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PHYSICS IN ACTION

One of the most popular early bicycles was

the penny-farthing, first introduced in 1870.

The bicycle was named for the relative sizes

of its two wheels compared to the relative

sizes of the penny and the farthing, two Eng-

lish coins. Early bicycles had no gears, just

pedals attached directly to the wheel axle.

This meant that the wheel turned once for

every revolution of the pedals.For the penny-

farthing, a gear was developed that allowed

the wheel to turn twice for every turn of

the pedals.More stable bicycles with gears

and chains soon replaced the penny-farthing.

• What makes a wheel difficult to rotate?

• How much does a wheel accelerate for a
given applied force?

CONCEPT REVIEW

Work (Section 5-1)

Energy (Section 5-2)

Momentum (Section 6-1)

Angular speed and acceleration
(Section 7-1)

CHAPTER 8

Rotational
Equilibrium and
Dynamics
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THE MAGNITUDE OF A TORQUE

You have been chosen to judge a race involving three objects: a solid sphere, a

solid cylinder, and a hollow cylinder. The spectators for the race demand that the

race be fair, so you make sure that all of the objects have the same mass and

radius and that they all start from rest. Then you let the three objects roll down a

long ramp. Is there a way to predict which one will win and which one will lose?

If you really performed such a race (see the Quick Lab on the next page),

you would discover that the sphere would come in first and that the hollow

cylinder would come in last. This is a little surprising because in the absence of

friction the acceleration due to gravity is the same for all objects near the

Earth’s surface. Yet the acceleration of each of these objects is different.

In earlier chapters, the motion of an object was described by assuming the

object was a point mass. This description, however, does not account for the

differences in the motion of the objects in the race. This is because these

objects are extended objects. An extended object is an object that has a definite,

finite size and shape. Although an

extended object can be treated as a

point mass to describe the motion of

its center of mass, a more sophisticated

model is required to describe its rota-

tional motion.

Rotational and translational
motion can be separated

Imagine that you roll a strike while

bowling. What happens when the

bowling ball strikes the pins, as shown

in Figure 8-1? The pins fly backward,

spinning in the air. The complicated

motion of each pin can be separated

into a translational motion and a rota-

tional motion, each of which can be

analyzed separately. For now, we will

concentrate on an object’s rotational

motion. Then we will combine the

rotational motion of an object with its

translational motion.

8-1
Torque

8-1 SECTION OBJECTIVES

• Recognize the difference
between a point mass and an
extended object.

• Distinguish between torque
and force.

• Calculate the magnitude of a
torque on an object.

• Identify the lever arm associ-
ated with a torque on an
object.

Figure 8-1
In general, an extended object, such as one of these pins or this bowling ball, can
exhibit rotational and translational motion.
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Net torque produces rotation

Imagine a cat trying to leave a house by pushing perpendicularly on a cat-flap

door. Figure 8-2 shows a cat-flap door hinged at the top. In this configura-

tion, the door is free to rotate around a line that passes through the hinge.

This is the door’s axis of rotation. When the cat pushes at the outer edge of the

door with a force that is perpendicular to the door, the door opens. The abil-

ity of a force to rotate an object around some axis is measured by a quantity

called torque.

Torque depends on a force and a lever arm

If a cat pushed on the door with the same force but at a point closer to the

hinge, the door would be more difficult to rotate. How easily an object rotates

depends not only on how much force is applied but also on where the force is

applied. The farther the force is from the axis of rotation, the easier it is to rotate

the object and the more torque is produced. The perpendicular distance from

the axis of rotation to a line drawn along the direction of the force is called the

lever arm, or moment arm.

Figure 8-3 shows a diagram of the

force F applied by the pet perpendicu-

lar to the cat-flap door. If you exam-

ine the definition of lever arm, you

will see that in this case the lever arm

is the distance d shown in the figure,

the distance from the pet’s nose to the

hinge. That is, d is the perpendicular

distance from the axis of rotation to

the line along which the applied force

acts. If the pet pressed on the door at a

higher point, the lever arm would be

shorter. A smaller torque would be

exerted for the shorter lever arm than

for the one shown in Figure 8-3.

Figure 8-2
The cat-flap door rotates on a hinge, allow-
ing pets to enter and leave a house at will.

axis of
rotation

d

F

ω

Figure 8-3
A force applied to an extended
object can produce a torque. This
torque, in turn, causes the object to
rotate.

torque

a quantity that measures the
ability of a force to rotate an
object around some axis

lever arm

the perpendicular distance from
the axis of rotation to a line drawn
along the direction of the force

Two-Object Races

M A T E R I A L S  L I S T

✔ various solid cylinders, such as
unopened soup cans

✔ various hollow cylinders, such as
empty soup cans with the tops and
bottoms removed or PVC pipes of
different diameters and lengths

✔ various spheres, such as a golf ball,
tennis ball, and baseball

✔ an incline about 1 m long

Place any two objects from the above
list at the top of the incline, and release
them simultaneously. Note which object
reaches the bottom first. Repeat the race
with various combinations of objects. See
if you can discover a general rule to pre-
dict which object will win. (Hint:You may
wish to consider factors such as mass, size,
and shape.)
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Torque also depends on the angle between a force and a lever arm

Forces do not have to be perpendicular to an object to cause the object to

rotate. Imagine the cat-flap door again. What would happen if the cat pushed

on the door at an angle to the door, rather than perpendicular to it as shown

in Figure 8-4? The door would still rotate, but not as easily.

The symbol for torque is the Greek letter tau (t), and the magnitude of the

torque is given by the following equation:

The SI unit of torque is the N •m. Notice that the inclusion of the angle q, the

angle between the force and the distance from the axis, in this equation takes

into account the changes in torque shown in Figure 8-4.
Figure 8-5 shows a wrench pivoted around a bolt. In this case, the applied

force acts at an angle to the wrench. The quantity d is the distance from the

axis of rotation to the point where force is applied. The quantity d(sinq),

however, is the perpendicular distance from the axis of rotation to a line drawn

along the direction of the force, so it is the lever arm.

THE SIGN OF A TORQUE

Torque, like displacement and force, is a vector quantity. However, for the purposes

of this book we will primarily deal with torque as a scalar. Therefore, we will assign

each torque a positive or negative sign, depending on the direction the force tends to

rotate an object. We will use the convention that the sign of the torque resulting

from a force is positive if the rotation is counterclockwise and negative if the rota-

tion is clockwise. In calculations, remember to assign positive and negative values to

forces and displacements according to the sign convention established in Chapter 2.

To determine the sign of a torque, imagine that it is the only torque acting

on the object and that the object is free to rotate. Visualize the direction the

object would rotate under these conditions. If more than one force is acting,

then each force has a tendency to produce a rotation and should be treated

separately. Be careful to associate the correct sign with each torque.

TORQUE

t = Fd(sinq)

torque = force × lever arm

Most torque Least torque

d

Less torque

F d
F d

F

θ
θθ

Figure 8-4
In each example, the cat is pushing
on the same door at the same dis-
tance from the axis and with the
same amount of force, but it is pro-
ducing different amounts of torque.

θ
F

d

d (sin q)

θ

Figure 8-5
The direction of the lever arm is
always perpendicular to the direc-
tion of the applied force.

IN
TERACTIV

E
•

T U T O R
PHYSICSPHYSICS

Module 9
“Torque”
provides an interactive lesson
with guided problem-solving
practice to teach you about
many aspects of rotational
motion, including torque.
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SAMPLE PROBLEM 8A

Torque

P R O B L E M
A basketball is being pushed by two players during tip-off. One player
exerts a downward force of 11 N at a distance of 7.0 cm from the axis of
rotation. The second player applies an upward force of 15 N at a perpen-
dicular distance of 14 cm from the axis of rotation. Find the net torque
acting on the ball.

S O L U T I O N
Given: F1 = 15 N F2 = 11 N

d1 = 0.14 m d2 = 0.070 m

Unknown: tnet = ?

Diagram:

Choose an equation(s) or situation: Apply the defini-
tion of torque to each force and add up the individual
torques.

t = Fd

tnet = t1 + t2 = F1d1 + F2d2

Substitute the value(s) into the equation(s) and solve: First, determine the

torque produced by each force. Each force produces clockwise rotation, so

both torques are negative.

t1 = F1d1 = −(15 N)(0.14 m) = −2.1 N•m

t2 = F2d2 = −(11 N)(0.070 m) = −0.77 N•m

tnet = −2.1 N•m − 0.77 N•m

The net torque is negative, so the ball rotates in a

clockwise direction.

tnet = −2.9 N•m

1. DEFINE

2. PLAN

3. CALCULATE

4. EVALUATE

d1 = 0.14 m

d2 = 0.070 m

F2 = 11 N

F1 = 15 N

CALCULATOR SOLUTION

Your calculator will give the answer 
as 2.87. Because of the significant
figure rule for addition, the answer
should be rounded to 2.9.

For example, imagine that you are pulling on a wishbone with a perpendic-

ular force F1 and that a friend is pulling in the opposite direction with a force

F2. If you pull the wishbone so that it would rotate counterclockwise, then you

exert a positive torque of magnitude F1d1. Your friend, on the other hand,

exerts a negative torque, –F2d2. To find the net torque acting on the wishbone,

simply add up the individual torques.

tnet = Σt = t1 + t2 = F1d1 + (−F2d2)

When you properly apply the sign convention, the sign of the net torque

will tell you which way the object will rotate, if at all.

TOPIC: Torque
GO TO: www.scilinks.org
sciLINKS CODE: HF2081

NSTA



Copyright © by Holt, Rinehart and Winston. All rights reserved.
Chapter 8282

PRACTICE 8A

Section Review

1. In which of the following situations should the object(s) be treated as a

point mass? In which should the object(s) be treated as an extended object?

a. a baseball dropped from the roof of a house

b. a baseball rolling toward third base

c. a pinwheel in the wind

d. Earth traveling around the sun

2. What is the rotational analog of a force? How does it differ from a force?

On what quantities does it depend?

3. Calculate the torque for each force acting on the bar

in Figure 8-6. Assume the axis is perpendicular to the

page and passes through point O. In what direction

will the object rotate?

4. How would the force needed to open a door change 

if you put the handle in the middle of the door?

5. Physics in Action How does the length of the

pedal arm on a penny-farthing bicycle affect the 

amount of torque applied to the front wheel?

45°

30.0 N 4.0 m

2.0 m

O 23°

31° 25.0 N

10.0 N

Figure 8-6

1. Find the magnitude of the torque produced by a 3.0 N force applied to a

door at a perpendicular distance of 0.25 m from the hinge.

2. A simple pendulum consists of a 3.0 kg point mass hanging at the end of

a 2.0 m long light string that is connected to a pivot point.

a. Calculate the magnitude of the torque (due to the force of gravity)

around this pivot point when the string makes a 5.0° angle with

the vertical.

b. Repeat this calculation for an angle of 15.0°.

3. If the torque required to loosen a nut on the wheel of a car has a magni-

tude of 40.0 N•m, what minimum force must be exerted by a mechanic at

the end of a 30.0 cm wrench to loosen the nut?

Torque
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CENTER OF MASS

Locating the axis of rotation for the cat-flap door is simple: it rotates on its

hinges because the house applies a force that keeps the hinges in place. Now

imagine you are playing fetch with your dog, and you throw a stick up into the

air for the dog to retrieve. How can you determine the point around which the

stick will rotate as it travels through the air? Unlike the cat-flap door, the stick

is not attached to anything. There is a special point around which the stick

rotates if gravity is the only force acting on the stick. This point is called the

stick’s center of mass.

Rotational and translational motion can be combined

The center of mass is also the point at which all the mass of the body can be

considered to be concentrated. This means that the complete motion of the

stick is a combination of both translational and rotational motion. The stick

rotates in the air around its center of mass. The center of mass, in turn,

moves as if the stick were a point mass, with all of its mass concentrated at

that point for purposes of analyzing its translational motion.

Note that the hammer in Figure 8-7
rotates about its center of mass as it

moves through the air. As the rest of the

hammer spins, the center of mass moves

along the path of a projectile.

For regularly shaped objects, such as

a sphere or a cube, the center of mass is

at the geometric center of the object. For

more complicated objects, calculating

the location of the center of mass is

more difficult and is beyond the scope

of this book. While the center of mass is

the position at which an extended

object’s mass can be treated as a point

mass, the center of gravity is the position

at which the gravitational force acts on

the extended object as if it were a point

mass. For most situations in this book,

the center of mass and the center of

gravity are equivalent.

8-2
Rotation and inertia

8-2 SECTION OBJECTIVES

• Identify the center of mass of
an object.

• Distinguish between mass
and moment of inertia.

• Define the second condition
of equilibrium.

• Solve problems involving the
first and second conditions of
equilibrium.

center of mass

the point at which all the mass of
the body can be considered to be
concentrated when analyzing
translational motion

Figure 8-7
The point around which this object
rotates is the center of mass. The
center of mass traces out a parabola.

TOPIC: Center of mass
GO TO: www.scilinks.org
sciLINKS CODE: HF2082

NSTA
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MOMENT OF INERTIA

Imagine you are rotating a baseball bat. There are many axes around which

the bat can be rotated. But it is easier to rotate the bat around some axes than

others, even though the bat’s mass has not changed. The resistance of an

object to changes in rotational motion is measured by a quantity called the

moment of inertia. The term moment has a meaning in physics that is differ-

ent from its everyday meaning. The moment of inertia is a measure of the

object’s resistance to a change in its rotational motion about some axis.

Moment of inertia is the rotational analog of mass

The moment of inertia is similar to mass because they are both forms of iner-

tia. However, there is an important difference between the inertia that resists

changes in translational motion (mass) and the inertia that resists changes in

rotational motion (moment of inertia). Mass is an intrinsic property of an

object, and the moment of inertia is not. It depends on the object’s mass and

the distribution of that mass around the axis of rotation. The farther the mass

of an object is, on average, from the axis of rotation, the greater is the object’s

moment of inertia and the more difficult it is to rotate the object. This is why,

in the race on page 278, the solid sphere came in first and the hollow cylinder

came in last. The mass of the hollow cylinder is all concentrated around its rim

(large moment of inertia), while the mass of the sphere is more evenly distrib-

uted throughout its volume (small moment of inertia).

Calculating the moment of inertia

According to Newton’s second law, when a net force acts on an object, the

resulting acceleration of the object depends on the object’s mass. Similarly,

when a net torque acts on an object, the resulting change in the rotational

motion of the object depends on the object’s moment of inertia.

moment of inertia

the tendency of a body rotating
about a fixed axis to resist a
change in rotational motion

Finding the Center 
of Mass Experimentally

M A T E R I A L S  L I S T

✔ cardboard

✔ scissors

✔ hole punch

✔ pushpin or nail

✔ corkboard or tackboard

✔ length of string, about 40 cm

✔ straightedge

✔ pencil or pen

✔ weight, such as a washer

Cut out an irregular shape from the
cardboard, and punch 3–5 holes around
the edge of the shape. Put the pushpin
through one of the holes, and tack the
shape to a corkboard so that the shape
can rotate freely. (You may also hang the
shape from a nail in the wall.)

Attach the weight to the end of the
string and hang the string from the push-

pin or nail. When the string stops moving,
trace a line on the cardboard that follows
the string.

Repeat for each of the holes in the
cardboard. The point where the lines inter-
sect is the center of mass.

Chapter 8284
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The calculation of the moment of inertia is a straightforward but often

tedious process. Fortunately, some simple formulas are available for common

shapes. Table 8-1 gives the moments of inertia for some common shapes.

When the need arises, you can use this table to determine the moment of iner-

tia of a body having one of the listed shapes.

The units for moment of inertia are kg•m2. To get an idea of the size of this

unit, note that bowling balls typically have moments of inertia about an axis

through their centers ranging from about 0.7 kg•m2 to 1.8 kg•m2, depending

on the mass and size of the ball.

Notice that the moment of inertia for the solid sphere is indeed smaller

than the moment of inertia for the thin hoop, as expected. In fact, the

moment of inertia for the thin hoop about the symmetry axis through the

center of mass is the largest moment of inertia that is possible for any shape.

Also notice that a point mass in a circular path, such as a ball on a string,

has the same moment of inertia as the thin hoop if the distance of the point

mass from its axis of rotation is equal to the hoop’s radius. This shows that

only the distance of a mass from the axis of rotation is important in determin-

ing the moment of inertia for a shape. At a given radius from an axis, it does

not matter how the mass is distributed around the axis.

Finally, recall the example of the rotating baseball bat that began this section.

A bat can be modeled as a rotating thin rod. Table 8-1 shows that the moment of

Shape Moment of inertia Shape Moment of inertia

disk or cylinder about
symmetry axis 

2
1MR2R

point mass about axis MR2
R

thin hoop about
diameter 

2
1MR2R

thin hoop about
symmetry axis MR2R

thin spherical shell
about diameter 2

3
MR2R

solid sphere 2
5

MR2

about diameter
R

thin rod about 
perpendicular axis 

3
1Ml 2

through end

l

thin rod about 
perpendicular axis 

1
1
2
 Ml 2

through center

l

Table 8-1 The moment of inertia for a few shapes
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Table 8-2 Conditions for equilibrium

Type of equilibrium Symbolic equation Meaning

translational ∑F = 0 The net force on an object must be zero.

rotational ∑t = 0 The net torque on an object must be zero.

Chapter 8286

inertia of a thin rod is larger if the rod is longer or more massive. When a bat is

held at its end, its length is greatest with respect to the rotation axis, and so its

moment of inertia is greatest. The moment of inertia decreases, and the bat is

easier to swing if you hold the bat closer to the center. Baseball players some-

times do this either because a bat is too heavy (large M) or is too long (large l ).

In both cases, the player decreases the bat’s moment of inertia.

ROTATIONAL EQUILIBRIUM

Imagine that you and a friend are trying to move a piece of

heavy furniture and that you are both a little confused. Instead

of pushing from the same side, you push on opposite sides, as

shown in Figure 8-8. The two forces acting on the furniture are

equal in magnitude and opposite in direction. Your friend

thinks the condition for equilibrium is satisfied because the 

two forces balance each other. He says the piece of furniture

shouldn’t move. But it does; it rotates in place.

Equilibrium requires zero net force and zero net torque

The piece of furniture can move even though the net force acting

on it is zero because the net torque acting on it is not zero. If the

net force on an object is zero, the object is in translational equilib-

rium. If the net torque on an object is zero, the object is in rota-

tional equilibrium. For an object to be completely in equilibrium, both

rotational and translational, there must be both zero net force and zero net

torque, as summarized in Table 8-2. The dependence of equilibrium on the

absence of net torque is called the second condition for equilibrium.

To apply the first condition for equilibrium to an object, it is necessary to

add up all of the forces acting on the object (see Chapter 4). To apply the sec-

ond condition for equilibrium to an object, it is also necessary to choose an

axis of rotation around which to calculate the torque. Which axis should be

chosen? The answer is that it does not matter. The resultant torque acting on

an object in rotational equilibrium is independent of where the axis is placed.

This fact is useful in solving rotational equilibrium problems because an

unknown force that acts along a line passing through this axis of rotation will

not produce any torque. Beginning a diagram by arbitrarily setting an axis

where a force acts can eliminate an unknown in the problem.

Figure 8-8
The two forces exerted on this
table are equal and opposite, yet the
table moves. How is this possible?
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SAMPLE PROBLEM 8B

Rotational equilibrium

P R O B L E M
A uniform 5.00 m long horizontal beam that weighs 315 N is attached to 
a wall by a pin connection that allows the beam to rotate. Its far end is
supported by a cable that makes an angle of 53° with the horizontal, and
a 545 N person is standing 1.50 m from the pin. Find the force in the
cable, FT, and the force exerted on the beam by the wall, R, if the beam is
in equilibrium.

S O L U T I O N
Given: L = 5.00 m Fg, b = 315 N q = 53°

Fg, p = 545 N d = 1.50 m

Unknown: FT = ? R = ?

Diagram: The weight of a uniform extended object

is assumed to be concentrated at the

object’s center of mass.

Choose an equation(s) or situation: The unknowns are Rx, Ry , and FT.

The first condition of equilibrium for the x and y directions gives:

x component equation: Fx = Rx − FT (cos q) = 0

y component equation: Fy = Ry + FT (sin q) − Fg,p − Fg,b = 0

Because there are three unknowns and only two equations, we cannot find  

the solutions from only the first condition of equilibrium.

Choose a point for calculating the net torque: The pin connection is a con-

venient place to put the axis because the unknown force, R, will not contribute

to the net torque about this point.

Apply the second condition of equilibrium: The necessary third equation

can be found from the second condition of equilibrium.

t = FT L(sin q) − Fg,b 
L

2
 − Fg,pd = 0

Substitute the values into the equation(s) and solve:

t = FT (sin 53°)(5.00 m) − (315 N)(2.50 m) −

(545 N)(1.50 m) = 0

t = FT (4.0 m) − 788 N•m − 818 N•m = 0

FT = 
160

4

6

.0

N

m

• m


FT = 4.0 × 102 N

1. DEFINE

2. PLAN

3. CALCULATE

continued on
next page

315 N

545 N

R
FT

53°1.50 m

5.00 m

Rotational Equilibrium and Dynamics 287
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This value for the force in the wire is then substituted into the x and y equa-

tions to find R.

Fx = Rx − FT(cos 53°) = 0

Rx = (400 N)(cos 53°)

Rx = 240 N

Fy = Ry + FT(sin 53°) − 545 N – 315 N = 0

Ry = −3.2 × 102 N + 8.60 × 102 N

Ry = 540 N

R = �R�x
2�+� R�y

2��
R = �(240 N�)2 + (5�40 N)2�

The sum of the y components of the force in the wire and the force exerted by the

wall must equal the weight of the beam and the person. Thus, the force in the wire

and the force exerted by the wall must be greater than the sum of the two weights.

400 + 590 > 545 + 315

R = 5.9 × 102 N

4. EVALUATE

PRACTICE 8B

Rotational equilibrium

1. Rework the example problem above with the axis of rotation passing

through the center of mass of the beam. Verify that the answers do not

change even though the axis is different.

2. A uniform bridge 20.0 m long and weighing 4.00 × 105 N is supported

by two pillars located 3.00 m from each end. If a 1.96 × 104 N car is

parked 8.00 m from one end of the bridge, how much force does each

pillar exert?

3. A 700.0 N window washer is standing on a uniform scaffold supported

by a vertical rope at each end. The scaffold weighs 200.0 N and is 3.00 m

long. What is the force in each rope when the window washer stands

1.00 m from one end?

4. A 400.0 N child and a 300.0 N child sit on either end of a 2.0 m long seesaw.

a. Where along the seesaw should the pivot be placed to ensure rotation-

al equilibrium? Disregard the mass of the seesaw.

b. Suppose a 225 N child sits 0.200 m from the 400.0 N child. Where

must a 325 N child sit to maintain rotational equilibrium?
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Section Review

1. At which of the seven positions indicated 

in Figure 8-9 should the supporting pivot 

be located to produce the following?

a. a net positive torque

b. a net negative torque

c. no rotation

2. Describe the approximate location of the center of mass for the 

following objects:

a. a meterstick

b. a bowling ball

c. an ice cube

d. a doughnut

e. a banana

3. A student says that moment of inertia and mass are the same thing.

Explain what is wrong with this reasoning.

4. Identify which, if any, conditions of equilibrium hold for the following

situations:

a. a bicycle wheel rolling along a level highway at constant speed

b. a bicycle parked against a curb

c. the tires on a braking automobile that is still moving

d. a football traveling through the air

5. A uniform 40.0 N board supports two children, one  weighing 510 N and

the other weighing 350 N. The support is under the center of mass of the

board, and the 510 N child is 1.50 m from the center.

a. Where should the 350 N child sit to balance the system?

b. How much force does the support exert on the board?

6. Physics in Action Why would it be beneficial for a bicycle to have

a low center of mass when the rider rounds a turn?

7. Physics in Action A bicycle designer recently modified a bicycle

by adding cylindrical weights to the spokes of the wheels. He reasoned

that this would make the mass of the wheel, on average, closer to the

axle, in turn making the moment of inertia smaller and the wheel easier

to rotate. Where did he go wrong?

8. Physics in Action The front wheel of a penny-farthing bicycle is

three times as large as the rear wheel. How much more massive must the

rear wheel be to have the same moment of inertia as the front wheel?

50 N
150 N

A B C D E F G

Figure 8-9
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8-3
Rotational dynamics

NEWTON’S SECOND LAW FOR ROTATION

You learned in Section 8-2 that there is a relationship between the net torque

on an object and the angular acceleration given to the object. This is analo-

gous to Newton’s second law, which relates the net force on an object to the

translational acceleration given to the object. Newton’s second law for rotating

objects can be written as follows:

Recall that a net positive torque causes an object

to rotate counterclockwise. This means that the

angular acceleration of the object is also counter-

clockwise. Similarly, a net negative torque will

produce a clockwise angular acceleration. Thus,

in calculating an object’s angular acceleration, it

is important to keep track of the signs of the

torques acting on the object.

For example, consider Figure 8-10, which

shows a continuous stream of water falling on a

wheel. The falling water exerts a force on the rim

of the wheel, producing a torque that causes the

wheel to rotate. Other forces such as air resistance and friction between the

axle and the wheel produce counteracting torques. When the net torque on

the wheel is zero, the wheel rotates with constant angular velocity.

The relationship between these translational and rotational quantities is

summarized in Table 8-3.

NEWTON’S SECOND LAW FOR ROTATING OBJECTS

tnet = Ia

net torque = moment of inertia × angular acceleration

8-3 SECTION OBJECTIVES

• Describe Newton’s second
law for rotation.

• Calculate the angular
momentum for various
rotating objects.

• Solve problems involving
rotational kinetic energy.

Figure 8-10
The continuous flow of water
exerts a torque on the waterwheel.

Table 8-3 Newton’s second law for translational and
rotational motion

Translation F = ma force = mass × acceleration

Rotation t = Ia torque = moment of inertia ×
angular acceleration

IN
TERACTIV

E
•

T U T O R
PHYSICSPHYSICS

Module 10
“Rotational Inertia”
provides an interactive lesson
with guided problem-
solving practice to teach you
about rotational motion and
Newton’s second law for rotat-
ing objects.
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SAMPLE PROBLEM 8C

Newton’s second law for rotation

P R O B L E M
A student tosses a dart using only the rotation of her forearm to accelerate the
dart. The forearm rotates in a vertical plane about an axis at the elbow joint.
The forearm and dart have a combined moment of inertia of 0.075 kg•m2

about the axis, and the length of the forearm is 0.26 m. If the dart has a tan-
gential acceleration of 45 m/s2 just before it is released, what is the net torque
on the arm and dart?

S O L U T I O N
Given: I = 0.075 kg• m2 a = 45 m/s2 d = 0.26 m

Unknown: t = ?

Use the equation for Newton’s second law for rotating objects, given on page 290.

t = Ia where a = a/d

t = I(a/d)

t = (0.075 kg• m2)(45 m/s2)/0.26 m

t = 13 N•m

Newton’s second law for rotation

PRACTICE 8C

1. A potter’s wheel of radius 0.50 m and mass 100.0 kg is freely rotating at

50.0 rev/min. The potter can stop the wheel in 6.0 s by pressing a wet rag

against the rim.

a. What is the angular acceleration of the wheel?

b. How much torque does the potter apply to the wheel?

2. A bicycle tire of radius 0.33 m and mass 1.5 kg is rotating at 98.7 rad/s.

What torque is necessary to stop the tire in 2.0 s?

3. A light string 4.00 m long is wrapped around a solid cylindrical spool

with a radius of 0.075 m and a mass of 0.500 kg. A 5.00 kg mass is then

attached to the free end of the string, causing the string to unwind from

the spool.

a. What is the angular acceleration of the spool?

b. How fast will the spool be rotating after all of the string has unwound?
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MOMENTUM

Have you ever swung a sledgehammer or a similarly heavy object? You proba-

bly noticed that it took some effort to start the object rotating and that it also

took an effort to stop it from rotating. This is because objects resist changes in

their rotational motion as well as in their translational motion.

Rotating objects have angular momentum

Because a rotating object has inertia, it also possesses momentum associated

with its rotation. This momentum is called angular momentum. Angular

momentum is defined by the following equation:

The unit of angular momentum is kg•m2/s. To get an idea of how large this unit

is, note that a 35 kg bowling ball rolling at an angular speed of 40 rad/s has an

angular momentum of about 80 kg•m2/s. The relationship between these trans-

lational and rotational quantities is summarized in Table 8-4.

ANGULAR MOMENTUM

L = Iw

angular momentum = moment of inertia × angular speed

Table 8-4 Translational and angular momentum

Translational p = mv momentum = mass × speed

Rotational L = Iw rotational momentum = moment of
inertia × angular speed

Angular momentum may be conserved

When the net external torque acting on an object or

objects is zero, the angular momentum of the object(s)

does not change. This is the law of conservation of angu-

lar momentum.

For example, assuming the friction between the

skates and the ice is negligible, there is no torque acting

on the skater in Figure 8-11, so his angular momentum

is conserved. When he brings his hands and feet closer

to his body, more of his mass, on average, is nearer his

axis of rotation. As a result, the moment of inertia of his

body decreases. Because his angular momentum is con-

stant, his angular speed increases to compensate for his

smaller moment of inertia.

angular momentum

the product of a rotating object’s
moment of inertia and angular
speed about the same axis

Figure 8-11
Angular momentum is conserved as the skater pulls his 
arms toward his body.



Copyright © by Holt, Rinehart and Winston. All rights reserved.
293Rotational Equilibrium and Dynamics

SAMPLE PROBLEM 8D

Conservation of angular momentum

P R O B L E M
A 65 kg student is spinning on a merry-go-round that has a mass of
5.25 � 102 kg and a radius of 2.00 m. She walks from the edge of the
merry-go-round toward the center. If the angular speed of the merry-go-
round is initially 0.20 rad/s, what is its angular speed when the student
reaches a point 0.50 m from the center?

S O L U T I O N
Given: M = 5.25 × 102 kg ri = R = 2.00 m

rf = 0.50 m m = 65 kg wi = 0.20 rad/s

Unknown: wf = ?

Diagram:

Choose an equation(s) or situation: Because there are no

external torques, the angular momentum of the system

(merry-go-round plus student) is conserved.

Li = Lf

Lm,i + Ls,i = Lm,f + Ls,f

Determine the moments of inertia. Treat the merry-go-round as a solid disk,

and treat the student as a point mass.

Im = 1
2

MR2

Is,i = mR2

Is,f = mrf
2

Substitute the values into the equation(s) and solve: Determine the initial

moments of inertia, Im and Is,i , and the initial angular momentum, Li.

Im = �1
2

�(5.25 × 102 kg)(2.00 m)2 = 1.05 × 103 kg•m2

Is,i = (65 kg)(2.00 m)2 = 260 kg•m2

Li = Lm,i + Ls,i = Imwi + Is,iwi

Li = (1.05 × 103 kg•m2)(0.20 rad/s) + (260 kg•m2)(0.20 rad/s)

Li = 260 kg•m2/s

Determine the final moment of inertia, Is,f , and the final angular momentum, Lf.

Is,f = (65 kg)(0.50 m)2 = 16 kg•m2

Lf = Lm,f + Ls,f = Imwf + Is,f wf

Lf = (1.05 × 103 kg•m2 + 16 kg•m2)wf

Lf = (1.07 × 103 kg•m2)wf

1. DEFINE

2. PLAN

3. CALCULATE

R = rirf

m

M

ω

continued on
next page
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Equate the initial and final angular momentum.

260 kg•m2/s = (1.07 × 103 kg•m2) wf

Because the total moment of inertia decreases as the student moves toward the

axis, the final angular speed should be greater than the initial angular speed.

0.24 rad/s > 0.20 rad/s

wf = 0.24 rad/s

4. EVALUATE

PRACTICE 8D

Conservation of angular momentum

1. A merry-go-round rotates at the rate of 0.30 rad/s with an 80.0 kg man

standing at a point 2.0 m from the axis of rotation. What is the new angular

speed when the man walks to a point 1.0 m from the center? Assume that

the merry-go-round is a solid 6.50 × 102 kg cylinder with a radius of 2.00 m.

2. A 2.0 kg bicycle wheel with a radius of 0.30 m turns at a constant angular

speed of 25 rad/s when a 0.30 kg reflector is at a distance of 0.19 m from

the axle. What is the angular speed of the wheel when the reflector slides

to a distance of 0.25 m from the axle?

3. A solid, vertical cylinder with a mass of 10.0 kg and a radius of 1.00 m

rotates with an angular speed of 7.00 rad/s about a fixed vertical axis

through its center. A 0.250 kg piece of putty is dropped vertically at a

point 0.900 m from the cylinder’s center of rotation and sticks to the

cylinder. Determine the final angular speed of the system.

4. As Halley’s comet orbits the sun, its distance from the sun changes dra-

matically, from 8.8 × 1010 m to 5.2 × 1012 m. If the comet’s speed at clos-

est approach is 5.4 × 104 m/s, what is its speed when it is farthest from

the sun if angular momentum is conserved?

5. The entrance of a science museum features a funnel into which marbles

are rolled one at a time. The marbles circle around the wall of the funnel,

eventually spiraling down into the neck of the funnel. The internal radius

of the funnel at the top is 0.54 m. At the bottom, the funnel’s neck nar-

rows to an internal radius of 0.040 m. A 2.5 × 10−2 kg marble begins

rolling in a large circular orbit around the funnel’s rim at 0.35 rev/s. If it

continues moving in a roughly circular path, what will the marble’s

angular speed be as it passes throught the neck of the funnel? (Consider

only the effects of the conservation of angular momentum.)
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KINETIC ENERGY

In Chapter 5 you learned that the mechanical energy of an object includes

translational kinetic energy and potential energy, but that was for objects that

can be modeled as point masses. In other words, this approach did not consid-

er the possibility that objects could have rotational motion along with transla-

tional motion.

Rotating objects have rotational kinetic energy

Rotating objects possess kinetic energy associated with their angular speed.

This form of energy is called rotational kinetic energy and is expressed by

the following equation:

This is analogous to the translational kinetic energy of a particle, given by the

expression 1
2

mv2, where the moment of inertia replaces the mass and the angular

speed replaces the translational speed. The unit of rotational kinetic energy is the

joule, the SI unit for energy (see Chapter 5). The relationship between these

translational and rotational quantities is summarized in Table 8-5.

CALCULATING ROTATIONAL KINETIC ENERGY

KErot = 1
2

Iw2

rotational kinetic energy = 1
2

 × moment of inertia × (angular speed)2

Mechanical energy may be conserved

Recall the race between two objects on page 278. Because it is assumed that

gravity is the only external force acting on the cylinders and spheres, the

mechanical energy associated with each object is conserved. Unlike the exam-

ples of energy conservation in Chapter 5, however, the objects in this example

are rotating. Recalling that mechanical energy is the sum of all types of kinetic

and potential energy, we must include a rotational kinetic energy term in our

formula for mechanical energy, as follows:

ME = KEtrans + KErot + PEg

ME = 1
2

mv2 + 1
2

Iw2 + mgh

rotational kinetic energy

energy of an object due to its
rotational motion

Table 8-5 Translational and rotational kinetic energy

Translational KEtrans = 
2
1 mv2 translational kinetic energy

= 
2
1 mass × (speed)2

Rotational KErot = 
2
1Iw2 rotational kinetic energy

= 
2
1 moment of inertia × (angular speed)2
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SAMPLE PROBLEM 8E

Conservation of mechanical energy

P R O B L E M
A solid ball with a mass of 4.10 kg and a radius of 0.050 m starts from rest
at a height of 2.00 m and rolls down a 30.0° slope, as shown in Figure 8-15.
What is the translational speed of the ball when it leaves the incline?

S O L U T I O N
Given: h = 2.00 m q = 30.0° m = 4.10 kg

r = 0.050 m vi = 0.0 m/s

Unknown: vf = ?

Diagram:

Choose an equation(s) or situation: Apply the conservation

of mechanical energy.

MEi = MEf

Initially, the system possesses only gravitational potential energy. When the

ball reaches the bottom of the ramp, this potential energy has been converted

to translational and rotational kinetic energy.

mgh = 1
2

mvf
2 + 1

2
Iw f

2 where wf = 
v

r

f

The moment of inertia for a solid ball can be found in Table 8-1, on page 285.

I = 2
5

mr2

Equate the initial and final mechanical energy.

mgh = 1
2

mv f
2 + 1

2
�2

5
mr2��

v

r

f �
2

= 1
2

mv f
2 + 1

5
mv f

2 = 
1

7

0
mv f

2

Rearrange the equation(s) to isolate the unknown(s):

v f
2 = 1

7

0gh

Substitute the values into the equation(s) and solve:

v f
2 = 1

7

0(9.81 m/s2)(2.00 m)

This speed should be less than the speed of an object undergoing free fall

from the same height because part of the energy goes into rotation.

vf (free fall) = �2g�h� = 6.26 m/s

5.29 m/s < 6.26 m/s

vf = 5.29 m/s

1. DEFINE

2. PLAN

3. CALCULATE

4. EVALUATE

2.00 m

30.0˚

v

r
m

ω

296 Chapter 8
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PRACTICE 8E

Section Review

1. A student holds a 3.0 kg mass in each hand while sitting on a rotating

stool. When his arms are extended horizontally, the masses are 1.0 m from

the axis of rotation and he rotates with an angular speed of 0.75 rad/s. If

the student pulls the masses horizontally to 0.30 m from the axis of rota-

tion, what is his new angular speed? Assume the combined moment of

inertia of the student and the stool together is 3.0 kg•m2 and is constant.

2. A 4.0 kg mass is connected by a massless

string over a massless and frictionless

pulley to the center of an 8.0 kg wheel.

Assume that the wheel has a radius of

0.50 m and a moment of inertia of

2.0 kg•m2, as shown in Figure 8-12.
The mass is released from rest at a

height of 2.0 m above the ground. What will its speed be just before it

strikes the ground? (Hint: Apply conservation of mechanical energy.)

3. Physics in Action A bicyclist exerts a constant force of 40.0 N on a

pedal 0.15 m from the axis of rotation of a penny-farthing bicycle wheel

with a radius of 50.0 cm. If his speed is 2.25 m/s 3.0 s after he starts from

rest, what is the moment of inertia of the wheel? (Disregard friction and the

moment of inertia of the small wheel.)

I,R

h

m

v

m

Figure 8-12

1. Repeat Sample Problem 8E using a solid cylinder of the same mass and

radius as the ball and releasing it from the same height. In a race between

these two objects on an incline, which would win?

2. A 1.5 kg bicycle tire of radius 0.33 m starts from rest and rolls down from

the top of a hill that is 14.8 m high. What is the translational speed of the

tire when it reaches the bottom of the hill? (Assume that the tire is a

hoop with I = mr2.)

3. A regulation basketball has a 25 cm diameter and may be approximated

as a thin spherical shell. How long will it take a basketball starting from

rest to roll without slipping 4.0 m down an incline that makes an angle of

30.0° with the horizontal?

Conservation of mechanical energy
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TYPES OF SIMPLE MACHINES

What do you do when you need to drive a nail into a board? You probably hit

the nail with a hammer. Similarly, you would probably use scissors to cut

paper or a bottle opener to pry a cap off a bottle. All of these devices make

your task easier. These devices are machines.

The term machine may bring to mind intricate systems with multicolored

wires and complex gear-and-pulley systems. Compared with internal-

combustion engines or airplanes, simple devices such as hammers, scissors,

and bottle openers may not seem like machines, but they are.

A machine is any device that transmits or modifies force, usually by chang-

ing the force applied to an object. All machines are combinations or modifica-

tions of six fundamental types of machines, called simple machines. These six

simple machines are the lever, pulley, inclined plane, wheel and axle, wedge,

and screw, as shown in Table 8-6.

8-4
Simple machines

8-4 SECTION OBJECTIVES

• Identify the six types of 
simple machines.

• Explain how the operation of
a simple machine alters the
applied force and the dis-
tance moved.

• Calculate the mechanical
advantage of a simple
machine.

Lever

Fulcrum

Inclined plane
Wheel

Axle

Screw

Pulleys
Wedge

Table 8-6 Six simple machines
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USING SIMPLE MACHINES

Because the purpose of a simple machine is to change the direction or magni-

tude of an input force, a useful way of characterizing a simple machine is to

compare how large the output force is relative to the input force. This ratio,

called the machine’s mechanical advantage, is written as follows:

MA = 
o

i

u

n

t

p

p

u

u

t

t

f

f

o

o

r

r

c

c

e

e
 = 

F

F
o

i

u

n

t

A good example of mechanical advantage is the claw hammer, which is a type

of lever, as shown in Figure 8-13.
A person applies an input force to one end of the handle. The handle, in

turn, exerts an output force on the head of a nail stuck in a board. Rotational

equilibrium is maintained, so the input torque must balance the output

torque. This can be written as follows:

tin = tout

Findin = Foutdout

Substituting this expression into the definition of mechanical advantage gives

the following result:

MA = 
F

F
o

i

u

n

t = 
d

d

o

i

u

n

t


The longer the input lever arm is compared with the output lever arm, the

greater the mechanical advantage is. This in turn indicates the factor by which

the input force is amplified. If the force of the board on the nail is 99 N and if

the mechanical advantage is 10, then only a force of 10 N is needed to pull out

the nail. Without a machine, the nail could not be removed unless the force

was greater than 100 N.

Machines can alter the force and the distance moved

You have learned that mechanical energy is conserved in the absence of fric-

tion. This law holds for machines as well. A machine can increase (or decrease)

the force acting on an object at the expense (or gain) of the distance moved,

but the product of the two—the work done on the object—is constant.

For example, imagine an incline. Figure 8-14 shows two examples of a

refrigerator being loaded onto a flatbed truck. In one example, the refrigerator

is lifted directly onto the truck. In the other example, an incline is used.

In the first example, a force (F1) of 1200 N is required to lift the refrigera-

tor, which moves through a distance (d1) of 1.5 m. This requires 1800 N•m of

work. In the second example, a lesser force (F2) of only 360 N is needed, but

the refrigerator must be pushed a greater distance (d2) of 5.0 m. This also

requires 1800 N•m of work. As a result, the two methods require the same

amount of energy.

Figure 8-13
A hammer makes it easier to pry a
nail from a board by multiplying the
input force. The hammer swivels
around the point marked with a
black dot.

Figure 8-14
Simple machines can alter both the
force needed to perform a task and
the distance through which the
force acts.

Small distance—Large force

Large distance—Small force

F1
d1

d2

F2
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A cyborg, as any science-fiction aficionado

knows, is part human and part machine and is

able to perform extraordinary tasks. Although

cyborgs are still more fiction than science,

Dr. Homayoon Kazerooni, of the University of

California at Berkeley, has been inventing

machines called human extenders that can give

mere mortals superhuman strength.

“Human extenders are robotic systems 

worn by a human to move heavy objects,”

Dr. Kazerooni says. One of the first machines

Dr. Kazerooni designed is a 1.5 m (5 ft) long

steel arm that weighs thousands of newtons

(several hundred pounds) and is attached to 

a pedestal on the floor. The operator inserts

one  arm into the device, and an attached 

computer senses the arm’s movement and 

uses hydraulic pressure to move the extender

in conjunction with the operator’s arm. With

the extender, a person can lift objects weighing

as much as 890 N (200 lb) while exerting a

force of only 89 N (20 lb). In this case, the

extender yields a mechanical advantage of

10 (890 N/89 N = 10).

Dr. Kazerooni is developing a complete suit

of human extenders that will be powered by

electricity. Controlled completely by the move-

ment of the user, the suit has two arms that

sense and respond to both the force applied by

the human and the weight of the object being

lifted, taking most of the effort away from the

operator. The machine’s legs are able to bal-

ance the weight of the equipment, and they

attach at the operator’s feet to allow movement

around the room.

Dr. Kazerooni envisions human extenders

being used primarily as labor aids for factory

workers. Approximately 30 percent of all work-

place accidents in the United States are related

to back injuries, and they are usually the result

of a repeated lifting and moving of heavy

objects. Human extenders could solve that

problem. “The person who is wearing the

machine,” Dr. Kazerooni says, “will feel less

force and less fatigue, and therefore the poten-

tial for back injuries or any kind of injury

would be less.”

Human Extenders

Figure 8-15
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Section Review

1. Figure 8-16 shows an example of a Rube

Goldberg machine. Identify two types of

simple machines that are included in this

compound machine.

2. The efficiency of a squeaky pulley system is

73 percent. The pulleys are used to raise a

mass to a certain height. What force is exerted

on the machine if a rope is pulled 18.0 m in

order to raise a 58 kg mass a height of 3.0 m?

3. A person lifts a 950 N box by pushing it up an incline. If the person

exerts a force of 350 N along the incline, what is the mechanical advan-

tage of the incline?

4. You are attempting to move a large rock using a long lever. Will the work

you do on the lever be greater than, the same as, or less than the work

done by the lever on the rock? Explain.

5. Physics in Action A bicycle can be described as a combination of

simple machines. Identify three types of simple machines that are used to

propel a typical bicycle.

Figure 8-16

Efficiency is a measure of how well a machine works

The simple machines we have considered so far are ideal, frictionless machines.

Real machines, however, are not frictionless. They dissipate energy. When the

parts of a machine move and contact other objects, some of the input energy is

dissipated as sound or heat. The efficiency of a machine is a measure of how

much input energy is lost compared with how much energy is used to perform

work on an object. It is defined by the following equation:

eff = 
W

W
o

i

u

n

t

If a machine is frictionless, then mechanical energy is conserved. This means

that the work done on the machine (input work) is equal to the work done by

the machine (output work) because work is a measure of energy transfer. Thus,

the mechanical efficiency of an ideal machine is 1, or 100 percent. This is the

best efficiency a machine can have. Because all real machines have at least a little

friction, the efficiency of real machines is always less than 1.

TOPIC: Simple machines
GO TO: www.scilinks.org
sciLINKS CODE: HF2083

NSTA
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Figure 8-17
(a) In Rutherford’s model of the atom, electrons
orbit the nucleus. (b) In quantum mechanics, an
electron cloud is used to show the probability that
the electron will be at different points. The densest
regions of the cloud represent the most probable
locations for the electron.

Chapter 8302

Earlier in this chapter, we discussed angular momentum and its effects in the

macroscopic world of your everyday experience. In the early twentieth century,

scientists realized that they must modify their ideas about angular momentum

when working with the microscopic world of atoms and subatomic particles.

Electron orbital angular momentum

In 1911, Ernest Rutherford proposed a model of the atom in which nega-

tively charged particles called electrons orbit a positively charged nucleus con-

taining particles called protons, much as the Earth orbits the sun, as shown in

Figure 8-17(a). Because the electron orbits the nucleus, it has an orbital angu-

lar momentum.

Further investigations into the microscopic realm revealed that the elec-

tron cannot be precisely located in space and therefore cannot be visualized as

orbiting the proton. Instead, in modern theory the electron’s location is

depicted by an electron cloud, as shown in Figure 8-17(b), whose density

varies throughout the cloud in proportion to the probability of finding the

electron at a particular location in the cloud. Even though the electron does

not orbit the nucleus in this model, the electron still has an orbital angular

momentum that is very different from the angular momentum discussed ear-

lier in this chapter.

For most of the history of science, it was assumed that angular momentum

could have any possible value. But investigations at the atomic level have

shown that this is not the case. The orbital angular momentum of the electron

can have only certain possible values. Such a quantity is said to be discrete,

and the angular momentum is said to be quantized. The branch of modern

theory that deals with quanta is called quantum mechanics.
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Electron spin

In addition to the orbital angular momentum of the electron, certain experi-

mental evidence led scientists to postulate another type of angular momen-

tum of the electron. This type of angular momentum is known as spin

because the effects it explains are those that would result if the electron were

to spin on its axis, much like the Earth spins on its axis of rotation. Scientists

first imagined that the electron actually spins in this way, but it soon became

clear that electron spin is not a literal description. Instead, electron spin is a

property that is independent of the electron’s motion in space. In this respect,

electron spin is very different from the spin of the Earth.

Just as a wheel can turn either clockwise or counterclockwise, there are two

possible types of electron spin, spin up and spin down, as shown in Figure 
8-18. Thus, like orbital angular momentum, spin is quantized. Because the

electron isn’t really spinning in space, it should not be assumed that Figure 
8-18 is a physical description of the electron’s motion.

Conservation of angular momentum

Although the quantum-mechanical concept of angular momentum is radi-

cally different from the classical concept of angular momentum, there is one

fundamental similarity between the two models. Earlier in this chapter, you

learned that angular momentum is always conserved. This principle still holds

in quantum mechanics, where the total angular momentum, that is, the sum

of the orbital angular momentum and spin, is always conserved.

As you have seen, the quantum-mechanical model of the atom cannot be

visualized in the same way that previous atomic models could be. Although

this may initially seem like a flaw of the modern theory, the accuracy of predic-

tions based on quantum mechanics has convinced many scientists that physical

models based on our experiences in the macroscopic realm cannot provide a

complete picture of nature. Consequently, mathematical models must be used

to describe the microscopic realm of atoms and subatomic particles.

Spin up

Figure 8-18
In the quantum-mechanical
model of the atom, the electron
has both an orbital angular
momentum and an intrinsic
angular momentum, known as
spin. (a) Spin up and (b) spin
down are the only possible val-
ues for electron spin.

Spin down

Table 8-8 Angular momentum

Classical angular momentum Quantum angular momentum

corresponds to a literal rotation does not correspond to a literal
rotation

can have any possible value can have only certain discrete 
values

total angular momentum total angular momentum (orbital
(orbital + rotational) conserved angular momentum + spin) 

conserved

(a)

(b)

TOPIC: Rutherford model of atom
GO TO: www.scilinks.org
sciLINKS CODE: HF2084

NSTA
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KEY IDEAS

Section 8-1 Torque
• Torque is a measure of a force’s ability to rotate an object.

• The torque on an object depends on the magnitude of the applied force

and on the length of the lever arm, according to the fol-

lowing equation:

Section 8-2 Rotation and inertia
• The moment of inertia of an object is a measure of the resistance of the

object to changes in rotational motion.

• For an extended object to be in complete equilibrium, it must be in both

translational and rotational equilibrium.

Section 8-3 Rotational dynamics
• The rotational equation analogous to Newton’s second law can

be described as follows:

• A rotating object possesses angular momentum, which is conserved in the

absence of any external forces on the object.

• A rotating object possesses rotational kinetic energy, which is conserved in

the absence of any external forces on the object.

Section 8-4 Simple machines
• A simple machine can alter the force applied to an object or the distance

an applied force moves an object.

• Simple machines can provide a mechanical advantage.

CHAPTER 8
Summary

KEY TERMS

angular momentum (p. 292)

center of mass (p. 283)

lever arm (p. 279)

moment of inertia (p. 284)

rotational kinetic energy 
(p. 295)

torque (p. 279)

t = Fd(sinq)

t = Ia

Key Symbols

Quantities Units Conversions

t torque N•m newton meter = kg•m2/s2

d(sinq) lever arm m meter

I moment of kg•m2 kilogram meter
inertia squared

L angular kg•m2/s kilogram meter
momentum squared per second

KErot rotational J joule = N•m
kinetic energy = kg•m2/s2
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TORQUE AND MOMENT OF INERTIA

Conceptual questions

1. Explain how an orthodontist uses torque to straighten
or realign teeth.

2. Which of the forces acting on the rod in Figure 8-19
will produce a torque about the axis at the left end
of the rod?

3. Two children are rolling automobile tires down a
hill. One child claims that the tire will roll faster if
one of them curls up in the tire’s center. The other
child claims that will cause the tire to roll more
slowly. Which child is correct?

4. The moment of inertia of Earth was recently mea-
sured to be 0.331MR2. What does this tell you
about the distribution of mass inside Earth? (Hint:
Compare this value with the moments of inertia in
Table 8-1.)

5. The moment of inertia for a regular object can
never be larger than MR2, where M is the mass and
R is the size of the object. Why is this so? (Hint:
Which object has a moment of inertia of MR2?)

6. Two forces of equal magnitude act on a wheel, as
shown in Figure 8-20. Which force will produce the
greater torque on the wheel?

Figure 8-20

F1
F2

Figure 8-19

axis of rotation

F1

F2

7. Two forces equal in magnitude but opposite in
direction act at the same point on an object. Is it
possible for there to be a net torque on the object?
Explain.

8. It is more difficult to do a sit-up with your hands
held behind your head than it is to do a sit-up with
your arms stretched out in front of you. Explain
why this statement is true.

Practice problems

9. A bucket filled with water has a mass of 54 kg and is
hanging from a rope that is wound around a 0.050 m
radius stationary cylinder. If the cylinder does not
rotate and the bucket hangs straight down, what is
the magnitude of the torque the bucket produces
around the center of the cylinder?
(See Sample Problem 8A.)

10. A mechanic jacks up a car to an angle of 8.0° with
the horizontal in order to change the front tires.
The car is 3.05 m long and has a mass of 1130 kg.
Its center of mass is located 1.12 m from the front
end. The rear wheels are 0.40 m from the back end.
Calculate the torque exerted by the car around the
back wheels.
(See Sample Problem 8A.)

11. The arm of a crane at a construction site is 15.0 m
long, and it makes an angle of 20.0° with the hori-
zontal. Assume that the maximum load the crane
can handle is limited by the amount of torque the
load produces around the base of the arm.

a. What is the magnitude of the maximum
torque the crane can withstand if the maxi-
mum load the crane can handle is 450 N?

b. What is the maximum load for this crane at
an angle of 40.0° with the horizontal?

(See Sample Problem 8A.)

CHAPTER 8
Review and Assess
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unspecified origin. Does this necessarily imply that
the total force on the particle is zero? Can you con-
clude that the angular velocity of the particle is con-
stant? Explain.

Practice problems

20. A window washer is standing on a scaffold sup-
ported by a vertical rope at each end. The scaffold
weighs 205 N and is 3.00 m long. What is the force
each rope exerts on the scaffold when the 675 N
worker stands 1.00 m from one end of the scaffold?
(See Sample Problem 8B.)

21. A floodlight with a mass of
20.0 kg is used to illuminate
the parking lot in front of a
library. The floodlight is sup-
ported at the end of a hori-
zontal beam that is hinged to
a vertical pole, as shown in
Figure 8-21. A cable that
makes an angle of 30.0° with
the beam is attached to the
pole to help support the
floodlight. Find the following, assuming the mass of
the beam is negligible when compared with the mass
of the floodlight:

a. the force provided by the cable
b. the horizontal and vertical forces exerted on

the beam by the pole

(See Sample Problem 8B.)

22. A 1200.0 N uniform boom is supported by a cable, as
shown in Figure 8-22. The boom is pivoted at the bot-
tom, and a 2000.0 N weight hangs from its top. Find the
force applied by the supporting cable and the compo-
nents of the reaction force on the bottom of the boom.
(See Sample Problem 8B.)

Figure 8-22

2000.0 N
65°

25°

L    L3
4

CENTER OF MASS AND
ROTATIONAL EQUILIBRIUM

Review questions

12. At a circus performance, a juggler is throwing two
spinning clubs. One of the clubs is heavier than the
other. Which of the following statements is true?

a. The smaller club is likely to have a larger
moment of inertia.

b. The ends of each club will trace out parabolas
as the club is thrown.

c. The center of mass of each club will trace out
a parabola as the club is thrown.

13. When the juggler in the previous problem stands up
straight and holds each club at arm’s length, his cen-
ter of mass will probably be

a. located at a point exactly in the middle of his
body

b. slightly to the side where he is holding the
light club

c. slightly to the side where he is holding the
heavy club

14. What are the conditions for equilibrium? Explain
how they apply to children attempting to balance a
seesaw.

15. What must be true about the velocity of a moving
object in equilibrium?

16. A twirler throws a baton in the air.

a. Describe the motion of the ends of the baton
as it moves through the air.

b. Decribe the motion of the center of mass of
the baton.

Conceptual questions

17. A projectile is fired into the air and suddenly explodes
into several fragments. What can be said about the
motion of the center of mass of the fragments after
the explosion?

18. Is it possible to balance two objects that have dif-
ferent masses (and therefore weights) on a simple
balance beam? Explain.

19. A particle moves in a straight line, and you are told
that the torque acting on it is zero about some

30.0°

Figure 8-21
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23. A uniform 10.0 N picture frame is supported as
shown in Figure 8-23. Find the force in the cords
and the magnitude of the horizontal force at P that
are required to hold the frame in this position.
(See Sample Problem 8B.)

NEWTON’S SECOND LAW
FOR ROTATION

Conceptual questions

24. An object rotates with a constant angular velocity.
Can there be a net torque acting on the object?
Explain your answer.

25. If an object is at rest, can you be certain that no
external torques are acting on it?

26. Two uniformly solid disks of equal radii roll down
an incline without slipping. The first disk has twice
the mass of the second disk. How much torque was
exerted on the first disk compared with the amount
exerted on the second disk?

Practice problems

27. A 30.0 kg uniform solid cylinder has a radius of
0.180 m. If the cylinder accelerates at 2.30 × 10−2

rad/s2 as it rotates about an axis through its center,
how large is the torque acting on the cylinder?
(See Sample Problem 8C.)

28. A 350 kg merry-go-round in the shape of a horizontal
disk with a radius of 1.5 m is set in motion by wrap-
ping a rope about the rim of the disk and pulling on
the rope. How large a torque would have to be exerted
to bring the merry-go-round from rest to an angular
speed of 3.14 rad/s in 2.00 s?
(See Sample Problem 8C.)

Figure 8-23

FT,2

50.0°

P F

30.0 cm

10.0 N

15 cm

FT,1

ANGULAR MOMENTUM AND 
ROTATIONAL KINETIC ENERGY

Review questions

29. Is angular momentum always conserved? Explain.

30. Is it possible for two objects with the same mass and
the same rotational speeds to have different values
of angular momentum? Explain.

31. A child on a merry-go-round moves from near the
axis to the outer edge of the merry-go-round. What
happens to the rotational speed of the merry-go-
round? Explain.

32. Is it possible for an ice skater to change her rota-
tional speed without any external torque? Explain.

Conceptual questions

33. Ice skaters use the conservation of angular momen-
tum to produce high-speed spins when they bring
their arms close to the rotation axis. Imagine that a
skater moves her arms inward, cutting the moment
of inertia in half and therefore doubling the angular
speed. If we consider the rotational kinetic energy, we
see that the energy is doubled in this situation. Thus,
angular momentum is conserved, but kinetic energy
is not. Where does this extra rotational kinetic energy
come from?

34. A solid 2.0 kg ball with a radius of 0.50 m starts at a
height of 3.0 m and rolls down a 20° slope. A solid
disk and a ring start at the same time and the same
height. Both the ring and the disk have the same
mass and radius as the ball. Which of the three
objects will win the race to the bottom if all roll
without slipping?

Practice problems

35. A 15.0 kg turntable with a radius of 25 cm is covered
with a uniform layer of dry ice that has a mass of
9.0 kg. The angular speed of the turntable and dry ice
is initially 0.75 rad/s, but it increases as the dry ice
evaporates. What is the angular speed of the turntable
once all the dry ice has evaporated?
(See Sample Problem 8D.)
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MIXED REVIEW PROBLEMS

44. Two spheres look identical and have the same mass.
One is hollow, and the other is solid. Which method
would determine which is which?

a. roll them down an incline
b. drop them from the same height
c. weigh them on a scale

45. A wooden bucket filled with water has a mass of
75 kg and is attached to a rope that is wound
around a cylinder with a radius of 0.075 m. A crank
with a turning radius of 0.25 m is attached to the
end of the cylinder. What minimum force directed
perpendicularly to the crank handle is required to
raise the bucket?

46. If the torque required to loosen a nut that holds a
wheel on a car has a magnitude of 58 N•m, what
force must be exerted at the end of a 0.35 m lug
wrench to loosen the nut when the angle is 56°?

47. In a canyon between two mountains, a spherical
boulder with a radius of 1.4 m is just set in motion
by a force of 1600 N. The force is applied at an angle
of 53.5° measured with respect to the radius of the
boulder. What is the magnitude of the torque on the
boulder?

48. A 23.0 cm screwdriver is used to pry open a can of
paint. If the axis of rotation is 2.00 cm from the end
of the screwdriver blade and a force of 84.3 N is
exerted at the end of the screwdriver’s handle, what
force is applied to the lid?

49. The net work done in accelerating a propeller from
rest to an angular speed of 220 rad/s is 3000.0 J.
What is the moment of inertia of the propeller?

50. A 0.100 kg meterstick is supported at its 40.0 cm
mark by a string attached to the ceiling. A 0.700 kg
mass hangs vertically from the 5.00 cm mark. A mass
is attached somewhere on the meterstick to keep it
horizontal and in both rotational and translational
equilibrium. If the force applied by the string attach-
ing the meterstick to the ceiling is 19.6 N, determine
the following:

a. the value of the unknown mass
b. the point where the mass attaches to the stick

36. A 65 kg woman stands at the rim of a horizontal
turntable with a moment of inertia of 1.5 × 103 kg•m2

and a radius of 2.0 m. The system is initially at rest,
and the turntable is free to rotate about a frictionless
vertical axle through its center. The woman then starts
walking clockwise (when viewed from above) around
the rim at a constant speed of 0.75 rad/s relative to
Earth. In what direction and with what angular
speed does the turntable rotate?
(See Sample Problem 8D.)

37. A 35 kg bowling ball with a radius of 13 cm starts
from rest at the top of an incline 3.5 m in height.
Find the translational speed of the bowling ball after
it has rolled to the bottom of the incline. (Assume
the ball is a uniform solid sphere.)
(See Sample Problem 8E.)

38. A solid 240 N ball with a radius of 0.20 m rolls 6.0 m
down a ramp that is inclined at 37° with the hori-
zontal. If the ball starts from rest at the top of the
ramp, what is the angular speed of the ball at the
bottom of the ramp?
(See Sample Problem 8E.)

SIMPLE MACHINES

Review questions

39. Why is it easier to loosen the lid from the top of a
paint can with a long-handled screwdriver than
with a short-handled screwdriver?

40. If a machine cannot multiply the amount of work,
what is the advantage of using such a machine?

Conceptual questions

41. You are attempting to move a large rock using a
long lever. Is it more effective to place the lever’s axis
of rotation nearer to your hands or nearer to the
rock? Explain.

42. A perpetual motion machine is a machine that,
when set in motion, will never come to a halt. Why
is such a machine not possible?

43. If you were to use a machine to increase the output
force, what factor would have to be sacrificed? Give
an example.
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51. A uniform ladder 8.00 m long and weighing 200.0 N
rests against a smooth wall. The coefficient of static
friction between the ladder and the ground is 0.600,
and the ladder makes a 50.0° angle with the ground.
How far up the ladder can an 800.0 N person climb
before the ladder begins to slip?

52. A 0.0200 m diameter coin rolls up a 15.0° inclined
plane. The coin starts with an initial angular speed
of 45.0 rad/s and rolls in a straight line without slip-
ping. How much vertical distance does it gain
before it stops rolling?

53. In a circus performance, a large 4.0 kg hoop with a
radius of 2.0 m rolls without slipping. If the hoop is
given an angular speed of 6.0 rad/s while rolling on
the horizontal and is allowed to roll up a ramp
inclined at 15° with the horizontal, how far (mea-
sured along the incline) does the hoop roll?

54. A 12 kg mass is attached to a cord that is wrapped
around a wheel with a radius of 10.0 cm, as shown in
Figure 8-24. The acceleration of the mass down the
frictionless incline is measured to be 2.0 m/s2. Assum-
ing the axle of the wheel to be frictionless, determine

a. the force in the rope.
b. the moment of inertia of the wheel.
c. the angular speed of the wheel 2.0 s after it

begins rotating, starting from rest.

55. A person is standing on tiptoe, and the person’s
total weight is supported by the force on the toe. A
mechanical model for the situation is shown in Fig-
ure 8-25, where T is the force in the Achilles tendon
and R is the force on the foot due to the tibia.
Assume the total weight is 700.0 N, and find the val-
ues of T and R, if the angle labeled q is 21.2°.

Figure 8-24
37°

2.0 m/s2

18 cm

r

12 kg

56. A cylindrical fishing reel has a mass of 0.85 kg and a
radius of 4.0 cm. A friction clutch in the reel exerts a
restraining torque of 1.3 N•m if a fish pulls on the
line. The fisherman gets a bite, and the reel begins
to spin with an angular acceleration of 66 rad/s2.
Find the following:

a. the force of the fish on the line
b. the amount of line that unwinds from the reel

in 0.50 s

57. The combination of an applied force and a friction-
al force produces a constant torque of 36 N• m on a
wheel rotating about a fixed axis. The applied force
acts for 6.0 s, during which time the angular speed
of the wheel increases from 0 to 12 rad/s. The
applied force is then removed, and the wheel comes
to rest in 65 s. Answer the following questions:

a. What is the moment of inertia of the wheel?
b. What is the frictional torque?
c. How many revolutions does the wheel make

during the entire 71 s time interval?

58. A cable passes over a pulley. Because of friction, the
force in the cable is not the same on opposite sides of
the pulley. The force on one side is 120.0 N, and the
force on the other side is 100.0 N. Assuming that the
pulley is a uniform disk with a mass of 2.1 kg and a
radius of 0.81 m, determine the angular acceleration
of the pulley.

59. As part of a kinetic sculpture, a 5.0 kg hoop with a
radius of 3.0 m rolls without slipping. If the hoop is
given an angular speed of 3.0 rad/s while rolling on
the horizontal and then rolls up a ramp inclined at
20.0° with the horizontal, how far does the hoop
roll along the incline?

Figure 8-25

15.0° 90.0°

Fn

R
T

18.0 cm
25.0 cm

θ
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67. A skater spins with an angular speed of 12.0 rad/s with
his arms outstretched. He lowers his arms, decreasing
his moment of inertia from 41 kg•m2 to 36 kg•m2.

a. Calculate his initial and final rotational kinet-
ic energy.

b. Is the rotational kinetic energy increased or
decreased?

c. How do you account for this change in kinetic
energy?

68. A pulley has a moment of inertia of 5.0 kg•m2 and a
radius of 0.50 m.A cord is wrapped over the pulley and
attached to a hanging object on either end. Assume the
cord does not slip, the axle is frictionless, and the two
hanging objects have masses of 2.0 kg and 5.0 kg.

a. Find the acceleration of each mass.
b. Find the force in the cord supporting each

mass. (Note that they are different.)

69. A 4.0 kg mass is connected by a light cord to a 3.0 kg
mass on a smooth surface as shown in Figure 8-26.
The pulley rotates about a frictionless axle and has a
moment of inertia of 0.50 kg•m2 and a radius of
0.30 m. Assuming that the cord does not slip on the
pulley, answer the following questions:

a. What is the acceleration of the two masses?
b. What are the forces in the string F1 and F2?

70. A car is designed to get its energy from a rotating fly-
wheel with a radius of 2.00 m and a mass of 500.0 kg.
Before a trip, the disk-shaped flywheel is attached to
an electric motor, which brings the flywheel’s rota-
tional speed up to 1000.0 rev/min.

a. Find the kinetic energy stored in the flywheel.
b. If the flywheel is to supply as much energy to

the car as a 7457 W motor would, find the
length of time the car can run before the fly-
wheel has to be brought back up to speed again.

Figure 8-26

F2

F1

R

4.0 kg

3.0 kg

60. A cylindrical 5.00 kg pulley with a radius of 0.600 m
is used to lower a 3.00 kg bucket into a well. The
bucket starts from rest and falls for 4.00 s.

a. What is the linear acceleration of the falling
bucket?

b. How far does it drop?
c. What is the angular acceleration of the cylin-

drical pulley?

61. The hands of the clock in the famous Parliament
Clock Tower in London are 2.7 m and 4.5 m long
and have masses of 60.0 kg and 100.0 kg, respective-
ly. Calculate the torque around the center of the
clock due to the weight of these hands at 5:20.
(Model the hands as thin rods.)

62. A coin with a diameter of 3.00 cm rolls up a 30.0°
inclined plane. The coin starts with an initial angu-
lar speed of 60.0 rad/s and rolls in a straight line
without slipping. How far does it roll up the in-
clined plane?

63. A solid sphere rolls along a horizontal, smooth sur-
face at a constant linear speed without slipping.
Show that the rotational kinetic energy about the
center of the sphere is two-sevenths of its total
kinetic energy.

64. A horizontal 800.0 N merry-go-round with a radius
of 1.5 m is started from rest by a constant horizontal
force of 50.0 N applied tangentially to the merry-go-
round. Find the kinetic energy of the merry-go-round
after 3.0 s. Assume it is a solid cylinder.

65. A top has a moment of inertia of 4.00 × 10–4 kg•m2

and is initially at rest. It is free to rotate about a vertical
stationary axis. A string around a peg along the axis of
the top is pulled, maintaining a constant tension of
5.57 N in the string. If the string does not slip while it is
wound around the peg, what is the angular speed of the
top after 80.0 cm of string has been pulled off the peg?
(Hint: Consider the work done.)

66. Calculate the following:

a. the angular momentum of Earth that arises
from its spinning motion on its axis

b. the angular momentum of Earth that arises
from its orbital motion about the sun

(Hint: See  item 4 on page 305 and Appendix E.)



Copyright © by Holt, Rinehart and Winston. All rights reserved.
311Rotational Equilibrium and Dynamics

First, be certain that the calculator is in degree

mode by pressing m ∂ ∂ ® e.

Execute “Chap8” on the p menu, and press

e to begin the program. Enter the values for the

force and the distance from the axis of rotation

(shown below), and press e after each value.

The calculator will provide a graph of the torque

versus the angle at which the force is applied. (If the

graph is not visible, press w and change the 

y-value settings for the graph window, then press

g. Adjusting the x values is not necessary.)

Press ◊ and use the arrow keys to trace along

the curve. The x value corresponds to the angle in

degrees, and the y value corresponds to the torque

in newton•meters.

Determine the torque involved in each of the fol-

lowing situations:

b. a force of 15.0 N that is applied 0.45 m from a

door’s hinges makes an angle of 75° with the

door

c. the same force makes an angle of 45° with the

door

d. a force of 15.0 N that is applied 0.25 m from a

door’s hinges makes an angle of 45° with the

door

e. the same force makes an angle of 25° with the

door

f. At what x value do you find the largest torque?

Press @ q to stop graphing. Press e to

input a new value or ı to end the program.

Graphing calculators
Refer to Appendix B for instructions on download-

ing programs for your calculator. The program

“Chap8” allows you to analyze a graph of torque

versus angle of applied force.

Torque, as you learned earlier in this chapter, is

described by the following equation:

t = Fd(sinq)

The program “Chap8” stored on your graphing

calculator makes use of the equation for torque.

Once the “Chap8” program is executed, your calcu-

lator will ask for the force and the distance from the

axis of rotation. The graphing calculator will use the

following equation to create a graph of the torque

(Y1) versus the angle (X) at which the force is

applied. The relationships in this equation are the

same as those in the force equation shown above.

Y1 = Fdsin(X)

Recall that the sine function is a periodic func-

tion that repeats every 360° and falls below the x-

axis at 180°. Because the only values necessary for

the torque calculation are less than 180°, the x val-

ues for the viewing window are preset. Xmin and

Xmax values are set at 0 and 180, respectively.

a. What is a more straightforward way of saying,

“The mechanic applied a force of −8 N at an

angle of 200°”?

71. Figure 8-27 shows a system of point masses that
rotates at an angular speed of 2.0 rev/s. The masses
are connected by light, flexible spokes that can be
lengthened or shortened. What is the new angular
speed if the spokes are shortened to 0.50 m? (An
effect similar to this occurred in the early stages of
the formation of our galaxy. As the massive cloud of
gas and dust contracted, an initially small rotation
increased with time.) Figure 8-27

m

m

m
1.0 m

1.0 m

m

y

x
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Performance assessment
1. Imagine a balance with unequal arms. An earring

placed in the left basket was balanced by 5.00 g of

standard masses on the right. When placed in the

right basket, the same earring required 15.00 g on

the left to balance. Which was the longer arm? Do

you need to know the exact length of each arm to

determine the mass of the earring? Explain.

2. You have 32 identical beads, 30 of which are assem-

bled in clusters of 16, 8, 4, and 2. Design and build a

mobile that will balance, using all the beads and

clusters. Explain your design in terms of torque and

rotational equilibrium.

3. A well-known problem in architecture is to stack

bricks on top of one another in a way that provides a

maximum offset. Design an experiment to deter-

mine how much offset you can have by stacking two,

three, and four physics textbooks. How many books

would be needed to prevent the center of mass of the

top book from being directly over the bottom book?

(Alternatively, try this with a deck of playing cards.)

Portfolio projects
4. Describe exactly which measurements you would

need to make in order to identify the torques at

work during a ride on a specific bicycle. (Your plans

should include measurements you can make with

equipment available to you.) If others in the class

analyzed different bicycle models, compare the

models for efficiency and mechanical advantage.

5. Prepare a poster or a series of models of simple

machines, explaining their use and how they work.

Include a schematic diagram next to each sample or

picture to identify the fulcrum, lever arm, and resis-

tance. Add your own examples to the following list:

nail clipper, wheelbarrow, can opener, nutcracker,

electric drill, screwdriver, tweezers, key in lock.

6. Research what architects do, and create a presenta-

tion on how they use physics in their work. What

studies and training are necessary? What are some

areas of specialization in architecture? What associ-

ations and professional groups keep architects

informed about new developments?

Alternative Assessment

72. The efficiency of a pulley system is 64 percent. The
pulleys are used to raise a mass of 78 kg to a height
of 4.0 m. What force is exerted on the rope of the
pulley system if the rope is pulled for 24 m in order
to raise the mass to the required height?

73. A crate is pulled 2.0 m at constant velocity along a
15° incline. The coefficient of kinetic friction
between the crate and the plane is 0.160. Calculate
the efficiency of this procedure.

74. A pulley system has an efficiency of 87.5 percent.
How much of the rope must be pulled in if a force
of 648 N is needed to lift a 150 kg desk 2.46 m?

75. A pulley system is used to lift a piano 3.0 m. If a
force of 2200 N is applied to the rope as the rope is
pulled in 14 m, what is the efficiency of the
machine? Assume the mass of the piano is 750 kg.

76. A uniform 6.0 m tall aluminum ladder is leaning
against a frictionless vertical wall. The ladder has a
weight of 250 N. The ladder slips when it makes a
60.0° angle with the horizontal floor. Determine the
coefficient of friction between the ladder and the
floor.

77. A ladder with a length of 15.0 m and a weight of
520.0 N rests against a frictionless wall, making an
angle of 60.0° with the horizontal.

a. Find the horizontal and vertical forces exerted
on the base of the ladder by Earth when an
800.0 N firefighter is 4.00 m from the bottom
of the ladder.

b. If the ladder is just on the verge of slipping
when the firefighter is 9.00 m up, what is the
coefficient of static friction between the lad-
der and the ground?
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CHAPTER 8
Laboratory Exercise

MACHINES AND EFFICIENCY

In this experiment, you will raise objects using two different types of machines.

You will find the work input and the work output for each machine. The ratio

of the useful work output to the work input is called the efficiency of the

machine. By calculating efficiency, you will be able to compare different

machines for different jobs.

OBJECTIVES

•Measure the work input
and work output of sev-
eral machines.

•Calculate the efficiency
of each machine.

•Compare machines
based on their efficien-
cies, and determine
what factors affect 
efficiency.

MATERIALS LIST
✔ balance
✔ C-clamp
✔ cord
✔ dynamics cart
✔ inclined plane
✔ mass hanger
✔ pulleys, single and tandem
✔ meterstick
✔ set of hooked masses
✔ right-angle clamp
✔ support stand
✔ suspension clamp

SAFETY

• Tie back long hair, secure loose clothing, and remove loose jewelry to
prevent their getting caught in moving parts and pulleys.

• Attach string to masses and objects securely. Falling or dropped 
masses can cause serious injury.

Figure 8-28
Step 3: Choose any angle, but make
sure the top of the plane is at least
20 cm above the table.
Step 4: Make sure the string is long
enough to help prevent the cart from
falling off the top of the plane. Attach
the mass hanger securely to the end
of the string.
Step 7: Keep the angle the same for
all trials.

PREPARATION

1. Read the entire lab, and plan what measurements you will take.

2. Prepare a data table with six columns and seven rows in your lab note-

book. In the first row, label the first through sixth columns Trial,

Machine, mass1 (kg), ∆h (m), mass2 (kg), and ∆d (m). In the first column,

label the second through seventh rows 1, 2, 3, 4, 5, and 6.
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PROCEDURE

Inclined plane

3. Set up the inclined plane as shown in Figure 8-28 on page 313. Set the

incline securely to any angle. Keep the angle constant during this part of

the experiment. Place the inclined plane away from the edge of the table,

or clamp its base to the edge of the table.

4. Measure the mass of the cart. Attach a piece of cord through the hole on

the body of the cart. The cord should be long enough so that the other

end of the cord reaches the table top before the cart reaches the top of the

incline. Place the cart on the plane and run the cord over the pulley at the

top of the plane. Attach a mass hanger to the free end of the cord.

5. Place a 200 g mass in the cart. Record the total mass of the cart and its

contents as mass1. Attach masses to the mass hanger until you find the

lowest mass that will allow the cart to move up the plane with a constant

velocity. Stop the cart before it reaches the top of the incline. Record the

mass of the mass hanger plus the added mass as mass2 in your data table.

6. Measure the distances, and record them. ∆h is the vertical distance the

cart moves, while the mass hanger on the cord moves the distance ∆d.

7. Repeat steps 5 and 6 several times, increasing the mass in the cart by 

100 g and finding the mass that will allow the cart to move with a con-

stant velocity each time. Record all data for each trial in your data table.

Pulley

8. Set up a pulley system like the one shown in Figure 8-29. For the first

trial, use five pulleys. Keep the area beneath the pulley system clear

throughout the experiment. Measure the mass of the bottom set of pul-

leys before including them in the setup. Attach a 500 g mass to the bot-

tom, as shown. Record the total mass of the 500 g mass plus the bottom

set of pulleys as mass1 in your data table.

9. Starting with 50 g, add enough mass to the mass hanger to prevent the

pulleys from moving when released. Place the mass hanger just below the

500 g mass, and measure the initial positions of both masses to the near-

est millimeter by measuring the height of each mass above the base.

10. Add masses to the mass hanger until you find the mass that will make the

500 g mass move up with constant velocity once it has been started.

Record the mass of the mass hanger plus the added mass as mass2 in your

data table.

11. Measure the final positions of both masses, and record the distances

(final position − initial position) in your data table. ∆h is the vertical dis-
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tance through which the mass on the pulley is raised, while the mass on

the mass hanger moves down through the distance ∆d.

12. Using the same 500 g mass1, perform two more trials using different pul-

ley systems (four pulleys, six pulleys, and so on). Record all data. Be sure

to include the mass of the bottom set of pulleys in the total mass that is

raised in each trial.

13. Clean up your work area. Put equipment away safely so that it is ready to

be used again.

ANALYSIS AND INTERPRETATION

Calculations and data analysis

1. Organizing data For each trial, make the following calculations:

a. the weight of the mass being raised

b. the weight of the mass on the string

c. the work input and the work output

2. Analyzing results In which trial did a machine perform the most work?

In which trial did a machine perform the least work?

3. Analyzing data Calculate the efficiency for each trial.

4. Evaluating data Is the machine that performed the most work also the

most efficient? Is the machine that performed the least work also the least

efficient? What is the relationship between work and efficiency?

5. Analyzing results Based on your calculations in item 4, which is more

efficient, a pulley system or an inclined plane?

Conclusions

6. Evaluating methods Why is it important to calculate the work input

and the work output from measurements made when the object is mov-

ing with constant velocity?

Extensions

7. Designing experiments Design an experiment to measure the efficien-

cy of different lever setups. If there is time and your teacher approves, test

your lever setups in the lab. How does the efficiency of a lever compare

with the efficiency of the other types of machines you have studied?

8. Building models Compare the trial with the highest efficiency and the

trial with the lowest efficiency. Based on their differences, design a more

efficient machine than any you built in the lab. If there is time and your

teacher approves, test the machine to test whether it is more efficient.

Figure 8-29
Step 8: Clamp a meterstick paral-
lel to the stand to take measure-
ments throughout the lab.
Step 9: Use another ruler as a
straight edge to help you measure
the positions.
Step 10: The pulleys should not
begin moving when the mass is
added, but they should move with a
constant velocity after a gentle push.
Step 11: Measure and record the
distance moved by the mass on the
pulley as ∆h and the mass hanger
distance as ∆d.
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