

Coastal & Marine Environment

Coral Reef Environment

Mazen Abualtayef

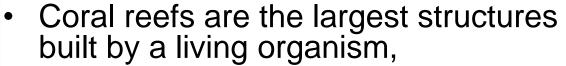
Assistant Prof., IUG, Palestine

Chapter

3

- What is coral reef?
- Its Importance
- Threats
- Artificial reef

Chapter 3

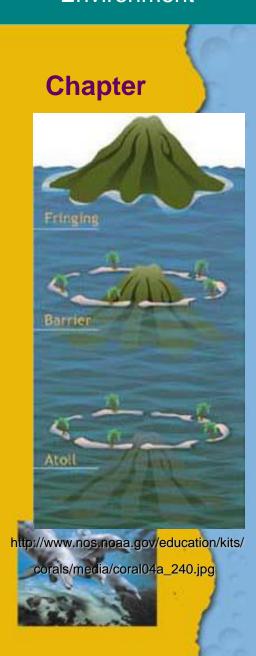

Invertebrate: اللافقاريات Solitary: الانفرادي

Anemones: شقائق النعمان Cnidarians: الكائنات المجوفة

What is coral?

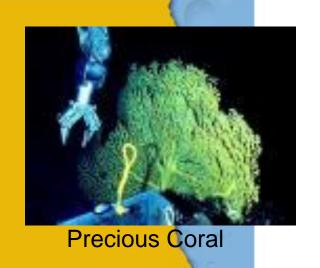
- It's a living organism!
- It is an invertebrate,

- The organisms that build coral reefs are adapted to intertidal conditions as well as life on the continental shelf,
- The reefs themselves are created by the calcium carbonate that is deposited by polyps living in large colonies,
- The main structure of the reef is actually fossils of polyps that lived in the past (hermatypic),
- There are polyps in the reef that do not contribute to the structure – these are called ahermatypic corals,
- Coral is cousins to jellyfish and anemones (Cnidarians).


Chapter

3

- The animal portion of the reef is called a polyp
- The polyp absorbs calcium carbonate out of the water
- The calcium carbonate is used to build the reef


Reefs Corals Build

Corals can build three types of reefs:

- Fringing: grows close to shore
- Barrier: also grows close to shore but has a lagoon separating it from the shore
- Atoll: a ring of coral that surrounds a lagoon, often grows on a submerged mountain or volcano

Ahermatypic Corals

Soft Coral

Gorgonians

Sea Fan

- This is a sea fan growing on a coral boulder.
- A sea fan is a type of soft coral.
- By watching the movement of the fan, you can tell the direction of the sea currents.

Physical characteristics of coral

Size

- One of the largest corals, Fungia
 (mushroom coral), is a solitary coral that can extend 25cm in diameter.
- Colonial coral polyps are much smaller and average 1-3mm in diameter.
- Coral colonies also vary in size.
 Some corals form only small
 colonies. Others may form colonies
 few meters high. Star coral
 (*Montastrea annularis*) colonies
 reach an average height of 3-4m.

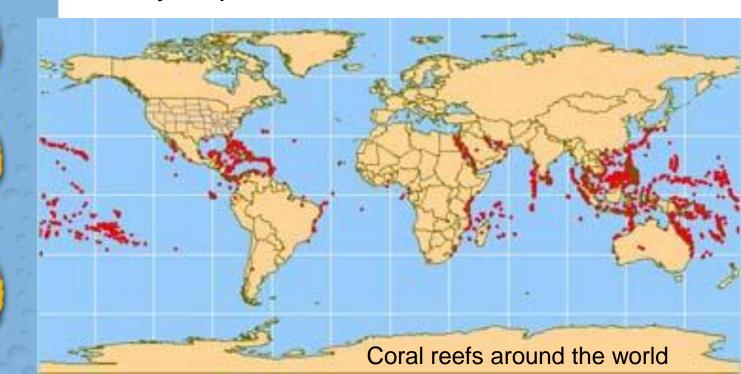
Chapter

3

أصباغ :Pigments

Physical characteristics of coral

Color


- Natural pigments in coral tissue produce a range of colors including white, red, orange, yellow, green, blue, and purple.
- Algae that live within the tissues of some corals may make the coral appear brown, green, or orange.

Chapter

3

Where can you find coral reefs?

- Coral is found all over the world:
 - Tropical
 - Temperate
 - Polar
- Only tropical corals build reefs

Importance of Coral Reefs

Chapter

3

- 0.2% of world's oceans
- Habitat for 1/3 of marine fishes
- Habitat for tens of thousands of other animals
- The rainforests of the oceans
- Protection to coastlines
- Economic resources
- Biodiversity
- Natural beauty

Importance of Coral Reefs

Chapter

3

Protection to coastlines:

- absorb energy of ocean waves
- reduce erosion of shoreline
- storm damage
- flooding

Importance of Coral Reefs

Chapter

3

Economic resources:

- Fisheries for food
- Fisheries for jobs
- Tourism
- Building materials
- Aquarium trade

Importance of Coral Reefs

Chapter

3

Biodiversity:

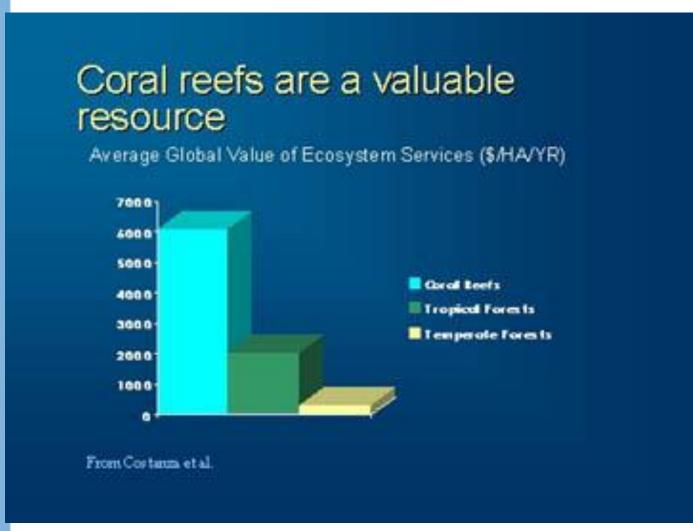
- The rainforests of the sea
- Genetic diversity
- Pharmaceuticals

Importance of Coral Reefs

Chapter

3

Natural beauty:



http://sustainableseas.noaa.gov/missions/florida2/background/coralspawning.html

Chapter

3

Coral Reefs – Support, Nurture, Protect, Provide

Threats to coral and coral reefs

1) Natural

2) Anthropogenic of human origin

invasive species and starfish outbreaks

bleaching

deforestation, soil erosion, sediment & nutrient loading

overfishing

destructive fishing practices

Coastal & Marine **Environment** Chapter Smothering: الخانق http://volcano.und.nodak.edu/vwdocs/curren

1. Natural disturbances that affect corals and coral reefs?

- Hurricanes: Physical damage, smothering, destruction of other ecosystems upon which coral reefs depend
- Tsunamis: Physical damage, erosion, possible disruption of reproduction and recruitment
- Volcanoes: Depends upon where volcano occurs, Heat, smothering and sedimentation
- Earthquakes: Little direct impact, Indirect impacts (triggers tsunamis, coastal landslides)
- Predators & competitors: see next slide
- Bleaching: see next slide
- Pathogens: see next slide

Predators

- crown of thorns starfish
- القواقع snails •
- الببغاء parrotfish •
- butterfly fish

Crown of Thorns Sea Star

Chapter

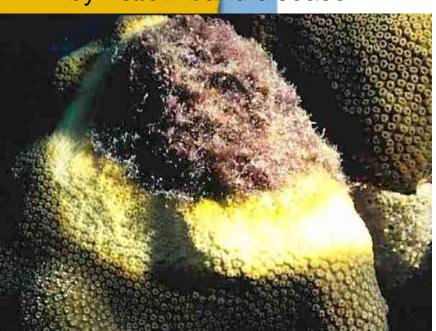
Cyanide fishing kills coral

Healthy

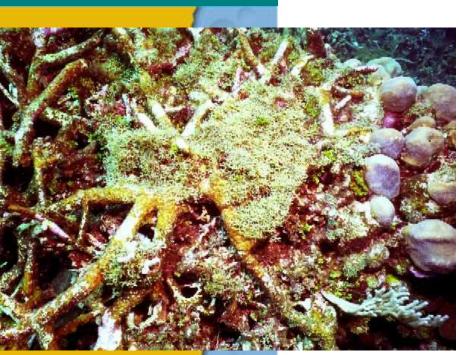
After cyanide exposure

Chapter

3


algae

Algae growth is often followed by Yellow-band disease



Reefs are often covered with algae

It smothers and kills healthy coral

Competitors

algae

Algae comes in green, brown and red Bay Islands, Honduras, 2000

Chapter

Bleaching: نبیض

Bleaching

- Color in coral comes from the photosynthetic symbiotic algae that live within the tissue of the coral
- Loss of zooxanthellae
- Causes:
 - higher than usual ocean temperature, algae die and are expelled and coral dies soon after. The optimal temperature for corals is a small range (24-29° C) and each coral species has a specific "bleaching threshold"
 - sharp changes in salinity
 - heavy UV light exposure

Zooxanthellae are golden-brown intracellular of various marine animals and protozoa, especially corals. Zooxanthellae provide the host with energy in the form of translocated reduced carbon compounds, such as glucose, glycerol, and amino acids, which are the products of photosynthesis. Zooxanthellae can provide up to 90% of a coral's energy requirements.

Bleached Brain Coral

Chapter 3

Diseases on the rise:

- new pathogens
- land pathogens (Aspergillus)
- occurring at all depths
- More susceptible when stressed

http://ourworld.compuserve.com/homepages/mccarty_and_pete rs/coral/Bbd.htm

Chapter 3

الصنعية:Anthropogenic

2. Anthropogenic threats to coral reefs

- Overfishing
- Development
- Mining and dredging
- Recreation

Overfishing

Ecological imbalance

http://catbert.er.usgs.gov/african_dust/events.html

http://www.photolib.noaa.gov/r eef/reef2570.htm

http://tools.coralreef.org/content/objects/view.acs?object_id=545

Overfishing

Destructive fishing practice

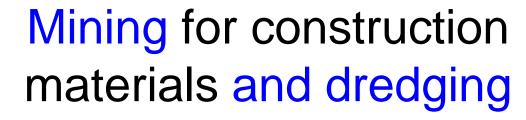
Source: Vaughan R. Pratt, International Marinelife Alliance

Chapter

Development

- Sediment → smothering
- Freshwater input
- Pollutants & nutrients (sewage, pesticides, fertilizer, heavy metals,

pathogens)


http://www.wcmc.org.uk/marine/data/coral_mangrove/coral.danger.h

http://ourworld.compuserve.com/homepages/m ccarty_and_peters/coral/c-intro.htm

Chapter

3

- Destruction of reef structure
- Stirs up sediment

Anchors, boats, flippers, hands, feet

- Kill animal tissue
- Skeleton breakage

http://www.sanctuaries.nos.noaa.gov/scied/science/habitat/influences.html

Chapter

3

أذى :Insult

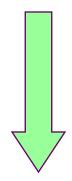
Synergistic effects

- Interaction of natural changes & human activity
- Multiple insults

Chapter

3

Global climate change


- Reduced reef building
- Increase in frequency and intensity of hurricanes
- Increases in bleaching
- Increased in disease

Chapter

Synergistic effects

CORAL DOMINATED

ALGAL DOMINATED

Chapter

أصلى :Pristine

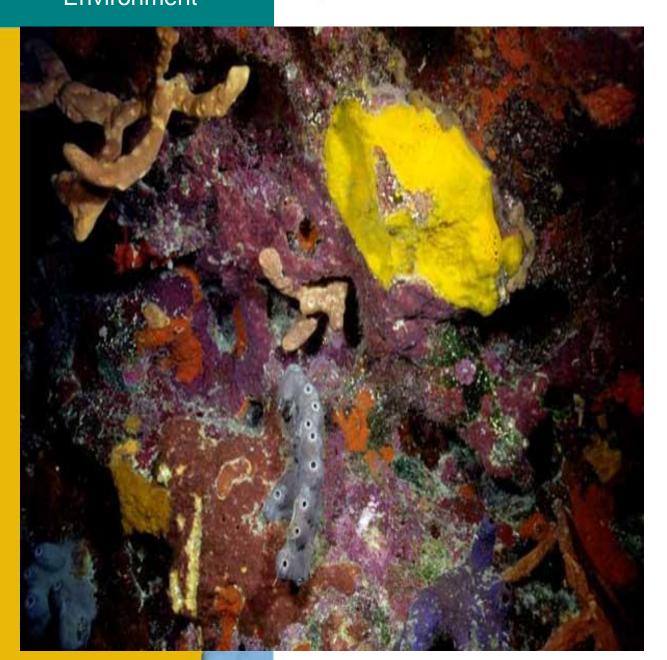
Reefs worldwide are Threatened

- 11% of reefs have been lost
- 16% of reefs severely damaged
- ~60% of studied reefs threatened by human activities
- No pristine reefs left

Reefs are dying all over the world

Chapter

Today, 65% of the worlds reefs are dying (US Coral Reef Task Force, NOAA)


Chapter

3

- Only 12 families lived on this forested island until the 1970s
- Then the tourist industry arrived
- Today, 2.6 million people visit
 Cancun each year
- The island is bare, its forests long gone
- Sewage facilities process only onequarter of the daily flow
- The rest goes straight into the sea

Sick Coral

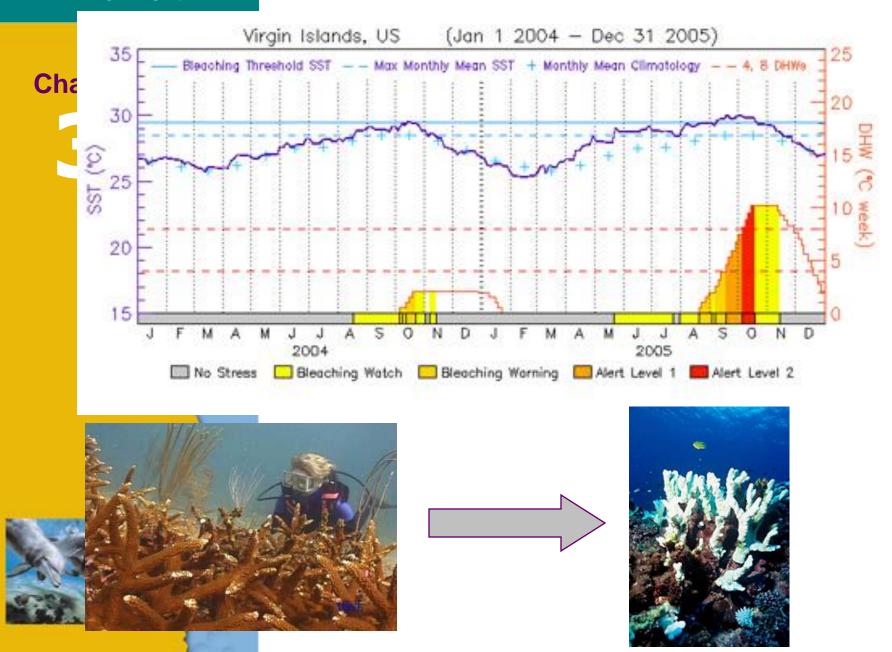
- This is a lot of coral that died from disease.
- It is being overgrown by colorful sponges and algae.

Sponges increase while Corals decrease

Chapter

3

- Sponges have increased in numbers recently because of pollution and nutrient runoff coming from the surrounding islands.
- Corals are very sensitive to environmental changes and will die from pollution, too many nutrients and sea surface temperature changes.



This little fish is hiding amongst the finger and soft coral

Coastal & Marine

Environment

Chapter

3

When reefs die...

- Fish populations disappear
- Fishermen lose their livelihood
- Beaches and shorelines wash away
- Land areas erode from waves
- Tourists find somewhere else to dive
- Local economies can be devastated

Chapter

An artificial reef is one or more objects of natural or human origin deployed purposefully on the seafloor to influence physical, biological, or socioeconomic processes related to living marine resources. Artificial reefs are defined physically by the design and arrangement of materials used in construction and functionally according to their purpose. Items used in reef construction add vertical profile to the benthic environment. They may be either assembled expressly as a reef or acquired after being used for another, usually unrelated, purpose.

The definition of artificial reef has been changing in the modern era of reef-building, which is only 50 years old. Accidental shipwrecks have been classified at times as artificial reefs. Recent proposals have suggested the incorporation, secondarily, of various objectives sought with artificial reefs to structures already deployed for other purposes. A notable example is the recognition that harbor breakwaters can be designed to achieve "ecofriendliness".

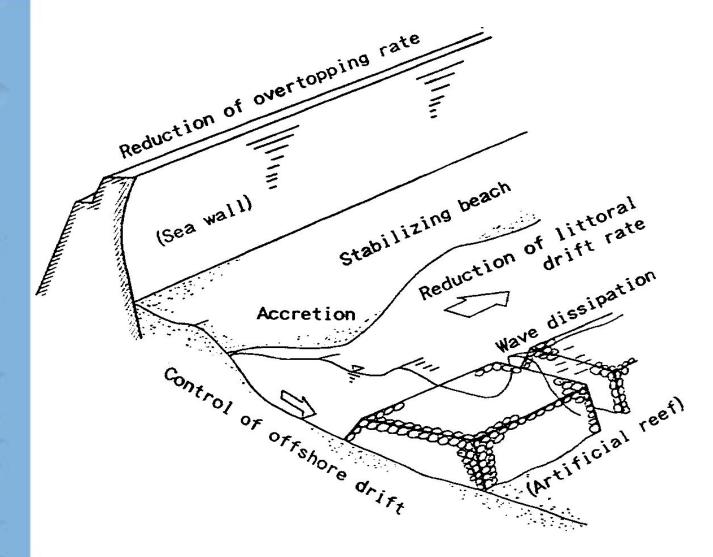
Chapter

3

يحاكي :Mimic

Why constructing artificial reefs and possible impacts

The construction of artificial reefs is carried out due to various factors. These, in order of significance, are:


- 1- Provide environmental enhancement (for example: to get rid of solid waste, non-hazardous waste, in order to increase the operation period of landfill sites).
- 2- Mitigate for damages to reefs due to unsustainable man-made activities (ship groundings, dredging, burial, pollution).
- 3- Restore damaged reefs (natural events: storms, tsunamis, etc.)
- 3- To mimic a reef habitat for tourism purposes to attract tourists.
- 4- To mimic reef habitats to aggregate fish communities and increase fish stocks.
- 5- Assist with shoreline stabilization.

Chapter

3

Shoreline stabilization

Coastal & Marine

Environment

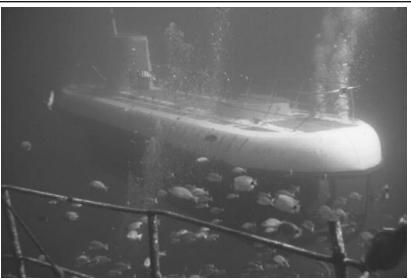
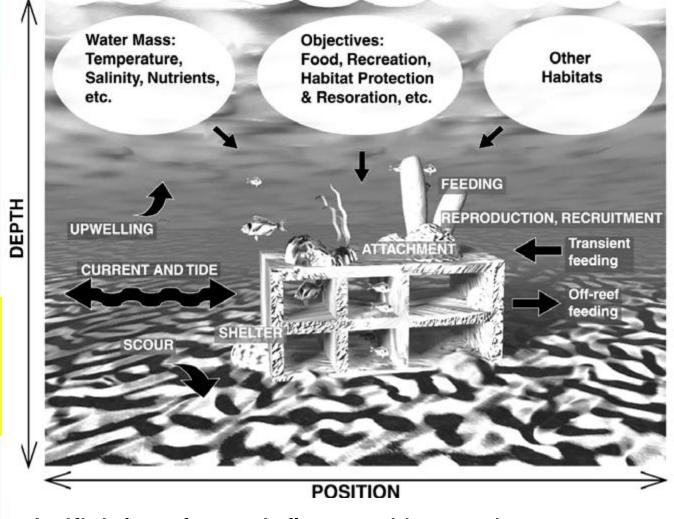


Table 1.1 Uses of Artificial Reefs in Marine Environments

Enhance Artisanal Fishery Production/Harvest
Increase Commercial Fishing Production/Harvest
Aquaculture Production Sites
Aquaculture:

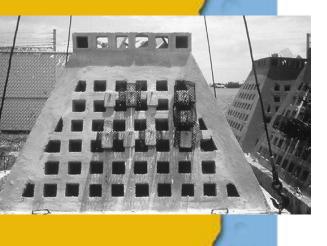

Enhance Recreational Fishing by Hook-and-Line and Spear
Recreational Skin Diving Sites
Submarine Tourism Sites
Control Fishing Mortality
Manipulate Organism Life History
Habitat Protection
Conservation of Biodiversity
Mitigation (off-site) of Habitat Damage and Loss
Restore or Enhance Water and Habitat Quality (on-site)
Research

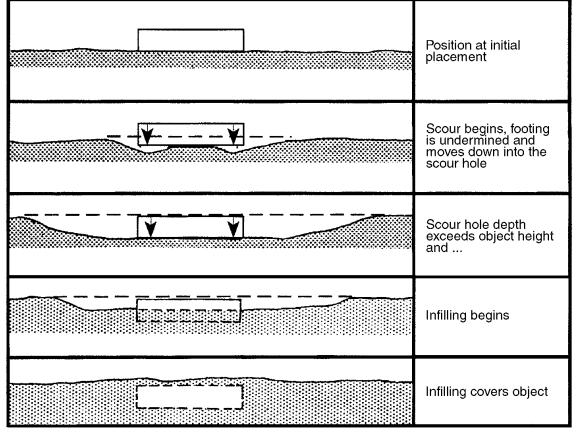
One of the newest purposes for artificial reefs is to provide sites for submarine viewing and nature based tourism, especially in clear tropical waters. (Photograph courtesy of R. Brock.)

Chapter 3

Items used in reef construction add vertical profile to the benthic environment.

Artificial reefs are influenced by, and influence, natural and human forces in the aquatic environment. Evaluation depends on the objectives for the reef as defined by user interests and may address physical, chemical, biological, and economic factors.


Chapter



A diverse group of interests have need to evaluate the performance of artificial reefs for various economic, social, and ecological purposes.

Chapter

3

Possible "burial" mechanism for small structures subject to scouring (adapted from Tian 1994).

A New Home

- Corals now have a choice of where to live
- Corals are very sensitive and are rapidly dying
- People are trying to help by creating artificial reefs

Artificial reefs materials

Easy deployment

Chapter

3

C

U

Chapter

3

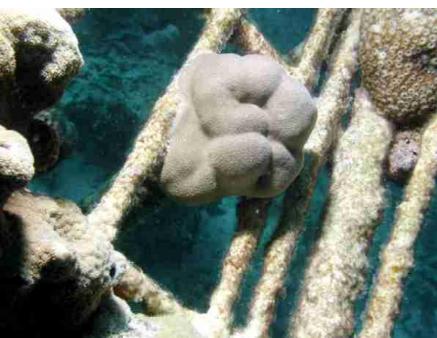
When the materials are fully

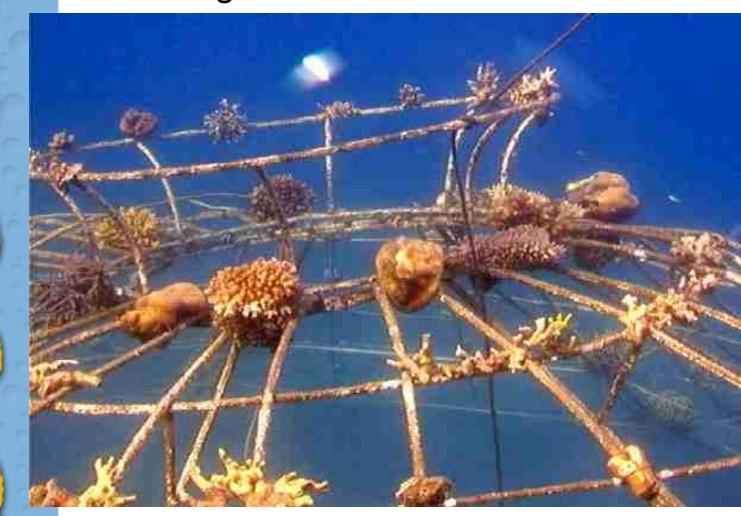
assembled

Rebar can be welded in any shape

Floating reef into position

Chapter


3


Calcium carbonate quickly forms on the structure

Chapter

3

Coral fragments soon cover the frame

Chapter

3

Monitoring of coral growth

Chapter

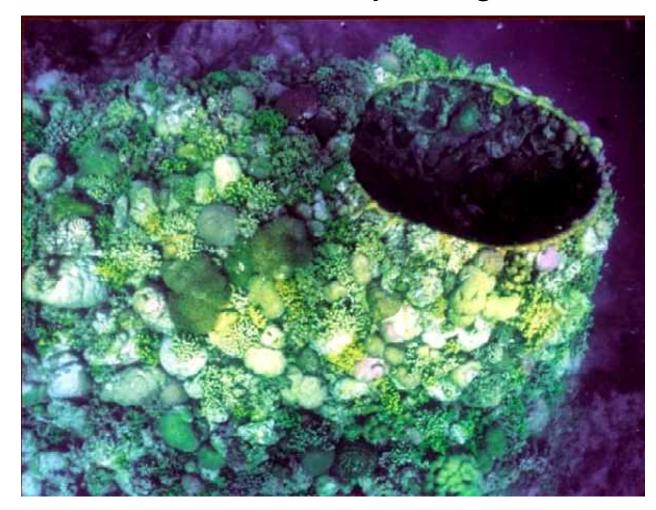
3

Barnacle Reef, Maldives, 1997

Chapter

3

Barnacle Reef. A year later, 1998

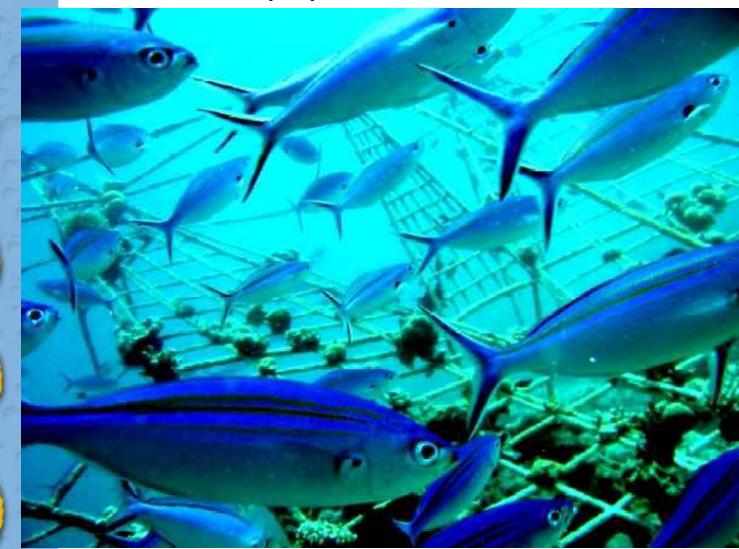


Chapter 3

Barnacle Reef, 3 years growth

Corals are robust and healthy

Chapter 3



Chapter

3

Fish populations move in

Chapter

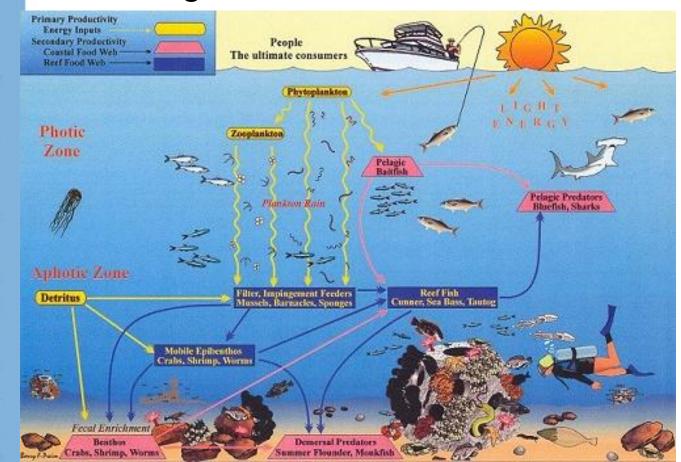
3

The new marine ecosystem is both balanced and healthy

Chapter

3

Reefs attract divers

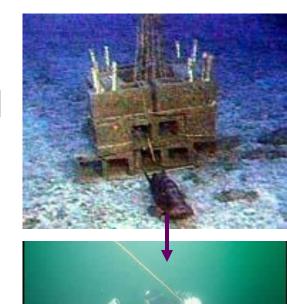


Chapter

3

Arguments for artificial reefs

- It can help build or rebuild a reef
- It will increase fish populations by making new habitats



Chapter

3

Arguments for artificial reefs

- Moveable
- Chemical leaking and leaching into the ocean
- It does not increase fish populations but rather moves them to one location away from their natural habitat which makes them easier to catch

Chapter

3

- Artificial reef evaluation: with application to natural marine habitats / edited by William Seaman, Taylor & Francis Group, 2000
- An introduction to coral reef presentation.
- Global Coral Reef Alliance presentation 2005.
- Coral Reefs presentation.
- Juliann Krupa. Coral bleaching and the affect of temperature change on coral reef predator-prey interactions presentation.

