class:
i mport org.springframework.ws. client.core. support.WbServi ceGat ewaySupport ;
public class CustomerCient extends WebServi ceGat ewaySupport { o
public int getCustonerCount() {
Cust onmer Count Request request = new Cust onmer Count Request () ; 0

request . set Cust orer Nane(" John Doe");

Cust oner Count Response response =
(Cust omer Count Response) get WebServi ceTenpl at e() . nar shal SendAndRecei ve(request); O

return response. get Cust oner Count () ;

}

OO The customerCdient extends WebServiceGatewaySupport, which provides it with a
webServiceTemplate property.

[J CustonerCount Request iS an object supported by a marshaller. For instance, it can have a
@ Root El enent annotation to be supported by JAXB2.

O Thecustonerdient usesthewbServi ceTenpl at e Offered by WebSer vi ceGat eway Support t0
marshal the request object into a SOAP message, and sendsthat to the web service. The response
object is unmarshalled into a cust omer Count Response.

A typical test for cust omer d i ent would look like this:

i nport javax.xm .transform Source;

i nport org. springfranework. beans. fact ory. annot ati on. Aut owi r ed;

i mport org.springframework.test.context.ContextConfiguration;

i nport org.springfranework.test.context.junit4. SpringJUnit4d assRunner;
i nport org. springfranework.xm .transform StringSource;

i nport org.junit.Before;
import org.junit. Test;
import org.junit.runner. RunWth;

inmport static org.junit.Assert.assertEquals;

i mport org.springframework.ws.test.client. MockWebServi ceServer; O
import static org.springframework.ws.test.client.RequestMatchers. *; O
import static org.springframework.ws.test.client.ResponseCreators.*; O
@unW t h(Spri ngJUni t 4Cl assRunner. cl ass) o
@Cont ext Configuration("integration-test.xm") o

public class CustomerdientlntegrationTest {

@\ut owi red

private Customerdient client; O
private MockWebServi ceServer nockServer; O
@Bef ore

public void createServer() throws Exception {
nockServer = MockWebServi ceServer. createServer(client);

}

@rest

58

Using Spring Web Services on the Client

public void custonerClient() throws Exception {
Sour ce request Payl oad = new StringSource(
"<cust omer Count Request xm ns='http://springfranmework. org/spring-ws'>" +
"<cust omer Name>John Doe</ cust oner Name>" +
"</ cust omer Count Request >") ;
Sour ce responsePayl oad = new StringSource(
"<cust oner Count Response xm ns=' http://springframework. org/spring-ws'>" +
"<cust omer Count >10</ cust onmer Count >" +
"</ cust omer Count Response>") ;

nockSer ver . expect (payl oad(request Payl oad)) . andRespond(w t hPayl oad(responsePayl oad)); O

int result = client.getCustomerCount(); O
assert Equal s(10, result); O
nockServer. verify(); o

O The custonerdientintegrationTest imports the MockwWbServi ceServer, and statically
imports Request Mat cher s and ResponseCr eat or s.

O This test uses the standard testing facilities provided in the Spring Framework. This is not
required, but is generally the easiest way to set up the test.

O The custonerdient isconfigured inintegration-test.xm , and wired into this test using
@Aut owi r ed.

O Ina@gef ore method, we create a MockWebSer vi ceSer ver by using the cr eat eSer ver factory
method.

O We define expectations by calling expect () with a payl oad() Request Mat cher provided
by the datically imported Request Matchers (see Section 6.3.2, “Request Mat cher and
Request Mat chers”).

We also set up a response by calling andRespond() With awi t hPayl oad() ResponseCr eat or
provided by the statically imported ResponseCr eat ors (See Section 6.3.3, “ResponseCr eat or
and ResponseCreat ors”).

This part of thetest might look abit confusing, but the Code Completion features of your IDE are
of great help. After typing expect (, Ssimply type ctrl-space, and your IDE will provideyou with a
list of possible request matching strategies, provided you statically imported Request Mat cher s.
The same applies to andRespond(, provided you statically imported ResponseCr eat or s.

O Wecdl get Cust oner Count () onthecust ormer d i ent , thususing thewebSer vi ceTenpl at e. The
template has been set up for 'testing mode' by now, so no real (HTTP) connection is made by this
method call. We also make some JUnit assertions based on the result of the method call.

O Wecdl verify() ontheMckwebServi ceSer ver, thus verifying that the expected message was
actually received.

6.3.2. Request Mat cher and Request Mat cher s

To verify whether the request message meets certain expectations, the MockWebSer vi ceSer ver USES
the Request Mat cher strategy interface. The contract defined by this interface is quite simple:

public interface RequestMatcher {

void match(URl wuri,
WebSer vi ceMessage request)
throws | CExcepti on,
AssertionError;

59

Using Spring Web Services on the Client

You can write your own implementations of this interface, throwing Asserti onError S when the
message does not meet your expectations, but you certainly do not haveto. TheRequest Mat cher s class
provides standard Request Mat cher implementations for you to use in your tests. You will typically
statically import this class.

The Request Mat cher s class provides the following request matchers:

Request Mat cher s method Description

anyt hi ng() Expects any sort of request.

payl oad() Expects a given request payload.

val i dPayl oad() Expects the request payload to validate against given
XSD schema(s).

xpat h() Expectsagiven XPath expression to exist, not exist, or
evaluate to agiven value.

soapHeader () Expects a given SOAP header to exist in the request
message.

connect i onTo() Expects a connection to the given URL.

Y ou can set up multiple request expectations by chaining andExpect () cals, like so:

nockSer ver . expect (connectionTo("http://exanple.cont)).
andExpect (payl oad(expect edRequest Payl oad)) .
andExpect (val i dPayl oad(schemaResource)).
andRespond(...);

For more information on the request matchers provided by Request Mat cher s, refer to the class level
Javadoc.

6.3.3. ResponseCreat or and ResponseCreators

When the request message has been verified and meets the defined expectations, the
MockWebSer vi ceSer ver Will create aresponse message for thewebSer vi ceTenpl at e to consume. The
server uses the ResponseCr eat or Strategy interface for this purpose:

public interface ResponseCreator {

WebServi ceMessage creat eResponse(URI uri,
WebServi ceMessage request,
WebSer vi ceMessageFact ory nmessageFact ory)
throws | CExcepti on;

Once again you can write your own implementations of this interface, creating a response message by
using the message factory, but you certainly do not have to, as the ResponseCr eat or s class provides
standard ResponseCr eat or implementations for you to use in your tests. You will typically statically
import this class.

60

Using Spring Web Services on the Client

The ResponseCr eat or s class provides the following responses:

ResponseCr eat or s method Description

wi t hPayl oad() Creates a response message with a given payload.

wi t hError () Creates an error in the response connection. This
method gives you the opportunity to test your error
handling.

wi t hExcept i on() Throws an exception when reading from the response

connection. This method gives you the opportunity to
test your exception handling.

wi t hMust Under st andFaul t (), Creates a response message with a given SOAP fault.
wi t hd i ent Or Sender Faul t (), This method gives you the opportunity to test your
wi t hServer Or Recei ver Faul t (), and Fault handling.

wi t hVer si onM smat chFaul t ()

For more information on the request matchers provided by Request Mat cher s, refer to the class level
Javadoc.

61

Chapter 7. Securing your Web services
with Spring-W$S

7.1. Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the
three different areas of WS-Security, namely:

Authentication. Thisis the process of determining whether a principal is who they claim to be.
In this context, a"principal" generally means a user, device or some other system which can perform
an action in your application.

Digital signatures. Thedigital signature of amessage is a piece of information based on both the
document and the signer's private key. It is created through the use of a hash function and a private
signing function (encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is
impossible to read without the appropriate key. It is mainly used to keep information hidden from
anyone for whom it is not intended. Decryption is the reverse of encryption; it is the process of
transforming of encrypted data back into an readable form.

All of these three areas are implemented using the XwsSecuritylnterceptor Or
Wss4j Securi tyl nter cept or , whichwewill describein Section 7.2, “ xwsSecuri tyl nt er cept or ” and
Section 7.3, “ Wes4j Securityl nterceptor ", respectively

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts
of memory, and will also decrease performance. If performance is important to you, you
might want to consider not using WS-Security, or simply use HTTP-based security.

7.2. XwsSecuritylnterceptor

ThexwsSecuri tyl nt er cept or iSanEndpoi nt I nt er cept or (See Section 5.5.2, “Intercepting requests-
theEndpoi nt I nt er cept or interface”) that isbased on SUN's XML and Web Services Security package
(XWSS). This WS-Security implementation is part of the Java Web Services Developer Pack (Java
WSDP [http://java.sun.com/webserviced]).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.5, “ Endpoint
mappings’). This means that you can be selective about adding WS-Security support: some endpoint
mappings require it, while others do not.

Note

Note that XWSS requires both a SUN 1.5 JDK and the SUN SAAJ reference
implementation. The WSSA4J interceptor does not have these requirements (see
Section 7.3, “ Ws4j Securitylnterceptor).

The xwsSecurityl nterceptor requires a security policy file to operate. This XML file tells the
interceptor what security aspects to require from incoming SOAP messages, and what aspects to add

62

http://java.sun.com/webservices/
http://java.sun.com/webservices/
http://java.sun.com/webservices/

Securing your Web services with Spring-WS

to outgoing messages. The basic format of the policy file will be explained in the following sections,
but you can find amorein-depth tutorial here [http://java.sun.com/webservices/docs/1.6/tutorial/doc/
XWS-Securitylntro4.html#wp564887]. Y ou can set the policy with the policyConfiguration property,
which requiresa Spring resource. The policy file can contain multiple elements, e.g. require ausername
token on incoming messages, and sign all outgoing messages. It contains a Securi t yConfi gurati on
element asroot (not a JAXRPCSecuri ty €lement).

Additionally, the security interceptor requires one or morecal | backHandl er S to operate. These
handlers are used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS
offers handlers for most common security concerns, e.g. authenticating against a Spring Security
authentication manager, signing outgoing messages based on a X509 certificate. The following
sectionswill indicate what callback handler to use for which security concern. Y ou can set the callback
handlers using the callbackHandler or callbackHandlers property.

Here is an example that shows how to wire the xwsSecuri tyl nt er cept or up:

<beans>
<bean i d="wsSecuritylnterceptor"”
cl ass="org. spri ngframewor k. ws. soap. security.xwss. XwsSecuritylnterceptor">
<property nanme="policyConfiguration" val ue="cl asspat h: securityPolicy.xm"/>
<property nanme="cal | backHandl ers" >
<list>
<ref bean="certificateHandl er"/>
<ref bean="authenticati onHandl er"/>
</list>
</ property>
</ bean>

</ beans>

Thisinterceptor isconfigured usingthesecuri t yPol i cy. xn fileon the classpath. It usestwo callback
handlers which are defined further on in thefile.

7.2.1. Keystores

For most cryptographic operations, you will usethe standardj ava. securi ty. KeySt or e objects. These
operations include certificate verification, message signing, signature verification, and encryption,
but excludes username and time-stamp verification. This section aims to give you some background
knowledge on keystores, and the Javatoolsthat you can use to store keys and certificatesin akeystore
file. This information is mostly not related to Spring-WS, but to the general cryptographic features
of Java.

The java.security. KeyStore class represents a storage facility for cryptographic keys and
certificates. It can contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by
certificate chain for the corresponding public key. Within the field of WS-Security, this accounts to
message signing and message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as
well. The difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore
owner trusts that the public key in the certificates indeed belong to the owner of the certificate.

63

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

Securing your Web services with Spring-WS

Within WS-Security, these certificates are used for certificate validation, signature verification, and
encryption.

7.2.1.1. KeyTool

Supplied with your Java Virtual Machine is the keytool program, a key and certificate management
utility. You can use this tool to create new keystores, add new private keys and certificates to them,
etc. It is beyond the scope of this document to provide a full reference of the keytool command, but
you can find areference here [http://java.sun.com/j2se/1.5.0/docs/tool docs/windows/keytool .html] ,
or by giving the command keyt ool - hel p on the command line.

7.2.1.2. KeyStoreFactoryBean

To easily load a keystore using Spring configuration, you can use the Key St or eFact or yBean. It hasa
resource location property, which you can set to point to the path of the keystoreto load. A password
may be given to check the integrity of the keystore data. If a password is not given, integrity checking
is not performed.

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property nanme="password" val ue="password"/>
<property name="l|ocati on" val ue="cl asspat h: or g/ spri ngf ramewor k/ ws/ soap/ security/ xwss/test - keyst ore
</ bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which
ismost likely not what you want.

7.2.1.3. KeyStoreCallbackHandler

To use the keystores within a XwsSecuritylnterceptor, you will need to define
a KeyStoreCall backHandl er. This callback has three properties with type keystore:
(keyStore,trustStore, and symetricSt ore). The exact stores used by the handler depend on the
cryptographic operations that are to be performed by this handler. For private key operation, the
keyStore is used, for symmetric key operations the symmetricStore, and for determining trust
relationships, thet r ust St or e. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first thekeySt ore, thenthetrust Store
Decryption based on private key keySt or e

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symretricStore

Signing keyStore

Signature verification trustStore

Additionally, the KeySt or eCal | backHandl er has apri vat ekeyPasswor d property, which should be
set to unlock the private key(s) contained in thekey St or e.

64

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Securing your Web services with Spring-WS

If thesymet ri cStore isnot set, it will default to the keyst or e. If the key or trust store is not set, the
callback handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeySt or eCal | backHandl er to know how this mechanism works.

For instance, if you want to use the KeySt or eCal | backHandl er to validate incoming certificates or
signatures, you would use atrust store, like so:

<beans>
<bean i d="keyStoreHandl er" class="org.springfranmework.ws. soap. security.xwss. cal | back. KeySt oreCal | k
<property name="trustStore" ref="trustStore"/>

</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap.security.support.KeyStoreFact oryBean">
<property nanme="|ocation" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use a key
store, like so:

<beans>
<bean i d="keySt oreHandl er" cl ass="org. springfranmework. ws. soap. security.xwss. cal | back. KeySt oreCal | k
<property name="keyStore" ref="keyStore"/>
<property name="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property nanme="|ocation" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

The following sections will indicate where the KeySt or eCal | backHandl er can be used, and which
properties to set for particular cryptographic operations.

7.2.2. Authentication

As stated in the introduction, authentication is the task of determining whether aprincipal iswho they
claim to be. Within WS-Security, authentication can take two forms. using a username and password
token (using either a plain text password or a password digest), or using a X509 certificate.

7.2.2.1. Plain Text Username Authentication

The simplest form of username authentication usesplain text passwords. In this scenario, the SOAP
message will contain a User nameToken element, which itself contains a User nane element and a
Passwor d element which contains the plain text password. Plain text authentication can be compared
to the Basic Authentication provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should always add
additional security measures to your transport layer if you are using them (using HTTPS
instead of plain HTTP, for instance).

To require that every incoming message contains a UsernameToken With a plain text
password, the security policy file should contain a Requi reUser naneToken element, with the

65

Securing your Web services with Spring-WS

passwor dDi gest Requi r ed attribute set tof al se. You can find a reference of possible child elements
here [http://java.sun.com/webservices/docs/1.6/tutorial/doc/ X WS-Security | ntrod.html#wp567459] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">

<xwss: Requi r eUser naneToken passwor dDi gest Requi red="f al se" nonceRequi red="f al se"/ >

</ xwss: SecurityConfigurati on>

If the username token is not present, the xwsSecuri tyl nt er cept or Will return a SOAP Fault to the
sender. If itispresent, it will fireaPasswor dval i dat i onCal | back with aPl ai nText Passwor dRequest
to the registered handlers. Within Spring-WS, there are three classes which handle this particular
callback.

7.2.2.1.1. SimplePasswordValidationCallbackHandler

The simplest password validation handler is the Si npl ePasswor dval i dat i onCal | backHand| er . This
handler validates passwords against an in-memory Proper ti es object, which you can specify using
the user s property, like so:

<bean i d="passwor dVal i dati onHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. Si npl ePasswor dVal i dati onCal | pbackHandl er "
<property name="users">
<pr ops>
<prop key="Bert">Erni e</ prop>
</ props>
</ property>
</ bean>

In this case, we are only alowing the user "Bert" to log in using the password "Ernie".

7.2.2.1.2. SpringPlainTextPasswordValidationCallbackHandler

The SpringPl ai nText Passwor dVal i dati onCal | backHandl er uses Spring Security [http://
www.springframework.org/security] to authenticate users. It is beyond the scope of this document to
describe Spring Security, but suffice it to say that it is a full-fledged security framework. You can
read more about it in the Spring Security reference documentation [http://www.springframework.org/
security].

Thespri ngPl ai nText Passwor dVal i dati onCal | backHandl er requiresan Aut hent i cat i onManager tO
operate. It uses this manager to authenticate against a User nanePasswor dAut hent i cat i onToken that
it creates. If authentication is successful, the token is stored in the Secur i t yCont ext Hol der . You can
set the authentication manager using the aut hent i cat i onManager property:

<beans>
<bean i d="springSecurityHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. Spri ngPl ai nText Passwor dVal | dati onCal | k
<property nanme="aut henticati onManager" ref="authenticati onManager"/>
</ bean>

<bean id="aut henti cati onManager" cl ass="org. springfranmework. security. providers. Provi der Manager " >
<property name="providers">
<bean cl ass="org. springframework. security. provi ders. dao. DaoAut henti cati onProvi der">
<property nanme="userDetail sServi ce" ref="userDetail sService"/>

</ bean>

66

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459
http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security

Securing your Web services with Spring-WS

</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />
</ i).e;a\ns>
7.2.2.1.3. JaasPlainTextPasswordValidationCallbackHandler

The JaasPl ai nText PasswordVal i dati onCal | backHandl er is based on the standard Java
Authentication and Authorization Service [http://java.sun.com/products/jaas/] . It isbeyond the scope
of this document to provide a full introduction into JAAS, but there is a good tutorial [http:/
www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html] available.

The JaasPl ai nText Passwor dVal i dat i onCal | backHandl er requires only a | ogi nCont ext Nane tO
operate. It creates a new JAAS Logi nCont ext using this name, and handles the standard JAAS
NareCal | back and Passwor dCal | back using the username and password provided in the SOAP
message. This meansthat this callback handler integrates with any JAAS Logi nModul e that fires these
callbacks during thel ogi n() phase, which is standard behavior.

You can wire up aJaasPl ai nText Passwor dVal i dati onCal | backHandl er asfollows:

<bean i d="j aasVal i dati onHandl er"
cl ass="org. springfranmewor k. ws. soap. security. xwss. cal | back. j aas. JaasPl ai nText Passwor dVal| i dati onCal |
<property name="I| ogi nCont ext Nane" val ue="M/Logi nModul e" />

</ bean>

In this case, the callback handler uses the Logi nCont ext hamed "MyLoginModule'. This module
should be defined in your j aas. confi g file, as explained in the abovementioned tutorial.

7.2.2.2. Digest Username Authentication

When using password digests, the SOAP message al so containsaUser naneToken element, which itself
contains a User name element and a Passwor d element. The difference is that the password is not sent
as plain text, but as a digest. The recipient compares this digest to the digest he calculated from the
known password of the user, and if they are the same, the user is authenticated. It can be compared to
the Digest Authentication provided by HTTP servers.

To require that every incoming message contains a User naneToken element with a password
digest, the security policy file should contain a RequireUsernaneToken element, with the
passwor dDi gest Requi r ed attribute set tot r ue. Additionally, the nonceRequi r ed should be set tot r ue:
Y ou can find areference of possible child elements here [http://java.sun.com/webservices/docs/1.6/
tutorial/doc/ X WS-Securityl ntro4.html#wp567459] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">

<xwss: Requi r eUser nameToken passwor dDi gest Requi red="true" nonceRequired="true"/>

</ xwss: SecurityConfiguration>

If the username token is not present, the xwsSecuri tyl nt er cept or will return a SOAP Fault to the
sender. If it ispresent, it will fire aPasswor dVval i dat i onCal | back with aDi gest Passwor dRequest tO
the registered handlers. Within Spring-WS, there are two classes which handle this particular callback.

67

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Securing your Web services with Spring-WS

7.2.2.2.1. SimplePasswordValidationCallbackHandler

The Si npl ePasswor dVal i dat i onCal | backHandl er can handle both plain text passwords as well as
password digests. It is described inSection 7.2.2.1.1, “ SimplePasswordV aidationCallbackHandler” .

7.2.2.2.2. SpringDigestPasswordValidationCallbackHandler

The Springhi gest PasswordVal i dati onCal | backHandl er ~ requires an Spring Security
User Det ai | Servi ce to operate. It uses this service to retrieve the password of the user specified
in the token. The digest of the password contained in this details object is then compared with
the digest in the message. If they are equal, the user has successfully authenticated, and a
User namePasswor dAut hent i cati onToken is stored in the Securi t yCont ext Hol der . You can set the
service using the user Det ai | sServi ce. Additionally, you can set a user Cache property, to cache
loaded user details.

<beans>
<bean cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. Spri ngDi gest Passwor dVal i dati onCal |
<property nanme="userDetail sServi ce" ref="userDetail sService"/>

</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.2.2.3. Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message
containsaBi nar ySecur i t yToken, which contains a Base 64-encoded version of a X509 certificate. The
certificate is used by the recipient to authenticate. The certificate stored in the messageis also used to
sign the message (seeSection 7.2.3.1, “Verifying Signatures’).

To make sure that all incoming SOAP messages carry aBi narySecurityToken, the security
policy file should contain a RequireSi gnature element. This element can further carry other
elements, which will be covered inSection 7.2.3.1, “Verifying Signatures’. You can find a
reference of possible child elements here [http://java.sun.com/webservices/docs/1.6/tutorial/doc/
XWS-Securitylntrod.html#wp565769] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">

<xwss: Requi reSi gnature requireTi mestanp="fal se">

</ xwss: SecurityConfigurati on>

When a message arrives that carries no certificate, the xwsSecuri t yl nt er cept or will return a SOAP
Fault to the sender. If it is present, it will firea CertificateValidationCal | back. There are three
handlers within Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation,
since you only want to authenticate against valid certificates. Invalid certificates such as
certificates for which the expiration date has passed, or which are not in your store of
trusted certificates, should be ignored.

68

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Securing your Web services with Spring-WS

In Spring-WS terms, this means that the
SpringCertificateValidationCallbackHandl er or
JaasCertificateValidationCal | backHandl er should be preceded by
KeySt or eCal | backHandl er. This can be accomplished by setting the order of the
cal | backHandl er s property in the configuration of the xwsSecuri tyl nt ercept or:

<bean i d="wsSecuritylnterceptor"”
cl ass="org. spri ngframewor k. ws. soap. security.xwss. XwsSecuritylnterceptor">
<property nanme="policyConfiguration" val ue="cl asspat h: securityPolicy.xm"/>
<property nanme="cal | backHandl ers" >
<list>
<ref bean="keyStoreHandl er"/>
<ref bean="springSecurityHandler"/>
</list>
</ property>
</ bean>

Using this setup, the interceptor will first determine if the certificate in the message is
valid using the keystore, and then authenticate against it.

7.2.2.3.1. KeyStoreCallbackHandler

The KeySt or eCal | backHandl er uses a standard Java keystore to validate certificates. This certificate
validation process consists of the following steps:

1. Firgt, the handler will check whether the certificate isin the private keySt ore. If itis, it isvalid.

2. If the certificate is not in the private keystore, the handler will check whether the current date and
time are within the validity period given in the certificate. If they are not, the certificateisinvalid;
if itis, it will continue with the final step.

3. Finally, a certification path for the certificate is created. This basically means that the handler
will determine whether the certificate has been issued by any of the certificate authorities in
thet rust St or e. If a certification path can be built successfully, the certificate is valid. Otherwise,
the certificate is not.

TousethekeysSt or eCal | backHandl er for certificate validation purposes, you will most likely set only
thetrust St or e property:

<beans>
<bean i d="keyStoreHandl er" class="org.springfranmework.ws. soap. security.xwss. cal | back. KeySt oreCal | k

<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springfranmework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Using this setup, the certificate that isto be validated must either be in the trust store itself, or the trust
store must contain a certificate authority that issued the certificate.

69

Securing your Web services with Spring-WS

7.2.2.3.2. SpringCertificateValidationCallbackHandler

The SpringCertificateValidationCall backHandl er requires an Spring Security
Aut henti cati onManager to operate. It uses this manager to authenticate against a
X509Aut hent i cati onToken that it creates. The configured authentication manager is expected to
supply aprovider which can handle thistoken (usually an instance of X509Aut hent i cat i onPr ovi der).
If authentication is succesful, the token is stored in the Securi t yCont ext Hol der. You can set the
authenti cation manager using the authenticationManager property:

<beans>
<bean i d="springSecurityCertificateHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. SpringCertificateValidatjonCallbackt
<property name="aut henti cati onManager" ref="authenti cati onManager"/>
</ bean>

<bean i d="aut henti cati onManager"
cl ass="org. springfranmework. security. provi ders. Provi der Manager " >
<property name="providers">
<bean cl ass="org. spri ngframewor k. ws. soap. security.x509. X509Aut henti cati onProvi der">
<property name="x509Aut horiti esPopul at or">
<bean cl ass="org. springframework. ws. soap. security.x509. popul at or. DaoX509Aut hori ti e
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

In this case, we are using a custom user details service to obtain authentication details based on the
certificate. Refer to the Spring Security reference documentation [http://www.springframework.org/
security] for more information about authentication against X509 certificates.

7.2.2.3.3. JaasCertificateValidationCallbackHandler

The JaasCertificateValidationCal | backHandl er requires a I ogi nCont ext Nane to operate. It
createsanew JAAS Logi nCont ext Using thisname and with the x500Pri nci pal of the certificate. This
means that this callback handler integrates with any JAAS Logi nMbdul e that handles X500 principals.

You canwireup aJaasCertificat eval i dati onCal | backHandl er asfollows:

<bean id="jaasVal i dati onHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. jaas. JaasCertificateValidati onCal | backHs
<property name="I| ogi nCont ext Nane" >MyLogi nModul e</ pr operty>

</ bean>

In this case, the callback handler uses the Logi nCont ext named "MyLoginModul€e". This module
should bedefinedinyourj aas. confi g file, and should be able to authenti cate against X500 principals.

7.2.3. Digital Signatures

Thedigital signature of amessageisajpiece of information based on both the document and the signer's
private key. There are two main tasks related to signatures in WS-Security: verifying signatures and

signing messages.

70

http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security

Securing your Web services with Spring-WS

7.2.3.1. Verifying Signatures

Just likecertificate-based authentication, a signed message contains a Bi nar ySecur i t yToken, which
contains the certificate used to sign the message. Additionally, it contains a Si gned! nf o block, which
indicates what part of the message was signed.

To make surethat all incoming SOAP messages carry aBi nar ySecur i t yToken, the security policy file
should contain aRequi r eSi gnat ur e element. It can also contain a Si gnat ur eTar get €element, which
specifiesthetarget message part which was expected to be signed, and various other subelements. Y ou
can also define the private key alias to use, whether to use a symmetric instead of a private key, and
many other properties. Y ou can find areference of possible child elements here [http://java.sun.com/
webservices/docs/1.6/tutorial/doc/ X WS-Security | ntrod.html#wp565769] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reSi gnature requireTi mestanp="fal se"/>
</ xwss: SecurityConfigurati on>

If thesignatureisnot present, thexws Securi t yl nt er cept or Will returnaSOAP Fault to the sender. If it
ispresent, itwill fireasi gnat ureVeri fi cati onkeyCal | back totheregistered handlers. Within Spring-
WS, there are is one class which handles this particular callback: the Key St or eCal | backHandl er .

7.2.3.1.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er USES
a java.security.KeyStore for handling various cryptographic callbacks, including signature
verification. For signature verification, the handler usesthet r ust St or e property:

<beans>
<bean i d="keyStoreHandl er" class="org.springfranmework.ws. soap. security.xwss. cal | back. KeySt oreCal | k
<property name="trustStore" ref="trustStore"/>

</ bean>

<bean i d="trustStore" class="org.springfranework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="l| ocati on" val ue="cl asspat h: or g/ spri ngf ramewor k/ ws/ soap/ security/ xwss/test-trus
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.3.2. Signing Messages

When signing a message, the XwsSecurityl nterceptor adds the Bi narySecurityToken to the
message, and a Si gned! nf o block, which indicates what part of the message was signed.

To sign al outgoing SOAP messages, the security policy file should contain a si gn element. It
can also contain a Si gnat ureTarget element, which specifies the target message part which was
expected to be signed, and various other subelements. Y ou can also define the private key alias to
use, whether to use a symmetric instead of a private key, and many other properties. You can find
a reference of possible child elements here [http://java.sun.com/webservices/docs/1.6/tutorial/doc/
XWS-Securitylntro4.html#wp565497] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Si gn incl udeTi nest anp="fal se" />
</ xwss: SecurityConfiguration>

71

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497

Securing your Web services with Spring-WS

The XwsSecuritylnterceptor Will fire a SignaturekeyCal | back to the registered handlers.
Within Spring-WS, there are is one class which handles this particular callback: the
KeySt or eCal | backHandl er .

7.2.3.2.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er uses a
java. security. KeySt or e for handling various cryptographic callbacks, including signing messages.
For adding signatures, the handler uses the keySt ore property. Additionally, you must set the
pri vat eKeyPasswor d property to unlock the private key used for signing.

<beans>
<bean i d="keyStoreHandl er" class="org.springframework.ws. soap. security.xwss. cal | back. KeySt oreCal | L
<property name="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean id="keyStore" class="org.springfranmework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="| ocati on" val ue="cl asspat h: keystore. jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.4. Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate
key. The message can be decrypted to reveal the original, readable message.

7.2.4.1. Decryption

To decrypt incoming SOAP messages, the security policy file should contain a Requi r eEncrypt i on
element. Thiselement can further carry aencrypti onTar get element which indicateswhich part of the
message should be encrypted, and asymet ri cKey toindicate that ashared secret instead of the regular
private key should be used to decrypt the message. Y ou can read a description of the other elements
here [http://java.sun.com/webservices/docy/1.6/tutorial/doc/ X WS-Securityl ntro4.html#wp565951] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reEncryption />
</ xwss: SecurityConfigurati on>

If an incoming message is not encrypted, the xwsSecuri tyl nt er cept or Will return a SOAP Fault to
the sender. If it is present, it will fire a Decrypti onkeyCal | back to the registered handlers. Within
Spring-WS, there is one class which handled this particular callback: thekey St or eCal | backHandl er .

7.2.4.1.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er uUSes
a java.security. KeyStore for handling various cryptographic callbacks, including decryption.
For decryption, the handler uses the keyStore property. Additionaly, you must set the
pri vat eKeyPasswor d property to unlock the private key used for decryption. For decryption based on
symmetric keys, it will usethe symretricStore.

<beans>
<bean i d="keyStoreHandl er" class="org.springfranmework.ws. soap. security.xwss. cal | back. KeySt oreCal | k

72

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

<property name="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property nanme="|ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.4.2. Encryption

To encrypt outgoing SOA P messages, the security policy file should contain aEncrypt element. This
element can further carry a Encrypti onTar get element which indicates which part of the message
should be encrypted, and a Ssymmet r i cKey to indicate that a shared secret instead of the regular public
key should be used to encrypt the message. You can read a description of the other elements here
[http://java.sun.com/webservices/docs/1.6/tutorial/doc/ X WS-Security ntrod.html#wp565951] .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Encrypt />
</ xwss: SecurityConfigurati on>

The xwsSecuri tyl ntercept or Will fireaEncrypti onkeyCal | back to the registered handlersin order
to retrieve the encryption information. Within Spring-WS, there is one class which handled this
particular callback: the Key St or eCal | backHandl er .

7.2.4.2.1. KeyStoreCallbackHandler

As described inSection 7.2.1.3, “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er USes a
java.security. KeyStore for handling various cryptographic callbacks, including encryption. For
encryption based on public keys, the handler usesthet rust St or e property. For encryption based on
symmetric keys, it will usethesymetricStore.

<beans>
<bean i d="keyStoreHandl er" class="org.springfranmework.ws. soap. security.xwss. cal | back. KeySt oreCal | k
<property name="trustStore" ref="trustStore"/>

</ bean>

<bean id="trustStore" class="org.springframework.ws. soap. security.support.KeyStoreFact oryBean">
<property name="|ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

7.2.5. Security Exception Handling

When an securement or validation action fails, the XxwsSecuritylnterceptor will throw
a WsSecuritySecurenent Exception OF WsSecurityValidationException respectively. These
exceptions bypassthe standard exception handling mechanism, but are handled in theinterceptor itself.

WsSecuri t ySecur ement Excepti on exceptions are handled in the handl eSecur enent Excepti on
method of the xwsSecuri tyl nt er cept or . By default, this method will ssmply log an error, and stop
further processing of the message.

Similarly, WSecuri tyVal i dati onExcepti on exceptions are handled in the
handl eVal i dat i onExcept i on method of the XwsSecuri tyl nt er cept or . By default, this method will
create a SOAP 1.1 Client or SOAP 1.2 Sender Fault, and send that back as a response.

73

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Securing your Web services with Spring-WS

Note

Both handl eSecur enent Exception and handl eval i dati onException are protected
methods, which you can override to change their default behavior.

7.3. Ws4j Securitylnterceptor

The Ws4j Securitylnterceptor IS an Endpointlnterceptor (seeSection 5.5.2, “Intercepting
requests - the Endpointinterceptor interface”) that is based on Apaches WSSAJ [http://
ws.apache.org/wss4j/].

WSSAJ implements the following standards:

* OASIS Web Serives Security: SOAP Message Security 1.0 Standard 200401, March 2004
e Username Token profile V1.0

» X.509 Token Profile V1.0

This inteceptor supports messages created by the AxionSoapMessageFactory and the
Saaj SoapMessageFact ory.

7.3.1. Configuring Ws4j Securi tyl nter cept or

WSSAJ uses no external configuration file; the interceptor is entirely configured by properties. The
validation and securement actions executed by thisinterceptor are specified via validationActions and
securementActions properties, respectively. Actions are passed as a space-separated strings. Here is
an example configuration:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="val i dationActions" val ue="User naneToken Encrypt"/>

<property nanme="securenent Actions" val ue="Encrypt"/>

</ bean>

Validation actions are:

Validation action Description

User naneToken Validates username token
Ti mest anp Validates the timestamp
Encr ypt Decrypts the message

Si gnat ur e Validates the signature
NoSecurity No action performed

Securement actions are:

Secur ement action Description

User nameToken Adds a username token

74

http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/

Securing your Web services with Spring-WS

Securement action Description

User naneTokenSi gnat ur e Addsausernametoken and asignature username token
secret key

Ti mest anp Adds atimestamp

Encr ypt Encrypts the response

Si gnat ure Signs the response

NoSecurity No action performed

The order of the actions is significant and is enforced by the interceptor. The interceptor will reject
an incoming SOAP message if its security actions were performed in a different order than the one
specified byval i dat i onActi ons.

7.3.2. Handling Digital Certificates

For cryptographic operations requiring interaction with a keystore or certificate
handling (signature, encryption and decryption operations), WSSAJ requires an instance
ofor g. apache. ws. security. conponents. crypto. Crypto.

Cr ypt o instances can be obtained from WSS4Js Cr ypt oFact or y or more conveniently with the Spring-
WSCr ypt oFact or yBean.

7.3.2.1. CryptoFactoryBean

Spring-WS provides a convenient factory bean, Crypt oFact or yBean that constructs and configures
Crypt o instances via strong-typed properties (prefered) or through aProperti es object.

By default, Cr ypt oFact or yBean returns instances of
org. apache. ws. security. conponents. crypto. Merlin. This can be changed by setting the
cryptoProvider property (or its equivalent org. apache. ws. security. crypto. provi der String

property).

Here is a simple example configuration:

<bean cl ass="org. springframewor k. ws. soap. security.wss4j.support.Crypt oFact oryBean">
<property nanme="keySt orePassword" val ue="nypassword"/>
<property name="keyStorelLocation" value="file:/path_to_keystore/keystore.jks"/>
</ bean>

7.3.3. Authentication

7.3.3.1. Validating Username Token

Spring-WS providesaset of callback handlersto integrate with Spring Security. Additionally, asimple
callback handler Si npl ePasswor dVal i dati onCal | backHandl er is provided to configure users and
passwords with an in-memory Properti es object.

Callback handlers are configured via Ws4j Securitylnterceptor's validationCallbackHandler
property.

75

Securing your Web services with Spring-WS

7.3.3.1.1. SimplePasswordValidationCallbackHandler

Si npl ePasswor dVal i dat i onCal | backHandl er validates plain text and digest username tokens against
an in-memory Proper ti es object. It is configured as follows:

<bean id="cal | backHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.wss4j . cal | back. Si npl ePasswor dVal i dat i onCal | backHandl er
<property name="users">
<pr ops>
<prop key="Bert">Erni e</prop>
</ props>
</ property>
</ bean>

7.3.3.1.2. SpringSecurityPasswordValidationCallbackHandler

ThespringSecuri t yPasswor dVal i dati onCal | backHandl er validates plain text and digest passwords
using a Spring Security User Det ai | Servi ce to operate. It uses this service to retrieve the (digest
of) the password of the user specified in the token. The (digest of) the password contained
in this details object is then compared with the digest in the message. If they are equal, the
user has successfully authenticated, and a User namePasswor dAut hent i cati onToken iS stored in
theSecuri t yCont ext Hol der . YOu can set the service using the userDetailsService. Additionally, you
can set a userCache property, to cache loaded user details.

<beans>
<bean cl ass="org. springframework. ws. soap. security.wss4j.cal |l back. Spri ngDi gest Passwor dVal i dati onCa
<property name="userDetail sServi ce" ref="userDetail sService"/>

</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

7.3.3.2. Adding Username Token

Adding a username token to an outgoing message is as simple as adding User naneToken to the
securementActions property of thewss4j Securi tyl nter cept or and specifying securementUsername
andsecurementPassword.

The password type can be set via the securementPasswordType property. Possible values are
Passwor dText for plain text passwords or Passwor dbi gest for digest passwords, which is the defaullt.

The following example generates a username token with a digest password:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="User nanmeToken"/>
<property name="securenent User nane" val ue="Ernie"/>
<property nanme="secur enent Password" val ue="Bert"/>

</ bean>

If plain text password type is chosen, it is possible to instruct the interceptor to add Nonce and/or
Creat ed elements using the securementUsernameT okenElements property. The value must be a list
containing the desired elements names separated by spaces (case sensitive).

The next example generates a username token with a plain text password, a Nonce and a Cr eat ed
element:

76

Securing your Web services with Spring-WS

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="User nanmeToken"/ >
<property name="securenent User nane" val ue="Ernie"/>
<property name="securenent Password" val ue="Bert"/>
<property name="secur enment Passwor dType" val ue="Passwor dText"/>
<property name="securenent User nanmeTokenEl enents" val ue="Nonce Created"/>
</ bean>

7.3.3.3. Certificate Authentication

As certificate authentication is akin to digital signatures, WSSA4J handles it as part of the signature
validation and securement. Specifically, the securementSignatureK eyl dentifier property must be set to
Di r ect Ref er ence in order to instruct WSS4J to generate aBi nar ySecuri t yToken element containing
the X509 certificate and to include it in the outgoing message. The certificate's name and password
are passed through the securementUsername and securementPassword properties respectively. Seethe
next example:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Signature"/>
<property name="secur enent Si gnat ur eKeyl dentifier" val ue="Direct Ref erence"/>
<property nanme="secur enent User nane" val ue="nycert"/>
<property name="securenent Password" val ue="cert pass"/>
<property nanme="securenent Si gnat ur eCrypt 0" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
</ bean>

For the certificate validation, regular signature validation applies:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dationActions" val ue="Signature"/>
<property name="validationSi gnat ureCrypto">
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

At the end of the validation, the interceptor will automatically verify the validity of the certificate by
delegating to the default WSS4Jimplementation. If needed, thisbehavior can be changed by redefining
theverifyCertificateTrust method.

For more details, please refer toSection 7.3.5, “Digital Signatures’.

7.3.4. Security Timestamps
This section describes the various timestamp options available in the Wss4j Securi tyl nt erceptor.
7.3.4.1. Validating Timestamps

To validate timestamps add Ti mest anp to the validationActions property. It is possible to override
timestamp semantics specified by theinitiator of the SOAP message by setting timestampStrict tot r ue
and specifying a server-side time to live in seconds (defaults to 300) viathe timeToLive property L

! Thei nterceptor will always reject already expired timestamps whatever the value of timeToLiveis.

77

Securing your Web services with Spring-WS

In the following example, the interceptor will limit the timestamp validity window to 10 seconds,
rejecting any valid timestamp token outside that window:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dationActions" val ue="Ti nmestanp"/>
<property name="tinmestanpStrict" value="true"/>
<property name="tinmeToLive" val ue="10"/>

</ bean>

7.3.4.2. Adding Timestamps

Adding Ti nest anp to the securementActions property generates a timestamp header in outgoing
messages. The timestampPrecisionInMilliseconds property specifies whether the precision of the
generated timestamp is in milliseconds. The default value ist r ue.

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Ti nestanp"/>
<property name="ti mestanpPrecisionlnMIIliseconds" val ue="true"/>

</ bean>

7.3.5. Digital Signatures
This section describes the various signature options available in the wes4j Securi tyl nt er cept or .
7.3.5.1. Verifying Signatures

To instruct thewss4j Securityl nt ercept or, validationActions must contain the Si gnat ure action.
Additionally, the validationSignatureCrypto property must point to the keystore containing the public
certificates of theinitiator:

<bean i d="wsSecuritylnterceptor” class="org.springfranmework.ws.soap. security.wss4j.Ws4j Securitylnterc
<property name="validati onActions" val ue="Si gnature"/>
<property nanme="val i dationSi gnat ureCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

7.3.5.2. Signing Messages

Signing outgoing messages is enabled by adding Si gnat ur e action to thesecurementActions. The
alias and the password of the private key to use are specified by the securementUsername and
securementPassword properties respectively. securementSignatureCrypto must point to the keystore
containing the private key:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="securenent Actions" val ue="Signature"/>
<property nanme="secur enent User nane" val ue="nykey"/ >
<property name="securenent Password" val ue="123456"/>
<property name="securenent Si gnat ur eCrypt 0" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean"?
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>

78

Securing your Web services with Spring-WS

</ bean>

Furthermore, the signature algorithm can be defined via the securementSignatureAlgorithm.

The key identifier type to use can be customized via the securementSignatureK eyldentifier property.
Only I ssuer Seri al and Di rect Ref er ence are valid for signature.

securementSignatureParts property controls which part of the message shall be signed. The value of
this property is alist of semi-colon separated element names that identify the elements to sign. The
general form of asignature part is{} { namespace} El enent 2 The default behavior isto signthe SOAP
body.

Asan example, hereishow to signtheechoResponse element in the Spring Web Services echo sample:

<property name="securenent Si gnat ureParts"
val ue="{}{http://ww:. spri ngframework. org/ spri ng-ws/ sanpl es/ echo} echoResponse"/ >

The WS Security specifications define several formats to transfer the signature tokens (certificates)
or references to these tokens. Thus, the plain element name Token signs the token and takes
care of the different formats. To sign the SOAP body and the signature token the value of
securementSignatureParts must contain:

<property nanme="secur enent Si gnat ureParts">
<val ue>
{}{http://schemas. xm soap. or g/ soap/ envel ope/ } Body;
Token
</ val ue>
</ property>

To specify an element without anamespace usethe string Nul | asthe namespace name (case sensitive).

If thereisno other element in the request with alocal name of Body then the SOAP namespaceidentifier
can be empty ({}).

7.3.5.3. Signature Confirmation

Signature confirmation isenabled by setting enableSignatureConfirmationtot r ue. Notethat signature
confirmation action spans over the request and the response. This implies that secur eResponse and
val i dat eRequest must be set to true (which is the default value) even if there are no corresponding
security actions.

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="validati onActions" val ue="Si gnature"/>
<property name="enabl eSi gnat ureConfirmati on" val ue="true"/>
<property nanme="val i dationSi gnat ureCrypt o">
<bean cl ass="org. springfranmewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" value="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

2 Thefirst empty brackets are used for encryption parts only.

79

Securing your Web services with Spring-WS

7.3.6. Encryption and Decryption

This section describes the various encryption and descryption options available in the
Wss4j Securityl nterceptor.

7.3.6.1. Decryption

Decryption of incoming SOAP messages requires Encr ypt action be added to the validationActions
property. Therest of the configuration depends on the key information that appears in the message 3,

To decrypt messages with an embedded encypted symmetric key (xenc: Encrypt edKey
element), validationDecryptionCrypto needs to point to a keystore containing the
decryption private key. Additionally, validationCallbackHandler has to be injected with a
org. springframewor k. ws. soap. security. wss4j . cal | back. KeySt or eCal | backHandl er specifying
the key's password:

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="Encrypt"/>
<property name="val i dati onDecrypti onCrypto">
<bean cl ass="org. springframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt or ePassword" val ue="123456"/>
<property name="keyStorelLocation" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
<property nanme="val i dationCal | backHandl er" >
<bean cl ass="org. springframework. ws. soap. security.wss4j.cal |l back. KeySt oreCal | backHandl er" >
<property nanme="privat eKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

To support decryption of messages with an embedded key name (ds: KeyNarme element), configure a
KeySt or eCal | backHandl er that points to the keystore with the symmetric secret key. The property
symmetricK eyPassword indicates the key's password, the key name being the one specified by
ds: KeyNane €lement:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dationActions" val ue="Encrypt"/>
<property nanme="val i dationCal | backHandl er" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j. cal | back. KeySt or eCal | backHandl er " >
<property nanme="keyStore">
<bean cl ass="org. spri ngframewor k. ws. soap. security. support.KeySt or eFact or yBean" >
<property nanme="|ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="type" val ue="JCEKS"/>
<property name="password" val ue="123456"/>
</ bean>
</ property>
<property name="symmetricKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

7.3.6.2. Encryption

Adding Encrypt to the securementActions enables encryption of outgoing messages. The certifacte's
alias to use for the encryption is set via the securementEncryptionUser property. The keystore where

3 Thisis becatise WSS4J needs only aCrypto for encypted keys, whereas embedded key name validation is delegated to a callback handler.

80

Securing your Web services with Spring-WS

the certificate reside is accessed using the securementEncryptionCrypto property. Asencryption relies
on public certificates, no password needs to be passed.

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Encrypt"/>
<property name="securenent Encrypti onUser" val ue="nycert"/>
<property name="securenent Encrypti onCrypto">
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt orePassword" val ue="123456"/>
<property name="keyStorelLocation" value="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

Encryption can be customized in several ways. The key identifier type to use is defined
bysecurementEncryptionKeyldentifier. Possible values arel ssuer Seri al ,X509Keyl denti fier,
Di r ect Ref er ence, Thunmbpri nt, SKI Keyl denti fi er OrEnbeddedKeyNane.

If the EmbeddedKeyNane type is chosen, you need to specify the secret key to use for the encryption.
The dlias of the key is set via the securementEncryptionUser property just as for the other
key identifier types. However, WSSA4J requires a callback handler to fetch the secret key. Thus,
securementCallbackHandler must be provided with a KeySt or eCal | backHandl er pointing to the
appropriate keystore. By default, the ds: KeyName element in the resulting WS-Security header
takes the value of the securementEncryptionUser property. To indicate a different name, set the
securementEncryptionEmbeddedK eyName with the desired value. In the next example, the outgoing
message will be encrypted with a key aliased secr et Key Whereas nyKey will appear in ds: KeyNane
element:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Actions" val ue="Encrypt"/>
<property nanme="securenent Encrypti onKeyl dentifier" val ue="EnbeddedKeyNane"/>
<property nanme="securenent Encrypti onUser" val ue="secret Key"/ >
<property name="securenent Encrypti onEnbeddedKeyNane" val ue="nyKey"/ >
<property nanme="securenent Cal | backHandl er" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j. cal | back. KeySt or eCal | backHandl er " >
<property name="symmetri cKeyPassword" val ue="keypass"/>
<property nanme="keyStore">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security. support.KeySt or eFact or yBean" >
<property name="location" value="file:/keystore.jks"/>
<property nanme="type" val ue="jceks"/>
<property nanme="password" val ue="123456"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

The securementEncryptionK ey TransportAlgorithm property defineswhich algorithm to useto encrypt
the generated symmetric key. Supported values are ht t p: / / www. w3. or g/ 2001/ 04/ xm enc#rsa- 1_5,
which isthe default, and ht t p: / / www. w3. or g/ 2001/ 04/ xm enc#r sa- oaep- ngf 1p.

The symmetric encryption algorithm to use can be set via the securementEncryptionSymAlgorithm
property. Supported values are http://ww. w3. or g/ 2001/ 04/ xnl enc#aes128-cbc (default
value), http://ww. w3. or g/ 2001/ 04/ xn enc#t ri pl edes-cbc, http://ww. w3. or g/ 2001/ 04/
xm enc#aes256- cbc, http: // ww. w3. or g/ 2001/ 04/ xm enc#aes192- cbc.

Finally, the securementEncryptionParts property defineswhich parts of the message will be encrypted.
The value of this property is alist of semi-colon separated element names that identify the elements

81

Securing your Web services with Spring-WS

to encrypt. An encryption mode specifier and a namespace identification, each inside a pair of curly
brackets, may precede each element name. The encryption mode specifier is either { Content} or
{El ement} *. Thefollowing example identifies the echoResponse from the echo sample:

<property nanme="securenent Encrypti onParts"
val ue="{Content}{http://wwm. springframework. org/spring-ws/sanpl es/ echo} echoResponse"/ >

Be aware that the element name, the namespace identifier, and the encryption modifier are case
sensitive. The encryption modifier and the namespace identifier can be omitted. In this case the
encryption mode defaults to cont ent and the namespace is set to the SOAP namespace.

To specify an element without anamespace usethevalueNul | asthe namespace name (case sensitive).
If no list is specified, the handler encrypts the SOAP Body in Cont ent mode by default.

7.3.7. Security Exception Handling

The exception handling of the Wss4jSecuritylnterceptor is identical to that of the
XwsSecuri tyl ntercept or. See Section 7.2.5, “ Security Exception Handling” for more information.

“ Please refer to the W3C XML Encryption specification about the differences between Element and Content encryption.

82

Part Ill. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you learn how
to use Spring Web Services. These additional, third-party resources are enumerated in this section.

83

Bibliography
[waldo-94] Jim Waldo, Ann Wollrath, and Sam Kendall. A Note on Distributed Computing. Springer Verlag.

1994,

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005. Copyright ©
2005 |EEE Telephone Laboratories, Inc..

[effective-enterprise-javal Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley. 2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

84

	Spring Web Services
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. What is Spring Web Services?
	1.1. Introduction
	1.2. Runtime environment

	Chapter 2. Why Contract First?
	2.1. Introduction
	2.2. Object/XML Impedance Mismatch
	2.2.1. XSD extensions
	2.2.2. Unportable types
	2.2.3. Cyclic graphs

	2.3. Contract-first versus Contract-last
	2.3.1. Fragility
	2.3.2. Performance
	2.3.3. Reusability
	2.3.4. Versioning

	Chapter 3. Writing Contract-First Web Services
	3.1. Introduction
	3.2. Messages
	3.2.1. Holiday
	3.2.2. Employee
	3.2.3. HolidayRequest

	3.3. Data Contract
	3.4. Service contract
	3.5. Creating the project
	3.6. Implementing the Endpoint
	3.6.1. Handling the XML Message
	3.6.2. Routing the Message to the Endpoint
	3.6.3. Providing the Service and Stub implementation

	3.7. Publishing the WSDL

	Part II. Reference
	Chapter 4. Shared components
	4.1. Web service messages
	4.1.1. WebServiceMessage
	4.1.2. SoapMessage
	4.1.3. Message Factories
	4.1.3.1. SaajSoapMessageFactory
	4.1.3.2. AxiomSoapMessageFactory
	4.1.3.3. SOAP 1.1 or 1.2

	4.1.4. MessageContext

	4.2. TransportContext
	4.3. Handling XML With XPath
	4.3.1. XPathExpression
	4.3.2. XPathTemplate

	4.4. Message Logging and Tracing

	Chapter 5. Creating a Web service with Spring-WS
	5.1. Introduction
	5.2. The MessageDispatcher
	5.3. Transports
	5.3.1. MessageDispatcherServlet
	5.3.1.1. Automatic WSDL exposure

	5.3.2. Wiring up Spring-WS in a DispatcherServlet
	5.3.3. JMS transport
	5.3.4. Email transport
	5.3.5. Embedded HTTP Server transport
	5.3.6. XMPP transport

	5.4. Endpoints
	5.4.1. @Endpoint handling methods
	5.4.1.1. Handling method parameters
	5.4.1.1.1. @XPathParam

	5.4.1.2. Handling method return types

	5.5. Endpoint mappings
	5.5.1. WS-Addressing
	5.5.1.1. AnnotationActionEndpointMapping

	5.5.2. Intercepting requests - the EndpointInterceptor interface
	5.5.2.1. PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	5.5.2.2. PayloadValidatingInterceptor
	5.5.2.3. PayloadTransformingInterceptor

	5.6. Handling Exceptions
	5.6.1. SoapFaultMappingExceptionResolver
	5.6.2. SoapFaultAnnotationExceptionResolver

	5.7. Server-side testing
	5.7.1. Writing server-side integration tests
	5.7.2. RequestCreator and RequestCreators
	5.7.3. ResponseMatcher and ResponseMatchers

	Chapter 6. Using Spring Web Services on the Client
	6.1. Introduction
	6.2. Using the client-side API
	6.2.1. WebServiceTemplate
	6.2.1.1. URIs and Transports
	6.2.1.1.1. HTTP transports
	6.2.1.1.2. JMS transport
	6.2.1.1.3. Email transport
	6.2.1.1.4. XMPP transport

	6.2.1.2. Message factories

	6.2.2. Sending and receiving a WebServiceMessage
	6.2.3. Sending and receiving POJOs - marshalling and unmarshalling
	6.2.4. WebServiceMessageCallback
	6.2.4.1. WS-Addressing

	6.2.5. WebServiceMessageExtractor

	6.3. Client-side testing
	6.3.1. Writing client-side integration tests
	6.3.2. RequestMatcher and RequestMatchers
	6.3.3. ResponseCreator and ResponseCreators

	Chapter 7. Securing your Web services with Spring-WS
	7.1. Introduction
	7.2. XwsSecurityInterceptor
	7.2.1. Keystores
	7.2.1.1. KeyTool
	7.2.1.2. KeyStoreFactoryBean
	7.2.1.3. KeyStoreCallbackHandler

	7.2.2. Authentication
	7.2.2.1. Plain Text Username Authentication
	7.2.2.1.1. SimplePasswordValidationCallbackHandler
	7.2.2.1.2. SpringPlainTextPasswordValidationCallbackHandler
	7.2.2.1.3. JaasPlainTextPasswordValidationCallbackHandler

	7.2.2.2. Digest Username Authentication
	7.2.2.2.1. SimplePasswordValidationCallbackHandler
	7.2.2.2.2. SpringDigestPasswordValidationCallbackHandler

	7.2.2.3. Certificate Authentication
	7.2.2.3.1. KeyStoreCallbackHandler
	7.2.2.3.2. SpringCertificateValidationCallbackHandler
	7.2.2.3.3. JaasCertificateValidationCallbackHandler

	7.2.3. Digital Signatures
	7.2.3.1. Verifying Signatures
	7.2.3.1.1. KeyStoreCallbackHandler

	7.2.3.2. Signing Messages
	7.2.3.2.1. KeyStoreCallbackHandler

	7.2.4. Encryption and Decryption
	7.2.4.1. Decryption
	7.2.4.1.1. KeyStoreCallbackHandler

	7.2.4.2. Encryption
	7.2.4.2.1. KeyStoreCallbackHandler

	7.2.5. Security Exception Handling

	7.3. Wss4jSecurityInterceptor
	7.3.1. Configuring Wss4jSecurityInterceptor
	7.3.2. Handling Digital Certificates
	7.3.2.1. CryptoFactoryBean

	7.3.3. Authentication
	7.3.3.1. Validating Username Token
	7.3.3.1.1. SimplePasswordValidationCallbackHandler
	7.3.3.1.2. SpringSecurityPasswordValidationCallbackHandler

	7.3.3.2. Adding Username Token
	7.3.3.3. Certificate Authentication

	7.3.4. Security Timestamps
	7.3.4.1. Validating Timestamps
	7.3.4.2. Adding Timestamps

	7.3.5. Digital Signatures
	7.3.5.1. Verifying Signatures
	7.3.5.2. Signing Messages
	7.3.5.3. Signature Confirmation

	7.3.6. Encryption and Decryption
	7.3.6.1. Decryption
	7.3.6.2. Encryption

	7.3.7. Security Exception Handling

	Part III. Other Resources
	Bibliography

