
Site Planning

Introduction to Topography

STREET SMART?

The Streets of San Francisco

http://www.youtube.com/watch?v=5yXrAX-E_6k

The Spanish Steps Rome http://www.youtube.com/watch?v=DKKp NrXnXR0

Lombard Street
San Francisco

http://www.youtube.com/watch?v=sWnff376PEI

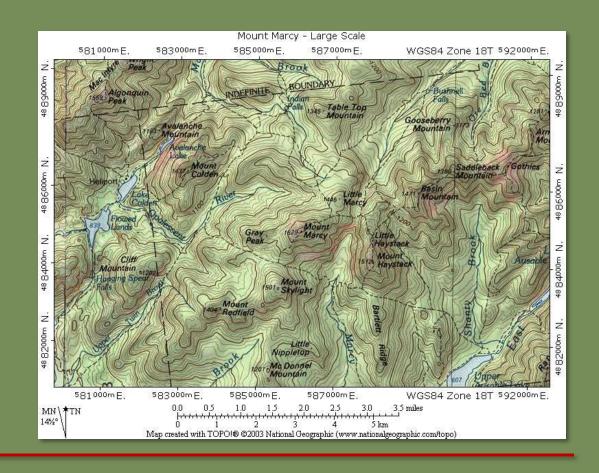
WHAT IS TOPOGRAPHY?

TOPOGRAPHY:
THE GRAPHIC REPRESENTATION OF THE
BOUNDARY BETWEEN THE EARTH AND THE
AIR INDICATING RELATIVE ELEVATION AND
POSITION

>TOPOGRAPHY DEFINED

- >NATURAL TOPOGRAPHY
- >MAN MADE TOPOGRAPHY

Topographic Map


A map showing changes in elevation and other geographic features

Mount Marcy

The tallest peak in New York States Adirondack region

IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

TOPOGRAPHY: CAN DESCRIBE NATURAL FEATURES

WHAT IS TOPOGRAPHY?

>TOPOGRAPHY DEFINED

>NATURAL TOPOGRAPHY

>MAN MADE TOPOGRAPHY

Mountains Peaks

Rolling Hills

Valleys

Water Features

IMAGE SOURCE:

HTTP://QUESTPOINTGROUP.COM/TRAVEL/WP-

CONTENT/UPLOADS/2009/11/GREEN HILLS 1024x768-661992.JPEG

HTTP://www.biocrawler.com/w/images/3/35/Mountain peaks, Lahaul.jpg

HTTP://www.studentsoftheworld.info/sites/country/img/15830 Niagra%20Falls.jpg

HTTP://CGZ.E2BN.NET/E2BN/LEAS/C99/SCHOOLS/CGZ/ACCOUNTS/STAFF/RCHAMBERS/GEOBYTES%
20GCSE%20BL0G%20Resources/IMAGES/RIVERS/V-SHAPEDVALLEY.JPG

■ TOPOGRAPHY: CAN DESCRIBE MAN-MADE FEATURES

WHAT IS TOPOGRAPHY?

>TOPOGRAPHY DEFINED

>NATURAL TOPOGRAPHY

MAN MADE TOPOGRAPHY

IMAGE SOURCE:

HTTP://BJDECASTRO.COM/ARTSTORE/IMAGES/SPANISH-STEPS-ROME.JPG

HTTP://HTMLHELP.COM/~LIAM/CALIFORNIA/SANFRANCISCO/LOMBARDSTREET/LOMBARDSTREET1.JP

HTTP://www.martybarrett.com/Barrettimages/newspix/water2.jpg
HTTP://www.csuchico.edu/alumni/ img/img_machupicchu.jpg

Stairs

The Spanish Steps in Rome

Stepped Walls

Machu Picchu Peru

Roads

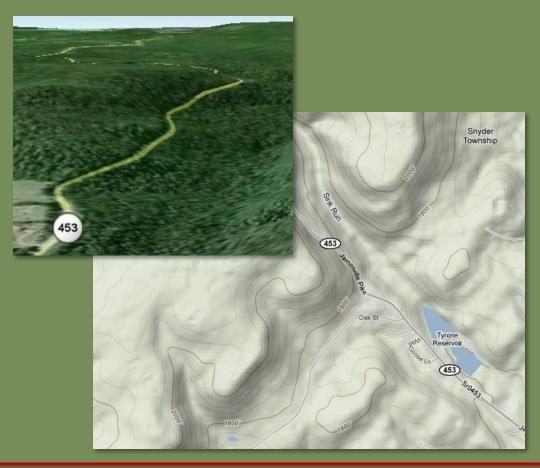
Lombard Street San Francisco

Water Aqueduct
California Aqueduct

■ Topography: Is used by us every day

COMMON USE OF TOPOGRAPHIC MAPS

>ROAD MAPS


- >TRAIL MAPS
- >Tour de France
- >EXPLORING THE OCEANS
- >SITE MODELS

Road Maps

It is common for road maps to show contours which allows us to understand the slope of roads

IMAGE SOURCE:

GOOGLE EARTH

TOPOGRAPHY: IS USED BY US EVERY DAY

COMMON USE OF TOPOGRAPHIC MAPS

>ROAD MAPS

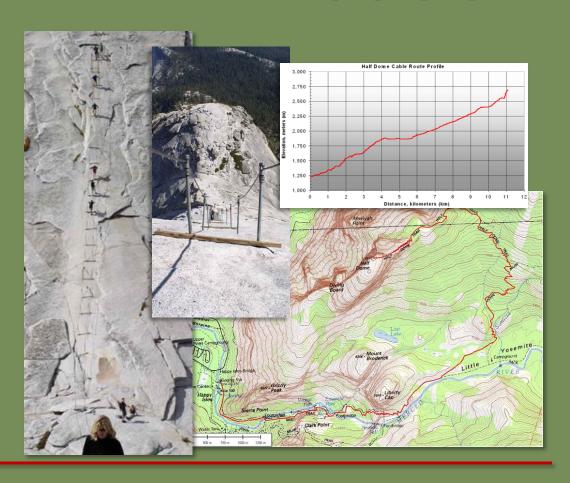
>TRAIL MAPS

>TOUR DE FRANCE

>EXPLORING THE OCEANS

SITE MODELS

Trail Maps


Trail maps are used by hikers.

Trail Profile

Understanding the slope profile and change of elevation along a hike is important to evaluating the difficulty of the trail and estimating the time it will take to complete a particular hike

IMAGE SOURCE:

HTTP://WWW.HELI-CHAIR.COM/HALF DOME CABLE ROUTE HIKE.HTML

TOPOGRAPHY: IS USED BY US EVERY DAY

COMMON USE OF TOPOGRAPHIC MAPS

>ROAD MAPS

>TRAIL MAPS

>TOUR DE FRANCE

>EXPLORING THE OCEANS

SITE MODELS

Tour de France

The Tour de France a multi-stage bike race uses topographic maps to provide information about the course

Route Map

The route map provides an indication of how the course runs across the topographic map. A straighter line usually represents a shallow slope and a jagged "crisscross" line typically indicates a steep slope or switchback.

Route Profile

The route profile illustrates the number and difficulty of the climbs on each stage of the race

IMAGE SOURCE:

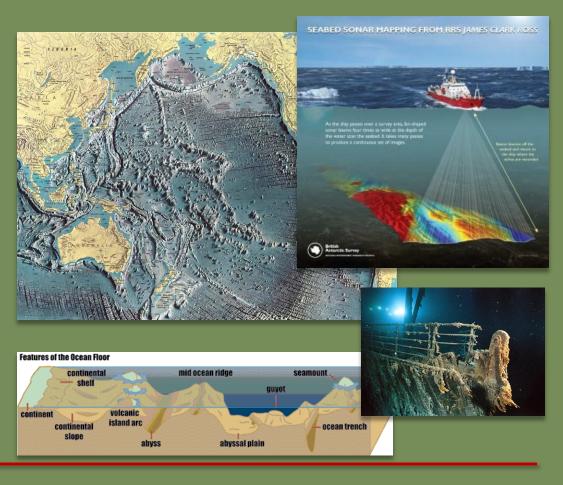
HTTP://www.letour.fr/2010/TDF/LIVE/US/200/ETAPE_PAR_ETAPE.HTML#ZON

TOPOGRAPHY: IS USED BY US EVERY DAY

COMMON USE OF TOPOGRAPHIC MAPS

- ROAD MAPS
- >TRAIL MAPS
- >TOUR DE FRANCE
- EXPLORING THE OCEANS
- SITE MODELS

Topography of the Oceans
Topography does not stop when we reach
the shore but continues below the sea showing the edges of tectonic plates and subduction zones


Remote Sensing

Most of the ocean below a few hundred meters it totally dark making it impossible to see. Remote sensing using sonar allows us to survey the depths to create an accurate map

Discovery of the Titanic Tools like this helped Robert Ballard's team discover the location of the Titanic

IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

■ TOPOGRAPHY: IS USED BY US EVERY DAY

COMMON USE OF TOPOGRAPHIC MAPS

- >ROAD MAPS
- >TRAIL MAPS
- >TOUR DE FRANCE
- >EXPLORING THE OCEANS
- SITE MODELS

Site Topographic Models

Architects, Landscape Architects and Civil Engineers use topographic maps to create scale models to help visualize a site

Models of this type are also very useful when explaining concepts to lay people and clients who have difficulty reading drawings

IMAGE SOURCE:

HTTP://www.deepcat.com.my/Gallery/model/contour%20Model.JPG
HTTP://www.capitalmodels.co.uk/images/laser/laserparts1.jpg

Possible Activities:

- > Reading topographic maps
 - ➤ Reading hiking maps
- ➤ Look at some topographic models & drawings
 - ➤ Build a topographic model

End of Lecture

Site Planning

Topography & Reading Maps

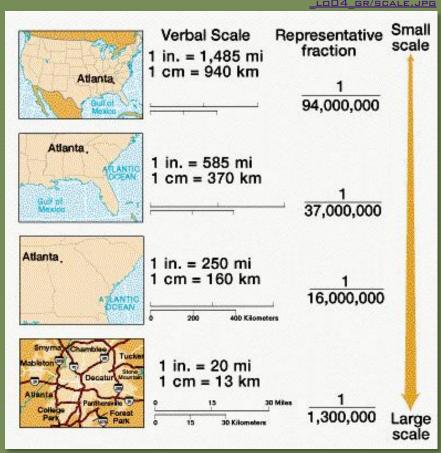
TOPOGRAPHY:THE GRAPHIC REPRESENTATION OF THEBOUNDARY BETWEEN THE EARTH AND THE

BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

- EXPRESSING SCALE
- >CONTOURS
- >SPOT ELEVATIONS
- >INTERPOLATION
- >ROAD & TRAIL FEATURES

Map Scale

All maps are drawn to scale so that we can measure distances.


Expressing Scale

Scales are written as a fraction expressing how much distance is equal to 1 unit measured on the map. They also shown graphically as a bar scale.

A larger scale map means the map is enlarged showing greater detail.

IMAGE SOURCE:

HTTP://GO.OWU.EDU/~JBKRYGIE/KRYGIER_HTML/GEOG_222/GEOG_222_LO/GEOG_222

THE GRAPHIC REPRESENTATION OF THE BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

TOPOGRAPHY:

- >EXPRESSING SCALE
- >CONTOURS
- >SPOT ELEVATIONS
- >INTERPOLATION
- >ROAD & TRAIL FEATURES

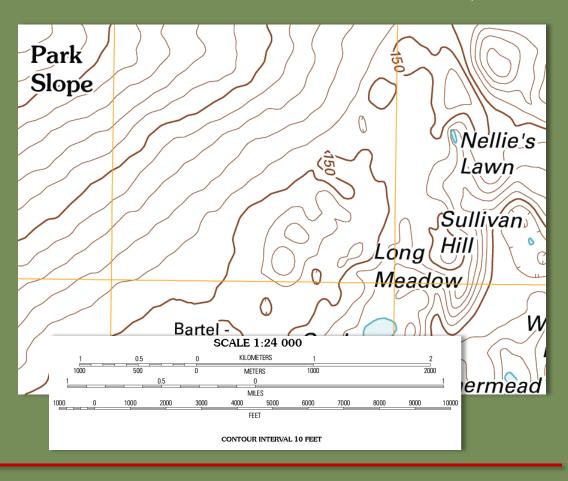
Contour Lines

A contour line is a graphic way of connecting all points of the same elevation

Contour Interval

Each contour map has a contour interval which is like the vertical scale. It tells you the difference in elevation between two adjacent contours.

Contour Labels


A contour label typically breaks the contour to show the elevation of the line. Since not all contours are labeled you can count up or down from a label using the contour interval.

Every 5th Contour

To increase the readability of contour maps every 5th contour is drawn as a thicker line.

IMAGE SOURCE:

USGS BROOKLYN QUADRANGLE

THE GRAPHIC REPRESENTATION OF THE BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

TOPOGRAPHY:

- >EXPRESSING SCALE
- >CONTOURS
- >SPOT ELEVATIONS
- >INTERPOLATION
- >ROAD & TRAIL FEATURES

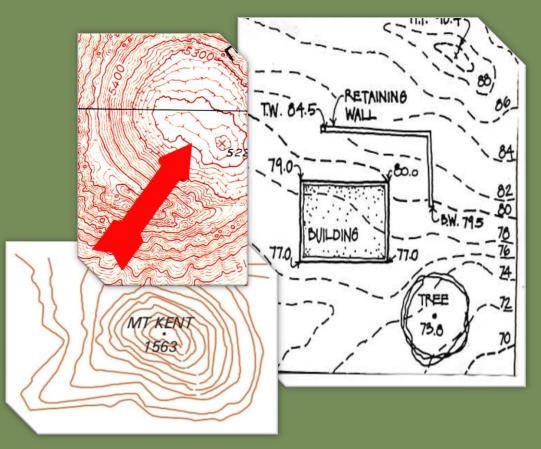
Spot Elevation

Spot elevations can identify the peak of a mountain, the low point of a depression or the elevation of walls or buildings

Peaks

If a contour appears as a closed circular form a spot elevation can be used to clarify the peak.

Depressions


Like peaks, depressions appear on a map as closed circular contours but can be recognized by the short lines called "hachure's" along its edge pointing down towards the depression.

Locating Trees

A tree's elevation is shown on a contour map or survey using a spot elevation

IMAGE SOURCE:

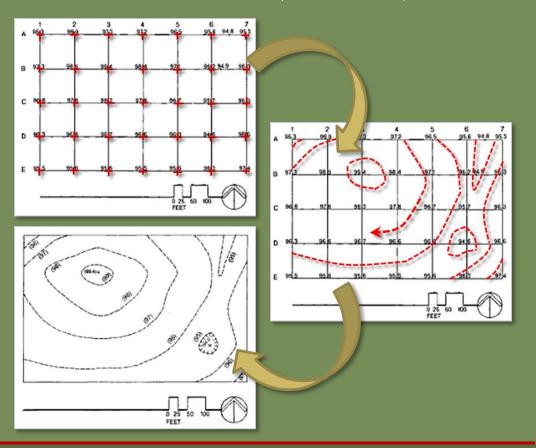
HTTP://www.csus.edu/indiv/s/slaymaker/archives/geol10L/depression1.jpg

THE GRAPHIC REPRESENTATION OF THE BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

TOPOGRAPHY:

- >EXPRESSING SCALE
- >CONTOURS
- >SPOT ELEVATIONS
- **INTERPOLATION**
- >ROAD & TRAIL FEATURES

Spot Elevation Grid

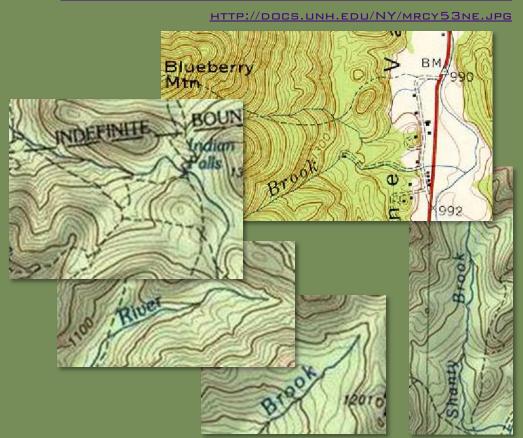

A survey is sometimes performed by determining the elevation of a series of spots located on a grid.

Interpolation

From the spot elevation grid a contour map can be developed by using interpolation to estimate the position of contours.

IMAGE SOURCE:

SITE ENGINEERING FOR LANDSCAPE ARCHITECTS
BY STEVEN STROM, KURT NATHAN, JAKE WOLAND


THE GRAPHIC REPRESENTATION OF THE
BOUNDARY BETWEEN THE EARTH AND THE
AIR INDICATING RELATIVE ELEVATION AND

TOPOGRAPHY:

POSITION

IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

- >EXPRESSING SCALE
- >Contours
- >SPOT ELEVATIONS
- **INTERPOLATION**
- >ROAD & TRAIL FEATURES

Roads

Roads are represented on contour maps as solid lines. They may either parallel or cross contours provided they do not exceed safe grades or slopes for cars.

Hiking Trails

Hiking trails show as dashed lines. Like roads they may also cross or parallel contour lines. Hiking trails can be steeper than roads.

Streams

Steams show as a solid lines and will follow the fold or "v" in the contour and the run from the point of the contour downstream. They can help you read the directions of the contours.

USGS The United States Geological survey

"AS AN UNBIASED, MULTI-DISCIPLINARY SCIENCE ORGANIZATION THAT FOCUSES ON BIOLOGY, GEOGRAPHY, GEOLOGY, GEOSPATIAL INFORMATION, AND WATER, WE ARE DEDICATED TO THE TIMELY, RELEVANT, AND IMPARTIAL STUDY OF THE LANDSCAPE, OUR NATURAL RESOURCES, AND THE NATURAL HAZARDS THAT THREATEN US"

WWW.USGS.GOV

>USGS MAP SCALE

>USGS QUADRANGLES

>BROOKLYN QUADRANGLE

Map Scale

All maps are drawn to scale so that we can measure distances

Magnetic North-Grid North

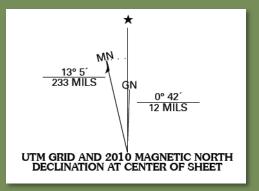
USGS Maps indicate the direction of both grid and magnetic north and the angle between the two.

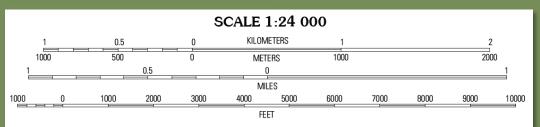
Declination

The difference between Magnetic North and Grid North. This value differs depending upon your location.

USGS Quadrangle Scale

USGS topographic quadrangle maps are drawn at a scale of 1:24,000


IMAGE SOURCE:


HTTP://GO.OWU.EDU/~JBKRYGIE/KRYGIER_HTML/GEOG_222/GEOG_222_LO/GEOG

U.S. DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

BROOKLYN QUADRANGLE NEW YORK 7.5-MINUTE SERIES

CONTOUR INTERVAL 10 FEET

This map was produced to conform with version 0.5.10 of the draft USGS Standards for 7.5-Minute Quadrangle Maps.

A metadata file associated with this product is also draft version 0.5.10

USGS The United States Geological survey "AS AN UNBIASED, MULTI-DISCIPLINARY SCIENCE ORGANIZATION THAT FOCUSES ON BIOLOGY, GEOGRAPHY, GEOLOGY, GEOSPATIAL INFORMATION, AND WATER, WE ARE DEDICATED TO THE TIMELY, RELEVANT, AND IMPARTIAL STUDY OF THE LANDSCAPE, OUR NATURAL RESOURCES, AND THE NATURAL HAZARDS THAT THREATEN US"

WWW.USGS.GOV

>USGS MAP SCALE

>USGS QUADRANGLES

>BROOKLYN QUADRANGLE

USGS Quadrangle Maps

Most USGS map series divide the United States into 7.5 minutes quadrangles bounded by two lines of latitude and two lines of longitude.


7.5 Minute Maps

For example, a 7.5-minute map shows an area that spans 7.5 minutes of latitude and 7.5 minutes of longitude, and it is usually named after the most prominent feature in the quadrangle IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

U.S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY

USGS THE UNITED STATES GEOLOGICAL SURVEY

"AS AN UNBIASED, MULTI-DISCIPLINARY SCIENCE ORGANIZATION THAT FOCUSES ON BIOLOGY, GEOGRAPHY, GEOLOGY, GEOSPATIAL INFORMATION, AND WATER, WE ARE DEDICATED TO THE TIMELY, RELEVANT, AND IMPARTIAL STUDY OF THE LANDSCAPE, OUR NATURAL RESOURCES, AND THE NATURAL HAZARDS THAT THREATEN US"

WWW.USGS.GOV

>USGS MAP SCALE

>USGS QUADRANGLES

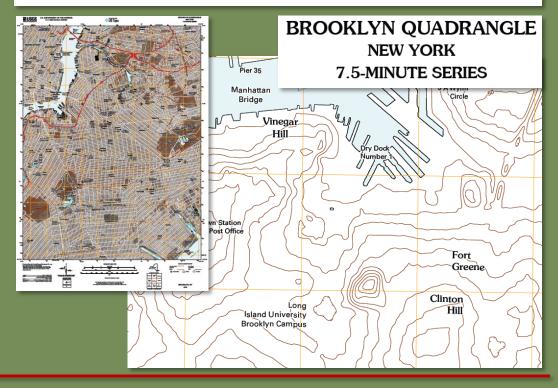
>BROOKLYN QUADRANGLE

USGS

The U.S. Geological Survey maintains maps of the entire united states

USGS Quadrangles Names

Maps are named for a prominent feature within the quadrangle


Map Layers

These maps are layered allowing the control of the visibility of roads, contours and other details IMAGE SOURCE:

USGS BROOKLYN QUADRANGLE

U.S. DEPARTMENT OF THE INTERIOR
U. S. GEOLOGICAL SURVEY

Possible Activities:

- Create a contour map from a spot elevation grid
- >Locate a USGS quadrant map online (your neighborhood)
 - Demonstrate finding Brooklyn Quadrant
- Review printed copies of Brooklyn Quadrant with different layers visible
 - >Review the pdf copy of the Brooklyn Quadrant and turn layers on and off
 - >Make a game out of finding things on the map

END OF LECTURE

Site Planning

Topography &

Types of Slope

■ SLOPE:

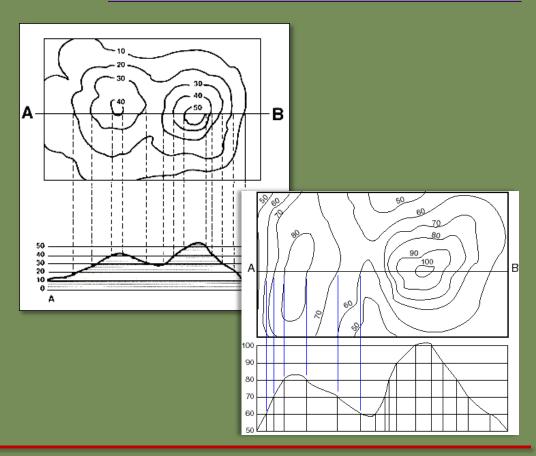
THE DEGREE TO WHICH THE GROUND TENDS
UPWARD OR DOWNWARD. A HIGHER SLOPE
VALUE INDICATES A STEEPER INCLINE.

TYPES OF SLOPE

SECTIONS

- >UNIFORM SLOPE
- >CONVEX & CONCAVE SLOPES
- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- SAMPLE TOPOGRAPHIC MAP

Topographic Sections


In order to better understand contours it is helpful to draw a section

Vertical Section Scale

Sometime the vertical scale of a section is exaggerated in order to make the drawing more readable

IMAGE SOURCE:

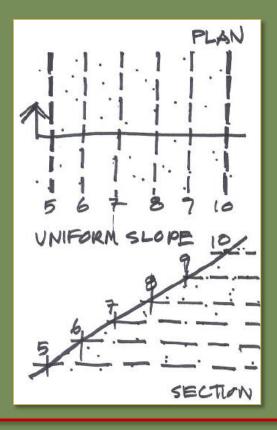
HTTP://www.mngeo.state.mn.us/chouse/elevation/images/USGS.gif HTTP://user.gs.rmit.edu.au/caa/topo/graphics/xsection.gif

SLOPE:

THE DEGREE TO WHICH THE GROUND TENDS
UPWARD OR DOWNWARD. A HIGHER SLOPE
VALUE INDICATES A STEEPER INCLINE.

TYPES OF SLOPE

- >Sections
- >UNIFORM SLOPE
- >CONVEX & CONCAVE SLOPES
- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- >SAMPLE TOPOGRAPHIC MAP


Uniform Slope

Contour lines are evenly spaced and the slope is a uniform diagonal.

The slope is neither convex or concave.

IMAGE SOURCE:

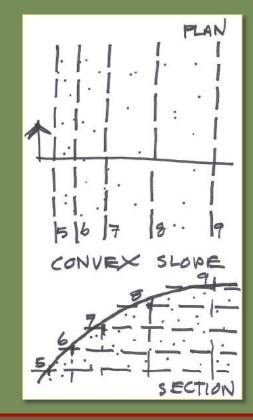
HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

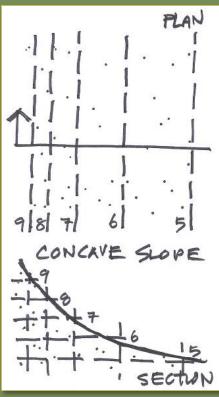
SLOPE:

THE DEGREE TO WHICH THE GROUND TENDS
UPWARD OR DOWNWARD. A HIGHER SLOPE
VALUE INDICATES A STEEPER INCLINE.

TYPES OF SLOPE

>SECTIONS IMAGE SOURCE:


- >UNIFORM SLOPE
- ►CONVEX & CONCAVE SLOPES
- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- >SAMPLE TOPOGRAPHIC MAP


Convex Slope

Contours get closer at lower elevations and the slope is curved outward

Concave Slope

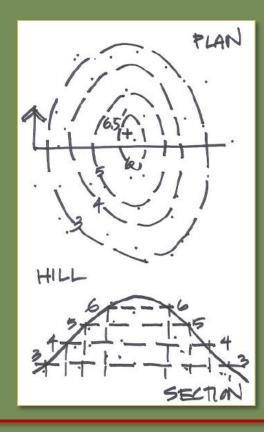
Contour lines get closer at higher elevations and the slope is curved inward like a "cave"

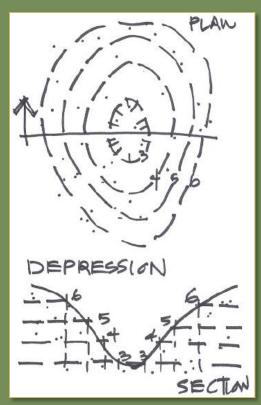
THE GRAPHIC REPRESENTATION OF THE BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

TYPES OF SLOPE

- >Sections
- >UNIFORM SLOPE
- >CONVEX & CONCAVE SLOPES
- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- >SAMPLE TOPOGRAPHIC MAP

Hill


Shows as a series of concentric contours where the highpoint is in the middle. The peak is often noted with a spot elevation.


Depression

The depression is lower than the surrounding area. Looks similar to the hill but has hachure's indicating the direction of the depression

IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

SLOPE:

THE DEGREE TO WHICH THE GROUND TENDS
UPWARD OR DOWNWARD. A HIGHER SLOPE
VALUE INDICATES A STEEPER INCLINE.

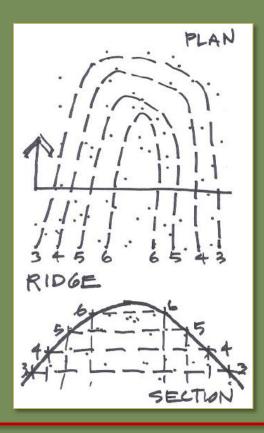
TYPES OF SLOPE

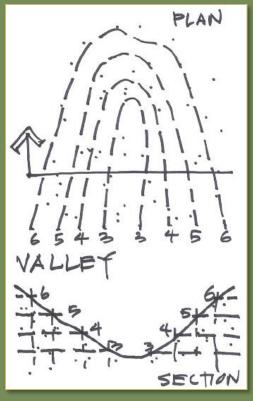
>Sections

>UNIFORM SLOPE

>CONVEX & CONCAVE SLOPES

- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- >SAMPLE TOPOGRAPHIC MAP

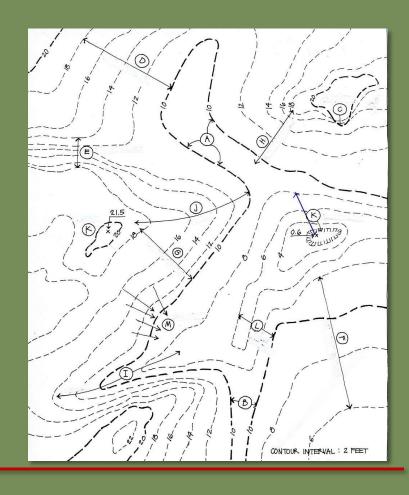

Ridge


A convex landform where the fold of the contours points downhill

Valley

A concave landform where the fold of the contours points uphill IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG


TYPES OF SLOPE

- >Sections
- >UNIFORM SLOPE
- >CONVEX & CONCAVE SLOPES
- >HILLS & DEPRESSIONS
- >RIDGES & VALLEYS
- SAMPLE TOPOGRAPHIC MAP

Match each of the following the labels on the map. Words can be used more than once or not at all:

- •Contour Line
- •Overhang •Uniform Slope
- •Valley
- •Ridgé
- •Convex Slope
- •Concave Slope •Valley Swale
- •Ridge
- •Hill or Depression

IMAGE SOURCE:

Possible Activities:

- >Match the names of the slope types to the topographic map
- >Match the section drawings to the section cut lines on the topographic map

END OF LECTURE

BLANK SLIDE SPACER

Site Planning

Topography Grading and Drainage

- GRADING IS DONE TO MODIFY A SITE TO ACCOMMODATE A GIVEN USE AND TO CONTROL THE FLOW OR DRAINAGE OF WATER
- THE TOOLS OF GRADING ARE CUT AND FILL

> GRADING

- > DRAINAGE
- ≽GUT
- FILL
- >CUT & FILL

Purpose of Grading
To adapt a site for human use

- While maintaining:
 •maintaining water drainage away from structures
- •keeping water on the site
- preventing erosion

Artistic Expression
May Lin's Wave Field at the
Storm King Art Center in New
York is an example of grading
used as a means of artistic expression

IMAGE SOURCE:

HTTP://WWW.THREELILPIGS.COM/PROJECTS/EXLINE/TRACTOR.JPG

HTTP://HANKBLOG.FILES.WORDPRESS.COM/2008/11/05kino2 650.jpg

HTTP://www.srwcontracting.com/commprojects/images/content-header.JPG

- GRADING IS DONE TO MODIFY A SITE TO ACCOMMODATE A GIVEN USE AND TO CONTROL THE FLOW OR DRAINAGE OF WATER
- lacksquare lacksquare The tools of grading are cut and fill

>GRADING

- DRAINAGE
- ≽CUT
- >FILL
- >CUT & FILL

Control of Water

Controlling water on a site is critical to maintaining its stability & usability

Drainage

Proper drainage prevents flooding. Water from the site is often directed to an underground drainage system

Runoff

Runoff occurs when the amount of rain exceeds the ability of the ground to absorb it.

Retention

In dry climates water should be collected for reuse and in climates susceptible to sudden storm surges water is stored in retention basins to minimize runoff

IMAGE SOURCE:

HTTP://WWW.TROTTERCOMPANY.COM/IMG/SKETCH-CATCH-BASINS.JPG
HTTP://EHPNET1.NIEHS.NIH.GOV/DOCS/2001/109-12/RUNOFF.JPG
PHOTO RETENTION POND BROOKLYN BRIDGE PARK - PROF. PAUL KING

- GRADING IS DONE TO MODIFY A SITE TO

 ACCOMMODATE A GIVEN USE AND TO

 CONTROL THE FLOW OR DRAINAGE OF WATER
- THE TOOLS OF GRADING ARE CUT AND FILL

> GRADING

DRAINAGE

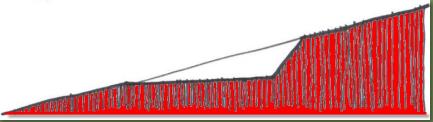
≻CuT

≽FILL

>CUT & FILL

Cut

Carving out from the existing grade.


A cut slope can typically be steeper than a filled slope of the same materials as it has been undisturbed and is better bound together.

When grading a road it is common for the uphill side to be cut. Excess cut needs to be carted away.

IMAGE SOURCE:

HTTP://www.hyd.gov.hk/contractwebsites/cpr/Progress%20Photos/HY
9919_photos/photo_files/M051224.jpg

- GRADING IS DONE TO MODIFY A SITE TO

 ACCOMMODATE A GIVEN USE AND TO

 CONTROL THE FLOW OR DRAINAGE OF WATER
- THE TOOLS OF GRADING ARE CUT AND FILL

GRADING

- >DRAINAGE
- ≻CUT
- >FILL
- >CUT & FILL

Fill

Adding to the existing grade

When you add to the existing grade you need to respect the angle of repose of the soil

Fill must be purchased

IMAGE SOURCE:

HTTP://YOSEMITE.EPA.GOV/R10/CLEANUP.NSF/0/248F0539E44978D088

- GRADING IS DONE TO MODIFY A SITE TO ACCOMMODATE A GIVEN USE AND TO CONTROL THE FLOW OR DRAINAGE OF WATER
- THE TOOLS OF GRADING ARE CUT AND FILL

> GRADING

DRAINAGE

≻CUT

>FILL

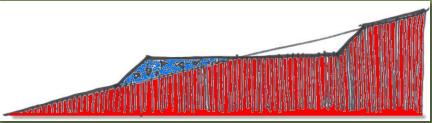
>CUT & FILL

Cut & Fill

A solution which uses both cut and fill has advantages over a "cut only" or a "fill only" solution.

A Balanced Solution

In a cut and fill combined solution the soil cut away can be used to fill other areas on site.


Excess cut is better

It is cheaper to cart away extra soil that is cut away than it is to pay for delivery of clean fill

IMAGE SOURCE:

http://commondatastorage.googleapis.com/static.panoramio.com/photo s/original/11597371.jpg

WORKING WITH SLOPES

THE SLOPE OF THE GROUND EFFECTS HOW WE CAN USE THE LAND, HOW WATER WILL FLOW AND EROSION

>MEASURING SLOPE

IMAGE SOURCE:

- >ANGLE OF REPOSE
- > EROSION

Slope Formula G = H / L

Grade

A calculation of the slope expressed as a percentage

Height

The vertical change in elevation

Length

The horizontal distance

Percentage A fraction or ratio with 100 as the denominator

- G = H/L
- GRADE = HEIGHT X LENGTH
- TO EXPRESS THE ANSWER AS A PERCENTAGE WE NEED TO MULTIPLY BY 100
- EXAMPLE:

IF WE MEASURE A DISTANCE ON A MAP OF 30 FEET FROM ONE CONTOUR TO ANOTHER WHEN THE CONTOUR INTERVAL IS 5 FEET, WHAT IS THE SLOPE?

GRADE = 5 FEET X 30 FEET

> GRADE = .166 100 16.6 %

THE SLOPE OF THE GROUND EFFECTS HOW WE CAN USE THE LAND, HOW WATER WILL FLOW AND EROSION

HTTP://BELMONT.SD62.BC.CA/TEACHER/GEOLOGY12/PHOTOS/EROSION/ANGLE OF REPOSE1.JPG

WORKING WITH SLOPES

>MEASURING SLOPE

HTTP://www.cs.umd.edu/class/spring2001/cmsc838b/Project/Parija Spacco/old images/avalanche.jp

IMAGE SOURCE:

1.5:1

1.33:1

1.75:1

3.0:1

1.33:1

1.33:1

9.5:1

1.33:1

1:1

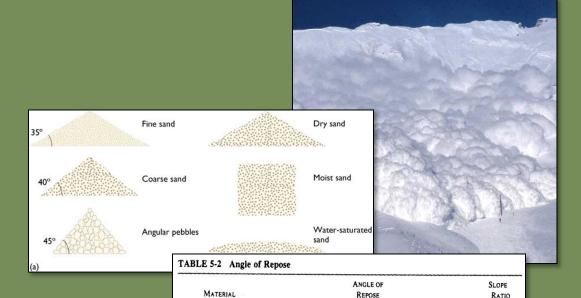
1:1

>ANGLE OF REPOSE

> EROSION

Angle of Slope
The angle of any surface relative to the horizontal

Angle of Repose


The steepest angle at which loose earth will stand without sliding.

Avalanche

An avalanche is an example of exceeding the angle of repose of a snow bank

Design for Safety

Different materials have different angles of repose. When we design we need to add a safety factor and design a slope well under the angle of repose of a material.

33°41'

36°53'

29°44'

18°24'

36°53'

36°53'

33°41'

36°53'

45°

45°

Sand, clean

Clay, dry

Sand and clay

Gravel, clean

Soil (average)

Soft rotten rock

Hard rotten rock

Cinders

Clay, damp, plastic

Gravel, sand, and clay

THE SLOPE OF THE GROUND EFFECTS HOW WE CAN USE THE LAND, HOW WATER WILL FLOW AND EROSION

WORKING WITH SLOPES

- >MEASURING SLOPE
- >ANGLE OF REPOSE
- > EROSION

Erosion

The mechanical process of wearing away the earths surface through natural means like wind, rain and ice

The Grand Canyon
One of the best known examples of erosion the Grant Canyon was formed by the actions of the Colorado river

Exceeding the angle of repose can lead to collapse of the slope and erosion. Often the addition of water can cause such an event to occur

IMAGE SOURCE:

HTTP://MELISSAKEMPF.FILES.WORDPRESS.COM/2010/03/USA 09847 GRAND CANYON LUCA GALUZZI 20071.JPG

HTTP://IMGS.SFGATE.COM/C/PICTURES/2006/05/02/BA SLIDE050PG.JPG

Possible Activities:

- >Matching/Quiz exercise of vocabulary terms
 - Math problems from graphic drawings calculation of slope by reading lengths from map and using contour intervals or spot elevations for vertical heights

END OF LECTURE

Site Planning

Topography Surveying

PROFESSIONALS USE OF TOPOGRAPHIC MAPS?

THE GRAPHIC REPRESENTATION OF THE
BOUNDARY BETWEEN THE EARTH AND THE
AIR INDICATING RELATIVE ELEVATION AND
POSITION

- **BENCHMARK**
- **SURVEY**
- >Surveyors Tools
- >METES & BOUNDS

Land Survey (the map)

A map showing the accurate locations of threedimensional positions and the distances and angles between them

Surveyor (the creator)

A person who measures land to identify topographic features and boundaries

Surveyors are registered and licensed

IMAGE SOURCE:

HTTP://DIVIDINGLINE.BIZ/ATTACHMENTS/IMAGE/ALTA-ACSMWEB.JPG
HTTP://www.ruxtondesign.com/surveys/img/location-900.JPG

PROFESSIONALS USE OF TOPOGRAPHIC MAPS?

THE GRAPHIC REPRESENTATION OF THE BOUNDARY BETWEEN THE EARTH AND THE AIR INDICATING RELATIVE ELEVATION AND POSITION

BENCHMARK

HTTP://www.surveyhistory.org/the surveyor's basic tools.htm

IMAGE SOURCE:

⊳SURVEY

HTTP://ARCHIVE.LIVEAUCTIONEERS.COM/ARCHIVE4/KIMBALLSAUCTION/13840/929564 1 LG.J

>Surveyors Tools

>METES & BOUNDS

HTTP://ECX.IMAGES-AMAZON.COM/IMAGES/I/518RAPK112L.JPG

The Chain

Used to measure distance it is 66 feet long and consists of 100 links

The Compass

Used to determine direction of a lines relative to magnetic north

The Transit

Used to measure horizontal and vertical angles

The Level

Used to measure elevation

The Laser Transit & Level

A modern instruments that uss a pulsing beam of light to measures the three dimensional position of a point

PROFESSIONALS USE OF TOPOGRAPHIC MAPS?

THE GRAPHIC REPRESENTATION OF THE
BOUNDARY BETWEEN THE EARTH AND THE
AIR INDICATING RELATIVE ELEVATION AND
POSITION

- **BENCHMARK**

>SURVEY

- >SURVEYORS TOOLS
- >METES & BOUNDS

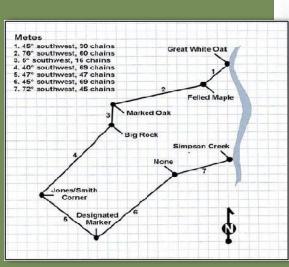
Metes and Bounds Description

A legal description of the boundary of a piece of property in words. From a benchmark or starting point is describes the direction and length of each edge of the property.

They are commonly a part of legal deeds

Sample Description

Beginning at the maple tree on the property line of the old Jones Farm and its intersection with the Summer Creek road; thence S 67 degrees W 593'; thence N 24 degrees W 642'; then N 15 degrees E 265'; thence S 35 degrees E 490'; thence S 66 degrees E 500' to the point of beginning, containing 5.46 acres, more or less.


Creating a Drawing

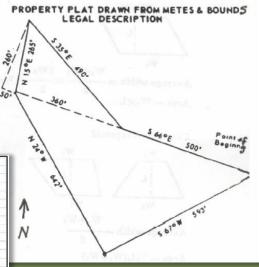

Using the distances and bearings in the written description a property boundary can be drawn

IMAGE SOURCE:

HTTP://AGECONZ.TAMU.EDU/PEOPLE/FACULTY/LARD-CURTIS/432/PDFS/METESANDBOUNDS.PDF

HTTP://C.ANCESTRY.COM/I/LEARN/CHAINSAMPLEMAP.JPG

Possible Activities:

- Match a metes and bounds description to the correct map
- Draft a boundary using a metes and bounds description

END OF LECTURE

BLANK SLIDE SPACER

Site Planning

Topography Grading Exercises

THE GRAPHIC REPRESENTATION OF THE
BOUNDARY BETWEEN THE EARTH AND THE
AIR INDICATING RELATIVE ELEVATION AND
POSITION

GRADING A SITE

- >LAYING OUT A ROAD
- >GRADING A SITE
 - >SHOW WATER ROUTE
 - >START GRADING
 - > CALCULATE CUT/FILL

Topographic Map

A map showing changes in elevation and other geographic features

Mount Marcy

The tallest peak in New York States Adirondack region

IMAGE SOURCE:

HTTP://WWW.ADIRONDACKNORTHWAY.NET/MAPS/MTMARCYLG.JPG

Possible Activities:

- > A series of grading exercises each slide is an exercise with a matching worksheet
- Have the class build a combined model with each group building a square area that matches all the others – then roll marbles down to demonstrate the flow of water

END OF LECTURE