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APPENDIX A • SCIENTIFIC  TOOLS

	 Many physical sciences including atmospheric 
science share the same fundamental definitions and 
analysis techniques.  These fundamentals include 
problem-solving methods, standard units, ways of 
expressing relationships, formats for plotting the 
results, measurement uncertainty, and error propa-
gation.  The fundamentals reviewed here are used 
throughout this book.   
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A SCIENTIFIC PERSPECTIVE  •  Problem 
Solving

	 The following method aids understanding the 
problem, speeds solution, and helps to avoid errors.  
This method is used throughout the book in the vari-
ous Sample Applications.

1)	 List the “Given” variables with their symbols, val-
ues and units.

2)	 List the unknown variables to “Find”, with units.
3)	 Sketch the objects, velocities, etc. if appropriate.
4)	 Determine which equation(s) contains the un-

known variable as a function of the knowns.  This 
equation might need to be rearranged to solve for 
the unknown.  If the solution equation contains 
more unknowns, find additional equations for 
them.

5)	 Make assumptions, if necessary, for any of the un-
knowns for which you have no equations.  Clearly 
state your assumptions, and justify them.  

6)	 Solve the equations using the known or assumed 
values, being sure to carry along the units.  Show 
your intermediate steps.

7)	 Identify the final answer by putting a box around 
it, underlining it, or making it bold face.

8)	 Check your answer.  If the solved units don’t 
	 match the desired units of the unknown, then ei-

ther a mistake was made, or unit conversion might 
be needed (e.g., convert from knots to m s–1).  Also, 
certain functions such as “ln” and “exp” require 
arguments that are dimensionless, while trig 
functions like “sine” need an argument in degrees 
or radians.  These are clues to help catch mistakes.  
Also, compare your answer with your sketch, to 
check if it is physically reasonable.  Check other 
physical constraints (e.g., humidities cannot be 
negative, speeds cannot be infinite).

9)	 Discuss the significance of the answer.
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A.1. DIMENSIONS AND UNITS

A.1.1. Standards
	 There are seven basic dimensions in science, 
from which all other dimensions are derived (Table 
A-1).  The first letters of the first three units are ‘m’, 
‘k’, ‘s’; hence, this system of units is sometimes called 
the MKS system.  It has been adopted as the inter-
national system (SI) of units.
	 Derived units are formed from combinations of 
basic units.  Examples of derived units that are used 
frequently in meteorology are listed in Table A-2.  
	 A prefix can be added in front of these units to 
indicate larger or smaller values, such as kilometer 
(km), which is 1000 meters.  The most commonly 
used prefixes are given in Table A-3.  In this book, 
units and prefixes are NOT italicized, while variables 
are italicized.   Other units are listed in Table A-4.
	 When we quantify things in nature, the value has 
four parts (but magnitude and prefix are optional):
	 	 	 	 	 •(A.1)
  value = number · magnitude · prefix · units

	 A scientific notation example is: 
			   distance value = 5x102 km 
where number = 5,  magnitude = 102 (= 100),  prefix 
= k (=1000),  and units = m.  This is equivalent to 
500,000 m.  The value must include the units (except 
for a few things that are truly dimensionless).  The 
number can include a negative sign (–) if needed.

Table A-1.  Basic dimensions and their SI units.

Dimension Unit Abbrev.
length
mass
time
electrical current
temperature (thermodynamic)
amount of substance
luminous intensity

meter
kilogram
second
ampere
kelvin
mole

candela

m
kg
s
A
K

mol
cd

Table A-4.  Some other units.  (* unofficial symbol)

Name Symbol Value in SI units
minute
hour
day
degree (angle)
liter (or litre)
metric ton
     (or tonne)
astronomical  unit
ångström
nautical mile
knot
hectare
bar

min
h
d
°
L
t

ua
Å

nm*
kt*
ha
bar

1 min = 60 s
1 h = 60 min = 3600 s
1 d = 24 h = 86,400 s
1° = (π/180) rad
1 L = 10–3 m3 
1 t = 103 kg

1 ua ≈ 1.49598 x 1011 m
1 Å = 10–10 m
1 naut. mile = 1852 m
1 knot = (1852 m / 3600 s)
1 ha = 104 m2 
1 bar = 100 kPa = 105 Pa

INFO  •  Binary multiples

	 The IEEE Standards Board officially adopted the SI 
short-scale units of Table A-3.  E.g., 1 kilobit = 1000 bits.
	 But historically, manufacturers have referred to
210 bits (=1,024 bits) as 1 kilobit (NOT SI standard),
220 bits (=1,048,576) as 1 megabit (NOT SI standard),
230 bits (=1,073,741,824) as 1 gigabit (NOT SI std.).

Table A-3.  Prefixes.  (*Size is in terms of USA “short 
scale” designations.  Some international “long scale” 
designations are shown in italics, if different.)

Multiplier Size* Unit Abbrev.
1024 

1021 

1018 

1015 

1012 

109 

106 
103 
102 
101  

septillion
     (quadrillion)
sextillion
      (trilliard)
quintillion
     (trillion)
quadrillion
     (billiard)
trillion
     (billion)
billion
     (milliard)
million
thousand
hundred
ten

yotta

zetta

exa

peta

tera

giga

mega
kilo

hecto
deka

Y

Z

E

P

T

G

M
k
h

da

10–1 
10–2 
10–3 
10–6 
10–9 
10–12 
10–15 
10–18 
10–21 
10–24

tenth
hundredth
thousandth
millionth
billionth
trillionth
quadrillionth
quintillionth
sextillionth
septillionth

deci
centi
milli
micro
nano
pico

femto
atto

zepto
yocto

d
c
m
μ
n
p
f
a
z
y

Table A-2.  Some derived dimensions & their SI units.

Dimension Unit (Abbrev.) Composition
force
energy
power
pressure, stress
temperature

newton (N)
joule (J)
watt (W)

pascal (Pa)
degree Celsius (°C)

kg·m·s–2 
kg·m2·s–2 
kg·m2·s–3 
kg·m–1·s–2 

 T(K) – 273.15

frequency
electric charge
electric potential
electric resistance

hertz (Hz)
coulomb (C)

volt (V)
ohm (Ω)

s–1 
s·A

m2·kg·s–3·A–1 
m2·kg·s–3·A–2 

plane angle
solid angle

radian (rad)
steradian (sr)

m·m–1 
m2·m–2 
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A.1.2. Unit Conversion
	 You can create ratios of equivalent values to en-
able easy unit conversion.  For example, a velocity of  
1 knot equals 0.51 m s–1.  Because these two values 
equal, their ratio must be one: 

			   1  =    (1 knot)    	 (A.2)
			            (0.51 m s–1) 

[CAUTION: Although the numbers 1 and 0.51 do NOT 
equal each other (and their ratio does NOT equal 1), the 
values include the units, and hence the ratio of values does 
equal 1.]
	 The inverse of 1 is 1, thus, it makes no difference 
which value appears in the numerator.  For exam-
ple:
			   1  =   (0.51 m s–1)   	 (A.3)
			              (1 knot) 

	 When any quantity is multiplied by 1, its value 
does not change.  Hence, by multiplying a velocity 
by the ratio in eqs. (A.2) or (A.3), we can change the 
units without changing the physics or the value. 
	 Even if a conversion relationship is not known, 
you can sometimes figure it out if you know equiva-
lent values that apply to a situation.  For example, 
what is the conversion between pressure in “pounds 
per square inch” (PSI) and in “inches of mercury” 
(in Hg).   Perhaps you might already know that the 
average pressure at sea level is 14.7 PSI.  You might 
also know that standard sea-level pressure is 29.92 
in Hg.  Thus, these two values are equivalent at sea 
level, and their ratio gives the conversion between 
them:
			   1  =     (14.7 PSI)       =  0.49  (PSI)
			            (29.92 in Hg)               (in Hg)

or  1 in Hg  =  0.49 PSI.
	 Ratios can also be formed to add or remove pre-
fixes and magnitudes to units.  For example,  1 mil-
ligram (mg) equals 0.001 grams, by definition.  Thus 
their ratio is one.  We can use this ratio to find 5 x 107 
mg  in units of kg.  For example:

	 (5x107 mg)  ·  0.001 g ·   1 kg     =  50 kg   
			                1 mg      1000 g

	 This trick of forming ratios to do conversions 
works only when both units have the same zero 
point.  In the example above, 0 PSI = 0 in Hg.  Simi-
larly,  0 m s–1 = 0 knots.  This trick fails for tempera-
ture conversions, because °F, °C, and K all have dif-
ferent zero points.  Namely, they have additive and 
multiplicative factors.  For temperature conversions, 
you must use special conversion formulae, as de-
scribed in the “Relationships and Graphs” section.  

Sample Application
	 Sometimes you can use units to guess the form of 
an equation.  For example, metabolic heat-production 
rate by humans sitting quietly is about 100 watts.  Find 
the number of calories produced in half a day.  

Find the Answer
Given:  C = 100 W,   ∆t = 0.5 d
Find:    B = ? cal	          heat production

Eqs:  From tables of unit conversion in other books
1 W = 14.3353 cal min–1,  1 h = 60 min,  &  1 d = 24 h
	 By forming each of these equivalences as ratios, 
you can convert from watts into calories, and then 
from minutes into hours into days:
 C  =  (100 W) · (14.3353 cal/min) · (60 min) · (24 h)			                      1 W                       1 h             1 d
	 = 2.06 x 106 cal d–1  
	 By looking at the units of the last line it is obvious 
that if we multiply it by the time ∆t in days, then we 
will be left with our desired units of calories.  Thus, the 
final equation is:
B(cal) =   C(cal day–1) · ∆t(day)
	     =  (2.06 x 106 cal d–1) · (0.5 d)  =  1.03 x 106 cal  

Check: Units OK.  Physically reasonable.
Exposition:  Over a million calories of heat is given 
off by a human sitting still for half a day.  The number 
of calories of food we eat should be sufficient to replace 
those calories burned metabolically.  Caution: “calo-
ries” listed on food packages are really kilocalories.

Sample Application
	 Convert a wind speed of 10 knots into  m s–1.

Find the Answer:
Given:   M = 10 kt	          wind speed
Find:      M =  ? m s–1

Multiply wind speed by 1 in the form of eq. (A.3):

M   =  10 kt  =  (10 kt) · 1  
	

=  (10 kt) · ( 0.51 m/s ) 
			               1 kt     

	 =  ( 10 · 0.51 ) · ( kt · (m/s) )         grouping
		         1                     kt     

	 =  5.1 m s–1  
Check: Units OK.  Physically reasonable.
Exposition:  Note how we grouped the numbers sep-
arately from the units.  You can calculate the number 
group using your calculator.  You can reduce the units 
group by canceling identical units in the numerator 
and denominator (such as knots, in this example).
	 How do you know whether to use (A.2) or (A.3)?  
Given a value with knots in the numerator, we want to 
multiply it by a ratio that has knots in the denominator, 
so that the knots will cancel.  Eq. (A.3) will work.
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A.2. FUNCTIONS AND FINITE DIFFERENCE

	 As in other fields of science and engineering, 
functional relationships describe how one variable 
(the dependent variable) changes when one or 
more other variables (the independent variables) 
change.  Suppose that P2 is the pressure at time t2, 
and P1 is the pressure at time t1.  Pressure “varies” 
with time, or “is a function of time”.  Such function-
al dependence is written generically as P(t).  For a 
single value of pressure that occurs at specific time, 
such as at t = 50 s, the notation P(50 s) is used.
	 The symbol ∆ means change or difference.   Dif-
ferences must always be taken in the same direction 
relative to the independent variable.  For example, if 
temperature T and pressure P both vary with time 
t, then  ∆T and ∆P are defined as their values at the 
later time minus their values at the earlier time.  
For example,  ∆T = T(t2) – T(t1), and ∆P = P(t2) – P(t1), 
where t2 is later than t1.  The notation is sometimes 
simplified to be  ∆T = T2 – T1 and ∆P = P2 – P1 for 
∆t = t2 – t1.
	 In a different example, let temperature T depend 
on independent variable height z.  Then 

		  ∆T   =   T(z2) – T(z1)   =   T2 – T1  
and
				    ∆z = z2 – z1  

where z2 is higher than z1.   Furthermore, a ratio 
such as ∆T/∆z is equivalent to (T2 – T1)/(z2 – z1), or 
[T(z2) – T(z1)]/(z2 – z1), where the differences in the 
numerator and denominator must always be taken 
in the same direction (e.g., point 2 – point 1).  Don’t 
be deceived into subtracting the smaller value from 
the larger one when you compute a finite difference, 
because if you do, the sign of your answer might be 
wrong (see the Sample Application on this page).
	 The change of something with distance is called 
a gradient.  Thus, ∆T/∆z is a vertical temperature 
gradient.  Similarly, ∆T/∆x is a horizontal tem-
perature gradient. 
	 Although calculus is a useful mathematical tool 
for studying the physics of the atmosphere, this 
book is designed for an audience who might not be 
familiar with calculus.  In the place of differential 
calculus we will use finite differences, ∆.  In place 
of integral calculus, we will use sums or graphically 
examine the area under curves. 
	 For those students with a calculus background, 
“HIGHER MATH” boxes are scattered here and 
there in the book to provide a taste of theoretical me-
teorology.  These “HIGHER MATH” boxes are sur-
rounded by a thick line as shown at left, and may be 
safely skipped by students wishing to avoid calculus.    

HIGHER MATH  •  Calculus

	 In theoretical meteorology, the physics of the at-
mosphere is described by differential equations.  Out-
side of these “HIGHER MATH” boxes, we utilize the 
following approximations to avoid calculus.
	 A derivative can be approximated as:

				  
∂
∂

≈T
z

T
z

∆
∆ 	 for small ∆z

A total derivative:

  		    
dT
dt

T
t

U
T
x

V
T
y

W
T
z

= ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

is approximated as:

			   ≈ + + +∆
∆

∆
∆

∆
∆

∆
∆

T
t

U
T
x

V
T
y

W
T
z

	 Also, you can approximate an integral by a sum:

				    T dz T z z∫ ∑≈ ( )·∆  

where T is temperature, z is height, t is time, (U, V, W) 
are wind components in the (x, y, z) directions, which 
are positive toward the (east, north, up).

Sample Application
	 Suppose the air at the ground has a temperature of 
20°C, while the air at height 500 m is 15 °C.  Find the 
vertical temperature gradient. 

Find the Answer
Given:
	 z2  =  500 m    top altitude
	 z1  =  0 m         ground altitude
	 T2  =  T(z2) = 15 °C   temperature at 500 m altitude
	 T1  =  T(z1) = 20 °C   temperature at ground
Find:   ∆T/∆z = ? °C m–1

     temperature gradient

Sketch:

Use definition of a gradient:	

z
(m)
500

0
15 20 T (°C)

 
∆T/∆z  =  ( T2 – T1 )  /  ( z2 – z1 )
		  =  (15°C – 20°C) / (500 m – 0 m)
		  =  ( – 5 °C) / ( 500 m)  =   – 0.01°C m–1  

Check: Units OK.  Sketch OK.  Sign negative.
Exposition:  If this gradient is constant with height, 
then the temperature at your head is 0.02°C colder than 
at your toes, assuming you are roughly 2m tall.
	 CAUTION:  Suppose you erroneously had com-
puted the gradient as (20 – 15°C) / (500 – 0 m).   Then 
your answer would have had the wrong sign, because 
you had erroneously computed (T1–T2)/(z2–z1) instead 
of the desired (T2–T1)/(z2–z1).  Always form your dif-
ferences in the same order (point 2 – point 1) in both 
the numerator and denominator.
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A.3. RELATIONSHIPS AND GRAPHS

	 Although T(z) says that there is some functional 
relationship between temperature T and height z, it 
does not specify what that relationship is.  Tempera-
ture could increase as height increases.  It could de-
crease as height increases.  It could increase with the 
square of height.  It could vary logarithmically with 
height.  
	 The particular form of the function might be gov-
erned by some underlying physics, and have a fixed 
functional form that is sometimes called a physical 
“law” or a mathematical definition.  Other relation-
ships can be found by plotting observational data.
	 Linear, semi-log and log-log graphs are fre-
quently used to discover and display relationships 
between dependent and independent variables.

A.3.1. Linear
	 A linear relationship yields a straight line on a 
linear graph (values along both axes increase at 
constant rates with distance from the origin).
	 For example, the relationship between tempera-
ture in degrees Celsius and Fahrenheit is linear; 
namely, temperature in Fahrenheit is proportional 
to the first power of temperature in Celsius

				    T°F  =  a · T°C  +  b 	 •(A.4)

where the parameters in this equation are  a = 9/5 
(°F/°C)  and  b = 32 °F, see Fig. A.1.    
	 The slope (change in values along the vertical 
axis per change of values along the horizontal axis) 
of the line equals the factor a, which is 9/5 in this 
case.  As shown in Fig. A.1, the nonzero parameter  b 
causes the plotted line to cross the vertical axis not 
at the origin (T°C, T°F) = (0, 0), but at an intercept of 
T  = 32°F  [i.e., at point (0°C, 32°F].  
	 The relationship between temperature in de-
grees Celsius and absolute temperature in Kelvins is 
also linear: 
				               T(K) = T(°C) + 273.15	 •(A.5)

If plotted on a linear graph, the slope would be 1 and 
the intercept is 273 K.  Most equations using tem-
perature require the use of absolute temperature.

A.3.2. Logarithmic
	 An exponential or logarithmic relationship 
gives a straight line when plotted on a semi-log 
graph (one axis is linear, the other is logarithmic).  
	 For example, the decrease of pressure with height 
is logarithmic (Fig. A.2) in atmospheres where the 
temperature is constant with height:

Sample Application
	 Convert 10°C to Fahrenheit.

Find the Answer:
Given:   T°C = 10°C.         Find:      T°F =  ?  °F

Sketch:  (see Fig A.1).   Use eq. (A.4):
T°F   =   a·T°C + b  
	 = (9/5 °F/°C)·(10°C) + 32°F
	 = 18°F + 32°F   =   50°F 

Check:  Units OK.  Sketch OK.  Physics OK.
Exposition:  As the temperature in Celsius increases 
by equal amounts of 10°C, the corresponding Fahren-
heit values increase in equal amounts of 18°F.  Such 
a constant rate of increase of the dependent variable 
for a constant rate of increase of independent variable 
indicates a linear relationship.

Figure A.1
Relationship between Celsius (°C) and Fahrenheit (°F) tempera-
ture (T), plotted on a linear graph.
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Figure A.2 
Height z vs. pressure P in the atmosphere, plotted on (a) linear; 
and (b) semi-log graphs.  (Copied from Chapter 1.)
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				    ln
–

·
P
P

a
T

z
o






= 	 (A.6)

where  a = 0.0342 K m–1, Po = 101.3 kPa for Earth, and 
average temperature T must be in Kelvin.  
	 [CAUTION:  symbol a in this equation has a dif-
ferent value than in the previous equation.  I often 
re-use symbols in this book, because there are not 
enough symbols for all the variables.]
	 Fig. A.2 plots the relationship between P and z in 
both linear and semi-log graphs, for T = 280 K.  Pres-
sure decreases rapidly with height near the ground, 
but decreases more slowly at higher altitude.  
	 From Fig. A.2a we see that the portion of the 
curve in the lowest 3 km of the atmosphere is almost 
a straight line, and conclude that the variation of 
pressure with height is nearly linear in that region.  
Near the ground, the pressure decreases roughly 10 
kPa with each 1 km height gain.
	 Fig. A.2b plots P with a logarithmic scale along 
the bottom axis, and plots z with a linear scale on the 
vertical axis.  All of the data points at all heights fall 
on a straight line on this graph.  This is evidence that 
the logarithm of P is proportional to z. 

A.3.3. Power
	 If the dependent variable is proportional to a 
power of the independent variable, then the data 
will appear as a straight line on a log-log graph 
(both axes are logarithmic).  
	 For example, Johannes Kepler, the 17th century 
astronomer, discovered that planets in the solar sys-
tem have elliptical orbits around the sun, and that 
the time period Y of each orbit is related to the aver-
age distance R of the planet from the sun by:

				    Y  =  a · R3/2 	 (A.7)

Parameter a ≈ 0.1996 d·(Gm)–3/2, where d is the ab-
breviation for Earth days and Gm is gigameters (= 
106 km).
	 Using a table of the average distance of the plan-
ets from the sun (see Apply exercise A1 in the Radi-
ation chapter), you can calculate orbital period using 
eq. (A.7).  These are plotted in Fig. A.3a on a linear 
graph, and in Fig. A.3b on a log-log graph (copied 
from the “Solar & IR Radiation” chapter).  
	 The slope of the straight line on the log-log graph 
(Fig. A.3b) equals the power of the exponent.  Name-
ly, the range of orbital periods between Mercury and 
Pluto is about 3 cycles (i.e., 3 orders of magnitude, 
such as 100 to 1,000 to 10,000 to 100,000), while the 
range of distances from the sun is 2 cycles.  Thus, the 
slope is 3 to 2, as indicated in eq. (A.7).   

Sample Application
	 At what height does P = 50 kPa, given T = 0°C?

Find the Answer
Given:  P = 50 kPa,    T = 0 + 273.15  =  273.15 K.
Find:    z = ? km

Solve eq. (A.6) for z:      z = (T/a) · ln(Po/P) 
 z  =  [(273.15K) / (0.0342 K m–1)] · ln(101.3kPa/50kPa)
	 =  (7987 m) · ln(2.026)   =   5639 m   =  5.6 km.  

Check:  Units OK.  Agrees with Fig. A.2.
Exposition:  At this height the air is so thin that 
people would die of hypoxia (lack of oxygen) unless 
they breath pressurized oxygen.

Sample Application
	 Find the orbital period of Mercury (R = 58 Gm).
Find the Answer
	 Given:  R = 58 Gm.   Find:  Y  =  ? d
Use eq.(A.7): Y = [0.1996 d·(Gm)–3/2] · (58 Gm)3/2 = 88d
Check:  Units OK.  Agrees with Fig. A.3
Exposition: 4 orbits of Mercury per each Earth orbit.

Figure A.3
Plot of planetary orbital periods in Earth days versus distance 
from sun in billions of meters, on (a) linear, (b) log-log graphs. 
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A.4. ERRORS

	 Error is the difference between a measured (or 
estimated) value and the true (or reference) value.  

A.4.1. Systematic Error & Accuracy
	 If part of the error is systematic or repeatable 
(namely, you get the same error each time you make 
a measurement), then the difference between the av-
erage measurement and the true value is called the 
bias.  Smaller bias magnitude (i.e., lower systematic 
errors) corresponds to greater accuracy.  Namely, 
accuracy indicates how close your average observa-
tions are to truth (Fig. A4).  
	 Systematic errors can be due to errors in in-
strument calibration, personal errors (such as 
parallax error in reading a dial), erroneous experi-
mental conditions (such as not shielding a ther-
mometer from sunlight), and imperfect technique 
(such as breathing on a thermometer before you read 
it).  
	 If you can calculate or otherwise know the bias, 
then you can remove this bias from your observa-
tions to correct for systematic error.  Namely, you 
can easily make your corrected observations more 
accurate.  

A.4.2. Random Error & Precision
	 After removing systematic errors, you might find 
that your observations still have some unexplained 
variability from measurement to measurement.   
These are called random errors (Fig. A.4).   Exper-
iments with smaller random errors are said to have 
higher precision; namely, they are more precise.  
The standard deviation (or spread) of your obser-
vations is a measure of the random error — greater 
standard deviation indicates greater random error 
and lower precision.  
	 Random errors can be due to errors in judg-
ment (such as by manually reading a dial with poor 
resolution), fluctuating conditions (such as try-
ing to determine sea level on a wavy ocean), small 
disturbances (such mechanical vibrations of an 
instrumented tower in high winds), and errors in 
definition (such as measuring the dimension of a 
fractal-shaped cloud, which depends on the size of 
the measuring stick).  
	 Unfortunately, the probabilistic nature of ran-
dom errors makes them difficult to remove after 
the fact.  Often, the only recourse is to repeat the 
experiment under better controlled conditions and 
with higher quality instruments, and be sure to take 
a large number of observations to improve the sta-
tistical robustness of your results.  

A.4.3. Reporting Observations
	 For any variable A that you have measured N 
times to yield a data set (A1, A2, A3, ..., AN), let A  
be the mean value, and σA be the standard devi-
ation.  These are defined as:
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where i is a dummy index that points to a single 
data element Ai in your data set.  
	 After removing any known biases, the resulting 
observation is usually reported or written as a mean 
(average) value plus or minus (±) the standard devia-
tion:
				    A = A  ±  σA 	 •(A.10)

where the precision or standard uncertainty is 
given by the standard deviation σA.    

Sample Application
	 Given these T observations: (15, 13, 20, 12, 10, 17, 
18)°C.  Ttrue = 8°C.  Find the mean, bias & std dev.  

Find the Answer
Given:  Ttrue = 8°C, and the data set above.
Find:   T  = ? °C,   σT = ? °C,   bias = ? °C.

Use eq. (A.8): T  = (1/7)(15+13+20+12+10+17+18) = 15°C 
Define the deviation from mean as:  T’ = T – T  
Thus, our observation have T’ = (0, –2, 5, –3, –5, 2, 3)°C
Use eq. (A.9), rewritten as σT = [(N–1)–1 Σ(A’2)]1/2  
Thus: σT = [(1/6) · (0+4+25+9+25+4+9)(°C)2]1/2 = 3.56°C
From the raw observations:   T = 15 ± 3.56 °C  .
Bias = T  – Ttrue =  15 – 8 °C  =  7°C  .

Check:  Units OK.  We seem to have a warm bias. 
Exposition:  Our observations are not accurate (large 
bias) and are not precise (large σT). 

Figure A.4
The dark curve is the frequency that different A values are ob-
served.  Accuracy is related to bias. Precision is related to spread 
of curve (described by standard deviation σA).  A  is the mean.

AσA Atrue

bias

A

m
ea

n

fr
eq

ue
nc

y 
of

ob
se

rv
in

g 
A



876	 APPENDIX  A   •   SCIENTIFIC  TOOLS

Similarly, the mean and standard deviation of some 
other variable B would be B  and σB. 
	 For example, Newton’s constant of gravitation G 
is reported (CODATA 2006) as:

     G = 6.67428x10–11  ±  0.00067x10–11  m3 kg–1 s–2 .  

A.4.4. Error Propagation
	 Error propagation tells us how the errors in A 
and B affect the error of D, where D depends on A 
and B according to some equation.  Namely, how can 
we estimate σD knowing σA and σB ?  Assume the 
errors in A and B are independent of each other.
	 For a simple sum or difference (e.g., D = A + B, or 
D = A – B), then 

				    σD  =  [σA
2 + σB

2]1/2 	 (A.11)

	 For  D = c·A  where c is a constant, then

				    σD  =  c · σA   	 (A.12)

Similarly, if  D = cA·A  ±  cB·B  where cA and cB are 
different constants, then

			   σD  =  [cA
2·σA

2 + cB
2·σB

2]1/2 	 (A.13)

	 For a simple product  D = c·A·B  or quotient  
D = c·A/B, then

	 σD  = D · [ (σA/ A )2  +  (σB/ B )2  ]1/2 	 (A.14)

where A  is the average of A,  B  is the average of B,  
and D  is the average of D (i.e., D  = c A B  , or D  = 
c A / B ).  
	 For a simple power relationship  D = c·Am where 
m is a fixed constant, then

				    σD  = D · m · (σA/ A ) 	 (A.15)

For the general case of a product of factors raised to 
various fixed (errorless) powers   D = c·Am·Bq , then

   σD  = D · [ m2·(σA/ A )2  +  q2·(σB/ B )2  ]1/2 	 (A.16)

	 For a logarithm such as  D = ln(c·A), where c is a 
constant, then
				         σD  =  (σA/ A ) 	 (A.17)

For an exponential such as D = ec·A where c is a con-
stant, then
				         σD  =  c · D · σA 	 (A.18)

For more complicated relationships, the rules above 
can be combined or used sequentially (or see the 
HIGHER MATH box).  

HIGHER MATH  •  Error Propagation

	 Suppose D is a function of A , B and C, where C is 
not a constant.    Namely, D(A, B, C).  
	 If the error standard deviations σA, σB, and σC for 
A, B & C are known, then the propagation of errors 
into the standard deviation σD of variable D is:
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	 The correlation coefficients r are defined as
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and correlations rBC and rAC are defined similarly.  If 
A and B are independent, then rAB = 0.  Correlations 
between the other variables could also be zero.  

	 For example, suppose you measure air density 
(ρ ρ σρ= ± ) and temperature ( T T T= ± σ ), and cal-
culate pressure (P) using the ideal gas law P = ρ·ℜ·T, 
where ℜ is a constant.  Thus, from calculus: ∂P/∂ρ = 
ℜ·T, and ∂P/∂T = ρ·ℜ.   Assume ρ and T are indepen-
dent, thus the correlation coefficient    rρT = 0.  

	 Our best estimate of pressure is

				      P T= ℜρ· · .  

	 To estimate the pressure error σP, use eq. (A.a) to 
propagate the other errors into the pressure error:
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where we use the averages as our best estimates of P, 
ρ, and T.  This last result looks like eq. (A.14).  In fact, 
we could have used eq. (A.14) directly and avoided all 
the calculus.

	 Thus, we would report our calculated pressure 
as:
				    P P P= ± σ
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A.5.  A SCIENTIFIC PERSPECTIVE

	 Science is a philosophy.  It is faith in a set of prin-
ciples that guide the actions of scientists.  It is a faith 
based on observation.  Scientists try to explain what 
they observe.  Theories not verified by observations 
are discarded.  This philosophy applies to atmo-
spheric science, also known as meteorology.
	 A good theory is one that works anywhere, any-
time.  Such a theory is said to be universal.  Engi-
neers utilize universal theories with the expectation 
they will continue working in the future.  The struc-
tures, machines, circuits, and chemicals designed by 
engineers that we use in every-day life are evidence 
of the success of this philosophy.
	 But we scientists and engineers are people, and 
share the same virtues and foibles as others.  Those 
of you planning to become scientists or engineers 
might appreciate learning some of the pitfalls so 
that you can avoid them, and learning some of the 
tools so that you can use them to good advantage.
	 For this reason, scattered throughout the book 
are boxes called “A SCIENTIFIC PERSPECTIVE”, 
summarized in Table A–5.  These go beyond the 
mathematical preciseness and objective coldness 
that is the stereotype of scientists.  These boxes cover 
issues and ideas that form the fabric of the philoso-
phy of science.  As such, many are subjective.  While 
they give you one scientist’s (my) perspectives, I en-
courage you to discuss and debate these issues with 
other scientists, colleagues, and teachers.   

A SCIENTIFIC PERSPECTIVE •  Have 
Passion

	 The best scientists and engineers need more than 
the good habits of diligence and meticulousness.  
They need passion for their field, and they need cre-
ativity.  In this regard, they are kindred spirits to art-
ists, composers, musicians, authors, and poets.  
	 While an observation is something that can usu-
ally be quantified, the explanation or theory for it 
comes from the minds of people.  For example, does 
light consist of particles (photons) or waves?  Probably 
it consists of neither, but those are two theories from 
the creative imagination of scientists that have proved 
useful in explaining the observations.
	 The joy that a scientist feels after successfully ex-
plaining an observation, and pride that an engineer 
feels for making something work within the con-
straints of physics and economics, are no less intense 
than the joy and pride felt by an artist who has just 
completed his or her masterpiece.  
	 Approach your work with passion, evaluate your 
result objectively, and enjoy your travel through life 
as you help society.  

Table A-5.  Guidelines & issues for scientists.  Chapters 
& topics of the “A SCIENTIFIC PERSPECTIVE” boxes.

Chapter    Issues		  Page
1	 Descartes and the Scientific Method	 2
1	 Check for Errors		  16
1	 Be Meticulous		  20
1	 Give Credit		  24
2	 Scientific Laws — The Myth	 38
2	 Seek Solutions		  46
3	 Expert vs. Novice		  72
4	 Look for Patterns		  107
6	 Cargo Cult Science		  167
7	 Consequences		  218
9	 Creativity in Engineering	 288
10	 Be Creative		  293
11	 Toy Models		  330
11	 Residuals		  340
11	 The Scientific Method Revisited	 343
11	 Model Sensitivity		  350
12	 Math Clarity		  393
13	 Truth vs. Uncertainty	 470
14	 Be Safe (many parts) 		 485, 517
15	 Be Safe (continuation)   	 567, 583, 584
17	 Simple is Best		  680
18	 Parameterization Rules	 715
19	 Data Misinterpretation	 729
19	 The Citizen Scientist		 738
20	 Mathematics		  762
20	 Scientific Revolutions	 773
21	 Ethics and Data Abuse	 826
22	 Great Scientists Make Big Mistakes Too	 863
A	 Problem Solving		  869
A	 Have Passion		  877

Sample Application
    Observations give P1 = 100 ± 0.1 kPa,   P2 = 50 ± 0.5 kPa, 
and Tv  = 260 ± 5 K.  Use hypsometric eq. to find ∆z.

Find the Answer
Given:  P 1 = 100 kPa,  σP1 = 0.1 kPa,  P 2 = 50 kPa, 
	 σP2 = 0.5 kPa,  Tv  = 260 K,  σT = 5 K.
	 Hyp. eq.(1.26a): ∆z = a· Tv ·ln(P1/P2), a=29.3m K–1.
Find:   ∆z = ? ± ? m.  Namely, find ∆ z  = ?m,  σ∆Z = ? m

Method:  Use error propagation rules sequentially.
For (P1/P2):  Average(P/P) = (100kPa)/(50kPa) = 2 
Use eq. (A.14): σP/P = 2·[(0.1/100)2 + (0.5/50)2]1/2 = 0.02

For a·ln(P1/P2): Average =(29.3m K–1)·ln(2) = 20.31 m K–1

Use eq. (A.17): σa·ln =(29.3m K–1)·(0.02/2) = 0.293 m K–1

For Tv ·a·ln(P1/P2):Average=(20.31m K–1)·(260K)= 5281m
Use eq. (A.14): σ∆Z=(5281m)·[(5/260)2+(0.293/20.31)2]1/2

			                   = 127 m  
Thus:    ∆z  =  5281 ± 127 m  

Exposition:  Notice that error-propagation eqs. (A.11 
- A.18) are dimensionally consistent.  A good check.



878	 APPENDIX  A   •   SCIENTIFIC  TOOLS

A.6. REVIEW

	 SI units are used by atmospheric scientists.  
Functional relationships between variables can 
sometimes be discerned when the data is plotted on 
linear, semi-log, or log-log graphs.  An organized 
approach to problem solving that includes consid-
eration of error propagation is recommended.  The 
philosophy of science blends the passions of people 
with the objective analysis of observations.  These 
principles are used throughout this book.

 

A.7. HOMEWORK EXERCISES

A.7.1. Broaden Knowledge & Comprehension
B1.  Search the web for recommended units to use 
in meteorology, and list 3 that were not given in this 
chapter.  [Hint, on the American Meteorological So-
ciety web site, search for a “Guide for Authors”.]   

B2.  For 5 of the universal constants listed in Appen-
dix B, search the web to find their precision (i.e., the 
± σ value).  [Hint: try NIST (U.S. National Institute of 
Standards and Technology.]

A.7.2. Apply
A1.  Convert the values on the left to the units at 
right, using a table of conversions.
	 a. 50 miles =? km		  b. 15 knots = ? m s–1 
	 c. 30 lb in–2 =? kPa		  d. 5000 kW =? horsepower
	 e. 150 lbMass =? kg		  f.  150 lbForce =? N
	 g. 12 ft = ? m				   h. 50 km h–1 = ? m s–1

A2.  Solve the expression on the left, and give the 
answer in the units at right, using a table of conver-
sions, and the basic definitions of units:
	 a.  (55. knots) x (36. inches) =? m2·s–1 
	 b.  (14. lbF in–2) x (2.5 m)2 = ? N
	 c.  (120. lbM) x (3. knots) / day =? mN
	 d.  (15. in Hg) x (2. ft3)  = ? J
	 e.  (500.  mb) x (3. knots) x (5. in)2 =? kW
	 f.  (9.8 m·s–2) x (6 kg) / (ft2) = ? mb
	 g.  (4200 J·kg–1·K–1) x (5°C) x (3.3 g) = ? ergs
	 h.  (2 ha)1/2 / 3 weeks = ? m s–1

A3.   Find ∆T/∆z between the height at assigned let-
ter (a - e) and the height immediately above it? 
		  z(m)		  T(°C)
		  1000		  10
	 e.	 500		  15
	 d.	 200		  17

	 c.	 100		  17
	 b.	   50		  15
	 a.	     0		  10

A4.  Convert the following temperatures:
	 a.  15°C = ? K	 b.  50°F = ? °C	 c.  70 °F =? K
	 d. 48°C = ? °F	 e. 400 K = ? °F	 f.  250 K=?°C

A5(§).  Plot the following relationships on linear, 
semi-log, and log-log graphs.  Use a spreadsheet (§) 
on a personal computer to make this easier.  Any 
variable with subscript “o” represents a constant.
	 a.  I  =  Io · (Ro/R)2 		  b.  U = Uo · ln(z/zo)
	 c.  E = Eo · exp(–z/zo)	 d.  f = co / λ
	 e.  q = e / eo				    f.  c = co · exp[– (z/zo)2]
	 g.  w = [2·(F/m)o·z]1/2 	 h.  ∆P/∆Po = (1/5)·(R/Ro]4 

A6. Given: A = 4000±20 m, B = 300±5 K, C = 80±2 m
 Also, k = 5 is a constant.   Find D = D  ± σD  for:
	 a. D = A + C		 b. D = A – C		  c. D = 3C + A
	 d. D = k·B			  e. D = k2·A		  f. D = A/B	
	 g. D = A·C		  h. D = A·B/C		 i. D = (C+A)/B
	 j. D = Ak			   k. D = B–k		  m. D = Ck·B1/3

	 n. D = k·ln(A/25m)	     o. D = k·(C–A)/ln(B/273K)

A.7.3. Evaluate & Analyze
E1.  Is anything dimensionally wrong with the fol-
lowing equations, given:  P = 100 kPa,  z = 2 km, T = 
30°C,  W = 0.5 m s–1?  If so, why?
	 a.  log(P) = z				   b.  sin(T) = W 
	 c.  arccos(P) = T			  d.  exp(–P/z) = 1
	 e.  cos(W) = 2			   f.  ln(0) = z
	 g.  ln(–10) = T			   h. exp(0) = 1
 
E2.  What is the difference between a good assump-
tion and a bad one?  What can you do to detect bad 
assumptions?

A.7.4. Synthesize
S1. Suppose that you discovered a new physical 
characteristic of nature, and that you devised a new 
dimension to explain it.  However, also assume that 
the list of basic dimensions in Table A–1 is still valid, 
which means that your new dimension must be able 
to be described in terms of the basic dimensions.  
Describe the steps that you could take to determine 
the relationship between your new physical dimen-
sion and the basic units.

S2.  Suppose science did not involve human cre-
ativity.  What physical “laws” might have been de-
scribed differently than they are now, or might have 
not been discovered at all?
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