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ABSTRACT 
 

Two or more seismic events, closely spaced compared to the dominant 

wavelength of the seismic wavelet, produce interference effects that can limit the 

theoretical resolution limit. Spectral decomposition and spectral inversion are processes 

that can improve seismic images by allowing the identification of stratal continuity and 

resolving layer thicknesses that could not be seen otherwise. In the absence of noise, 

synthetic wedge models have suggested that the classical λ/8 limit of seismic resolution 

does not limit the resolution of the inversion outcome. Spectral decomposition and 

inversion techniques were applied to a seismic dataset from Alaska, resulting in a 

considerably improved vertical resolution, which helped in identifying and delineating 

thin gas sands that were below tuning. The attributes also provided geomorphologic 

information, allowing interpretation and visualization of a braided depositional system on 

the Sterling Formation that corresponds with the regional geology and an analog from the 

Sagavanirktok River, Alaska. 
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1. INTRODUCTION  

 

1.1 Characterization Needs of Thin Reservoirs  
 

In subsurface exploration and production, the goal is not to focus only on 

determining the geological framework, reservoir structural configuration, and rock and 

fluid properties, but also to recognize the internal stratigraphy, lateral continuity, and 

connectivity of sedimentary bodies. Of these parameters, the most difficult to determine 

are the ones below vertical resolution, particularly for seismically thin layers. Vertical 

seismic resolution is defined as the ability to separate or distinguish between two or more 

close events (reflections) in the time/depth domain (Chopra et al., 2006). Widess (1973) 

defines the resolution limit as 1/8th of the wavelength (λ/8). The tuning thickness 

(Kallweit and Wood, 1982) usually occurs at about λ/4, and in practice, beds below 

tuning are not readily resolved. This thesis focuses on development and application of 

novel processing techniques that improve vertical resolution in seismic data.  

 

The theory of spectral decomposition offers the possibility of imaging geologic 

features below seismic resolution, for thickness determination (Partyka, et al., 1999), 

reservoir delineation, and stratigraphic visualization (Marfurt and Kirlin, 2001).  The 

concept behind spectral decomposition is that for a given time, the spectrum of a trace 

can be represented and explained as the superposition or sum of the wavelet spectra 

(Castagna, et al., 2003). Recent studies (Burnett et al., 2003; Castagna et al., 2003; 

Hernandez and Castagna, 2004; Fahmy et al., 2005; Sinha et al., 2005; Odebeatu et al., 
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2006; Rauch-Davies and Graham, 2006) have shown that spectral decomposition (SD) 

can also be used as a direct hydrocarbon indicator, as the presence of hydrocarbon 

produces specific effects that can be revealed in the frequency domain.  

 

Spectral inversion combines the principles of spectral decomposition and seismic 

inversion to extend the theoretical resolution limit below λ/8, where the seismic 

amplitude and frequency response is more sensitive to thin beds (Castagna, 2005; 

Portniaguine and Castagna, 2005; Chopra, et al., 2006; Puryear and Castagna, 2008). 

Going beyond the seismic resolution limit will help the geoscientist to produce a more 

detailed and quantitative interpretation. 

 

 

1.2 The Problem 
 

Spectral decomposition and spectral inversion techniques were applied to several 

synthetic wedge models (forward modeling) to show the potential impact of the methods 

on seismic interpretation. The methods were then applied to a 3D seismic dataset from a 

production area of the Cook Inlet Basin, located in the Matanuska Valley along the 

Alaskan peninsula. 
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2. THEORY 

 

2.1 Constructive and Destructive Interference 
 

The theoretical limit of vertical resolution is 1/8th of the wavelength (λ/8) 

(Widess, 1973), which is half the tuning thickness (Kallweit and Wood, 1982). The 

tuning thickness is related to constructive and destructive interference between reflections 

(Figure 1). However, this limit (λ/8) is compromised in the presence of noise; therefore 

geophysicists usually assume λ/4 as the resolution limit. 

 

 
 

Figure 1: Definition of constructive (left) and destructive (right) interference. 
Constructive means both top and bottom reflections have the same sign at certain depths, 
while destructive means they have the opposite sign. Therefore, two closely-spaced 
seismic events as compared to the dominant wavelength of the seismic wavelet produce 
interference effects that can limit the theoretical resolution limit. 
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The signal/noise ratio (S/N) is highly variable and dependent on acquisition 

parameters, subsurface geologic complexity (structural and stratigraphic), and fluid and 

rock properties. Therefore, the limit of resolution is affected by the presence of noise and 

other factors, such as rock age, depth, velocity, and dominant frequency. The relationship 

between velocity and frequency defines the wavelength of the seismic data and its 

theoretical resolution limits. 

 

A synthetic wedge model was created from a pair of opposite reflection 

coefficients, and was convolved with a Ricker wavelet of 25 Hz (Figure 2), where the 

average velocity is 3400 m/s. The model shows that below λ/4, both events start 

destructively interfering (34 m thickness), whereas at λ/8 the dimming in amplitude due 

to this interference is more evident (17m thickness). This would be considered the 

resolution limit for this synthetic example with high S/N ratio. Visually however, it is 

evident that below 1/4 wavelength, top and base reflectors cannot be mapped 

independently. 

 

Assuming that the average seismic data spectrum lies between 15-35 Hz, a 

shallow young reservoir, with a frequency spectrum around 35 Hz, and a velocity of 

approximately 3500 m/s (see Brown, 1999), would show a wavelength close to 100m. 

Given λ/4 or λ/8 (high S/N data) as the resolution limit (Widess, 1973), any layer less 

than 25 or 12.5 meters thick respectively, might not be resolved by seismic reflections 

(top and base) below λ/4, as is shown in the synthetic example (Figure 2). Because many 
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reservoir layers are < 20 m thick, they cannot be resolved with conventional seismic 

processing, thus a new technique is needed to improve resolution. 

 

 

Figure 2: Synthetic wedge model convolved with a 25 Hz Ricker wavelet, shows the 
theoretical resolution limits λ/4 and λ/8 (red), beyond λ/4, the top and base reflectors 
interfere with each other, because the thickness is less and the convolved wavelet cannot 
resolve it. 
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2.2 The Spectral Decomposition (SD) Concept 
 

Spectral decomposition (SD) is the representation or analysis of a seismic trace 

using the frequency domain via the Fourier transform (Figure 3). A time-frequency 

analysis resulting from spectral decomposition is the superposition of the wavelet spectra 

occurring (Figure 3) as a function of time (Castagna, et al., 2003). 

 

 

Figure 3: Spectral decomposition concept shown on a frequency gather. For a given 
time, the spectrum of a seismogram is the superposition of the wavelet spectra (from 
Castagna et al., 2003). 
 
 

Partyka et al. (1999) show that the expression of a thin bed seismic reflection in 

the frequency domain is indicative of its temporal thickness (Figure 4). By knowing the 

wavelet of a source and looking at its spectrum, a thin bed model can be illustrated and 

compared with the wavelet (Figure 4). The spectrum of that thin bed will look similar to 

the wavelet in frequency content, except that it will show notches corresponding to the 
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local rock mass variability, shown as different modal distributions. These modal 

distributions, also called notches, are important, since there is an inverse relationship 

between the periodicity of the notches (Figure 4) and the temporal thickness (Gridley and 

Partyka, 1997). The discrete Fourier transform (DFT) allows imaging and mapping of 

temporal bed thickness and geologic discontinuities over large 3-D seismic surveys 

(Partyka et al., 1999). 

 

 
 
Figure 4: Thin bed model and spectral imaging (from Partyka et al., 1999). 

 
 

How is this frequency domain seen in seismic data? Figure 3 shows the example 

for a single trace, but for a 2D seismic section two axes represent the time and CDP 

variation and of course the amplitude component is contained in the traces. This 2D line 

is transformed to the frequency domain, where a 3D cube will be created from it. The 

same line will have a different amplitude representation at each frequency (Figure 5), 

implying that if all the frequency sections are summed, the result will be the original 2D 

seismic line. 

1 / 
temporal 
thickness 
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Figure 5: Representation of the frequency domain on a 2D line. The sum of all the 
amplitude sections at each frequency will result in the original amplitude section.  
 
 

The response of a long window seismic trace, which is the result of the 

reflectivity series convolved with a wavelet plus some noise, can be compared and 

observed in the frequency domain (figure 6). The wavelet acts like a filter suppressing 

higher and lower frequencies. The seismic trace spectrum’s shape is similar to the 

wavelet spectrum plus the noise. 

 

On the other hand, a short window frequency analysis of the same seismic trace 

shows that the geology also acts like a filter. For that reason, the seismic trace will 

contain the spectrum of the reflectivity series (layer thickness) inside the limits of the 

wavelet spectra (Figure 7). It is important to compare the difference between these two 

spectrums (short and long window). The response from a short window is more related to 

the acoustic properties and thicknesses of the beds, whereas the long window analysis 

better describes the background. 

Frequency 
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e 
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Figure 6: Long time window SD showing a flat (white) amplitude spectrum in the 
frequency domain. When the trace is convolved with a wavelet, the spectrum of the trace 
is overprinted by the wavelet spectrum, acting as a filter. The resulting seismic trace will 
look similar to the wavelet plus the noise spectrum (from Partyka et al., 1999). 

 

 

Figure 7: Short time window spectral decomposition showing that the response is 
dependent on the thickness and acoustic properties of the layers within the window. The 
amplitude spectrum of the resulting seismic trace will be the spectrum of the short 
window reflectivity overprinted by the wavelet, the local layering properties will be 
preserved within the spectrum (from Partyka et al., 1999). 
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2.3 Spectral Decomposition Methods  
 

Different techniques have been created and utilized for SD. Some of them have 

been described and analyzed before by Chakraborty and Okaya (1995), Castagna et al. 

(2003), and Castagna and Sun (2006).  All methods have advantages and disadvantages, 

because the same problem can be solved by different methods. The spectral 

decomposition process is not a unique process, as is the case with any seismic inversion. 

The key is to use the method that will approach the desired solution faster, capturing the 

essential features important for interpretation.  

 

Castagna et al. (2003) suggest some conditions that should be met to determine 

when a spectral decomposition algorithm is useful or not. These requirements are: 1) the 

vertical resolution should be very similar to the seismogram; 2) the stack of the frequency 

gather (sum of the amplitudes over frequencies) should be equivalent to the instantaneous 

amplitude of the seismic trace; 3) the sum of all frequency spectra over time should 

approximate the spectrum of the seismic trace; 4) side lobes should not appear as events 

in the frequency domain; 5) the amplitude spectrum of an isolated event should not be 

distorted or smeared, and 6) spectral notches should not be related to time separation of 

resolvable events. 

 

Traditionally, the methods most often utilized are those based on the Fourier 

transform (FT), like the fast Fourier transform (FFT) and discrete Fourier transform 

(DFT) (Partyka et al., 1999). FFT and DFT methods require the use of a time window, 
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producing a distortion of the true spectra and vertical resolution of the output (Figure 8). 

The FT methods show that the window is an important factor, either for the vertical 

resolution or the spectral resolution. Hence, a long window is better to use to determine 

the frequency content of the data, but it will mix different vertical events (Figure 8a). On 

the other hand, a short window shows better vertical resolution but the spectral resolution 

is smeared (Figures 8b). Thus, FT methods fail in conditions (4-6) noted above. 

 

 

Figure 8: Comparison of a: a) long time window DFT (100ms) and b) short time window 
DFT (50 ms); frequency gathers extracted from a synthetic wedge model, each gather 
represents different thickness (50, 150 and 440 ft). The top of the wedge is located at 
1200 ms. When the window is smaller the vertical resolution is improved but the spectral 
resolution is smeared. 

 
 

The continuous Wavelet Transform (CWT) has some advantages over the DFT 

for broad-band signals. It is equivalent to temporal narrow-band filtering of the seismic 

trace but the disadvantage is that an orthogonal wavelet dictionary is required (Castagna 

and Sun, 2006). Figure 9a shows that CWT has good time resolution for high frequencies 

and good frequency resolution for lower frequencies. Therefore, the problem turns out to 
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be in the middle frequencies. What happens with all the intermediate frequencies? How 

can we improve this considering that most seismic data is typically band limited between 

10 to 70 Hz (Chakraborty and Okaya, 1995)? 

 

 

Figure 9: Comparison of frequency gathers extracted from a synthetic wedge model, 
each gather represents different thickness (50, 150 and 440 ft respectively). The top of the 
wedge is located at 1200 ms.  CWT (a) analysis improves the spectral resolution at lower 
frequencies compared with DFT, but MPD (b) analysis improves both the vertical and 
spectral resolution significantly.  

 
 

Mallat and Zhang (1993) developed a method meeting the conditions 1 through 6 

called Matching Pursuit Decomposition (MPD). MPD involves cross-correlation of the 

seismic trace against a wavelet dictionary. The projection of the best correlating wavelet 

on the seismic trace is then subtracted from that trace. The wavelet dictionary is then 

cross-correlated against the residual, and the best projection is subtracted again. This 

process will be repeated iteratively until the residual falls below an acceptable threshold. 

The wavelets need not be orthogonal, and there is no windowing or corresponding 

spectral smearing (Castagna and Sun, 2006). Figure 9b (right) shows the results from 
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MPD where the time and spectral resolution are remarkably better than other methods, 

meeting the conditions described before by Castagna et al. (2003). For these reasons 

MPD and derivatives are the most powerful methods of spectral decomposition (Castagna 

et al, 2003; Castagna and Sun, 2006). 

 

 

2.4 Spectral Decomposition Application as a DHI Tool 
 

Recent reservoir studies, where spectral decomposition was applied either to 

predict or confirm the presence of hydrocarbons, have shown that the presence of 

hydrocarbon accumulations on seismic data produces some effects that can be exposed by 

SD (Burnett et al., 2003; Castagna et al. 2003; Ebrom, 2004; Hernandez and Castagna, 

2004; Fahmy et al., 2005; Sinha et al., 2005; Castagna and Sun, 2006; Odebeatu et al., 

2006; Rauch-Davies et al., 2006).  

 

Castagna et al. (2003) mentioned four effects or ways in which SD can help in the 

direct detection of hydrocarbons, 1) abnormally high attenuation, 2) low-frequency 

shadows, 3) tuning frequency anomalies (also called differential reservoir reflectivity or 

preferential reservoir illumination), and 4) frequency-dependent AVO. 

 

Low-frequency shadows (Figure 10) beneath amplitude anomalies (reservoirs) 

where the thickness is not sufficient to result in significant attenuation, have been used as 

a hydrocarbon indicator. In exploration, these shadows are often attributed to high 
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attenuation in gas reservoirs (Castagna et al., 2003), but finding a unique explanation to 

the occurrence of low-frequency reflections underneath gas or condensate reservoirs is 

not easy. Ebrom (2004) discusses 10 possible mechanisms for low-frequency shadows 

and how they could be related to the presence of hydrocarbons. Ebrom (2004) states that, 

even though the detection of anomalous zones is clearly the first step in applying this 

possible direct hydrocarbon indicator, it would still be of use to determine the cause of 

the effect. Castagna et al. (2003) state that low-frequency zones beneath reservoirs may 

not necessarily be caused by attenuation, and it is often difficult to explain observed 

shadows under thin reservoirs where there are insufficient travel paths through the 

absorbing gas reservoir to justify the observed shift of spectral energy from high to low 

frequencies.  

b) 10 Hz frequency section a) 30 Hz Frequency Section

a) Stack Seismic Section

High energy 
below reservoir

b) 10 Hz frequency section a) 30 Hz Frequency Section

a) Stack Seismic Section

High energy 
below reservoir

b) 10 Hz frequency section a) 30 Hz Frequency Section

a) Stack Seismic Section

High energy 
below reservoir

 
Figure 10: a) Broad-band migrated stack seismic section. Troughs are blue and peaks 
red. The reservoir is a classic bright spot. b) 10 Hz common frequency section; 
significant high energy occurs below reservoir. c) 30 Hz common frequency section, the 
low frequency shadow disappears. Time lines are 20 ms (from Castagna et al., 2003). 
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2.5 Spectral Inversion 
 

2.5.1 Spectral Inversion Concept 

 

Contrary to Widess’ conclusions, recent studies (Tirado, 2004; Portniaguine and 

Castagna, 2005; Castagna, 2005; Chopra, et al., 2006; Puryear and Castagna, 2008) 

explain how the theoretical resolution limit extends farther than λ/8, where the seismic 

amplitude and frequency response is more sensitive to “thin beds”, where the reflections 

from top and base of a layer exhibit maximum constructive interference at a layer 

thickness of λ/4. Below this point, the waveform and peak frequency continue changing 

while amplitude decreases until λ/8, where the waveform approximates the time 

derivative of the seismic wavelet and the amplitude decreases (Figure 2 and 11). Beyond 

λ/8 the amplitude response approaches zero for zero thickness and the waveform does not 

change considerably (Chopra, et al., 2006; Puryear and Castagna, 2008). 

 

A synthetic wedge model example, with an amplitude vs. thickness plot 

representation for both top and base reflections, shows that the amplitude finds its 

maximum at λ/4 (tuning) and then gradually decreases almost linearly with thickness due 

to destructive interference (Figure 11). However, the shape of the waveform is preserved 

below λ/8. Notice that both events, top and base, decrease symmetrically; whereas above 

λ/4 the amplitude values and constructive interference decrease until corresponding to the 

real reflectivity series. 
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Figure 11: A synthetic wedge model convolved with a 25 Hz Ricker wavelet (above) and 
a plot of amplitude vs thickness (below) show the amplitude variation with thickness at 
the top and base of the wedge. The 100 traces represent thickness variation.  

 
       

Applying the concept of SD, it is possible to go beyond the λ/8 limit, resulting in 

a more detailed and quantitative interpretation. The theory of the spectral inversion 

method relies more on the geology than in mathematical assumptions (Chopra et. al., 

2006) and the use of spectral decomposition. Consider a pair of reflection coefficients 

that represent a thin bed. Any pair of reflection coefficients can be described as the sum 

of the other two (Figure 12), where one reflection coefficient pair has the same polarity 

and magnitudes, called the even component, whereas the other one has the same 

magnitude but opposite polarity, called the odd component (Castagna, 2005; Chopra et 

al., 2006). 
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Figure 12: Two examples of a pair of arbitrary reflection coefficients representing thin 
beds. Any pair of reflection coefficients can be represented as the sum of an odd and even 
component. The odd component has opposite polarity and the same magnitude, whereas 
the even component has the same polarity and magnitude.   

 
 

The maximum amplitude (peak amplitude) vs. thickness analysis for each of these 

components (odd and even) shows that the odd part finds its maximum amplitude at 

tuning and then decreases as the thickness also goes to zero. In contrast, the even 

component becomes more important below approximately half of tuning and behaves just 

the opposite (Figure 13). The even component is closer to the real value of the reflection 

due to constructive interference, and the odd component cancels itself and goes to zero 

(destructive interference). From the peak-amplitude analysis (Figure 13) it can be 

concluded that the even component significantly contributes to the improvement in 

vertical resolution, guiding the reflection coefficient result toward the real data value. 

Above λ/8, both components contribute up to a point (close to λ/4), where the odd 

component adds more to the solution, and the even provides less. The odd component 

behaves approximately as the Widess model suggests, resolving thick beds above λ/4, 

whereas the even component guides the solution for thin beds.  
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 The peak-frequency analysis vs. thickness (instant-frequency value 

associated at every peak amplitude) shows that the odd component continues increasing, 

while thickness is reduced to around half tuning (a dipole effect). Similarly, the even 

component also continues increasing, with thickness reduction contributing more to the 

total solution. The total peak frequency gradually increases, as thickness decreases, but 

below a certain thickness (close to λ/8), the peak frequency changes and decreases to the 

same peak frequency of the wavelet instead of the derivative of the wavelet (Chopra et. 

al., 2006, Puryear and Castagna, 2008). This suggests the seismic data response is more 

sensitive to thin seismic beds than previously thought (Chopra et. al., 2006).  

 

Accordingly, the amplitude and frequency components vary beyond the 

theoretical limit of seismic resolution. The approach based on spectral decomposition 

potentially allows thicknesses below the resolution limit of the bandwidth to be 

recovered.  
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Figure 13: Peak frequency (left) and peak amplitude (right) as a function of time 
thickness for the even and odd components, as well as the total. There is peak amplitude 
and frequency information below the tuning thickness. The total peak amplitude comes 
close to the even component amplitude (from Puryear and Castagna, 2008). 
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2.5.2 Single-Layer Case 

 

Portniaguine and Castagna (2005) discuss an inversion method using post-stack 

data that can resolve thin layers, where the operation is applied trace by trace. On every 

seismic trace, the fingerprint of the contained wavelet is removed by inverting via the 

spectral decomposition concept. However, this method needs to consider two steps. It is 

necessary to estimate a set of wavelets that varies in time and space; this is why well 

control is advantageous. If no well control is available, a statistical method to determine 

the wavelet has to be applied (Chopra et al., 2006). The second step is to remove the 

wavelets (filter) from the data with a seismic inversion process, using the concept of SD.  

This inversion method does not rely on an initial model; it has no horizons or lateral 

continuity constraints. It is not essential to have well data constraint, although well data 

provides useful control points and help verify the quality of the results (Chopra et al., 

2006).  

 

Puryear and Castagna (2008) discuss the theory of spectral inversion and 

developed an algorithm to invert reflectivity. This algorithm is based on the constant 

periodicity (peaks and notches) produced by layer thicknesses in the frequency domain 

(Figure 14) as previously stated by Partyka et al. (1999) and Marfurt and Kirlin (2001).  

 

The algorithm described by Puryear and Castagna (2008) was developed by 

applying Fourier transforms in time windows to various reflectivity models and analyzing 

the amplitude spectrum for a layer of a given thickness. The space (periodicity) between 
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the notches and/or peaks is inversely related to the layer’s time thickness (Figure 14) 

(Partyka et al., 1999; Marfurt and Kirlin, 2001). Therefore, with a narrow band frequency 

and high S/N dataset, the layer thickness can then be predicted, if the band is broad 

enough to resolve the periodicity (Puryear and Castagna, 2008). 

 

 

Figure 14: Amplitude vs Frequency plot for a thin layer thickness of 25 ms. Temporal 
thickness is 1/period which is equal to 1/40. 

 

 

Marfurt and Kirlin (2001) defined an expression for a two layer reflectivity 

model: 
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where r1 and r2 are the top and base reflection coefficients respectively, t is a time 

sample, t1 is the time sample at the top reflection and T is the layer thickness based on 

Figure 15. 

 

 

Figure 15: A two layer reflectivity model (from Marfurt and Kirlin, 2001). 
 

 

Puryear and Castagna (2008) modified equation 1 by defining T relative to the 

center of the layer. The Fourier transform is applied and trigonometric identities used for 

simplification, and the real and imaginary parts are obtained. The real part (Re) is:  

 

[ ] ( ) ( )Tfrfg e πcos2)(Re =                                                                      (2) 

where f is frequency, g(f) is the complex spectrum, and re is the even component of the 

reflection coefficient pair.  
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Correspondingly, the imaginary part (Im) is: 

 

[ ] ( ) ( )Tfrfg o πsin2)(Im =                                                                      (3) 

where ro is the odd component of the reflection coefficient pair. 

 

The constant period in the spectrum is related to the symmetrical point in the 

center of the layer for each real and imaginary component. The precise position splits the 

reflection coefficient pair perfectly into an odd and even component; for that reason the 

phase variation is eliminated (Puryear and Castagna, 2008). While shifting the analysis 

away from the center of the layer, it is necessary to maintain the periodicity in the 

spectrum. Therefore, the moduli of both components (real and imaginary) of the 

spectrum, which are not sensitive to phase changes, are computed (Puryear and Castagna, 

2008). The shift theorem states that a time sample shifted ∆t from the center of the layer 

tc in the time domain represents a phase ramp in the frequency domain. Then, the 

inversion model is derived using the shift theorem and taking general expressions for the 

real and imaginary part of the complex spectrum. This is simplified in the following 

expression by Puryear and Castagna (2008): 

 

( )TfπkT
df

fdGfGktO 2sin)2()()(),( π+=                                        (4) 

where G(f) is the amplitude magnitude as function of frequency, 22
oe rrk −= , and O(t,k) 

is the objective function at each frequency. 
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When the sum of the objective function O(t,k), which is evaluated at each 

frequency, is minimized within the range of frequencies in the analysis band, a solution to 

equation 4 is obtained  (Puryear and Castagna, 2008). For each sample frequency there is 

an associated data term, consequently the method’s performance is determined by S/N 

ratio over a certain analysis band. A more accurate and stable inversion will result if more 

frequencies and high S/N ratio are present (Puryear and Castagna, 2008).   

 

Searching physically reasonable k and T parameters in a two-parameter model 

space and minimizing the objective function, a global minimum of equation 4 was found 

for a given analysis band (Puryear and Castagna, 2008) and the rest of the model 

parameters can be obtained by: 
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The reflection coefficients r1 and r2 can be obtained by the summation of the even 

and odd parts resulting from equations 5 and 6. Equation 7 is obtained by applying the 

Fourier transform to equation 1 and solving for t1 (Puryear and Castagna, 2008). 
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Puryear and Castagna (2008) tested the method using different noise levels of 1 % 

and 5 %. They concluded that the addition of noise creates instability in the inversion 

results for very thin layers, because the reflectivity spectrum is almost flat when the 

thickness approaches zero. Puryear (2006) and Puryear and Castagna (2008) show how to 

mitigate this problem by applying an arbitrary constraint, where -0.03 < k < 0.03, to make 

sure that the reflectivity pair does not become a single reflection coefficient. Therefore, 

the strength of the reflection coefficient stays close to what is typically observed on 

seismic data. All tests were made varying the analysis band and the smoothing filter, 

demonstrating that the optimal analysis band and filter are controlled by the noise level 

(Puryear and Castagna, 2008). 

 

 

2.5.3 Multiple-Layer Case 

 

Considering that a seismogram can be represented as the superposition of impulse 

pairs. Puryear and Castagna (2008) extended the single-layer case to a general reflectivity 

series taking into account the frequency spectrum versus time using a time window that 

can be moved, generating interference patterns at different times which act as a 

superposition of events. The inversion method simultaneously solves for reflection 

coefficients and layer thickness for all pairs of reflections, and trace-by-trace, affecting 

the local seismic response (Puryear and Castagna, 2008).  
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A reflectivity series r(t) can be represented as the sum of even and odd impulse 

pairs using the expression defined by Puryear and Castagna, 2008: 
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where re(t) and ro(t) are the magnitudes of the impulse pairs as a function of time, II is an 

even impulse pair, II is an odd impulse pair and T(t) is the time series of layer time 

thicknesses. Assuming a seismogram and known wavelet w(t,f), the spectral 

decomposition of a seismic trace can be expressed as: 
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where tw is the window half length. Since the multilayer case involves more than one 

layer, it is necessary to use an objective function for the inversion process that takes into 

account the interference between multiple layers (Puryear and Castagna, 2008). 

Assuming that the wavelet spectrum is known, the objective function O(t,re,ro,T) can be 

optimized to solve for r(t) and T(t): 
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where fl and fh are a low and a high frequency cutoff respectively, αe and αo are weighting 

functions. The ratio of these weighting functions αo/αe can be adjusted to find satisfactory 

results comparing the resolution against noise. For high values of αo/αe, the reflectivity 

inversion results approach the Widess model, where the resolution limit is λ/8 (Puryear 

and Castagna, 2008). The time window selected during the inversion will vary according 

to the desired results. Shorter windows will divide the long series into two isolated even 

and odd sets, that later will be summed to obtain the longer reflectivity series. Usually 

this time window is selected by trial and error. If the window is too short, the frequency 

resolution is lost, and if it is too long the time resolution is compromised (Castagna et al., 

2003).    
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3. FORWARD MODELING 

 

Several synthetic seismic models were tested using the spectral inversion theory 

described in the previous section. Different parameters were changed on the synthetic 

wedge models in order to prove that the algorithm performs accurately for diverse case 

scenarios. The more thoroughly evaluated parameters were the frequency content, noise 

level, pure even case, and pure odd case. Other parameters, such as the length of the 

wavelet and stabilization parameter were also tested. After finding acceptable results on 

the synthetic seismic data, the spectral decomposition and inversion processes were run 

on a 3D seismic dataset from Alaska. 

 

 

3.1 Frequency Bandwidth Variation  
 

The synthetic wedge models were built for the single-case scenario of a thin layer. 

The models consist of convolving different Ricker wavelets of 15, 25, and 35 Hz with a 

pair of reflection coefficients, where the top reflection value is 0.1 (r1 = 0.1) and the base 

reflection is equal to (r2 = -0.075). The synthetic seismic models consists of 200 samples 

at a sample rate of 1ms (200 ms total time length) on a hundred (100) traces that range 

from 0 to 100 ms time thickness. The polarity used for the models is red for an increase 

in impedance (positive) and blue for decreasing impedance (negative). 
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The predominant frequency variation of the source wavelets was designed for 2 

functions. First, to emulate the loss of frequency content that real seismic data frequently 

exhibits due to attenuation, transmission loss, etc. Second, it was used to evaluate the 

power of resolution of the spectral inversion process when frequency content is low. 

Moreover, random noise was added to the models in two different scenarios and for every 

wedge with different central frequency. The first scenario presents almost no noise (0.01 

%) and it is defined as the high S/N case. In the second case, 1 % random noise was 

added and it is defined as the noise case. These scenarios allow evaluation of the 

reliability of the inversion when noise is present.  

 

  

3.1.1 Synthetic Wedge Model with Central Frequency at 35 Hz 

 

 Wedge models were built with a central frequency of 35 Hz shown on figure 16 

for the high S/N (noise = 0.01 %) and on figure 18 for the low S/N case. The inversion 

process involves wavelet extraction using different wavelengths and with different time 

windows. During the inversion process, diverse α parameters (the alpha parameter is 

based on the ratio of the weighting functions described above) were tested until the most 

stable solution was found. Results were frequently compared and evaluated to 

select/adjust the parameters that satisfy and generated a solution that improves resolution.  

 

For both cases the wedge was resolved (Figure 17 and 19). The method of 

spectral inversion described before (Puryear and Castagna, 2008) solved both reflection 
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coefficients below the tuning thickness without adding or boosting any noise present in 

the data, remarkably improving the seismic vertical resolution on the high S/N case. It 

can be observed that for the inversion result of the noise case (Figure 19), the background 

looks slightly different than the one with high S/N relationship (Figure 17). The presence 

of noise in the model is beginning to affect the background, but it is not perturbing the 

overall solution at this point. 

 

  

Figure 16: Wedge model with a central frequency of 35 Hz with random noise = 0.01%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 

 
 

 

Figure 17: Spectral inversion result from the wedge model from figure 16. The wedge 
model is perfectly predicted by the inversion method. 
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Figure 18: Wedge model with a central frequency of 35 Hz with random noise = 1.0%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 

 
 

 
Figure 19: Spectral inversion result from the wedge model from figure 18. The wedge 
model is perfectly predicted by the inversion method. 

 
 

When imperfect wavelets are estimated (shape, phase, and wavelength), the 

results can be unstable and imprecise (Figure 20a). If the wavelet extraction is more 

precise, then better inversion results can be obtained (Figure 20b). Decreasing the 

stabilization parameter (alpha-weighting parameter) can lead to results where the wedge 

model can be resolved (Figure 21), but the background solution is unstable. The noise is 

slightly boosted in the background during the inversion, because the weighting parameter 

expands the bandwidth. The geophysicist has to make a decision at this stage as to how 

far the frequency band can be or wants to be expanded. 
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Figure 20: Spectral inversion result from the wedge model from figure 18. The wavelet 
length and shape are not well estimated; therefore the solution is totally unstable (a). 
Subsequently, if the wavelet extraction is performed more accurately (wavelength and 
shape); the results are improved (b) but the wedge is still not resolved. 

 
 

 
Figure 21: Spectral inversion result from the wedge model from figure 18. The wedge is 
resolved compare with figure 20, but the overall background solution is unstable. The 
need to broaden the bandwidth is also boosting the noise due to the reduction on the 
stabilization parameter. 
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3.1.2 Synthetic Wedge Model with Central Frequency at 25 Hz 

 

The second scenario involves a decrease of the frequency content. The synthetic 

wedge models were convolved using a Ricker wavelet of 25 Hz for both cases, high S/N 

(Figure 22) and with the presence of noise (Figure 24). For the high S/N case the results 

show that the wedge is resolved (Figure 23). For the noisy case, the prediction of the 

reflection coefficients for the wedge model are also solved (Figure 25); nevertheless, the 

background from this result compared with the inversion from the noisy 35 Hz wedge 

model case (Figure 19) looks similar. There is a small increase of the background noise 

that makes it more difficult to distinguish both top and base reflections. This means that 

the inversion process works perfectly for seismic data with a high S/N ratio, even though 

the frequency content was reduced from a central frequency of 35 Hz to 25 Hz. 

 

 

Figure 22: Wedge model with a central frequency of 25 Hz with random noise = 0.01%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 
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Figure 23: Spectral inversion result from the wedge model from figure 22. The wedge 
model is perfectly resolved by the inversion method. 

 
 

 

Figure 24: Wedge model with a central frequency of 25 Hz with random noise = 1.0%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 

 
 

 

Figure 25: Spectral inversion result from the wedge model from figure 24. The wedge 
model is resolved, although the background presents a noise boost that makes more 
difficult to distinguish both top and base reflections. 
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3.1.3 Synthetic Wedge Model with Central Frequency at 15 Hz 

 

The third scenario involves another decrease of the frequency spectrum. The 

synthetic wedge models were convolved using a Ricker wavelet of 15 Hz for both cases, 

high S/N (Figure 26) and with the presence of noise (Figure 28). For the high S/N case, 

the results obtained are again perfect and the wedge is resolved (Figure 27). For the noisy 

case, the reflection coefficients predicted by the inversion method are solved (Figure 29). 

Comparison of this result, alongside the previous inversion results from the same noisy 

data (Figures 19 and 25), shows another a significantly increase of the background noise, 

but the wedge still can be clearly resolved and defined. This means that the inversion 

process works perfectly for seismic data with a high S/N ratio with a frequency content of 

15 Hz. On the other hand, the need of broadening the spectrum to resolve the synthetic 

wedge boosts significantly the noise that was added to the initial model.  

 

 

Figure 26: Wedge model with a central frequency of 15 Hz with random noise = 0.01%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 
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Figure 27: Spectral inversion result from the wedge model from figure 26. The wedge 
model is perfectly predicted by the inversion method. 
 
 

 

Figure 28: Wedge model with a central frequency of 15 Hz with random noise = 1.0%. 
The sample rate is 1 ms with 100 traces that also represent the time thickness. 

 
 

 

Figure 29: Spectral inversion result from the wedge model from figure 28. The wedge 
model is resolved, although the background presents a significantly noise increase that 
makes even more difficult to distinguish both top and base reflections. 
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3.2 Special Wedge-Model Cases 
 

When conducting these tests to evaluate if the method is able to perform correctly, 

there were two additional cases that needed to be tested. The first one is the even 

component scenario; the second case is an exact description of the odd component 

scenario. Because, it was proved in the previous tests that the frequency content did not 

significantly affect the results, both wedge models were created using a Ricker wavelet of 

35 Hz. The high S/N ratio was selected to run these models at 0.01% noise level to 

simplify the tests, because the vertical resolution and wedge models were predicted 

accurately.  

 

 

3.2.1 The Pure Even-Component Case 

 

The synthetic wedge model was built using a pair of reflection coefficients with 

the same magnitude and polarity (positives) values of 0.1 (r1 = 0.1 = r2) and convolved 

with a Ricker wavelet of 35 Hz (Figure 30). The synthetic seismic models consist of 200 

samples at a sample rate of 1ms (200 ms total time length) on a hundred (100) traces that 

range from 0 to 100 ms time thickness. The polarity used for the models is red for an 

increase in impedance (positive) and blue for decreasing impedance (negative). The 

results obtained from the inversion are perfect and the wedge is resolved (Figure 31). 

Given that, the theory described says that the even component contributes more to the 
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solution below the tuning thickness. Therefore, this result confirms the theory and the 

performance of the spectral inversion algorithm. 

 

 

Figure 30: Pure even-component case scenario (r1 = 0.1 = r2) for a wedge model with a 
central frequency of 35 Hz with random noise = 0.01%. The sample rate is 1 ms with 100 
traces that also represent the time thickness. 

 
 

 

Figure 31: Spectral inversion result for the pure even-component case from figure 30. 
The wedge model is perfectly predicted by the inversion method as was expected. 
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3.3.1 The Pure Odd-Component Case 

 

The synthetic wedge model was built using a pair of reflection coefficients with 

the same magnitude value of 0.1 but opposite polarity (r1 = 0.1 and r2 = -0.1) and 

convolved with a Ricker wavelet of 35 Hz (Figure 32). The results obtained from the 

inversion are also accurate and the wedge is resolved (Figure 33). This means that even 

for the odd case, where the theory states that the even component contributes more to the 

solution below tuning, nevertheless the algorithm recovers the vertical resolution 

completely.  

 
Figure 32: Pure odd-component case scenario (r1 = 0.1 and r2 = -0.1) for a wedge model 
with a central frequency of 35 Hz with random noise = 0.01%. The sample rate is 1 ms 
with 100 traces that also represent the time thickness. 
 

 
Figure 33: Spectral inversion result for the pure odd-component case from figure 32. The 
wedge model is perfectly predicted by the inversion method. 
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A case similar to these examples, in which both amplitude values are equal in 

magnitude with the same or opposite polarities, is hard to find in real seismic data, 

especially if the amplitudes are preserved at 32 bits for processing. However, it was 

worth trying to test the performance and stability of the algorithm.  

 

From these tests it can be observed that the frequency content of the synthetic data 

did not affect the inversion results, as solved all the wedges with a high S/N ratio. On the 

other hand, these studies showed that just a small increment of noise (1 %) can affect the 

performance of the inversion process.  

 

Even though all synthetic wedges were well predicted, the need for expanding the 

frequency bandwidth to increase the vertical resolution also boosts the noise, especially 

when the bandwidth is lower in frequency content. Therefore, if the vertical resolution is 

to be improved by any inversion technique, it is important to eliminate the noise as much 

as possible during processing. In addition, it was demonstrated that there is a high 

probability to produce poor results (vertical resolution improvement) when the wavelet is 

not accurately extracted and applied during the inversion process. 
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4. DATASET 

 

The area under study is located within the Cook Inlet Basin of Alaska (Figure 34). 

The dataset consists of a 3D seismic survey that covers approximately 18 km2 of the 

Cannery Loop oilfield. Eleven (11) highly deviated wells have been drilled in the 

Cannery Loop oilfield at different target depths that range from 1200 to 3600 m. The 

oilfield is a simple anticline that extends over 5 kilometers in the northwest-southeast 

direction and is around 3 kilometers east-west. There is one major fault located at the 

southeast of the structure that separates the Cannery Loop gas accumulations from the 

Kenai field (Brimberry et al., 2001). 

 
Figure 34: Present-day geometry of the Cook Inlet Basin geomorphology and regional 
tectonic boundaries (from Swenson, 2001). 
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4.1 Geological Setting 
 

The Tertiary Cook Inlet Basin covers an area of 102,000 square km that extends 

from the Matanuska Valley south along the Alaskan peninsula in a north-east direction 

(Figure 34). The basin is set in a fault-bounded NE-SW elongated forearc, and exhibits 

complex stratigraphy due to the variable uplift/subsidence rates that caused thickness 

variations of a hundred meters (Figure 35) over the Tertiary Period (Swenson, 2001). 

There is also lithologic complexity due to the different provenance rocks and the 

depositional systems (Figure 35) (Hayes et al., 1976).  

 

 

Figure 35: Cook Inlet basin depositional model (from McGowen, et al., 1994, in: 
Swenson, 2001). 
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4.2 Stratigraphy 
 

The stratigraphic intervals with economic potential for gas exploitation are 

encompassed by the Tyonek, Beluga, and Sterling formations, deposited during the Late 

Oligocene, Miocene and Pliocene (Figure 36) in a non-marine environment. The focus of 

this study is the upper Beluga and Sterling Formations which, at present, are major gas 

producers from the Cook Inlet Basin.  

 

 

Figure 36: Generalized stratigraphic chart of the Cook Inlet Basin (from Swenson, 
2001). 
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4.2.1 Beluga (Miocene) 

 

This formation is a thick (over 900 m) siltstone-rich unit where channelized 

muddy sandstones, coal, and tuff beds are common (Swenson, 2001). The coarser facies 

are constituted predominantly by metamorphic rock fragments and quartz derived from 

the Kenai-Chugach Mountains to the east (Hayes et al., 1976; Brimberry et al., 2001). 

Sand body thickness can vary from 1.5 to 9 m and porosities from 5 to 20%. The coal 

beds in the Beluga Formation, in contrast to the underlying formation, are mostly thin 

(<1.5 m) and of limited areal coverage. The overall Beluga section is compacted and the 

reservoir sands are too thin to resolve with seismic data. 

 

 

4.2.2 Sterling (Miocene-Pliocene) 

 

The Sterling Formation represents deposits of much larger meandering streams 

originating from the north/northwest. It comprises stacked fluvial channels, mud drapes, 

siltstones, and local thin coal beds (Hayes et al., 1976; Brimberry et al., 2001). Sandstone 

deposits are friable, moderately well sorted, poorly consolidated fine to coarse-grained 

sandstones, consisting of abundant volcaniclastics, glass shards, quartz, and feldspar 

(Swenson, 2001; Brimberry et al., 2001).  Productive sandstone sequences typically range 

from 9 to 18 m thick; some are more than a 30 m thick. Porosities vary between 20 and 

30%. Presence of abundant coal and absence of massive sands mark the regional 

unconformity identified as the base of the Sterling Formation. 
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4.3 Analog Cases 
 

 Understanding modern analog environments allows coherent qualitative 

information that can aid subsurface interpretation using seismic data. Therefore, 

following the description and definition of the paleo-environments for the Beluga and 

Sterling formations in the literature, it was necessary to find recent examples that show 

how meandering and/or braided systems behave.  

 

Bridge (2006) shows some good examples and descriptions of different rivers 

around the world. The supposition that the ratio width to thickness (W/T) of braided 

channels is greater than in meandering channels is not always correct, as channel belts 

from the meandering Mississippi and braided belts from the Brahmaputra have the 

opposite relationship; the Mississippi has a W/T = 15km/40m = 375, while the 

Brahmaputra has a W/T = 10 Km/40 m = 250. Meandering and braided channels have 

curved channel segments adjacent to compound bars and also migrate by erosion of 

concave banks and deposition of compound bars. In some cases, there is even accretion 

of point and braid bars during floods, as can be seen in the Sagavanirktok channel belt in 

northern Alaska (Figure 37) and in an example of a GPR profile, where dramatic lateral 

changes can be observed (Figure 38). 
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Figure 37: Modern braided and meandering channels system example from 
Sagavanirktok River, northern Alaska. A channel belt with compound braid and point  
bars associated with meandering, anastomosing and braided- meandering channels 
separated by a bar assemblage. The channel is 2 km wide (from Bridge, 2006). 

 

 

Figure 38: GPR profile through braided and meandering river deposits of the 
Sagavanirktok River, Alaska. It shows (upper) compound bars with large-scale inclined 
strata dipping (unit bars), lower in the profile a confluence fill is bounded on both sides 
by side (point) bars (from Bridge, 2006). 
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5. CASE STUDY RESULTS 

 

 The reflectivity inversion and spectral decomposition methods were applied using 

a full stack seismic dataset.  Although, the subsurface does not show any structural 

complexity, the quality of the seismic data is poor, due to the proximity of the Kenai 

River which generates static and acquisition problems, and partial amplitude dimming 

(Figure 39). Well logs were provided from several wells, including sonic, induction, 

density, GR, and SP logs, but just 3 wells out of 11 had a complete suite over the section 

of interest. 

 

 
Figure 39: Map showing the position of the Kenai River within the survey (a). The 
seismic data was affected by the river during acquisition. It is observed in seismic section 
(b) some vertical areas where the amplitudes are really affected. 
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5.1 Phase Analysis and Conversion 
 

The phase of the seismic data can be checked, correlated, and corrected using 

synthetic seismograms (well ties), comparing the impedance response due to the main 

geological units. Three (3) synthetic seismograms were generated using the sonic and 

density logs from each well and the only check shot available in the oilfield. The best 

synthetic tie for the upper section of the Sterling and Beluga formations is shown in 

figure 40. The seismic-data polarity is defined as a peak for an increase in impedance 

(blue) and a trough as a decrease in impedance (red). The wavelet was statistically 

extracted from the seismic (Figure 41) along the well path. 

 

Several synthetic seismograms were also created using synthetic Ricker wavelets 

with different frequency contents of 20, 25, and 35 Hz (Appendix A). For most of the 

wells (9) a synthetic seismogram was generated and correlated with the seismic, but there 

were just 3 wells where the results were fairly good (due to not only the log and seismic 

quality but also the highly deviated well paths) within the Sterling and upper Beluga 

formations. For that reason these were used in the study. After detailed synthetic analysis 

it was concluded that it was necessary to apply a -180 degree phase rotation to correct the 

assumed zero phase of the seismic data. In general, the quality of the tie was good but 

limited due to the relatively low S/N ratio of the seismic. The correlation coefficient for 

the tie was 0.77 using a time-window analysis that ranged from 800 to 1300 ms (Figure 

40). 
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Figure 40: Synthetic seismogram for the Sterling and upper Beluga formations in the 
Cannery Loop oilfield. 
 

 
Figure 41: Wavelet extracted from seismic data (a) and its spectrum (b) along the well 
used in figure 40. 
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5.2 Wavelet Characterization and Spectral Inversion Process 
 

During the spectral inversion process, the extraction of the wavelets that best 

characterize the seismic response, as well as the selection of the stabilization factor of the 

inversion are important (Chopra, et al., 2006). Even though it was determined that there is 

no need for external constraints (well data, initial model, and layering) beyond the 

seismic data input, the results were validated using the well that showed the best tie.  

 

Once the data are phase corrected and resampled to 1ms, the wavelet extraction 

process is initiated. A statistical extraction is performed using different windows in the 

target zone (700 ms to 3500 ms) to characterize the vertical behavior of the wavelet. 

Figure 42 shows the average amplitude spectrum for the raw seismic data in the time-

window analysis mentioned before. A 400 ms long wavelet was selected to characterize 

most of the possible side lobes in the data. As part of the process, the estimation of 

different time-variant wavelets is executed to understand variation of the amplitude 

spectrum with time/depth (Figure 43).   

 

Figure 42: Average amplitude spectrum from the raw seismic data. 

Average Amplitude Spectrum of the Seismic Data 
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Figure 43: Wavelet-extraction process showing the wavelet amplitude spectrum 
variation as a function of time. The length of the wavelet is 360 ms. 

 
 

The most stable spectral inversion results are obtained using wavelets containing 

most of the side lobes and with the shortest length that still preserves the amplitude 

spectrum of the wide wavelength. It shows that a wavelet with a length of 360 ms (figure 

43) contains a similar amplitude spectrum to the previous wavelet of 440 ms (see 

Appendix B). For smaller wavelengths, the amplitude spectrum is imprecise and the 

quality of the spectral inversion is reduced, consequently the use of smaller wavelets is 

discarded.  

 

Part of the wavelet characterization process is to divide the target zone (700 to 

3500 ms) into different intervals to evaluate the variation with time. The zone was 

divided into 7 intervals, with an increment of 1 interval (Figure 44). Generally, when the 

Wavelet-Extraction Process  
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number of intervals is increased, more detail is observed regarding the changes in wavelet 

shape and spectrum with time. In this case, for an interval division of 4 (Figure 43) 

sudden changes occur within the second and third interval, while at interval of 7, the 

changes are smoother in frequency content. Therefore, an interval division of 7 was 

selected, as it is the simplest wavelet that contains sufficient detail about the spectrum 

variation with time. 

 

 
Figure 44: Wavelet-extraction process showing the wavelet amplitude spectrum 
variation as a function of time in seven different intervals. The wavelength is 360 ms. 

 
 

 

Wavelet-Extraction Process  
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5.3 Spectral Inversion Results 

 
With the wavelet characterization finished, several spectral inversion tests were 

run in a small area around the well (this is where well information is important) to select 

the proper stabilization parameter. These results showed different vertical resolutions and 

hence diverse S/N ratios (see chapter 3). The parameter value selected is the one that 

produced the most stable results, least noise increase, and the best well tie. 

 

Once the parameter is chosen, the spectral inversion is implemented on the whole 

seismic survey within the time window that was selected previously. Comparing seismic 

data volumes (Figure 45), amplitude, and reflectivity respectively, it is observed that the 

resolution has improved while the main events are still preserved. The polarity used is an 

increase in impedance represented by a peak (black) and a decrease by a trough (red). 

 

An average frequency spectrum comparison of the original seismic data and the 

reflectivity volume shows how the frequency band was broadened (Figure 46). Notice 

how the frequency band between 0-80 Hz is flattened as should be expected when the 

footprint of the wavelet is removed by the inversion. 

 

It is fundamental to have a quality control process of the results. Because the 

frequency band is expanded, the most important quality control or test is to compare side-

by-side the original seismic and the results of the inversion, applying a band-pass filter 

similar to the frequency spectrum of the original seismic record (Figure 47). This is 
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similar to convolving the reflection coefficients with a wavelet that in this case is 

perfectly known. 

 

 
Figure 45: Comparison of the full stack amplitude and the spectral inversion volume. 
Notice the increase in resolution while preserving the main events. 

 
 

 
Figure 46: Average amplitude-spectrum comparison of a) the full stack amplitude 
volume and b) the spectral inversion. The frequency band is broadened; notice the flat 
shape at lower frequencies (10-80 Hz) due to wavelet removal. 
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Figure 47: Comparison of a full stack amplitude and spectral inversion section with a 
band-pass filter of 5-10-40-60 frequency range. Both seismic sections seem to be very 
similar, demonstrating the spectral inversion process is not adding any noise or artifacts 
to the original data. 
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A band-pass filter, defined with a frequency range of 5-10-40-60, was applied to 

both seismic volumes (original and inverted) just to be sure that the same frequency 

content is comparable. The results on a particular seismic section (Figure 47), 

demonstrate that the original seismic and reflectivity volumes look approximately the 

same. For that reason the spectral inversion process does not appear to be adding any 

noise or artifacts to the original data.  

 

The inversion results are also compared side-by-side against synthetic 

seismograms. This is another way to visualize the improvements in the vertical resolution 

and consistency of the inversion process. Figure 48 shows a set of logs (GR, Resistivity, 

Vp, Vs, and Impedance), and three seismic sections with their respective synthetic 

seismograms for different frequency content. Figure 49 shows a closer look at the bottom 

section (1275-1450 ms). The correlation of the original amplitude seismic section with 

the synthetic seismogram from the well shows a good tie, with a correlation coefficient of 

r = 0.71 for the section between 800ms - 1250ms (Figure 48a). For the time window used 

in figure 49a (1325 ms – 1450 ms) the correlation is 0.54. 

 

The second seismic image and well tie (Figure 48b and 49b) is a band-limited 

reflectivity section, with frequency content of 5-10-150-210 Hz. This same bandwidth 

was used to generate a wavelet which was convolved with the reflectivity computed from 

the logs. The results from the well tie look qualitatively similar to the original seismic tie 

(Figure 48a and 49a), except that the correlation analysis is lower for both time windows 

described before, r = 0.31 (Figure 48b) and r = 0.27 (Figure 49b) respectively. 
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Figure 48: Comparison of 3 different seismic sections and their correspondent synthetic 
seismograms. The original seismic section without any filter (a), a reflectivity band 
limited 5-10-150-210 section (b) and a high pass (60-80-180-210) reflectivity section (c).    

 
 

The last panel (Figure 48c and 49c) shows a section of the reflectivity inversion 

with a high pass filter (BP 60-80-180-210), with frequency content above the frequency 

band of the original seismic data (Figure 46). The same frequency band filter was also 

used to recreate a wavelet and convolve it with the reflectivity series. Again, the tie 

results are compared in the vicinity of the well showing a correlation of 0.26 in Figure 

48c and 0.35 in Figure 49c.  
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Figure 49: Closer look at the base of the synthetic tie on figure 48. The original seismic 
section (a), a reflectivity band limited 5-10-150-210 section (b) and a high pass (60-80-
180-210) reflectivity section (c). Black lines show small faults not obvious in the original 
amplitude data. 
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faults not obvious in the original seismic data (black lines in Figure 49c).  
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extracted from the seismic and were instead generated using a band-pass filter, or 2) 

noise increases along with frequency content. 

 

The reflectivity inversion provides information about thickness and faulting that 

could not be seen before due to the overprint of the wavelet. When referring to thickness, 

a pseudo-impedance volume can also be calculated using the reflectivity inversion 

volume as input and applying a -90 degree phase rotation to it. Then, this relative 

impedance will provide the thickness variation of the sand bodies. Figure 50 shows 3 

seismic sections from the original, reflectivity inversion, and pseudo-impedance 

(inversion) seismic volume respectively. An increase in impedance is a peak (blue) and a 

decrease in impedance is a trough (red).  

 

An induction log was used for the interpretation, as the GR log does not help to 

distinguish between sand and shale in this field due to the lithologic complexity and 

composition. The peak frequency of the original seismic data is approximately 18 Hz, 

and the velocity obtained from the P-wave log is on average 2800 m/s for the Sterling 

Formation. The wavelength of the seismic wavelet is given by the division of the velocity 

and frequency, which is 155 m, and the limit of resolution will be 39 m. Because the 

seismic is in the time domain, layers below 28 ms tuning thickness are not resolved with 

the original seismic data.  

 

It can be observed that the gas sands show higher impedances than shales (Figures 

50 and Apendix C.1). The boundaries at the top and base of the main gas sand are not 
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distinguished in the original seismic data (below tuning, 12 ms time thickness equivalent 

to 17 m), whereas in the reflectivity and impedance sections the main gas sand is 

resolved. Notice that the pseudo impedance and reflectivity inversion fail to capture the 

fining upward sand below the high impedance gas sand, while the reflectivity is able to 

capture just its base. 

 

 

Figure 50: Comparison of the original seismic (a), the reflectivity band limited 5-10-150-
210 (b) and pseudo-impedance sections (c) with an induction log. High impedance gas 
sand (12ms time thickness) is resolved by the inversion on the reflectivity and impedance 
volumes. The tuning thickness is 28 ms for the original seismic data. An increase in 
impedance is a peak (blue) and a decrease in impedance is a trough (red).   
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5.4 Stratigraphic Interpretation 
 

 The reflectivity volume obtained from the spectral inversion improves the vertical 

resolution and reveals the geology masked by the wavelet. The inversion allows a more 

precise stratigraphic and structural interpretation. A comparison between the original 

seismic and inverted reflectivity sections (Figure 51 and 52) shows that when the wavelet 

is removed, reflections are better highlighted by the reflectivity data. Furthermore, their 

lateral continuity is enhanced by showing details that could not be interpreted using the 

conventional seismic data.  

 

Picking the stronger events or reflections on both seismic sections from figure 51 

and comparing them in figure 52, shows that the quantity of information obtained from 

the inverted data is more detailed. When both interpretations are superimposed (Figure 

52c), the events extracted from the inversion may be related to stratigraphic patterns (see 

inside circles in figure 52c). These patterns could correspond to amalgamated sequences 

of bar deposits shown in the GPR example (Figure 38). However, these stratigraphic 

patterns could be also related to noise due to the expansion of the frequency band. The 

uncertainty could be reduced with greater well control. Using an oilfield with many wells 

and a defined geological model could be recommended for future work. 
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Figure 51: Comparison of the original seismic (a) and inverted data (b). Stratigraphic 
patterns related to the geology are highlighted within the reflectivity that could not been 
seen on the conventional-stack seismic data. Peaks are blue and troughs red. 
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trace-by-trace, and no lateral continuity was assumed, the reflection coefficients from the 

inversion might show a better representation of the stratigraphy. 

 

The concept of constructive and destructive interference can be clearly seen in 

figure 53.  The stratigrapgy seems to be essentially simple and flat on the original seismic 

data (Figure 53a). Some reflections interfere constructively, while others disappear due to 

destructive interference.  

 

The solution obtained from the spectral inversion (Figure 53b) preserves the 

lateral continuity of the stratigraphy previously hidden in the original seismic data 

(wavelet filter), and now all the events are clearly separated into different reflection 

coefficients (figure 53b). Not only can reflections be interpreted along the whole section, 

but some structural features can also be seen. Small faults or fractures could not be 

detected in the original seismic sections (Figure 53c), but now they can be identified on 

the inverted reflectivity seismic section (Figure 53b).  
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Figure 52: Comparison of interpretations made on the original seismic (a) and inverted 
data (b) from figure 51. c) When both interpretations are superimposed (red and blue 
colors represent the interpretation made in the original seismic and reflectivity data 
respectively), more stratigraphic patterns are visible in the inverted data that could 
correspond to amalgamated sequences of bar deposits (10 ms ~ 14 m thick). 
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Figure 53: The comparison between images clearly shows the concept of constructive 
and destructive interference on the full stack seismic section (a). The inverted data (b) not 
only preserves and improves the lateral continuity of the stratigraphy, but separates and 
highlights events that could not been observed before. Some small faults or fractures can 
also be interpreted.   
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5.5 Spectral Decomposition and Inversion Visualization 
 

 The use of different seismic attributes for stratigraphic interpretation and 3D 

visualization helps the geoscientist to characterize and understand the subsurface. In this 

case, the spectral decomposition MPD algorithm was applied to the full stack seismic 

data, creating common frequency volumes from 0 Hz to 80 Hz. The peak-amplitude 

volume was calculated and used for attribute extractions. In addition to the frequency 

volumes, the original seismic amplitude data, the reflectivity, and pseudo-impedance 

volumes produced from the inversion were also used, not only for horizon interpretation, 

but also for attribute extractions. Several horizons were interpreted for the Sterling A8, 

B2, and C1 sand tops as well as the top of the upper Beluga Formation.  

 

 An RMS amplitude extraction was performed along the Sterling A8 horizon, 

using a 10 ms time window for the full seismic stack, pseudo-impedance, and peak-

amplitude (maximum amplitude value at every peak frequency) volumes (Figure 54a, 

54b, and 54c). The visualization enhancement obtained is notable compared with the 

original seismic data. Some braided channel patterns, braid-bar assemblages and flood 

plains, shown by colors in figure 54d, were extracted from the impedance and peak-

amplitude volumes. The deposition direction observed is NE-SW, corresponding to the 

regional geology described previously. Some small braided channel shapes can also be 

recognized between small braid bars within channel belt, especially in the peak amplitude 

volume. Although, the image quality is affected by the Kenai River, there is not bias on 

the interpretation produced, because its actual fairway goes from SE to NW. 



67 

 
Figure 54: 10 ms time window RMS amplitude extractions on the Sterling A8 horizon 
comparing the full stack seismic (a), pseudo-impedance (b) and peak-amplitude volumes 
(c). Interpretation, extracted from the peak-amplitude and pseudo-impedance attributes 
(d), show some channels patterns (red and cyan), bar assemblages  (blue), and flood plain 
(green) composed by some channels (orange) and bar assemblages. 
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On a different horizon, the B-2 sand of the Sterling Formation, an RMS amplitude 

extraction on a 10 ms time window was calculated using the original amplitude seismic 

section and reflectivity volume with a band-pass filter defined by the 5-10-80-125 

frequencies. In this case, the reflectivity used has an 80 to 125 Hz band that the original 

data did not. The amplitude volume shows a channel feature towards the south, still 

preserving the same regional deposition direction. The rest of the extraction shows a 

group of massive bright bodies that could be assemblages of bars (Figure 55a). On the 

other hand, the band-pass reflectivity volume shows a crisper image not only of the same 

channel, but also another channel highlighted to the west, as well as some features that 

appear to be channels and bars in the middle of the channel belt (Figure 55b). The peak-

amplitude and impedance RMS extractions can be seen in Appendix C.3, but the best 

results were obtained when interpreting different frequency maps from figure 56.  

 

Using a 20 ms time window, an RMS amplitude extraction was made on the same 

B-2 horizon using the 8 Hz (Figure 56a), 20 Hz (Figure 56b), 32 Hz (Figure 56c), 44 Hz 

(Figure 56d), and 56 Hz (Figure 56e) frequency volumes. The interpretation extracted 

from each volume (Figure 56f) shows different deposits of the interpreted braided 

system. Figure 56f shows thick bars (black), thinner bar assemblages (blue), two different 

sizes of channels (red and cyan), and flood plain (green) with some small channels 

(orange). It can also be concluded that the point bars, generated probably by lateral 

accretion, are the thickest deposits in the channel belt and are better illuminated at low 

frequencies (8 and 20 Hz). However, using higher frequency volumes, thin deposits are 

inferred, like channels and bars complexes. Then, using and merging the interpretation 
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from each volume, a better characterization of the depositional systems and reservoirs 

can be achieved.  The interpretation could correspond with the analog case described of 

the Sagavanirktok River, northern Alaska, by Bridge (2006) in figure 37. 

 

 

Figure 55: Comparison between RMS amplitude extractions along the Sterling B2 
horizon on a 10 ms time window for the full stack seismic (a) and a reflectivity with a 
band-pass filter (BP 5-10-80-125). Notice the visualization enhancement for some 
channels patterns to the south and center of the field. 
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Figure 56: 20 ms time window RMS amplitude extraction on horizon B-2, using the 8(a), 
20(b), 32(c), 44(d) and 56(e) Hz frequency volumes. Interpretation extracted from each 
volume shows different deposits (f) of the braided system interpreted. Thick bars (black), 
thinner bar assemblages (blue), two different channel sizes (red and cyan) and that could 
be interpreted as flood plain (green and dash green) or bar assemblages with some small 
channels (orange). This interpretation is similar to the analog case described by Bridge 
(2006) of the Sagavanirktok River, northern Alaska. 
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5.6 Low-Frequency Shadow Reservoir Detection 
 

Part of the interpretation process was to scan all the frequency volumes using 

seismic sections and map views. Several observations were made to identify amplitude 

anomalies at different frequencies to determine which could be related to the presence of 

hydrocarbons.  

 

In this study, a low-frequency shadow was identified and associated with the C-1 

Sterling Formation gas sand (confirmed by the single producing well), where the average 

thickness is around 18 m. This shadow could be related to abnormally high attenuation in 

the gas reservoir. Because the total producing zone (4 sands in the well) is approximately 

46 m thick, it is possible to explain such attenuation, since the zone is thick enough to 

produce the effect. Two seismic sections (Figure 57a and 57b) showing amplitude and 

their respective common frequencies for 11 Hz (Figure 57c and 57d), show two 

abnormally high energy zones beneath two different reservoirs. The deepest one is the 

one that corresponds to the C-1 gas sand. On higher frequency sections (32 Hz) the 

energy disappears completely (Figures 57e and 57f).  

 

An RMS amplitude extraction was generated for both frequency volumes using 

the C-1 horizon in two different time windows, 60 ms within the reservoir and 100 ms 

below the reservoir (Figure 58). The reservoir is highlighted by a black line. The maps 

show how on the 11 Hz common frequency maps there is not much energy above the 

reservoir (Figure 58a) but there is clear shadow below it (Figure 58b). The opposite effect 
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occurs when the 32 Hz frequency maps are observed. The reservoir is highlighted in the 

time window above the reservoir, while the energy disappears in the amplitude extraction 

below the reservoir. 

 
Figure 57: Two seismic sections (a, b) showing amplitude and their respective common 
frequencies for 11 Hz (c, d) and 32 Hz (e, f).The low-frequency shadow zones, just 
beneath the reservoir, are the strongest events on the sections, marked within a white 
ellipse (c, d). On the other hand, at 32 Hz (e, f) the reservoir is illuminated and the energy 
disappears.   
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Figure 58: Amplitude extraction maps from the 11 Hz (a, b) and 32 Hz (c, d) common 
frequency volumes. The extraction was performed in a 60 ms time window within (a, c) 
and 100 ms time window below (b, d) the reservoir respectively. The black circle 
identifies the reservoir location. At 11 Hz the energy below the reservoir is stronger than 
above the reservoir. On the other hand, at 32 Hz just the opposite occurs. White lines 
show the position of the sections from figure 57.  
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The MPD spectral decomposition algorithm was applied to this dataset and to the 

synthetic data; both show better vertical and spectral resolution. Analyzing seismic data 

in the frequency domain provides better evidence of hydrocarbons than full-stack seismic 

data. 

 

The Alaska example shows that the shadows have more energy than the reservoir 

reflections, and that at a certain frequency the reservoir is more anomalous than the 

background. This could be related to the thickness, and/or presence of fluid. 

 

 This shadow phenomenon should not be related to simple attenuation, because all 

frequencies, especially higher, are not being attenuated. In contrast, low-frequency 

energy is boosted (Castagna, et al., 2003). The low-frequency shadow could be related to 

one of the mechanisms described in Ebrom (2004). Such mechanisms are related to 

complex acquisition parameters or data processing (such as incorrect NMO correction, or 

stretch of the far offset). Unfortunately, the gathers were not available for this project, but 

it would be valuable to perform a future study relating frequency and offset. 
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6. CONCLUSIONS 

 

6.1 Summary 
 

As shown in synthetic models and in real data, the theory behind spectral 

decomposition and inversion are novel techniques that can be applied to seismic data 

revealing details about the geology and rock property that are suppressed by the wavelet. 

 

 The wavelet extraction process is probably the most important process in seismic 

inversion. It was demonstrated on synthetic models that the incorrect characterization of 

the wavelet can lead to incorrect results. All inversion techniques should allow accurate 

extraction of time and spatial variant wavelets, similar to the reflectivity inversion 

process carried out in this study. 

 

The spectral inversion analyses obtained from the synthetic wedge models 

demonstrate that the frequency bandwidth of the original seismic data does not seem to 

affect the inversion results for high S/N ratio cases. Nevertheless, noise in low-frequency 

content data will partially affect the inversion, as the need for expanding the original 

frequency bandwidth also boosts the noise.  

 

The presence of noise is the main problem and can limit the results of any seismic 

inversion. For that reason, noise suppression during acquisition and processing will 

establish the resolution limits more than any other seismic parameter.  
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The results from the Alaska dataset show that the spectral inversion process 

boosts the higher frequencies, but also boosts part of the noise already present in the data. 

The reflectivity data were more stable and superior in vertical resolution than the original 

seismic data, as indicated by well log comparisons, where thin sands below tuning 

thickness were resolved. The geology is better represented by the reflection coefficients; 

therefore geological models created from the inversion are superior in defining 

stratigraphic patterns and delineating small faults.   

 

The frequency attributes (peak-amplitude and common-frequency volumes) and 

inversion obtained and interpreted in the Alaska dataset, highlighted geomorphologic 

elements (channels, bars, and floodplains) that in most cases could not be interpreted 

using the original seismic data. In spite of the fact that depositional systems, like this 

braided systems, are difficult to illuminate and visualize in seismic data, especially when 

the data quality is poor, the attribute integration and careful interpretation improve the 

understanding of the oil field. The main reason is that there is information related to 

lateral layer thickness variation, temporal thickness, and geomorphology that can be 

extracted from the frequency domain, facilitating the detection of geological 

discontinuities and/or reservoir delineation. 

 

Using a spectral decomposition algorithm that offers accurate and stable spectral 

and time resolution recovers more information from the frequency domain than the 

widely used DFT or CWT methods. Using spectral decomposition or other seismic 
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attributes, does not guarantee visualization of geology or rock properties, because they 

are highly dependent on data quality, and on the algorithm used. 

 

 

6.2 Future Work 
 

Since the response to hydrocarbon in the frequency domain is not perfectly 

understood yet, more studies are needed in this direction. Working with gathers for 

different AVO scenarios and for different time thicknesses could lead to a better 

understanding of this response. The low-frequency shadows, can help delineating the 

reservoir, but integration with synthetic models will lead to better understand the cause of 

such events. 

 

Using a high quality dataset, where the subsurface geology is well known, could 

be a good verification test for the spectral-inversion process. At the same time, the 

application in simultaneous elastic inversion could also lead to enhanced reservoir 

characterization and understanding lithology and fluid behavior. 
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APPENDIX A 

 

Synthetic seismograms generated for three different wells using Ricker wavelets 

with predominant frequencies of 35 and 25 Hz. The synthetics were created for the upper 

section (Sterling Formation) and middle section (Beluga Formation and deeper rocks).  

 

 

Figure A.1: Synthetic seismogram for the upper section of Well A using a Ricker 
wavelet of 35 Hz. The tie is good. Notice the reverse polarity of the wavelet, 
demonstrating that the seismic needed a phase rotation of -180 degrees. 
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Figure A.2: Synthetic seismogram for the middle section of Well A using a Ricker 
wavelet of 25 Hz. The tie is good. A reverse polarity wavelet was used, demonstrating 
that the seismic needed a phase rotation of -180 degrees. 
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Figure A.3: Synthetic seismogram for the upper section of Well B using a Ricker 
wavelet of 25 Hz. The tie is fairly good. A reverse polarity wavelet was used, 
demonstrating that the seismic needed a phase rotation of -180 degrees. 
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Figure A.4: Synthetic seismogram for the middle section of Well B using a Ricker 
wavelet of 25 Hz. The tie is fairly good. A reverse polarity wavelet was used, 
demonstrating that the seismic needed a phase rotation of -180 degrees. 
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Figure A.5: Synthetic seismogram for the middle section of Well C using a Ricker 
wavelet of 25 Hz. The tie is fairly good. A reverse polarity wavelet was used, 
demonstrating that the seismic needed a phase rotation of -180 degrees. 
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APPENDIX B 

 

Examples of the analysis of the wavelet-determination process using different 

wavelengths (240ms, 360 ms, 440 ms). 

 

 

Figure B.1: Wavelet-extraction process showing the wavelet-amplitude spectrum 
variation as a function of time. The wavelength is 240 ms. 
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Figure B.2: Wavelet-extraction process showing the wavelet-amplitude spectrum 
variation as a function of time. The wavelength is 440 ms. 
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APPENDIX C 

 

More spectral inversion results: 

 

 

Figure C.1: Comparison of the original seismic (a), the reflectivity band limited 5-10-
150-210 (b) and pseudo-impedance sections (c) with the induction well log. Two high 
impedance sands (13 and 7 ms time thickness respectively) are resolved by the inversion 
on the reflectivity and impedance volumes. The tuning thickness is 28 ms for the original 
seismic data. Both possible gas sands were located above the main reservoir and have not 
been proved yet.  
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Figure C.2: Comparison between a full stack seismic (a) and the inverted sections (b). 
The vertical resolution and lateral continuity are significantly improved, especially within 
the elliptic area. The arrow shows what it could be part of a bar assemblage. 
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Figure C.3: Comparison between RMS amplitude extractions along the Sterling B2 
horizon in a 20 ms time window for pseudo-impedance (a) and peak-amplitude 
(maximum amplitude value at every peak frequency) volumes (b). Notice some channel 
features or bars that could correspond with the analog case described of the 
Sagavanirktok River, northern Alaska. 
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